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Metric measure spaces and synthetic Ricci bounds:
Fundamental concepts and recent developments

Karl-Theodor Sturm

Abstract. Metric measure spaces with synthetic Ricci bounds have attracted great interest in
recent years, accompanied by spectacular breakthroughs and deep new insights. In this sur-
vey, I will provide a brief introduction to the concept of lower Ricci bounds as introduced by
Lott–Villani and myself, and illustrate some of its geometric, analytic, and probabilistic con-
sequences, among them Li–Yau estimates, coupling properties for Brownian motions, sharp
functional and isoperimetric inequalities, rigidity results, and structural properties like rectifia-
bility and rectifiability of the boundary. In particular, I will explain its crucial interplay with the
heat flow and its link to the curvature-dimension condition formulated in functional-analytic
terms by Bakry–Émery. This equivalence between the Lagrangian and the Eulerian approach
then will be further explored in various recent research directions: (i) time-dependent Ricci
bounds which provide a link to (super-) Ricci flows for singular spaces, (ii) second-order cal-
culus, upper Ricci bounds, and transformation formulas, (iii) distribution-valued Ricci bounds
which, e.g., allow singular effects of non-convex boundaries to be taken into account.

1. Synthetic Ricci bounds for metric measure spaces

1.1. Metric spaces

The class of metric spaces .X; d/ is a far-reaching generalization of the class of
Riemannian manifolds .M; g/. It allows for rich geometric structures including singu-
larities, branching, change of dimension as well as fractional and infinite dimensions.

Already in the middle of the last century, A. D. Aleksandrov [1, 2] has proposed
his fundamental concepts of lower and upper bounds for generalized sectional curva-
ture for metric spaces. Especially these lower bounds are particularly well behaved
with respect to the so-called Gromov–Hausdorff metric on the class of compact met-
ric spaces as observed by Gromov [77, 78]:
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� for each K 2 R, the class®
.X; d/ with sect. curv. � K

¯
is closed under GH-convergence;

� for each K;L;N 2 R, the class®
.X; d/ with sect. curv. � K; dimension � N; diameter � L

¯
is compact.

In the sequel, many properties of Riemannian manifolds and geometric estimates
which only depend on one-sided curvature bounds could be proven for such metric
spaces .X; d/ with synthetic (upper or lower) curvature bounds. For spaces with syn-
thetic lower bounds on the sectional curvature, also a far-reaching analytic calculus
was developed with foundational contributions by Burago–Gromov–Perel’man [24],
Kuwae–Machigashira–Shioya [101], Zhang–Zhu [149].

However, for most properties and estimates in geometric analysis, spectral theory
and stochastic analysis on manifolds, no quantitative assumptions on the sectional
curvature are needed but—as observed in the seminal works of Yau, Cheeger, Cold-
ing, Elworthy, Malliavin, Bismut, Perel’man and many others—merely a lower bound
on the Ricci curvature

Ric � Kg:

Since the Ricci tensor is the trace of the sectional curvature, i.e.,

Ricx.vi ; vi / WD
X
j 6Di

Secx.vi ; vj / if ¹viºiD1;:::;n ONB of TxN;

assumptions on lower bounded Ricci curvature are less restrictive than assumptions on
lower bounded sectional curvature. Replacing (synthetic) sectional curvature bounds
by Ricci bounds, the previously mentioned Gromov’s compactness theorem turns into
a precompactness theorem:

� For any choice of K;L; N 2 R, the class of Riemannian manifolds .M; g/ with
Ricci curvature � K, dimension � N , and diameter � L is relatively compact
with respect to mGH-convergence.

Properties of mGH-limits of Cauchy sequences in such classes (so-called Ricci limit
spaces) have been studied in great detail by Cheeger–Colding [32–34]; see also [35,
36, 39].

As already pointed out by Gromov, the right setting to deal with the completions
of these classes is the class of metric measure spaces. However, what was missing
for decades was a synthetic formulation of lower Ricci bounds, applicable not only to
Riemannian manifolds (and their limits) but also to metric measure spaces.
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1.2. Metric measure spaces

Here and in the sequel, a metric measure space (briefly mm-space) will always mean
a triple .X; d;m/ consisting of

� a space X,

� a complete separable metric d on X,

� a locally finite Borel measure m on it.

It is called normalized (or mm1-space) iff in addition m.X/ D 1.
A primary goal since many years has been to find a formulation of generalized

Ricci curvature bounds Ric.X; d;m/ � K which is

� equivalent to Ricx.v; v/ � Kkvk2 if X is a Riemannian manifold,

� stable under convergence,

� intrinsic, synthetic (like curvature bounds in Aleksandrov geometry),

� sufficient for many geometric, analytic, and spectral theoretic conclusions.

In independent works, such a formulation has been proposed by the author [136,137]
and by Lott–Villani [107], based on the concept of optimal transport and relying
on previous works by Brenier [21], Gangbo [60], McCann [112, 113], Otto [128],
Otto–Villani [129], Cordero-Erausquin–McCann–Schmuckenschläger [40], and von
Renesse–Sturm [145].

The synthetic lower Ricci bound for an mm-space .X;d;m/will be defined through
the interplay of two quantities on X:

� the Kantorovich–Wasserstein distance

W2.�1; �2/ WD inf

´�Z
X�X

d2.x; y/ dq.x; y/

�1=2
W q 2 Cpl.�1; �2/

µ
(1.1)

on the space P .X/ of Borel probability measures on X where

Cpl.�1; �2/ WD
®
q 2 P .X � X/; .�1/�q D �1; .�2/�q D �2

¯
denotes the set of couplings of two probability measures �1, �2,

� the Boltzmann entropy

S.�/ D Ent.�jm/ D

´R
X � log � dm; if � D � � m;

C1; if � 6� m;
(1.2)

regarded as a functional on P .X/.

The first of these quantities is defined merely using the metric d on X, the second one
merely using the measure m on X.
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Figure 1.

Remark 1.1. En passant, we record some nice properties of the underlying metric
d on X which carry over to the Kantorovich–Wasserstein metric on the Wasserstein
space P2.X/ D ¹� 2 P .X/ W

R
X d2.x; x0/�.dx/ <1º:

� .P2.X/;W2/ is a complete separable metric space,

� .P2.X/; W2/ is a compact space or a length space or an Aleksandrov space with
curvature � 0 if and only if .X; d/ is so.

1.3. Synthetic Ricci bounds for metric measure spaces

Following [107, 136, 137], we now present the so-called curvature-dimension condi-
tion CD.K;N / to be considered as a synthetic formulation for “Ricci curvature � K

and dimension � N ”. For convenience, we first treat the case N D 1, where no
constraint on the dimension is imposed.

