
© 2023 EMS Press
This work is licensed under a CC BY 4.0 license
DOI 10.4171/8ECM/31

Looking at Euler flows through a contact mirror: Universality
and undecidability

Robert Cardona, Eva Miranda, and Daniel Peralta-Salas

Abstract. The dynamics of an inviscid and incompressible fluid flow on a Riemannian man-
ifold is governed by the Euler equations. In recent papers by Cardona, Miranda, and Peralta-
Salas, several unknown facets of the Euler flows have been discovered, including universality
properties of the stationary solutions to the Euler equations. The study of these universality
features was suggested by Tao (2019) as a novel way to address the problem of global exis-
tence for Euler and Navier–Stokes. Universality of the Euler equations was proved by Cardona
et al. (2019) for stationary solutions using a contact mirror which reflects a Beltrami flow as a
Reeb vector field. This contact mirror permits the use of advanced geometric techniques in fluid
dynamics. On the other hand, motivated by Tao’s approach relating Turing machines to Navier–
Stokes equations, a Turing complete stationary Euler solution on a Riemannian 3-dimensional
sphere was constructed by Cardona et al. (2021). Since the Turing completeness of a vector
field can be characterized in terms of the halting problem, which is known to be undecidable
(as shown by Turing (1936)), a striking consequence of this fact is that a Turing complete Euler
flow exhibits undecidable particle paths (as shown by Cardona et al. (2021)). In this article, we
give a panoramic overview of this fascinating subject, and go one step further in investigating
the undecidability of different dynamical properties of Turing complete flows. In particular, we
show that variations of the work of Cardona et al. (2021) allow us to construct a stationary
Euler flow of Beltrami type (and, via the contact mirror, a Reeb vector field) for which it is
undecidable to determine whether its orbits through an explicit set of points are periodic.

1. Introduction

Back in 1936, Turing faced a fundamental question which had been driving the atten-
tion of many mathematicians since the 1920s: Is there an answer for the decision
problem for first-order logics? A decision problem can be posed as a yes/no ques-
tion depending on the input values. Decidability is the problem of the existence of
an effective method, a test or automatic procedure to know whether certain premises
entail certain conclusions. The halting problem is one of the first decision problems
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which was proved to be undecidable. Indeed, Alan Turing [32] proved that a general
algorithm that solves the halting problem cannot exist (for all possible program-input
pairs). In doing so, he, fortuitously, invented the basic model of modern digital com-
puters, the so-called Turing machine.

The undecidability of the halting problem yields a cascade of related questions:
What kind of physics might be non-computational? (Penrose [21]) Is hydrodynam-
ics capable of performing computations? (Moore [19]). Given the Hamiltonian of a
quantum many-body system, does there exist an algorithm to check whether it has a
spectral gap? (this is known as the spectral gap problem, recently proved to be unde-
cidable [10]). And last but not least, can a mechanical system (including a fluid flow)
simulate a universal Turing machine? (Tao [27, 28, 30]).

Surprisingly, this last question is connected with the regularity of the Navier–
Stokes equations [26], one of the unsolved problems in Clay’s list of problems for
the Millennium. In [29], Tao speculated on a relation between a potential blow-up
of the Navier–Stokes equations, Turing completeness, and fluid computation. This
is part of a more general program he launched in [26, 27, 29] to address the global
existence problem for Euler and Navier–Stokes based on the concept of universality.
Inspired by this proposal, in [8] we showed that the stationary Euler equations exhibit
several universality features, in the sense that, any non-autonomous flow on a compact
manifold can be extended to a smooth stationary solution of the Euler equations on
a Riemannian manifold of possibly higher dimension. As a corollary, we established
the Turing completeness of the steady Euler flows on a 17-dimensional sphere [8]. It
is then natural to ask: Can this dimensional bound be improved?

We solved this problem affirmatively in [9] constructing stationary solutions of
the Euler equations on a Riemannian 3-dimensional sphere that can simulate any
Turing machine (i.e., they are Turing complete). In particular, these solutions exhibit
undecidable paths in the sense that there are constructible points for which it is
not possible to decide whether their associated trajectories will intersect a certain
(explicit) open set or not. The type of flows that we considered are Beltrami fields,
a particularly relevant class of stationary solutions. Our game plan combines the
computational power of symbolic dynamics with techniques from contact topology.
Contact topology enters into the scene because Beltrami fields correspond to Reeb
flows under a contact mirror unveiled by Sullivan, Etnyre, and Ghrist more than two
decades ago. The contact mirror thus reflects a problem in Fluid Dynamics as a prob-
lem in contact geometry and back.

The existence of Turing complete Euler flows gives rise to new questions concern-
ing undecidability of different dynamical properties. One of the potential problems
to consider is that of periodic orbits: ever, at least since the work of Poincaré [24],
periodic orbits are known to be one of the major tools to understand the dynamics
of Hamiltonian systems. Even though not every Hamiltonian system admits periodic
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orbits, the Weinstein conjecture asserts that under some topological (compact) and
geometrical (contact) conditions on the manifold, Reeb vector fields admit at least
one periodic orbit. The Weinstein conjecture is known to be true in dimension 3, so
using our contact mirror we can conclude that the Turing complete Reeb flow we
constructed in [9] has at least one periodic orbit (in fact, in our construction the Reeb
vector field coincides with a Hopf field in the complement of a certain solid torus, so
it has infinitely many periodic orbits). It is then natural to ask if for every point of the
sphere it is possible to decide whether its corresponding orbit will be closed or not.
We shall see in this article that such a decision problem has no answer. The undecid-
ability of other dynamical properties of Reeb flows will be also discussed. In view
of Gödel’s incompleteness theorems, undecidability of such properties of dynamical
systems seems to be an unsurmountable obstacle no matter what systems of axioms
are considered.

Our goal in this article is to give an overview of this exciting area of research.
Let us summarize the contents of this work. Next, in this introduction, we present the
Euler equations and the Beltrami fields on Riemannian manifolds, in Section 1.1, and
the connection between contact geometry and hydrodynamics (in particular, between
Beltrami fields and Reeb flows), in Section 1.2. In Section 2, following [8], we
introduce the theory of Reeb embeddings and their flexibility (in the form of a new
h-principle), and apply it to prove several universality features of the stationary Euler
flows in high dimensions. The construction of a Turing complete Reeb field on a 3-
dimensional sphere [9] is presented in Section 3; as a novel feature, we show how
variations of this result allow us to prove the existence of Reeb fields exhibiting
different undecidable dynamical properties, including periodic orbits. Finally, in Sec-
tion 4 we recall the main theorem of [7] establishing the existence of Turing complete
time-dependent solutions to the Euler equations (on compact Riemannian manifolds
of very high dimension), and discuss the implications of our results regarding com-
putability with the Navier–Stokes equations.

1.1. The Euler equations on Riemannian manifolds

The Euler equations describe the dynamics of an incompressible fluid flow without
viscosity. Even if they are classically considered on R3, they can be formulated on
any n-dimensional Riemannian manifold .M; g/, n � 2 (for an introduction to the
geometric aspects of hydrodynamics see [2, 22]). The equations can be written as´

@
@t

X CrXX D �rp;

div X D 0;

where p stands for the hydrodynamic pressure and X is the velocity field of the fluid
(a non-autonomous vector field on M ). Here rXX denotes the covariant derivative
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of X along X . A solution to the Euler equations is called stationary whenever X does
not depend on time, i.e., @

@t
X D 0, and it models a fluid flow in equilibrium.

This extension of the Euler equations to high dimensional manifolds turns out
to be very useful to show that the steady and time-dependent Euler flows exhibit
remarkable dynamical [8] (see also [28,30,31]), computational [7] or topological [5]
universality features. For non-specialists, we refer to [18] for an introduction to dif-
ferential geometry.

A short comprehensive dictionary.
� A volume-preserving (autonomous) vector field X on M is Eulerisable [23] if

there exists a Riemannian metric g on M compatible with the volume form, such
that X satisfies the stationary Euler equations on .M; g/:

rXX D �rp; div X D 0 (1.1)

for some pressure function p.

� A divergence-free vector field X on an odd-dimensional manifold .M; g/ of
dimension n D 2m C 1 is Beltrami if

curl X D fX;

for some factor f 2 C1.M/. The curl of X is defined as the unique vector field
Y D curl X that satisfies the equation

�Y � D .dX [/m; (1.2)

where � is the Riemannian volume form, the symbol [ stands for the musical
isomorphism associated to the metric g, and �Y � denotes the contraction of �

with Y . The classical Hopf fields on the round sphere S2mC1 and the ABC flows
on the flat 3-torus T 3 are examples of Beltrami fields.

1.2. Contact hydrodynamics

Let M 2mC1 be an odd-dimensional manifold equipped with a hyperplane distribu-
tion � . Assume that there is a globally defined non-vanishing one-form ˛ 2 �1.M/

with ker ˛ D � and satisfying ˛ ^ .d˛/m > 0 everywhere; i.e., it defines a volume
form in M . Then we say that .M 2mC1; �/ is a (cooriented) contact manifold.

The one-form ˛ is called a contact form. Of course, the contact structure � does
not depend on a particular choice of the defining contact one-form ˛, any other one-
form h � ˛ with h a positive function in M is a contact form defining � as well. The
contact condition ˛ ^ .d˛/m > 0 implies that d˛ induces a fiber-wise symplectic
structure on the hyperplane distribution � (of even dimension 2m). The unique Reeb
vector field R associated to a given contact form ˛ is uniquely determined by the
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equations
�R˛ D 1; �Rd˛ D 0: (1.3)

These equations imply that the flow of R preserves the contact form, so, in particular,
it preserves ˛ ^ d˛ and hence R is a volume-preserving vector field. In contrast with
the hyperplane distribution, the Reeb field can display drastically different dynamics
depending on the particular choice of contact form.

We will now explain the connection between contact geometry and hydrodynam-
ics. In order to understand this remarkable correspondence, it is convenient to rewrite
the Euler equations in a dual language. Duality is given by contraction with the Rie-
mannian metric g. With the one-form ˛ defined as ˛ WDX [ and the Bernoulli function
as B WD p C

1
2
g.X; X/, the steady Euler equations can be equivalently formulated as´

�Xd˛ D �dB;

d�X� D 0;

where � is the Riemannian volume form.
Observe that the following hold.

� The equation curlX D fX , with f 2C1.M/, satisfied by a Beltrami vector field
on an odd-dimensional manifold, can be equivalently written as .d˛/m D f �X�.
This follows from equation (1.2), that determines the curl of X , and the fact that
˛ D X [. Assume that X is rotational, i.e., f > 0, then if X does not vanish on
M we infer that

˛ ^ .d˛/m
D f ˛ ^ �X� > 0;

thus proving that ˛ defines a contact structure on M .

� Obviously, X satisfies �X .d˛/m D f �X �X� D 0. Therefore, since ˛ ^ .d˛/m > 0,
it is easy to conclude that X 2 ker d˛, and hence it is a reparametrization of the
Reeb vector field R by the function ˛.X/ D g.X; X/. Indeed, the vector field
R D

X
˛.X/

satisfies equations (1.3).

These observations prove one of the implications of the following theorem, which
is due to Etnyre and Ghrist [12].

Theorem 1.1. Let M be a Riemannian odd-dimensional manifold. Any smooth, non-
singular rotational Beltrami field on M is a Reeb-like field for some contact form on
M . Conversely, given a contact form ˛ on M with Reeb field X , any nonzero rescal-
ing of X is a smooth, nonsingular rotational Beltrami field for some Riemannian
metric on M .

Remark 1. The original proof by Etnyre and Ghrist is for three-dimensional mani-
folds. The fact that the correspondence holds on any odd-dimensional manifold was
detailed in [8]. See also [6] for an extension of this result to b-manifolds.
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2. Embedding dynamics into Reeb flows

In [8], we studied several universality features of the stationary Euler equations. In
view of the correspondence established in Theorem 1.1, we can reformulate the ques-
tion of embedding dynamics into steady Euler flows in terms of Reeb flows. Let us
fix a nonvanishing vector field X on a compact manifold N and some compact con-
tact manifold .M; �/ of dimensions n � m, respectively. The question we answer in
this section is the following: Can we give sufficient conditions for the existence of
an embedding e W N ,! M and a contact form ˛ 2 �1.M/ defining � such that the
Reeb field R satisfies e�X D Rje.N /? In other words, can we find conditions which
ensure the existence of a Reeb field, whose contact form defines � , such that e.N / is
an invariant submanifold of R and where the Reeb field coincides with X?

2.1. Flexibility of Reeb embeddings

We will address the question above using a classical framework for flexibility prob-
lems in contact geometry: the homotopy principle. The world of contact geometry
exhibits a lot of flexibility which reduces geometrical problems to their associated
purely homotopical algebraic problems. The pioneering work of Gromov [15] showed
that this approach is extremely fruitful for symplectic and contact geometrical prob-
lems. Some of Gromov’s results in contact geometry were generalized in [4] when
the ambient manifold is closed and the contact structure is “overtwisted”. We will not
introduce this notion here, the only thing that we need in our discussion is that being
“overtwisted” is a property that a given contact structure may satisfy.

A first observation concerning our motivating question of embedding dynamics
on Reeb fields is that the vector field X cannot be arbitrary.

Definition 2.1. A vector field X on N is geodesible if there is some metric for which
the orbits of X are geodesics.

When X is of unit length for such a metric, we say that X is geodesible of unit
length. From now on, by geodesible we mean geodesible of unit length. A character-
ization of geodesible vector fields was given by Gluck in terms of differential forms:
X is geodesible if and only if there is some one-form ˇ such that ˇ.X/ D 1 and
�Xdˇ D 0. In particular, if a Reeb vector field R defined by a form ˛ on a contact
manifold M has some invariant submanifold N , then R restricted to N is geodesible.
Indeed, if X is the vector field R restricted on N and i W N ,! M is the inclusion of
N into M , then i�˛ satisfies ´

i�˛.X/ D 1;

�Xdi�˛ D 0:
(2.1)
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Note that i�˛ is not necessarily a contact form, so that X is not necessarily a Reeb
field (in general, it is not even volume-preserving). However, it is always geodesible
according to Gluck’s characterization.