Definition 1.2. We say that a metric measure space .X;d;m/ has Ricci curvature �K
or that it satisfies the curvature-dimension condition CD.K;1/ iff 8�0;�1 2 P2.X/,
there exists W2-geodesic .�t /t2Œ0;1� connecting them such that

S.�t / � .1 � t /S.�0/C tS.�1/ �
K

2
t.1 � t /W 2

2 .�0; �1/: (1.3)

Remark 1.3. In other words, the CD.K;1/-condition holds true if and only if the
Boltzmann entropy is weaklyK-convex on P2.X/, see Figure 1. Recall that S is called
K-convex on P2.X/ iff (1.3) holds true for allW2-geodesics .�t /t2Œ0;1� in P2.X/. The
reason for requiring the weaker version is the stability under convergence of the latter
(see below).

The second case which allows for an easy formulation is K D 0. Here for finite
N 2 RC, the formulation is based on the Renyi-type entropy

SN .�jm/ WD �

Z
X
�1�1=N dm for � D � � m C �s:
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sec ≥ 0 ⇐⇒ dist concave ric ≥ 0 ⇐⇒ vol1/n concave

Figure 2.

Definition 1.4. We say that .X; d; m/ satisfies the curvature-dimension condition
CD.0;N / iff 8�0;�1 2 P2.X/, there existsW2-geodesic .�t /t2Œ0;1� connecting them
such that

SN .�t jm/ � .1 � t /SN .�0jm/C tSN .�1jm/: (1.4)

Remark 1.5. It is quite instructive to observe that

SN .�jm/ D �m.A/1=N if � is unif. distrib. on A � X:

Thus the curvature-dimension condition CD.0;N / can be vaguely interpreted as a
kind of concavity property for the N -th root of the volume, see Figure 2. This should
be seen in context with the facts that (i) on N -dimensional spaces, the N -th root of
the volume has the dimension of a length, (ii) nonnegative sectional curvature in the
sense of Aleksandrov can be regarded as a concavity property of distances, and (iii)
Ricci curvature should be regarded as the average of the sectional curvatures.

1.4. The curvature-dimension condition CD.K; N /

The curvature-dimension condition CD.K; N / for general pairs of K; N is more
involved. It was introduced in [137]. (Based on that, later on Lott–Villani [106] also
introduced a slight modification of it—the difference, however, will be irrelevant for
the sequel. In their original paper [107], they consider only the caseK=N D 0, where
the effects of dimension and curvature are decoupled.)

Definition 1.6. Given thatK;N 2R (withN � 1), we say that an mm-space .X;d;m/
satisfies the curvature-dimension condition CD.K;N / iff 8�0m; �1m 2 P2.X/, there
exists W2-geodesic .�tm/t2Œ0;1� connecting them and a W2-optimal coupling q of
them such thatZ

X
�
1�1=N
t .z/ dm.z/ �

Z
X�X

�
�
.1�t/
K;N .0; 1/ � �

�1=N
0 .0/

C �
.t/
K;N .0; 1/ � �

�1=N
1 .1/

�
dq.0; 1/: (1.5)

Here the distortion coefficients are given by

�
.t/
K;N .x; y/ WD t

1
N

 
sin
�q

K
N�1

t d.x; y/
�

sin
�q

K
N�1

d.x; y/
�
!N�1

N



K.-T. Sturm 130

in caseK>0, analogous formula with sin
p
� � � replaced by sinh

p
� � � � in case K<0,

and � .t/K;N .x; y/ WD t in case K D 0.

The interpretation of CD.K; N / as a synthetic formulation for “Ricci curvature
� K, dimension � N ” is justified by the Riemannian case.

Theorem 1.7 ([137] extending [40, 135, 145]). For Riemannian manifolds .M; g/,

CD.K;N /, RicM � K and dimM � N:

Further examples of metric measure spaces satisfying a CD.K;N/-condition inclu-
de weighted Riemannian spaces, Ricci limit spaces, Aleksandrov spaces, and Finsler
spaces. If one slightly extends the concept of “metric” towards “pseudo metric”, it
also includes path spaces (e.g. the Wiener space with K D 1, N D 1) and configu-
ration spaces.

Moreover, many further examples are obtained by constructions as limits, prod-
ucts, cones, suspensions, or warped products.

2. Geometric aspects

The broad interest in—and the great success of—the concept of the curvature-dimen-
sion condition CD.K;N / is due to

� its equivalence to classical lower Ricci bounds in the Riemannian setting,

� its stability under convergence and under various constructions, and

� the fact that it implies almost all of the geometric and functional analytic estimates
(with sharp constants!) from Riemannian geometry which depend only on (the
dimension and on) lower bounds on the Ricci curvature.

2.1. Volume growth

Let us summarize some of the most fundamental geometric estimates.

Theorem 2.1 (Bonnet–Myers diameter bound [137]). The CD.K;N /-condition with
finite N and positive K implies compactness of X and

diam.X/ �

r
N � 1

K
� �: (2.1)

Theorem 2.2 (Bishop–Gromov volume growth estimate [137]). Under CD.K; N /
with finite N , for every x0 2 X, the volume growth function r 7! m.Br.x0// is abso-
lutely continuous and its weak derivative s.r/ WD @

@r
m.Br.x0// satisfies

s.r/=s.R/ � sin
�r

K

N � 1
r

�N�1�
sin
�r

K

N � 1
R

�N�1

(2.2)
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for all 0 < r < R with the usual re-interpretation of the RHS ifK � 0 (i.e., replacing
all sin.

p
K � � � / by sinh.

p
�K � � � / in the case K < 0).

As in the smooth Riemannian setting, this differential inequality immediately
implies the integrated version:

m
�
Br.x0/

�
m
�
BR.x0/

� � R r
0

sin
�q

K
N�1

t
�N�1

dtR R
0

sin
�q

K
N�1

t
�N�1

dt

for all 0 < r < R, and thus in particular

m
�
BR.x0/

�
� CrN exp

�p
.N � 1/K�R

�
:

The results so far assumed that N is finite. In the case N D 1, the CD.K; N /-
condition implies a novel volume growth estimate [136], not known before in the
Riemannian setting,

m
�
BR.x0/

�
� exp

�
K�

2
R2 C c1RC c0

�
: (2.3)

It can be seen as complementary to the concentration of measure phenomenon. The
sharpness is illustrated by the following example.

Example 2.3. Consider X D R, d D j � j, and dm.x/ D exp.�
2
jxj2/ for � > 0. Then

.X;d;m/ satisfies CD.��;1/, and m.BR.x//� exp.�
2
.R�

1
2
/2/ for all x andR �

1
2

.

The curvature-dimension condition CD.K;N / also implies numerous further geo-
metric estimates, among them the Brunn–Minkowski inequality [137] and the Borell–
Brascamp–Lieb inequality [11]. What remained an open problem for many years
was the Lévy–Gromov isoperimetric inequality which only recently was proven by
Cavalletti–Mondino.

Theorem 2.4 (Lévy–Gromov isoperimetric inequality [30]). Let .X; d;m/ be an es-
sentially non-branching mm-space which satisfies CD.K;N/ and let yX be a CD.K;N/-
model space. Then for every subset E � X and every spherical cap B � yX,

j@Ej

jXj
�

j@Bj

jyXj
if
jEj

jXj
D

jBj

jyXj
: (2.4)

Here j � j denotes the respective volume or surface measure.