Conversely, start with any geodesible (hence non-vanishing) vector field X on a
compact manifold N .

Definition 2.2. An embedding e W .N; X/ ,! .M; �/ is called a Reeb embedding
if there is a contact form ˛ defining � such that the associated Reeb field satisfies
e�X D Rje.N /.

The main theorem in [8] gives sufficient conditions in terms of the codimension
of an arbitrary smooth embedding to be isotopic to a Reeb embedding.

Theorem 2.3 ([8]). Let e W .N; X/ ,! .M; �/ be a smooth embedding of N into a
contact manifold .M; �/, where X is a geodesible vector field on N . Assume that
dim M � 3n C 2. Then e is isotopic to a C 0-close Reeb embedding Qe W .N; X/ ,!

.M; �/.

Remark 2. If we impose the additional assumption that .M; �/ is an overtwisted
contact manifold, then dim M � 3n is enough, although the Reeb embedding Qe is
not necessarily C 0 close to e if dim M < 3n C 2. In [8], parametric versions of the
previous statement are also discussed.

Example 2.4. The existence of a Reeb embedding of any pair .N; X/ into some
contact manifold is easy to establish, since there is a natural source of examples of
such embeddings. Denote by ˇ the one-form such that ˇ.X/ D 1 and �Xdˇ D 0.
Gluck’s characterization implies that there is a metric for which X is of unit-length
and its orbits are geodesics which satisfies g.X; �/ D ˇ. Recall that the cotangent
bundle T �N is equipped with the canonical Liouville one-form �std 2 �1.T �N /.
Such one-form is characterized by the property that, given any one-form  on N ,
which can be understood as an embedding  W N ! T �N , we have  D ��std.
For a given metric one can define the unit tangent bundle STN defined fiberwise by
STpN D ¹X 2 TpN j gp.X;X/ D 1º. A standard property (see e.g. [13, Section 1.5])
of �std is that given the metric g on N , it restricts on ST �N (the unit cotangent
bundle) as a contact form � whose Reeb field is dual to the geodesic vector field on
STN . In particular, the section ˇ, seen as an embedding

ˇ W N ! ST �N;

satisfies ˇ�� D ˇ and actually the Reeb field R defined by � satisfies ˇ�X D R.
Thus, it is a Reeb-embedding according to Definition 2.2. This further motivates a
systematic examination of Reeb-embeddings from a contact topology point of view,
a study that leads to Theorem 2.3.



R. Cardona, E. Miranda, and D. Peralta-Salas 374

Sketch of the proof of Theorem 2.3. The proof of Theorem 2.3 follows the usual pro-
cedure of h-principle type results. We first define a “formal” notion of Reeb embed-
ding, which satisfies a property that is purely homotopic in terms of its differential.
We then prove that, under certain conditions, any formal Reeb embedding is isotopic
to a genuine Reeb embedding (i.e., they satisfy the h-principle). To conclude, we
use obstruction theory to analyze the minimal codimension for which any smooth
embedding is a formal Reeb embedding satisfying the conditions for the h-principle
to apply. We will now sketch each of these steps of the proof, under the simplifying
assumption that M is overtwisted.

Step 1: Iso-Reeb embeddings and extension lemma. Let X be a geodesible vector
field on N , and denote by ˇ a one-form such that ˇ.X/ D 1 and �Xdˇ D 0. We need
to fix such a choice of one-form, and let � WD ker ˇ be the hyperplane distribution
defined by the kernel of ˇ (which in general will not be of contact type). Let .M; �/

be an overtwisted contact manifold with some defining contact form ˛, i.e., ker˛ D � .
With a slight abuse of notation, given a monomorphism F W TN ! TM we will

denote ˛ ı F for ˛.F.�// and d˛ ı F for d˛.F.�/; F .�//. This is also denoted by
F �˛ and F �d˛ in the discussion of “generalized iso-contact immersions” in [11,
Section 16.2].

Definition 2.5. An embedding f W .N;X;� D kerˇ/ ! .M;�/ is an iso-Reeb embed-
ding if f �� D �.

The corresponding formal notion is the following definition.

Definition 2.6. An embedding f W .N; X; �/ ! .M; �/ is a formal iso-Reeb embed-
ding if there exists a homotopy of monomorphisms

Ft W TN ! TM;

such that Ft covers1 f , F0 D df , h1˛ ı F1 D ˇ, and dˇj� D h2d˛ ı F1j� for some
strictly positive functions h1 and h2 on N .

Any (genuine) iso-Reeb embedding is clearly a formal iso-Reeb embedding, with
Ft constantly equal to df . Both conditions h1˛ ı F1 D ˇ and dˇj� D h2d˛ ı F1j�

have to be imposed, since F1 does not commute with the exterior derivative in general
(when F1 is not holonomic). This formal notion of Reeb embedding is enough to
obtain the main theorem for an overtwisted target contact manifold. For the most
general case, an extra formal hypothesis needs to be imposed (confer [8]).

1We say that Ft W TN ! TM covers f W N ! M if the map between bases induced by Ft

is constantly equal to f .



Universality and undecidability in Euler and Reeb flows 375

The following lemma by Inaba [16] (see also [8]) shows that the condition of
being an iso-Reeb embedding is enough to answer positively our question: we can
find a Reeb field in .M; �/ extending the given geodesible vector field X .

Lemma 2.7. Let N be a submanifold of .M; �/, and denote by i the inclusion map
of N into M . Let � be the restriction i�� . A nonvanishing vector field X on N can be
extended to a Reeb field on all M if and only if X is transverse to � and the flow of
X preserves �.

The vector field X is transverse to � and preserves it if and only if there is a one-
form ˇ such that ˇ.X/ D 1, �Xdˇ D 0, and ker ˇ D �. These are our hypotheses in
the case of an iso-Reeb embedding, hence by the previous lemma there is a contact
form whose Reeb field R satisfies f�X D R. Observe that an iso-Reeb embedding f

is, in particular, a Reeb embedding according to Definition 2.2, the only difference is
that in the definition of iso-Reeb embedding the one-form ˇ making X geodesible is
fixed.

Step 2: An h-principle via isocontact embeddings. Our goal in this second step is
to prove that any formal iso-Reeb embedding e W .N; X; �/ ! .M; �/ into an over-
twisted contact manifold is homotopic through formal iso-Reeb embeddings to a
genuine iso-Reeb embedding. This is tantamount to saying that iso-Reeb embeddings
satisfy an existence h-principle. Other versions of the h-principle (parametric, rela-
tive to the domain, etc.) are discussed in [8]. Recall that ˛ is a defining contact form
of � . The sketch of the argument is the following.

(1) The embedding e satisfies that de.�/ � TM jN , but de.�/ is not, in general,
contained in ker ˛ D � . We extend the homotopy Ft and use it inversely to
deform � via a homotopy of symplectic vector bundles .�t ; !t / (defined over
all M , but which is identically .�; d˛/ outside a neighborhood U of e.N /)
such that .�0; !0/ D .�; d˛/, .�1; !1/ satisfies de.�/ � �1 and !1j� D dˇ

along N . The last condition is guaranteed, up to a conformal transformation,
by the formal iso-Reeb condition. The symplectic hyperplane bundle .�1; !1/

will no longer be a contact structure in general.