2.2. The space of spaces

Two mm1-spaces will be called isomorphic—and henceforth identified—iff there
exists a measure preserving isometry between the supports of the respective mea-
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sures. It is a quite remarkable observation that the space „ of isomorphism classes of
normalized mm1-spaces itself is a geodesic space.

TheLp-transportation distance between mm1-spaces .X0;d0;m0/ and .X1;d1;m1/
is defined for p 2 Œ1;1/ as

Dp
�
.X0; d0;m0/; .X1; d1;m1/

�
D inf

d;m

�Z
X0�X1

d.x0; x1/
pdm.x0; x1/

�1=p
;

where the infimum is taken over all couplings m of m0 and m1 and over all couplings
d of d0 and d1 (i.e., metrics on X0 t X1 which coincide with d0 on X0 and with d1
on X1), [136]. With slight modifications, this definition also extends to p D 1 and
p 2 .0; 1/. Furthermore, for p D 0 we define in the spirit of the Ky Fan metric

D0
�
.X0; d0;m0/; .X1; d1;m1/

�
D inf

d;m
inf
®
" > 0 W m

®
d.x0; x1/ > "

¯
� "

¯
:

A closely related concept is the Lp-distortion distance between mm1-spaces de-
fined for p 2 Œ1;1/ as

�p

�
.X0; d0;m0/; .X1; d1;m1/

�
D inf

m

�Z
X0�X1

Z
X0�X1

ˇ̌
d0.x0; y0/ � d1.x1; y1/

ˇ̌p
dm.x0; x1/dm.y0; y1/

�1=p
;

where the infimum is taken over all couplings m of m0 and m1, and again with slight
modifications also extended to p D1, p 2 .0; 1/, and p D 0. Under uniform control
of the moments of the involved metric measure spaces, the topologies induced by all
these metrics are the same and coincide with that of Gromov’s box distance �� and
with that of measured Gromov–Hausdorff convergence.

Lemma 2.5 ([76, 116, 138]). (a) 8p 2 Œ0;1/: Dp is complete whereas �p is
not complete,

(b) Dp-convergence , D0-convergence and convergence of p-th moments,

(c) �p-convergence , �0-convergence and convergence of p-th moments,

(d) D0-convergence , �0-convergence , ��-convergence.

The main result here is that the space of spaces is an Aleksandrov space.

Theorem 2.6 ([138]). The metric space .„2;�2/ of isomorphism classes of mm1-
spaces is a geodesic space with nonnegative curvature.

The tangent space (for the space of spaces) at a given mm1-space admits an
explicit representation and so does the symmetry group, with the latter e.g. in terms of
optimal self-couplings. Of particular interest are finite dimensional subspaces of the
space of spaces.
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Proposition 2.7. For each n 2 N, the subspace of n-point spaces (i.e., mm1-spaces
with equal mass on n-points) is a Riemannian orbifold with nonnegative curvature.

2.3. Stability, compactness

Converging sequences of mm1-spaces can always be embedded into common metric
spaces. The stability of the CD.K; N /-condition then simply amounts to the lower
semicontinuity of the Renyi-type entropy for weakly convergent sequences of proba-
bility measures.

Theorem 2.8. The curvature-dimension condition is stable under D0-convergence of
mm1-spaces.

The volume growth estimates entailed by the CD.K;N /-condition, together with
the stability of the latter under convergence, allow us to turn Gromov’s pre-compact-
ness theorem under Ricci bounds into a compactness theorem.

Theorem 2.9. For every triple K;N; L 2 R, the space of all mm1-spaces .X; d;m/
that satisfy CD.K;N / and have diameter � L is compact.

2.4. Local to global

A crucial property of curvature bounds both in Riemannian geometry and in the geom-
etry of Aleksandrov spaces is the local-to-global property: sharp global estimates
follow from uniform local curvature assumptions. For the synthetic Ricci bounds for
mm-spaces, this is a highly non-trivial claim. To deal with it, we restrict ourselves to
non-branching geodesic spaces.

The first globalization theorem was obtained in the case K=N D 0, where curva-
ture and dimension effects are de-coupled.

Proposition 2.10 ([107,136,137]). IfKD0 orND1, then every mm-space .X;d;m/
satisfies

CD.K;N / locally , CD.K;N / globally:

Further progress then was based on the reduced curvature-dimension condition
CD�.K; N / defined similarly as CD.K; N / but now with the distortion coefficient
�
.t/
K;N .x; y/ in (1.5) replaced by the reduced coefficients

�
.t/
K;N .x; y/ WD sin

�r
K

N
t d.x; y/

��
sin
�r

K

N
d.x; y/

�
:

Proposition 2.11 ([12]). For all K;N 2 R and all mm-spaces,

CD.K;N / locally , CD�.K;N / locally , CD�.K;N / globally:
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Only recently, the globalization theorem could be proven in full generality by
Cavalletti–Milman (with a minor extension by Zhenhao Li removing the finiteness as-
sumption for the underlying measure). Their approach is based on Klartag’s [95] nee-
dle decomposition and the localization technique developed by Cavalletti–Mondino
[30].

Theorem 2.12 ([29, 103]).

CD.K;N / locally , CD.K;N / globally.

3. Analytic aspects
A deeper understanding of the role of synthetic lower Ricci bounds on singular spaces
will be obtained through links with spectral properties of the Laplacians and estimates
for heat kernels on such spaces.

3.1. Heat flow on metric measure spaces

There are two different (seemingly unrelated) approaches to define the heat equation
on an mm-space .X; d;m/:

� either as a gradient flow in L2.X;m/ for the energy

E.u/ D
1

2

Z
X

jruj2 dm D lim inf
v!u in L2

1

2

Z
X

.lipxv/
2 dm.x/

with lipxv.x/D lim supy!x
jv.x/�v.y/j

d.x;y/ and jruj D minimal weak upper gradient,

� or as a gradient flow in P2.X/ for the Boltzmann entropy

Ent.u/ D
Z
X

u logudm:

The former approach (the traditional point of view) has the advantage that the en-
ergy—if it exists—is always convex and thus guarantees the existence of the gradient
flow. Its disadvantage is that it relies on the concept of weakly differentiable func-
tions. However, all analytic problems related to the notion of energy have been fully
resolved in the trilogy [3–5] by Ambrosio–Gigli–Savaré.

The latter approach (the novel perspective of Otto) has the advantage that the
entropy is always obviously well defined. However, for its gradient flow to exist, addi-
tional assumptions are required, e.g. that the entropy is semi-convex. Up to minor
technicalities, this simply says that the underlying mm-space has lower bounded
synthetic Ricci curvature. Under this minimal assumption, indeed, both approaches
coincide.

Theorem 3.1 ([3]). For every mm-space .X; d;m/ that satisfies CD.K;1/ for some
K 2 R, the energy approach and the entropy approach coincide.
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Example 3.2. There are plenty of examples to which this result applies. The most
prominent among them (and the authors who first proved it) are

(i) Euclidean space Rn: Jordan–Kinderlehrer–Otto [85],

(ii) Riemann manifolds .M; g/: Ohta [124], Savaré [133], Villani [144],
Erbar [45],

(iii) Finsler spaces .M; F;m/: Ohta–Sturm [126],

(iv) Aleksandrov spaces: Gigli–Kuwada–Ohta [67].