(2) Using partitions of unity, the fact that !1 is non-degenerate on �1, and that
!1j� D dˇ, it is now possible to make another deformation. We extend the
homotopy .�t ; !t / to t 2 Œ1; 2� such that .�2; !2/ is a contact structure in a
smaller neighborhood U 0 of e.N / and still satisfies de.�/ � �2. In particular,
we can achieve that !2 D d for some one-form  such that  satisfies e� D

ˇ (the form such that ker ˇ D � and ˇ.X/ D 1). The pair .�2; !2/ will not be
a contact structure globally, since this small neighborhood is a priori smaller
than the neighborhood U , where .�1; !1/ was not anymore of contact type.
Hence in some parts U n U 0, �2 is not of contact type.
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(3) We will now reduce to a formal isocontact embedding (confer [11, Section
12.3] for more details on such embeddings). We endow the neighborhood
U 0 with the contact structure .�2; !2/. We use the previous deformations
.�t ; !t /, t 2 Œ0; 2� defined on U 0 to endow the trivial embedding Oe W U 0 ! M

(defined as a neighborhood extension of the embedding e) with a homo-
topy of monomorphisms Gt W T U 0 ! TM such that G0 D d Oe, G1 satisfies
�2 D G�1

1 .�/, and the map induces a conformally symplectic map.

(4) The map Oe is what is called a formal isocontact embedding of codimension 0

with open source manifold. The h-principle for such embeddings into over-
twisted targets applies [4, Corollary 1.4]. We obtain an embedding Qe W U 0 !

M (isotopic to Oe through formal isocontact embeddings) such that d Qe satis-
fies d Qe.�2/ D � and the map induces a conformally symplectic map. Since
.�2; !2/ restricted to N � U 0 corresponds to .�; dˇ/, we deduce that QejN
satisfies . QejN /�� D � and hence is a genuine iso-Reeb embedding isotopic to
e D OejN .

Step 3: Obstruction theory. The final step of the proof consists in showing that
for dim M � 3 dim N , any smooth embedding e W N ! .M; �/ is a formal iso-Reeb
embedding for any choice of .X; ˇ/, where X is a non-vanishing geodesible field and
ˇ is a choice of one-form for which ˇ.X/ D 1 and �Xdˇ D 0. We will assume the
following lemma; confer [8] for the details.

Lemma 2.8. Let e W .N; X; �/ ! .M; �/ be an embedding such that there is a homo-
topy of monomorphisms Ft W TN ! TM covering e satisfying F0 D de and F1.�/

is an isotropic subbundle of � . Then e is a formal iso-Reeb embedding.

For 2m > dim N , standard obstruction theory shows that there is a family of
monomorphisms Ht W TN ! TM such that F1.X/ t � , and furthermore F1.�/ � � .
The previous lemma shows that a sufficient condition for being a formal iso-Reeb
embedding is that F1.�/ can be homotoped into an isotropic subbundle of � . Recall
that n denotes the dimension of N , hence � has rank n � 1. The manifold M is of
dimension 2m C 1, hence � is of rank 2m. Denote by Gr D Grass.n � 1; R2m/ the
space of .n � 1/-subspaces of Rm. Similarly, denote by Gris D Grassis.n � 1; R2m/

the space of isotropic subspaces of dimension n� 1 in R2m seen as Cm. To find a path
between � and an isotropic subspace of � over N , we need to find a global section of
the bundle E over N whose fiber is

P D Path
�

Grass.n � 1; R2m/; Grassis.n � 1; R2m/
�
;

i.e., the space of paths between any .n � 1/-subspace and any isotropic .n � 1/-
subspace of R2m. On the other hand, we know that the homotopy groups of such
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a path space depend on the relative homotopy groups

�j .P / Š �jC1

�
Grass.n � 1; R2m/; Grassis.n � 1; R2m/

�
:

We now use that

Gr Š
SO.2m/

SO.n � 1/ � SO
�
2m � .n � 1/

� ;

Gris Š
U.m/

SO.n � 1/ � U
�
m � .n � 1/

� :

Combining the exact sequence for relative pairs, the exact sequence for quotients, and
using the stable range of the involved groups, we can show that

2m � 3n � 1 H) �j .P / D 0 for all j � n � 1:

Hence, if dim M � 3 dim N , we can find a global section along N . Using this sec-
tion and the previous family of monomorphisms, we find a family of isomorphisms
Gt W TN ! TM covering the smooth embedding e such that G1.�/ is an isotropic
subbundle of � . Applying Lemma 2.8, we conclude that e is a formal iso-Reeb embed-
ding.

Step 4: Conclusion. In Step 3, we showed that any smooth embedding is a formal
iso-Reeb embedding for any pair .N; X/ embedded into a contact manifold .M; �/

such that dim M � 3 dim N . Note that smooth embeddings in this context always
exist by Whitney’s embedding theorem. Under the assumption that M is overtwisted,
we can apply the h-principle proved in Step 2 and deduce that there is an iso-Reeb
embedding Qe isotopic to e. Since an iso-Reeb embedding is, in particular, a Reeb
embedding, we can find some contact form ˛ defining � whose Reeb field R satisfies
Qe�X D RjQe.N /. This concludes the proof of the theorem.

The previous theorem “fixes” the target contact structure, which forces to take an
embedding that is isotopic to the original smooth embedding e W N ! .M; �/. If we
simply want to extend the vector field X to a Reeb vector field, without fixing the
ambient contact structure, then we can fix the embedding.

Corollary 2.9. Let X be a geodesible vector field on a compact manifold N . Let
e W N ! .M; �/ be a smooth embedding into a contact manifold with dim M �

3 dim N C 2. Then there is a contact form ˛ on M whose Reeb field R satisfies
e�X D Rje.N /. The contact form ˛ defines a contact structure contactomorphic to � .

Proof. It follows from Theorem 2.3 that there is a Reeb embedding Qe (with respect to
the contact structure �) isotopic to e. According to Definition 2.2, there is a contact
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one-form ˛0 defining � such that the Reeb field R0 of ˛0 satisfies Qe�X D R0jQe.N /. Let
't be an isotopy of M such that '1 ı Qe D e. Then ˛ WD .'�1

1 /�˛0 is a contact one-
form, defining a contact structure .'1/�� , whose Reeb field R D .'1/�R0 satisfies

e�X D .'1/� ı Qe�X D .'1/�R0
D R;

thus concluding the proof.

2.2. Applications to universality

We are now ready to give some applications of Theorem 2.3. The following concept
is inspired by Tao’s definition of Euler-extendibility in [30] (albeit it is different in the
sense that it is adapted to the context of stationary solutions of the Euler equations).

Definition 2.10. A non-autonomous time-periodic vector field u0.�; t / on a compact
manifold N is Euler-extendible if there exists an embedding e W N � S1 ! Sn for
some dimension n > dim N C 1 (that only depends on the dimension of N ), and a
Eulerisable flow u on Sn, such that e.N � S1/ is an invariant submanifold of u and
e�.u0.�; �/ C @� / D uje.N�S1/, � 2 S1. If the non-autonomous field u0.�; t / is not
time-periodic, we say that it is Euler-extendible if there exists a proper embedding e W

N �R!Rn for some dimension n > dimN C 1 (that only depends on the dimension
of N ), and a Eulerisable flow u on Rn, such that e.N �R/ is an invariant submanifold
of u and e�.u0.�; �/ C @� / D uje.N�R/, � 2 R. If any non-autonomous dynamics
u0.�; t / is Euler-extendible, we say that the stationary Euler flows are universal.

Roughly speaking, the extendibility of a non-autonomous dynamics implies that,
in the appropriate local coordinates, u0 describes the “horizontal” behavior of the
integral curves of the extended vector field u. Observe that the original vector field
u0 is not assumed to be volume-preserving, although certainly u will be. We introduce
another definition for embeddability of discrete dynamics.

Definition 2.11. We say that an (orientation-preserving) diffeomorphism � W N ! N

is Euler-embeddable if there exists a Eulerisable field u on Sn (for some n that only
depends on the dimension of N ) with an invariant submanifold exhibiting a cross-
section diffeomorphic to N such that the first return map of u at this cross-section is
conjugate to �.

Two main corollaries of the previous construction can be expressed in terms of
these two definitions.

Corollary 2.12 ([8]). The stationary Euler flows are universal. Moreover, the dimen-
sion of the ambient manifold Sn or Rn is the smallest odd integer n2¹3 dim N C5;

3 dim N C 6º. In the time-periodic case, the extended field u is a steady Euler flow
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with a metric g D g0 C ıP , where g0 is the canonical metric on Sn and ıP is sup-
ported in a ball that contains the invariant submanifold e.N � S1/.

It is clear that the extension to a Euler flow u is not unique, since Theorem 2.3
shows that iso-Reeb embeddings exist in abundance. Corollary 2.9, via the correspon-
dence theorem (Theorem 1.1), illustrates the flexibility of steady Euler flows in the
sense that any fixed smooth embedding in high enough codimension can be realized
as an invariant submanifold (with arbitrary induced geodesible dynamics) of a steady
Euler flow. Our second corollary is expressed in terms of Definition 2.11.

Corollary 2.13 ([8]). Let N be a compact manifold and � an orientation-preserving
diffeomorphism on N . Then � is Euler-embeddable in Sn, where n is the smallest odd
integer n 2 ¹3 dim N C 5; 3 dim N C 6º.

As in Corollary 2.12, the metric can also be assumed to be the canonical one
outside an embedding of the mapping torus of N by �. This is ensured by applying
Theorem 2.3 with a tight contact sphere as the target contact manifold. The dimen-
sional bounds can be slightly improved if we use an overtwisted contact sphere as
target manifold, as explained after the statement of Theorem 2.3. In the following
section, we shall introduce the concept of “Turing complete” flows, which are flows
that are universal in a computational sense. Using the fact that there are diffeomor-
phisms that simulate any Turing machine (see [27] for an example), and the fact that
our construction via an h-principle is constructible (i.e., algorithmic), we obtain as
a by-product that there is a Turing complete Euler flow on S17. In the next section,
we will focus on this property and drastically improve the dimension of the ambient
manifold.

3. A Turing complete steady Euler flow on S3

In this section, we review the construction of a Turing complete stationary Euler flow
on a Riemannian three-sphere [9]. We end up by proving a new result (Corollary 3.7)
on the existence of Reeb flows (and their Beltrami counterparts) with orbits whose
periodicity is undecidable.

3.1. Turing machines and symbolic dynamics

A Turing machine is a mathematical model of a theoretical device manipulating a
set of symbols on a tape following some specific rules. It receives, as input data, a
sequence of symbols and, after a number of steps, it might return as output another
string of symbols. More concretely, a Turing machine is defined via the following
data:
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� a finite set Q of “states” including an initial state q0 and a halting state qhalt;

� a finite set † which is the “alphabet” with cardinality at least two;

� a transition function ı W Q � † ! Q � † � ¹�1; 0; 1º.

We will denote by q 2 Q the current state, and by t D .tn/n2Z 2 †Z the current
tape of the machine at a given step of the algorithm of the Turing machine. This
gives a configuration .q; t/ of the machine. In particular, the space of all possible
configurations of a Turing machine is given by P WD Q � †Z. The algorithm works
as follows, for a given input tape t 2 †Z.

(1) Set the current state q as the initial state and the current tape t as the input
tape.

(2) If the current state is qhalt, then halt the algorithm and return t as output.
Otherwise, compute ı.q; t0/ D .q0; t 00; "/, with " 2 ¹�1; 0; 1º.

(3) Replace q with q0 and t0 with t 00, obtaining a modified tape
Qt D .� � � t�1 � t 00t1 � � � /.

(4) Shift Qt by ", obtaining a new tape t 0. The resulting configuration is .q0; t 0/.
Return to step .2/.

Our convention is that " D 1 (resp. " D �1) corresponds to the left shift (resp. the
right shift). This algorithm (determined by the transition function ı) induces a global
transition function in the space of configurations

� W Q n ¹qhaltº � †Z
! P ;

which sends a non-halting configuration in P to the configuration obtained after one
step of the algorithm.

Remark 3. Without loss of generality, one can assume that the configurations of the
machine are those pairs .q; t/ 2 Q � †Z for which only a finite number of sym-
bols in t are different from 0 (also called the “blank” symbol). We will not need this
simplifying assumption in this section, although it is certainly useful in other con-
structions [7].

The halting problem. In computability theory, the halting problem is the problem
of determining, from a description of an arbitrary computer program and an input,
whether the program will finish running (halting state), or continue to run forever.
Alan Turing proved in 1936 that a general algorithm to solve the halting problem for
all possible program-input pairs cannot exist. A key part of the proof is the formula-
tion of a mathematical definition of a computer and program, which is the previously
introduced notion of Turing machine; the halting problem is undecidable for Tur-
ing machines. The halting problem is historically important as it was one of the first
problems to be proved undecidable.
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Turing machines and universality. A Eulerisable field on a manifold M is Turing
complete if it can simulate any Turing machine. In fact, Turing machines can be
simulated by dynamical systems in a large sense (a vector field, a diffeomorphism, a
map, etc.). Following [27], we give a formal definition of such a “simulation”.

Definition 3.1. Let X be a vector field on a manifold M . We say it is Turing complete
if for any integer k � 0, given a Turing machine T , an input tape t , and a finite string
.t�
�k

; : : : ; t�
k

/ of symbols of the alphabet, there exist an explicitly constructible point
p 2 M and an open set U � M such that the trajectory of X through p intersects U

if and only if T halts with an output tape whose positions �k; : : : ; k correspond to the
symbols t�

�k
; : : : ; t�

k
. A completely analogous definition holds for diffeomorphisms

of M .

Remark 4. In the construction explained in this section, the point p depends on T ,
the input, and the finite string, while the open set U is always the same. In other con-
structions of Turing complete flows [6, 8, 27], the point p only depends on T and the
input, and the open set U depends on the finite string of the output. In particular, for
a fixed machine and input we construct a point p and we can “measure” a posteriori
what is the output of the machine up to some precision by looking which open sets
are intersected by the trajectory of the flow through p.