Example 3.3. In many other cases not covered by any CD-condition, we know that
the energy approach and the entropy approach coincide:

(a) Heisenberg group (unbounded curvature): Juillet [86],

(b) Wiener space (degenerate distance): Fang–Shao–Sturm [58],

(c) Configuration space (degenerate distance): Erbar–Huesmann [50],

(d) Neumann Laplacian (unbounded curvature if nonconvex): Lierl–Sturm [104],

(e) Dirichlet Laplacian (no mass conservation): Profeta–Sturm [131],

(f) Discrete spaces (no W2-geodesics): Maas [109], Mielke [117],

(g) Lévy semigroups (no W2-geodesics): Erbar [46],

(h) Metric graphs (unbounded curvature): Erbar–Forkert–Maas–Mugnolo [49].

In the latter examples (e), (f), and (g), the concept of “gradient flow for the Boltzmann
entropy” has to be slightly adapted.

3.2. Curvature-dimension condition: Eulerian vs. Lagrangian

Besides the Lagrangian formulation of synthetic Ricci bounds in terms of semicon-
vexity properties of the entropy, there is also a Eulerian formulation in terms of the
energy: the celebrated curvature-dimension (or �2) condition of Bakry–Émery. It is a
groundbreaking observation that both formulations are equivalent in great generality.

For this equivalence to hold, we now make the standing assumption that .X; d;m/
is infinitesimally Hilbertian, i.e., the energy E is quadratic or, in other words, Lapla-
cian and heat flow are linear. For convenience, we will also assume that the mm-
space under consideration has the Sobolev-to-Lipschitz property and volume growth
bounded by eCr

2
. Note that both of these latter properties follow from the validity of

the Lagrangian CD.K;N /-condition.

Theorem 3.4 ([4,5,52]). Under the above assumptions, the following properties are
equivalent:

(i) the synthetic Ricci bound CD.K;N /, briefly reformulated as

HessS �
1

N
.rS/˝2 � K on

�
P2.X/;W2

�
;
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(ii) the transport estimate

W 2
2 .Ps�;Pt�/ � e�K�W 2

2 .�; �/C 2N
1 � e�K�

K�
.
p
s �

p
t /2

with � WD
2
3
.s C

p
st C t /,

(iii) the gradient estimate

jrPtuj
2
C

4Kt2

N.e2Kt � 1/
j�Ptuj

2
� e�2KtPt jruj

2;

(iv) the Bochner inequality

1

2
�jruj2 � hru;r�ui � K � jruj2 C

1

N
.�u/2;

also known as Bakry–Émery criterion and written in comprehensive form
as

�2.u/ � K � �.u/C
1

N
.�u/2:

These equivalences allow for easy explanations and/or intuitive interpretations.
The equivalence (iii),(iv), indeed, is known since decades as a basic result of the so-
called �-calculus of Markov semigroups [13,14], and easily follows by differentiating
s 7! Pt�s.jrPsuj

2/. The equivalence (i),(ii), from a heuristic point of view, is a
consequence of the fact that the heat flow is the gradient flow for the entropy with
respect to the metric W2. Finally, the equivalence (ii),(iii) is the important Kuwada
duality which extends the celebrated Kantorovich–Rubinstein duality towards p 6D 1,
q 6D 1. The rigorous proofs of the above equivalences by Ambrosio–Gigli–Savaré
[4, 5] (for the case N D 1) and Erbar–Kuwada–Sturm [52] (for the general case)
are rather sophisticated and mark milestones in the development of the theory. For an
alternative approach in the general case, see also [7].

Remark 3.5. The Bakry–Émery estimate

�2.u/ �K � jruj2 �
1

N
.�u/2 .8u/

has a remarkable self-improvement property [13–15, 57, 134] asserting that it implies
the seemingly stronger estimate

�2.u/ �K � jruj2 �
1

N
.�u/2 C

N

N � 1

ˇ̌ˇ̌
rjruj

ˇ̌
�
1

N
j�uj

ˇ̌2
D
ˇ̌
rjruj

ˇ̌
C

1

N � 1

ˇ̌ˇ̌
rjruj

ˇ̌
� j�uj

ˇ̌2
.8u/:
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This leads to improved gradient estimates and improved transport estimates which
e.g. in the case N D 1 read as

jrPtuj � e�KtPt jruj; W1.Pt�;Pt�/ � e�KtW1.�; �/:

3.3. RCD.K; N /-spaces—functional inequalities

We will say that an mm-space satisfies the RCD.K; N /-condition iff it satisfies the
CD.K;N /-condition and iff it is infinitesimally Hilbertian. For these mm-spaces, the
full machinery of geometric analysis and Riemannian calculus can be developed and
far-reaching structural assertions can be derived.

Here we have to restrict ourselves to present only a selection of the many results
proven so far. And we will not formulate detailed estimates (except for the first result),
we will just mention the respective results.

Theorem 3.6. The following estimates hold true (each of them with sharp constants)
on any mm-space which satisfies an RCD.K; N /-condition for some K 2 R and for
N � 1:

� Poincaré/Lichnerowicz inequality [106]: �1 � N
N�1

K;

moreover, for N <1:

� Laplace comparison [64],

� Bochner’s inequality [7, 52],

� Li-Yau differential Harnack inequality, Gaussian heat kernel estimates [61],

� Sobolev, Cheeger, and Buser inequalities [44, 130],

whereas for N D 1:

� Talagrand- and logarithmic Sobolev inequalities [106],

� Wang’s Harnack inequality [102], upper Gaussian heat kernel estimate [143],
and Ledoux’s inequality [44].

In all the previous results, the dimensional parameter has always been a num-
ber N � 1 (which in turn then even implies that N � dimH .X/). Quite remarkably,
various of these results also admit versions where the dimensional parameter N is a
negative number; see e.g. [110, 111, 119, 125, 127].

3.4. RCD.K; N /-spaces—splitting and rigidity

In the smooth Riemannian setting, an important consequence of nonnegative Ricci
curvature is the Cheeger–Gromoll splitting theorem. In order to extend this to metric
measure spaces, it is essential to assume that the underlying spaces are infinitesimally
Hilbertian.
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Theorem 3.7 (Splitting theorem [63]). If an mm-space .X; d;m/ satisfies RCD.0;N /
and contains a line, then X D R � X0 for some RCD.0;N � 1/-space .X0; d0;m0/.

The counterpart to the splitting theorem for positive lower Ricci bound is Cheng’s
maximal diameter theorem.

Theorem 3.8 (Maximal diameter theorem [91]). If an mm-space .X; d;m/ satisfies
RCD.N � 1; N / and has diameter � , then X is the spherical suspension of some
RCD.N � 2;N � 1/-space .X0; d0;m0/.

In the smooth Riemannian setting, the maximal diameter theorem provides a more
far-reaching conclusion, namely, that X is the roundN -sphere. In the singular setting,
however, this conclusion is false [91].

On the other hand, such a far-reaching conclusion can be drawn from the maxi-
mality of the spherical size.

Theorem 3.9 (Maximal spherical size theorem [56]). If an mm-space .X; d;m/ satis-
fies RCD.N � 1;N / and

�

Z
X

Z
X

cos
�
d.x; y/

�
dm.x/ dm.y/ � 0; (3.1)

then N 2 N and .X; d;m/ is isomorphic to the N -dimensional round sphere SN .

Closely related to the maximal diameter theorem is Obata’s theorem on the min-
imality of the spectral gap.

Theorem 3.10 (Obata’s theorem [92]). If an RCD.N � 1; N /-space .X; d;m/ has
spectral gapN , then it is the spherical suspension of some RCD.N � 2;N � 1/-space
.X0; d0;m0/.

This splitting theorem indeed also admits an extension to N D 1 which states
that an mm-space .X; d;m/ that satisfies RCD.1;1/ and has spectral gap 1 splits off
a Gaussian factor [66].

3.5. RCD.K; N /-spaces—structure theory

Since blow-ups of RCD.K; N /-spaces are RCD.0; N /-spaces which contain lines, a
sophisticated iterated application of the splitting theorem will lead to deep insights
into tangent spaces and local structure of RCD-spaces.

Theorem 3.11 (Rectifiability and constancy of dimension [23,120]). If .X; d;m/ sat-
isfies RCD.K;N /, then

(a) X D
SbN c

kD1
Rk [ N , m.N / D 0,

(b) each Rk is covered by countably many measurable sets which are .1C "/-
biLipschitz equivalent to subsets of Rk ,
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(c) m and Hk are mutually abs. cont. on Rk ,

and even more,

(d) there exists n 2 N such that m.Rk/ D 0 for all k 6D n.

Besides the two landmark contributions to this structure theory mentioned above,
numerous important results were obtained [6, 43, 69, 90]. Particularly nice insights
could be obtained in the case N D 2.

Corollary 3.12 ([108]). RCD.K; 2/-spaces with m D H2 are Aleksandrov spaces.

Further challenges then concern the boundaries of mm-spaces. Various concepts
how to define them and related results were presented in [42,88,89]. Important contri-
butions to the analysis of tangent cones and to the regularity theory for non-collapsed
RCD-spaces were provided in [8,82,94]. Based on these results, a precise description
could be derived.

Theorem 3.13 ([22]). Let .X; d;m/ be a non-collapsed RCD.K;N /-space (with m D

HN , N 2 N). Then

(a) there exists a stratification �0 � �0 � � � � � �N�1 D � D X n RN ,

(b) the boundary @X WD �N�1 n �N�2 is .N � 1/-rectifiable,

(c) TxX ' RN�1 � RC for x 2 �N�1 n �N�2,

(d) X n �N�2 is a topological manifold with boundary.

4. Recent developments

The concept of synthetic Ricci bounds for singular spaces turned out to be extremely
fruitful, both for theory and applications. A rich theory of mm-spaces satisfying such
uniform lower Ricci bounds has been established. The last 15 years have seen a
wave of impressive results—many of them going far beyond the previously described
scope.

In the following, we will first present in detail recent developments concerning

� heat flow on time-dependent mm-spaces and super-Ricci flows,

� second-order calculus, upper Ricci bounds, and transformation formulas,

� distribution-valued lower Ricci bounds,

and then briefly summarize several further developments.

4.1. Heat flow on time-dependent mm-spaces and super-Ricci flows

Whereas construction and properties of the heat flow on “static” metric measure
space .X; d; m/—in particular, its relation to synthetic lower bounds on the Ricci
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curvature—by now are well understood in great generality, analogous questions for
time-dependent families of mm-spaces .Xt ; dt ;mt /, t 2 I D .0; T /, until recently
remained widely open:

� How do we define a heat propagator .Pt;s/t�s acting on functions in L2.Xs;ms/
and/or its dual . yPt;s/s�t acting on measures on Xt?
Can they be regarded as gradient flows of (time-dependent) energy or entropy
functionals in function/measure spaces with time-dependent norms or metrics?

� Is there a parabolic analogue to synthetic lower Ricci bounds? Can one formulate
it as “dynamic convexity” of a time-dependent entropy functional? How is this
related to the notion of super-Ricci flows for families of Riemannian manifolds?

� Are there “parabolic versions” of the functional inequalities that characterize syn-
thetic lower Ricci bounds?

Within recent years, for families of mm-spaces .X; dt ;mt /, t 2 .0; T /, such that

� for every t 2 I the mm-space .X; dt ;mt / satisfies an RCD.K;N /-condition,

� there exists some regular t -dependence of dt and mt ,

these questions found affirmative answers.

Definition 4.1 ([140]). A family of mm-spaces .X;dt ;mt /t2.0;T / is called super-Ricci
flow iff the function

EntW .0; T / � P .X/! .�1;1�; .t; �/ 7! Entt .�/ WD Ent.�jmt /

is dynamically convex on P .X/—equipped with the 1-parameter family of metrics
Wt (D L2-Kantorovich–Wasserstein metrics with respect to dt )—in the following
sense: for all �0; �1 and a.e. t there exists a Wt -geodesic .�a/a2Œ0;1� such that

@a Entt .�0/ � @a Entt .�1/ �
1

2
@tW

2
t .�

0; �1/: (4.1)

Example 4.2. A family of Riemannian manifolds .M; gt /, t 2 .0; T / is a super-Ricci
flow in the previous sense iff

Rict C
1

2
@tgt � 0:

Recall that .M; gt /t2.0;T / is called Ricci flow if Rict C1
2
@tgt D 0. These properties

can be regarded as the parabolic analogue to nonnegative (or vanishing, resp.) Ricci
curvature for static manifolds.

Whereas in the static setting the gradient flow for the energy and the gradient
flow for the entropy characterize the same evolution (either in terms of densities or
in terms of measures), this is no longer the case in the dynamic setting: here one
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is characterizing the forward evolution whereas the other one is characterizing the
backward evolution.

Theorem 4.3 ([98]). In the previous setting, there exists a well-defined heat prop-
agator .Pt;s/t�s acting on functions in L2.X;ms/ and its dual . yPt;s/s�t acting on
measures on X. Moreover,

(1) 8u 2 Dom.E/, 8s 2 I , the heat flow t 7! ut D Pt;su is the unique forward
gradient flow for the Cheeger energy 1

2
Es in L2.X;ms/.

(2) 8� 2 Dom.Ent/, 8t 2 I , the dual heat flow s 7! �s D yPt;s� is the unique
backward gradient flow for the Boltzmann entropy Entt in .P .X/; Wt / pro-
vided that .X; dt ;mt / is a super-Ricci flow.

Both gradient flows can be obtained as limits of corresponding steepest-descend
schemes (aka JKO-schemes) adapted to the time-dependent setting [97].