Remark 5. One might as well avoid fixing a finite string of the output .t�
�k

; : : : ; t�
k

/

and just require that the machine halts if and only if the trajectory through p enters
certain open set. As detailed in [9, Lemma 5.5], the computational power is the same
with this simplification.

In 1991, Moore [19] introduced the notion of generalized shift to be able to simu-
late any Turing machine; a generalized shift is a map that acts on the space of infinite
sequences on a given finite alphabet.

Let A be an alphabet and S 2 AZ an infinite sequence. A generalized shift � W

AZ ! AZ is specified by two maps F and G which depend on a finite number of
specified positions of the sequence in AZ. Denote by DF D ¹i; : : : ; i C r � 1º and
DG D¹j; : : : ; j C l � 1º the sets of positions on which F and G depend, respectively.
These functions take a finite number of different values since they depend on a finite
number of positions. The function G modifies the sequence only at the positions
indicated by DG :

G W Al
! Al

.sj � � � sjCl�1/ 7! .s0j � � � s
0
jCl�1/:

Here sj � � � sjCl�1 are the symbols at the positions j; : : : ; j C l � 1 of an infinite
sequence S 2 AZ.
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On the other hand, the function F assigns to the finite subsequence of consecutive
elements .si ; : : : ; siCr�1/ of the infinite sequence S 2 AZ an integer

F W Ar
! Z:

The generalized shift � W AZ ! AZ corresponding to F and G is defined as
follows:

� compute F.S/ and G.S/;

� modify S changing the positions in DG by the function G.S/, obtaining a new
sequence S 0;

� shift S 0 by F.S/ positions. That is, we obtain a new sequence s00n D s0
nCF .S/

for
all n 2 Z.

The sequence S 00 is then �.S/.
Given a Turing machine, there is a generalized shift � conjugate to it. Conjugation

means that there is an injective map ' W P ! AZ such that the global transition
function of the Turing machine is given by � D '�1�'. In fact, if the Turing machine
is reversible, it can be shown that the generalized shift is bijective.

Key observation. Generalized shifts are conjugate to maps of the square Cantor set
C 2 WD C � C � I 2, where C is the (standard) Cantor ternary set in the unit interval
I D Œ0; 1�.

Point assignment. Take A D ¹0; 1º (this can be assumed without loss of generality).
Given s D .� � � s�1 � s0s1 � � � / 2 AZ, we can associate to it an explicitly constructible
point in the square Cantor set. We just express the coordinates of the assigned point
in base 3: the coordinate y corresponds to the expansion .y0; y1; : : :/, where yi D 0

if si D 0 and yi D 2 if si D 1. Analogously, the coordinate x corresponds to the
expansion .x1; x2; : : :/ in base 3, where xi D 0 if s�i D 0 and xi D 2 if s�i D 1.

Moore proved that any generalized shift is conjugate to the restriction on the
square Cantor set of a piecewise linear map defined on blocks of the Cantor set in I 2.
This map consists of finitely many area-preserving linear components. If the gener-
alized shift is bijective, then the image blocks are pairwise disjoint. An example is
depicted in Figure 1. Each linear component is the composition of two linear maps:
a translation and a positive (or negative) power of the horseshoe map (or the Baker’s
map).

3.2. Area-preserving maps and Turing complete Reeb flows

In [19], Moore proved that any bijective generalized shift, understood as a map of the
square Cantor set onto itself, can be extended as a diffeomorphism of the disk isotopic
to the identity. The construction suggests that this can be done by further imposing
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Figure 1. Example of a map by blocks of the square Cantor set.

the condition that this diffeomorphism is area-preserving. In [9], we formalized this
proving that any bijective generalized shift can be extended to an area-preserving
diffeomorphism of the disk which is the identity near the boundary. The proof of this
result combines three ingredients: the aforementioned piecewise linear map defined
on Cantor blocks, an explicit geometric construction using the homotopy extension
property, and Moser’s path method to ensure that the diffeomorphism that we obtain
is area-preserving. The precise statement is the following:

Proposition 3.2. For each bijective generalized shift and its associated map of the
square Cantor set �, there exists an area-preserving diffeomorphism of the disk ' W

D ! D which is the identity in a neighborhood of @D and whose restriction to the
square Cantor set is conjugate to �.

Now the idea to construct a Turing complete Reeb flow is to take a Turing
complete bijective generalized shift (which exists because there are universal Tur-
ing machines that are reversible as proved in the classical paper of Bennett [3]).
Proposition 3.2 hence implies the existence of a Turing complete area-preserving
diffeomorphism of the disk which is the identity on the boundary, as detailed in [9,
Theorem 5.2]. Using a suspension construction in contact geometry, we can then
show that any area-preserving diffeomorphism of the disk can be realized as the
first-return map on a cross-section of a Reeb flow on any contact three-manifold. In
particular, taking the aforementioned Turing complete diffeomorphism, we conclude
the existence of Turing complete Reeb flows. More precisely, the following theorem
holds.

Theorem 3.3. Let .M;�/ be a contact 3-manifold and ' WD !D an area-preserving
diffeomorphism of the disk which is the identity (in a neighborhood of) the boundary.
Then there exists a defining contact form ˛ whose associated Reeb vector field R

exhibits a Poincaré section with first return map conjugate to '. In particular, there
exists a Reeb field R on .M; �/ which is Turing complete (in the sense of Defini-
tion 3.1).
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Combining Proposition 3.2, Theorem 3.3, and the correspondence theorem (The-
orem 1.1) between Beltrami fields and Reeb flows, we obtain the desired result for
stationary Euler flows.

Corollary 3.4. There exists a Eulerisable field X on S3 that is Turing complete. The
metric g that makes X a solution of the stationary Euler equations can be assumed
to be the round metric in the complement of an embedded solid torus.

The fact that the metric can be assumed to be the round one in the complement
of an embedded solid torus needs some explanation. When applying Theorem 3.3,
we take as ambient manifold the standard contact sphere .S3; �std/. Then, the contact
form whose Reeb field realizes a given area-preserving diffeomorphism of the disk
as a Poincaré map can be chosen to coincide with the standard contact form ˛std

outside a solid torus. To conclude, one can check that the metric associated to ˛ via
Theorem 1.1 can be taken to be the round one whenever ˛ coincides with ˛std.

Remark 6. The construction of a Turing complete Reeb flow in Theorem 3.3 is
obtained by choosing a particular reversible universal Turing machine and realiz-
ing its associated generalized shift as the first return map of the flow restricted to a
square Cantor set on a Poincaré section (see Proposition 3.2). Had we chosen another
reversible Turing machine (not necessarily universal), its dynamics would have been
induced in the square Cantor set via the first return map of a Reeb flow. We will use
this observation in Corollary 3.8.

3.3. Undecidable dynamical properties in Reeb dynamics

In this subsection, we prove some new corollaries that follow from our construction
in [9]. A straightforward implication of Theorem 3.3 is the existence of certain phe-
nomena of contact dynamics that are undecidable. Specifically, there is no algorithm
to assure that a Reeb trajectory will pass through a certain region of space in finite
time. The precise formulation of this result is the following:

Corollary 3.5. Let R be a Turing complete Reeb flow on .M; �/. Then there exist an
explicitly constructible compact set of points K � M and an explicit open set U � M

such that it is an undecidable problem to determine if the (positive) integral curve of
R through a point in K will intersect the set U or not.