In analogy to Theorem 3.4, the Lagrangian characterization of super-Ricci flows
(in terms of dynamic convexity of the entropy) turns out to be equivalent to a Eulerian
characterization (in terms of a dynamic �2-inequality), to a gradient estimate for the
forward evolution, and to a transport estimate (as well as to a pathwise Brownian
coupling property) for the backward evolution.

Theorem 4.4 ([98]). The following are equivalent:

(a) @a Entt .�a/jaD0 � @a Entt .�a/jaD1 � 1
2
@tW

2
t .�

0; �1/,

(b) Ws. yPt;s�; yPt;s�/ � Wt .�; �/,

(c) 8x;y, 8t , there exist coupled backward Brownian motions .Xs;Ys/s�t start-
ing at t in .x; y/ such that ds.Xs; Ys/ � dt .x; y/ a.s. for all s � t ,

(d) jrt .Pt;su/j
2 � Pt;s.jrsuj

2/,

(e) �2;t �
1
2
@t�t , where �2;t .u/ D 1

2
�t jrtuj

2 � hrtu;rt�tui.

This result in particular extends a previous characterization of super-Ricci flows
of smooth families of Riemannian manifolds in terms of the previous assertion (b)
by McCann–Topping [115] and in terms of the previous assertion (c) by Arnaudon–
Coulibaly–Thalmaier [10].

There is a whole zoo of further functional inequalities which characterize super-
Ricci flows. Several implications for the subsequent assertions were new even in the
static case.

Theorem 4.5 ([99]). Each of the following assertions is equivalent to any of the
above or, in other words, to .X; dt ;mt /t2I being a super-Ricci flow:

(f) local Poincaré inequalities:

2.t � s/�t .Pt;su/ � Pt;s.u
2/ � .Pt;su/

2
� 2.t � s/Pt;s.�su/;
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(g) local logarithmic Sobolev inequalities:

.t � s/
�t .Pt;su/

Pt;su
�Pt;s.u logu/� .Pt;su/ log.Pt;su/� .t � s/Pt;s

�
�su

u

�
;

(h) dimension-free Harnack inequality: 8˛ > 1

.Pt;su/
˛.y/ � Pt;su

˛.x/ � exp
�

˛d2t .x; y/

4.˛ � 1/.t � s/

�
;

(i) log Harnack inequality:

Pt;s.logu/.x/ � logPt;su.y/C
d2t .x; y/

4.t � s/
:

With these concepts and results, a robust theory of super-Ricci flows is estab-
lished—being regarded as a parabolic analogue to singular spaces with lower Ricci
bounds. In the smooth case, deeper insights and more powerful estimates require to
restrict oneself to Ricci flows rather than super-Ricci flows; see e.g. [16, 81, 96, 100].
To deal with similar questions in the singular case, first of all we need a synthetic
notion of upper Ricci bounds; see the next subsection.

For related current research on lower Ricci bounds in time-like directions on
Lorentzian manifolds and on Einstein equation in general relativity, see [31,114,122].

4.2. Second-order calculus, upper Ricci bounds, and transformation formulas

So far, on RCD-space we only dealt with the canonical first-order calculus for (real-
valued) functions on these spaces. The setting, however, allows us to go far beyond
this.

Theorem 4.6 ([18, 62, 65, 70–72, 121]). Given an RCD.K;1/-space .X; d;m/, there
exist well established concepts of

� a powerful second-order order calculus on X including a consistent notion of
Ricci tensor (the lower bound of which coincides with the synthetic lower Ricci
bound in terms of semiconvexity of the entropy),

� the heat flow on 1-forms on X which among others leads to the celebrated Hess–
Schrader–Uhlenbrock inequality

jPt df j � e�KtPt jdf j;

� harmonic maps from X into metric spaces .Y; dY/, typically of nonpositive curva-
ture, based on Sobolev calculus and approximation of energy densities for maps
between metric spaces, providing Lipschitz continuity of these maps.

In a different direction, a challenging goal is to provide synthetic characteriza-
tions of upper Ricci bounds Ric � L. Indeed, various of the (equivalent) synthetic
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characterizations of lower Ricci bounds admit partial converses. However, these con-
verse characterizations are not necessarily equivalent to each other. Moreover, any
such characterizations will certainly be not as powerful as the corresponding lower
bound. Typically, the upper Ricci bounds are asymptotic estimates whereas the lower
Ricci bounds are uniform estimates.

Theorem 4.7 ([142]). Weak synthetic characterizations of upper Ricci bounds for an
RCD.K;N /-space .X; d;m/

� in terms of partial L-concavity of the Boltzmann entropy and

� in terms of the heat kernel asymptotics

are equivalent to each other.
More precisely, a weak upper bound L for the Ricci curvature is given by

L WD sup
z

lim sup
x;y!z

�.x; y/;

where for all x; y 2 X ,

�.x; y/ WD

D lim
"!0

inf
²

1

W 2
2 .�

0; �1/
�
�
@�a S.�

a/
ˇ̌
aD1

� @Ca S.�
a/
ˇ̌
aD0

�
W
�
�a
�
a2Œ0;1�

geodesic;

S.�0/ <1; S.�1/ <1; suppŒ�0� � B".x/; suppŒ�1� � B".y/

³
D lim
"!0

inf
®
� @Ct logW2.Pt�;Pt�/

ˇ̌
tD0

W suppŒ�� � B".x/; suppŒ�� � B".y/
¯
:

Remark 4.8. For weighted Riemannian manifolds .M; g; e�f dvolg/,

Ricf .x; y/ � �.x; y/ � Ricf .x; y/C �.x; y/ � tan2
�p
�.x; y/ d.x; y/=2

�
provided x and y are not conjugate. Here Ricf .x; y/ D

R 1
0

Ricf . Pa; Pa/=j Paj2 da
denotes the average Bakry–Émery–Ricci curvature along the (unique) geodesic  D

.a/a2Œ0;1� from x to y, and �.x;y/ denotes the maximal modulus of the Riemannian
curvature along this geodesic.

Similar as other approaches (e.g. [123]), these weak upper Ricci bounds will not
be able to detect the positive Ricci curvature sitting in the tip of a cone over a circle
of length < 2� . A slightly stronger notion will detect it.

Theorem 4.9 ([56]). If a metric cone has both sided (“strong”) Ricci bounds K and
L in the sense of RCD.K;1/ and

� lim inf
x;y!z

lim inf
t!0

1

t
log

W2
�
Ptıx; Ptıy

�
d.x; y/

� L .8z 2 X/;

then it is the flat Euclidean space (of some integer dimension).
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A crucial property of the class of RCD-spaces is that it is preserved under transfor-
mations of measure and metric of the underlying spaces, and that there exist explicit
formulas for the transformation of the parametersK andN in the curvature-dimension
condition CD.K;N /.

To be more specific, let an mm-space .X; d;m/ be given as well as continuous
(“weight”) functions V;W on X. In terms of them, define the transformed mm-space
.X; d0;m0/ with m0 WD eVm and

d0.x; y/ WD inf
²Z 1

0

j Pt j � e
W.t / dt W  W Œ0; 1�! X rectifiable, 0 D x; 1 D y

³
:

If
R
jruj2 dm on L2.X;m/ denotes the Dirichlet form (“Cheeger energy”) associated

with .X; d;m/, then the Dirichlet form associated with the transformed mm-space is
given by Z

jruj2eV�2W dm on L2.X; eVm/:

Theorem 4.10 ([80, 139]). If .X; d;m/ satisfies RCD.K;N / for finite K;N 2 R and
if V;W 2 W 2;1.X/, then for each N 0 > N there exists an explicitly given K 0 such
that .X; d0;m0/ satisfies RCD.K 0; N 0/.

(IfW D 0, then alsoN DN 0 D1 is admissible; if V DNW , then alsoN 0 DN

is admissible.)

Let us illustrate this result in three special cases of particular importance:

� W D 0 (“drift transformation”):

K 0
D K � sup

f;x

1

jrf j2

�
HessV.rf;rf /C

1

N 0 �N
hrV;rf i2

�
.x/I

� V D 2W (“time change”):

K 0
D inf

x
e�2W

�
K ��W �

�
.N � 2/.N 0 � 2/

�
C

N 0 �N
jrW j

2

�
.x/I

� V D NW (“conformal transformation”): N 0 D N and

K 0
D inf

x
e�2W

�
K �

�
�W C .N � 2/jrW j

2
�

� sup
f

N � 2

jrf j2

�
HessW.rf;rf / � hrW;rf i2

��
.x/:

The first of these cases is well studied in the setting of Bakry–Émery calculus (and
also in the setting of synthetic Ricci bounds for mm-spaces). It is the only case where
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also N D 1 is admitted. The last of these cases is well known in Riemannian geom-
etry but has not been considered before in singular settings. A particular feature of
the second case is that the transformation formula for the Ricci bound only depends
on bounds for jrW j and �W (and thus extends to distribution-valued Ricci bounds
in case of W 2 Lip.X/; see the next subsection).

4.3. Distribution-valued Ricci bounds

Uniform lower Ricci bounds of the form CD.K;1/ on mm-spaces

� are preserved for Neumann Laplacian on convex subsets, but

� never hold for Neumann Laplacian on non-convex subsets.

The goal thus is

� to find appropriate modification for non-convex subsets,

� to replace constant K, by function k, measure �, distribution, etc.

Theorem 4.11 ([20]). Given an infinitesimally Hilbertian mm-space .X; d;m/ and a
lower bounded, lower semicontinuous function k W X ! R, the following are equiva-
lent:

(i) curvature-dimension condition CD.k;1/with variable k: 8�0;�12P .X/,
there existsW2-geodesic .�t /t D .et��/t such that 8t 2 Œ0; 1� with gs;t WD
.1 � s/t ^ s.1 � t /,

Ent.�t / � .1 � t /Ent.�0/C t Ent.�1/ �
Z Z 1

0

k.s/gs;t dsj P j
2�.d/;

(ii) gradient estimate:

jrPtuj.x/ � Ex
�
e�

R t
0 k.Bs/ds � jruj.Bt /

�
;

(iii) Bochner’s inequality BE2.k;1/:

1

2
�jruj2 � hru;r�ui � k � jruj2;

(iv) 8�1, �2, there exists a coupled pair of Brownian motions .B1
t=2
/t�0,

.B2
t=2
/t�0 with given initial distributions such that a.s. for all s < t

d.B1t ; B
2
t / � e�

R t
s

Nk.B1r ;B
2
r /dr � d.B1s ; B

2
s /

with Nk.x0; x1/ WD sup¹
R 1
0
k.u/du W 0 D x0; 1 D x1;  geodesicº.

For extensions to .k;N /-versions, see [52, 93, 141].
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To proceed towards distribution-valued Ricci bounds, define the spaces W 1;p.X/
for p 2 Œ1;1�, put W 1;1

� .X/ WD ¹f 2 W
1;2
loc
.X/ W kjrf jkL1 <1º, and denote by

W �1;1.X/ the topological dual of

W 1;1C.X/ WD
®
f 2 L1.X/ W fn WD f ^ n_ .�n/ 2W 1;2.X/; sup

n

jrfnjL1 <1
¯
:

Definition 4.12. Given �2W �1;1.X/, we say that the Bochner inequality BE1.�;1/

holds iff jrf j 2 W 1;2 for all f 2 D.�/, and

�

Z
X

˝
rjrf j;r�

˛
C

1

jrf j
hrf;r�f i� dm �

˝
jrf j�; �

˛
W 1;1;W�1;1

for all f 2 D.�/ with �f 2 W 1;2 and all nonnegative � 2 W 1;2.

Given � 2 W �1;1.X/, we define a closed, lower bounded bilinear form E� on
L2.X/ by

E�.f; g/ WD E.f; g/C hfg; �iW 1;1C;W�1;1

for f; g 2 Dom.E�/ WD W 1;2.X/. Associated to it, there is a strongly continuous,
positivity preserving semigroup .P �t /t�0 on L2.X/.

Theorem 4.13 ([141]). The Bochner inequality BE1.�;1/ is equivalent to the gra-
dient estimate

jrPtf j � P �t
�
jrf j

�
: (4.2)

To gain a better understanding of the semigroup .P �t /t�0, assume that � D �� 

for some  2 W 1;1.

Theorem 4.14 ([37, 141]). Then

E�.f; g/ D E.f; g/C E.fg;  / (4.3)

and
P �t=2f .x/ D Ex

�
eN

 
t f .Bt /

�
; (4.4)

where .Px; .Bt /t�0/ denotes Brownian motion starting in x 2 X , and N is the zero
energy part in the Fukushima decomposition; i.e., N 

t D  .Bt / �  .B0/ �M
 
t .

If  2 Dom.�/, then N 
t D

1
2

R t
0
� .Bs/ds—in consistency with the previous

theorem (Theorem 4.11).

Remark 4.15. The concept of tamed spaces proposed by Erbar–Rigoni–Sturm–
Tamanini [55] generalizes the previous approach to distribution-valued lower Ricci
bounds in various respects:

� the objects under consideration are strongly local, quasi-regular Dirichlet spaces
.X;E;m/ (rather than infinitesimally Hilbertian mm-spaces .X; d;m/);
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� the Ricci bounds are formulated in terms of distributions � 2 W
�1;2
qloc

.X/ (rather
than � 2 W �1;1.X/); for such distributions � which lie quasi locally in the dual
of W 1;2.X/, the previous ansatz for defining the semigroup .P �t /t>0 still works
with appropriate sequences of localizing stopping times;

� in addition, the distributions � are assumed to be moderate in the sense that

sup
t�1;x2X

P �t 1.x/ <1:

This reminds of the Kato condition but is significantly more general since it does
not require any decomposition of � into positive and negative parts. It always
holds if � D �� for some  2 Lipb.X/.