A variation of our construction also allows us to construct a Reeb field R for
which there exist explicit points on M such that the problem of determining if the
orbit of R through each of these points is closed is undecidable. The fact that gen-
eralized shifts have orbits whose periodicity is undecidable was proved by Moore in
[19, Theorems 9 and 10]. In the lemma below, we give a complete formalization of
an argument in [17, Theorem 8] that is similar to Moore’s approach. This allows us
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to ensure that both properties required to prove Corollary 3.5 are satisfied: bijectivity
of the associated generalized shift (i.e., reversibility of the Turing machine) and the
equivalence between the halting of an input and the periodicity of the associated point
in the disk.

Lemma 3.6. There exists a Turing machine T 0 such that

(1) it is reversible;

(2) the image of the first component of the transition function ı does not con-
tain q0;

(3) it satisfies the “restart” property: if T 0 halts with input .q0; t /, then it halts
with output .qhalt; t /;

(4) T 0 is universal in the following sense: the halting of any Turing machine T

and input c0 is equivalent to the halting of T 0 for some explicit input (which
depends on T and c0).

We are now ready to prove the undecidability of determining whether a trajectory
is periodic or not.

Corollary 3.7. Let .M; �/ be a three-dimensional contact manifold. Then there is
a contact form ˛ defining � whose associated Reeb field R satisfies that there are
explicit points on M for which determining whether the orbit through one of those
points is periodic or not is an undecidable problem.

Proof. Let T D .Q; q0; qhalt; †; ı/ be a universal Turing machine as in Lemma 3.6.
We extend the transition function via ı.qhalt; t / D .q0; t; 0/, and construct a general-
ized shift � conjugate to T by a map '. Then given any input .q0; t /, the orbit of �

through '.q0; t / is periodic if and only if T halts with input .q0; t /.
The map � is bijective (since T is reversible), and by Proposition 3.2 we can find

an area-preserving diffeomorphism of the disk F W D ! D (which is the identity in a
neighborhood of the boundary) whose restriction to the square Cantor set is conjugate
to �. Using Proposition 3.3, we construct a contact form ˛ defining � whose Reeb
flow has a cross-section with a first return map that is conjugate to F . It is then
obvious that the orbit of the Reeb flow through a point representing an input of the
Turing machine is periodic if and only if T halts with such an input. The result then
follows from the undecidability of the halting problem.

Other special orbits can be constructed using the fact that the Turing machine is
universal. For example, it is possible to construct an explicit point p such that the orbit
of the Reeb flow through p is closed if and only if there is a counterexample to the
Riemann hypothesis (using a discrete equivalent formulation [27]), and similarly with
many other open problems in mathematics. This is achieved by constructing an initial
input associated to a Turing machine which halts upon finding a counterexample.
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Let us now give a proof of the auxiliary lemma (Lemma 3.6).

Proof of Lemma 3.6. As explained in [20, Section 6.1.2], we can find a reversible
universal Turing machine T D .Q; q0; qhalt; †; ı/ which satisfies property (2): the
initial state cannot be reached from any other state. Let us construct a universal Turing
machine T 0 starting from T , which satisfies (1), (2), and (3).

This Turing machine is of the form T 0 D .Q0; q0; qhalt; †; ı0/. The space of states
Q0 is given by

Q0
D

�
Q0 � ¹�1;C1º

�
[ ¹q0; qhaltº;

where Q0 WD Q n ¹q0º. We basically take two copies of each state in Q except for q0,
and add q0; qhalt. The sign in ¹�1;C1º denotes the “direction” of the computation,
a concept that will become clear in the construction. To simplify, for any state q 2

Q n ¹q0; qhaltº, we denote qC D q � ¹C1º 2 Q0 and q� D q � ¹�1º 2 Q0. The halting
state of T 0 is qhalt, even if there are two additional states qhalt � ¹1º and qhalt � ¹�1º

that we denote by qC
halt and q�

halt.
For any input of T , given by .q0; t /, we associate the input .q0; t / of T 0. For any

pair of the form .qC; t / with q 2 Q n ¹q0; qhaltº, we define the transition function of
T 0 exactly as the transition function ı. To formalize this, we introduce the notation
. Qq; Qt0; "/ D ı.q; t0/. Then

ı0.qC; t0/ WD . QqC; Qt0; "/:

This is always well defined since Qq is never equal to q0. Similarly, for the initial state
q0 we also use the notation . Qq; Qt0; "/ D ı.q0; t0/ and we define

ı0.q0; t0/ WD . QqC; Qt0; "/:

When the machine reaches the state qC
halt (which happens when T halts with that

input), we reverse the computation by defining

ı0.qC
halt; t0/ WD .q�

halt; t0; 0/: (3.1)

The idea now is that instead of halting with the output of T , we swapped to a
“reverse the computations” phase to undo the computations. For the states q�

halt and
q� with q 62 ¹q0; qhaltº, we define T 0 as the inverse Turing machine: a step of T 0 for
a pair the form .q�; t0/ is given by T �1. See for instance [20, Section 5.1.4] for the
construction of the inverse machine T �1, which is also reversible. Denote by ı�1 the
transition function of T �1; notice that ı�1 is not defined on the state q0 by property
(2). Then, for q 2 Q n ¹q0; qhaltº, if we set ı�1.q; t0/ D . Qq; Qt0; "/, we define

ı0.q�; t0/ WD . Qq�; Qt0; "/ if Qq ¤ q0:
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If ı�1.q; t0/ D .q0; Qt0; "/, it means that we have returned to the input configuration
so we can define instead

ı0.q�; t0/ WD .qhalt; Qt0; "/: (3.2)

Similarly, for q�
halt, if ı�1.qhalt; t0/ D . Qq; Qt0; "/, we define

ı0.q�
halt; t0/ D . Qq�; Qt0; "/ if Qq ¤ q0

and if Qq D q0, then
ı0.q�

halt; t0/ D .qhalt; Qt0; "/: (3.3)

Notice that the image state Qq via ı�1 cannot be qhalt because the transition function ı

is not defined when q D qhalt.
The global transition function of T 0 on configurations with states q0; qC coincides

with the global transition function of T , where qC
halt is identified with the halting

state of T . Accordingly, it is injective there. Similarly, the global transition function
on configurations with states q� and qhalt coincides with that of T �1, where qhalt

is identified with the halting state of T 0 and q�
halt is identified with the initial state

of T 0. So it is also injective there. Each configuration with state qC
halt is sent to the

same configuration with state q�
halt in a trivial injective way. Summarizing, the global

transition function of T 0 is injective everywhere so T 0 is reversible
The machine T 0 satisfies (2), since q0 cannot be reached from ı, and in our con-

struction we attain qhalt instead of q0 when ı�1 is applied according to equation (3.3).
The machine is universal since its halting is equivalent to the halting of T . Indeed,
observe that the states of the form q� in T 0 can only be reached if T halted, and qhalt

can only be reached through negative states. This shows that if T does not halt with
input .q0; t /, then T 0 does not halt. On the other hand, if T halts, T 0 will eventu-
ally reach a negative state, reverse the computation, and reach qhalt. In fact, T halts
with input .q0; t / if and only if T 0 halts with the same input. This shows that T 0 is
universal.