Example 4.16. The prime examples of tamed spaces are provided by the following:

(a) ground state transformation of Hamiltonian for molecules [19, 79]; it yields
curvature bounds in terms of unbounded functions in the Kato class;

(b) Riemannian Lipschitz manifolds with lower Ricci bound in the Kato class
[27, 28, 132];

(c) time change of RCD.K;N /-spaces withW 2 Lipb.X/ (cf. Theorem 4.10); it
typically yields curvature bounds � which are not signed measures;

(d) restriction of RCD.K; N /-spaces to (convex or non-convex) subsets Y � X
or, in other words, Laplacian with Neumann boundary conditions; it yields
curvature bounds in terms of signed measures � D kmC `� ; see below.

Assume that .X; d;m/ satisfies an RCD.k;N /-condition with variable k W X ! R
and finite N . Let a closed subset Y � X be given which can be represented as sub-
level set Y D ¹V � 0º for some semiconvex function V W X ! R with jrV j D 1 on
@Y. Typically, V is the signed distance functions V D d. � ;Y/ � d. � ;X n Y/.

A function ` W X ! R is regarded as “generalized lower bound for the curvature
(or second fundamental) form of @Y” iff it is a synthetic lower bound for the Hessian
of V .

Example 4.17. Assume that X is an Aleksandrov space with sectional curvature � 0

and that Y � X satisfies an exterior ball condition: 8z 2 @Y, there exists a ballBr.x/�
{Y with z 2 @Br.x/. Then `.z/ WD �

1
r.z/

is a lower bound for the curvature of @Y.

Under weak regularity assumptions, the distributional Laplacian �Y WD �V C is a
(nonnegative) measure which then will be regarded as “the surface measure of @Y”.

Theorem 4.18 ([141]). Under weak regularity assumptions on V and `, the restricted
space .Y; dY;mY/ satisfies a Bakry–Émery condition BE1.�;1/ with a signed mea-
sure valued Ricci bound

� D k �mY C ` � �Y: (4.5)
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Thus the Neumann heat semigroup on Y satisfies

jrP Y
t uj.x/ � Ex

�
jruj.Bt / � e

�
R t
0 k.Bs/ds � e�

R t
0 `.Bs/dLs

�
; (4.6)

where .Bs=2/s�0 denotes the Brownian motion in Y and .Ls/s�0 the continuous addi-
tive functional associated with �Y.

For smooth subsets in Riemannian manifolds, this kind of gradient estimate—
with .Ls/s�0 being the local time of the boundary—has been firstly derived by Hsu
[84]; cf. also [38, 146].

Let us illustrate the power of the above estimates with two simple examples: the
ball and its complement.

Corollary 4.19. Let .X; d;m/ be an N -dimensional Aleksandrov space (N � 3) with
Ric � �1 and sec � 0. Then for Y WD X n Br.z/,ˇ̌

rP Y
t=2f

ˇ̌
.x/ � EY

x

h
et=2C

1
2rL

@Y
t �

ˇ̌
rf .BY

t /
ˇ̌i
:

In particular, Lip.P Y
t=2
f / � supx EY

xŒe
t=2C 1

2rL
@Y
t � � Lip.f / and

jrP Yt=2f j
2.x/ � eCtCC

0
p
t
� P Y

t=2jrf j
2.x/: (4.7)

Upper and lower bounds of curvature (here 0 and �1, resp.) can be chosen to be
any numbers. Note that no estimate of the formˇ̌

rP Y
t=2f

ˇ̌2
.x/ � eCt � P Y

t=2

ˇ̌
rf

ˇ̌2
.x/

can hold true due to the non-convexity of Y. Thus it is necessary to take into account
the singular contribution arising from the negative curvature of the boundary.

In the next example, the singular contribution arising from the positive curvature
of the boundary can be ignored. However, taking it into account will significantly
improve the gradient estimate.

Corollary 4.20. Let .X; d;m/ be an N -dimensional Aleksandrov space with Ric � 0

and sec � 1. Then for Y WD xBr.z/ for some z 2 X and r 2 .0; �=4/,ˇ̌
rP Yt=2f

ˇ̌
.x/ � EY

x

�
e�

cot r
2 L@Y

t �
ˇ̌
rf .BYt /

ˇ̌�
:

In particular, Lip.P Y
t=2
f / � supx EY

xŒe
� cot r

2 L@Y
t � Lip.f /� andˇ̌

rP Y
t=2f

ˇ̌2
.x/ � e�t

N�1
2 cot2 rC1

� P Y
t=2jrf j

2.x/: (4.8)

Taking into account the curvature of the boundary allows us to derive a positive
lower bound for the spectral gap (without involving any diameter bound and despite
possibly vanishing Ricci curvature in the interior).
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Corollary 4.21. In the previous setting, �1 � N�1
2

cot2 r .

4.4. Synthetic Ricci bounds—extended settings

In order to summarize recent developments concerning synthetic Ricci bounds for
singular spaces, let us recall the previously presented

(1) heat flow on time-dependent mm-spaces and super-Ricci flows,
(2) second-order calculus, upper Ricci bounds, and transformation formulas,
(3) distribution-valued lower Ricci bounds,

and then move on to further developments in extended settings

(4) discrete mm-spaces: for discrete mm-spaces .X; d; m/, the synthetic Ricci
bounds as introduced above will be meaningless since there will be no non-
constant geodesics with respect to the Kantorovich–Wasserstein metricW2 as
defined in (1.1). This disadvantage can be overcome by resorting to a modi-
fied Kantorovich–Wasserstein metric based on a subtle discrete version of the
Benamou–Brenier formula. This way, the heat flow can again be character-
ized as the gradient flow of the entropy [109, 117].
And synthetic Ricci bounds defined in terms of semiconvexity of the entropy
with respect to this modified metric are intimately linked to equilibration
properties of the heat flow; see e.g. [47, 48, 53, 54, 75]. Challenging ques-
tions address homogenization [68,73,74] and evolution under curvature flows
[51]. Related—but in general different—concepts of synthetic Ricci bounds
are based on discrete versions of the Bakry–Émery condition; see e.g. [17,41,
59, 105, 147].

(5) non-commutative spaces: inspired by the synthetic Ricci bounds for discrete
spaces, an analogous concept also has been proposed for non-commutative
spaces, with remarkable insights e.g. for (ergodic) quantum Markov semi-
groups on tracial or finite-dimensional unital C �-algebras, in particular, equi-
libration rate estimates for the fermionic Ornstein–Uhlenbeck semigroup and
for Bose Ornstein–Uhlenbeck semigroups [9, 25, 26, 83, 118, 148].

(6) Dirichlet boundary conditions: for a long time, it seemed that OT techniques
could not be used to analyze the heat flow with Dirichlet boundary conditions.
Only recently, Profeta–Sturm [131] overcame the problem of mass absorption
by considering charged particles (which are either particles or anti-particles),
and this way succeeded in finding a characterization for the heat flow as
a gradient flow for the entropy. Passing from particles to charged particles
technically corresponds to passing from a space X to its doubling. Functional
inequalities for the Dirichlet heat flow thus are closely linked to those for
the doubled space. For recent progress concerning the challenging problem
of gluing convex subsets in RCD-spaces, see [87].
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