Property (3) is also satisfied by construction. Whenever T 0 halts with input .q0; t /,
it will reach a qC

halt, then q�
halt and reverse the computation to halt with configuration

.qhalt; t /.

Remark 7. Since any Turing machine can be simulated by a reversible Turing ma-
chine that satisfies property (2) (see e.g. [20, Section 6.1.2]), the construction pre-
sented in the proof of Lemma 3.6 allows one to start from any reversible Turing
machine T , obtaining a reversible Turing machine T 0 which halts on the same inputs
than T and has the “restart” property. In particular, any undecidable property associ-
ated to the inputs of T that halt is inherited by the inputs of T 0.

Finally, we can mention a corollary which serves as a sample of dynamical prop-
erties of Reeb flows which simulate Turing machines that can be easily shown to be
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undecidable. Such undecidable properties are inherent to Turing machines and their
associated generalized shifts [19, Theorem 10]. A key ingredient is Rice’s theorem in
computability theory, which in particular shows that non-trivial questions about the
set of inputs for which the Turing machine halts are undecidable [25]. For example,
Rice’s theorem shows that there is no algorithm that can decide, for any given Turing
machine, if there are at least k inputs that halt. From a logical point of view, this
implies that there is at least one Turing machine for which determining if there are at
least k inputs that halt is undecidable in the logical sense (i.e., the statement cannot
be proved or disproved).

The following result is then a straightforward consequence of the previous dis-
cussion, Remark 7, Remark 6, and the existence of reversible Turing machines for
which, respectively, determining if the set of inputs that halt has cardinality at least
k � 0, is dense (in the set of all inputs) or has certain measure in the set of all inputs
is undecidable in the logical sense.

Corollary 3.8. Let .M; �/ be a three-dimensional contact manifold. Then there is a
contact form ˛ defining � and an explicit set of points K � M for which the following
questions on the dynamics of R are undecidable (from the logical point of view, we
remark that ˛ depends on each question):

� Are there at least k � 0 points in K whose orbit is periodic?

� Is the set of points in K whose orbit is periodic dense in K?

� For a given � > 0, is the set of points in K whose orbit is periodic of measure
greater than �?

In the previous corollary, the set K is simply the set of points associated to inputs
of the Turing machine in the square Cantor set of the disk-like Poincaré section of the
flow (these points lie on a finite union of blocks of the square Cantor set; see [9]).

Other dynamical properties of generalized shifts were proved to be undecidable
by Moore, and could probably be adapted to establish analogous undecidability state-
ments for Reeb flows. This includes convergence of orbits to a given point or the
computability of Lyapunov exponents on a given invariant set (the orbits through the
square Cantor set).

4. Time-dependent solutions of Euler and Navier–Stokes

In the previous sections, we have focused on stationary solutions to the Euler equa-
tions, first in high dimensions as a consequence of a new h-principle for Reeb embed-
dings, and then in dimension three using the power of symbolic dynamics. However,
recall that the original motivation in [28–30] was to find a Turing complete time-



Universality and undecidability in Euler and Reeb flows 389

dependent solution. The time-dependent Euler equations on a Riemannian manifold
.M; g/ define a dynamical system on the space of volume-preserving vector fields of
the ambient manifold X1

vol.M/. The following definition of Turing completeness is
adapted to this context by analogy with Definition 3.1.

Definition 4.1. Let .M;g/ be a Riemannian manifold. The Euler equations on .M;g/

are Turing complete if the following property is satisfied. For any integer k � 0, given
a Turing machine T , an input tape t , and a finite string .t�

�k
; : : : ; t�

k
/ of symbols of

the alphabet, there exist an explicitly constructible vector field X0 2 X1
vol.M/ and a

constructible open set U � X1
vol.M/ such that the solution to the Euler equations with

initial datum X0 is smooth for all time and intersects U if and only if T halts with an
output tape whose positions �k; : : : ; k correspond to the symbols t�

�k
; : : : ; t�

k
.

In our recent article [7], we use a remarkable embedding theorem by Torres de
Lizaur [31] (building on a previous embedding theorem into time-dependent Euler
flows by Tao [28]) and the construction of Turing complete polynomial non-autono-
mous ODEs [14], to obtain Turing complete time-dependent solutions to the Euler
equations:

Theorem 4.2 ([7]). There exists a (constructible) compact Riemannian manifold
.M; g/ such that the Euler equations on .M; g/ are Turing complete. In particular,
the problem of determining whether a certain solution to the Euler equations with
initial datum X0 will reach a certain open set U � X1

vol.M/ is undecidable.

This solves the question of the Turing universality of the time-dependent Euler
equations in high dimensions with general Riemannian metrics.

We finish this article presenting an application of Corollary 3.4 in the context of
the Navier–Stokes equations (following [8]). These equations describe the dynamics
of an incompressible fluid flow with viscosity. On a Riemannian 3-manifold .M; g/,
they read as [1] 8̂̂<̂

:̂
@
@t

X CrXX � ��X D �rp;

div X D 0;

X.t D 0/ D X0;

(4.1)

where � > 0 is the viscosity. In what follows, the differential operators are computed
with respect to the metric g, and � stands for the Hodge Laplacian (whose action on
a vector field is defined as �X WD .�X [/]).

Let us analyze what happens with the solution X.t/ when we take the Turing
complete vector field X0 constructed in Corollary 3.4 as initial condition (for the
Navier–Stokes equations with the metric g that makes X0 a stationary Euler flow).
Specifically, using that curlg.X0/ D X0, the solution to equation (4.1) with initial
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datum X.t D 0/ D MX0, M > 0 a real constant, is easily seen to be8<:X.�; t / D MX0.�/e��t ;

p.�; t / D c0 �
1
2
M 2e�2�tg.X0; X0/;

(4.2)

for any constant c0. The integral curves (fluid particle paths) of the non-autonomous
field X solve the ODE

dx.t/

dt
D Me��tX0

�
x.t/

�
:

Accordingly, reparametrizing the time as

�.t/ WD
M

�
.1 � e��t /;

we show that the solution x.t/ can be written in terms of the solution y.�/ of the
ODE

dy.�/

d�
D X0

�
y.�/

�
;

as
x.t/ D y

�
�.t/

�
:

When t !1, the new reparametrized “time” � tends to M
�

, and hence the integral
curve x.t/ of the solution to the Navier–Stokes equations travels the orbit of X0 just
for the time interval � 2 Œ0; M

�
/. In particular, the flow of the solution X only simulates

a finite number of steps of a given Turing machine, so we cannot deduce the Turing
completeness of the Navier–Stokes equations using the vector field MX0 as initial
condition. More number of steps of a Turing machine can be simulated if � ! 0 (the
vanishing viscosity limit) or M !1 (the L2 norm of the initial datum blows up). For
example, to obtain a universal Turing simulation we can take a family ¹MkX0ºk2N of
initial data for the Navier–Stokes equations, where Mk !1 is a sequence of positive
numbers. The energy (L2 norm) of this family is not uniformly bounded, so it remains
as a challenging open problem to know if there exists an initial datum of finite energy
that gives rise to a Turing complete solution of the Navier–Stokes equations.
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