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Lefschetz fibrations, open books, and symplectic fillings of
contact 3-manifolds
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Abstract. Ever since Donaldson showed that every closed symplectic 4-manifold admits a
Lefschetz pencil and Giroux proved that every closed contact 3-manifold admits an adapted
open book decomposition, Lefschetz fibrations and open books have been used fruitfully to
obtain significant results about the topology of symplectic 4-manifolds and contact 3-manifolds.
In this expository article, we present the highlights of our contribution to the subject at hand
based on joint work with several coauthors during the past twenty years.

1. Introduction

At the turn of the century, two groundbreaking results have surfaced which had a
long-lasting impact on the study of global topology of symplectic 4-manifolds and
contact 3-manifolds. These results respectively are Donaldson’s existence theorem
[19] about Lefschetz pencils on closed symplectic 4-manifolds and Giroux’s corre-
spondence [30] between open books and contact structures on closed 3-manifolds.

In the first half of this short expository article, we briefly review the results of
Donaldson and Giroux. In the last half, we first present an analogous result on Stein
domains of complex dimension two, with an eye towards some applications to the
study of the topology of symplectic fillings of contact 3-manifolds. Then we demon-
strate how Lefschetz fibrations and open books interact with the classical theory of
complex surface singularities as well as trisections of arbitrary smooth 4-manifolds,
which were relatively recently discovered by Gay and Kirby [25].
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2. Topological characterization of symplectic 4-manifolds

Suppose that X and ¥ are compact, oriented, and smooth manifolds of dimensions
four and two, respectively, possibly with nonempty boundaries.

Definition 2.1. A Lefschetz fibration m: X — X is a submersion except for finitely

many points {pi, ..., pr} in the interior of X, such that around each p; and 7 (p;),

there are orientation-preserving complex charts, on which 7 is of the form 7 (z1,22) =
2 2

zi + z3.

The topology of Lefschetz fibrations is well understood with multiple points of
view. We advise the reader to turn to the book [33] of Gompf and Stipsicz for an
excellent introduction to the subject.

Lefschetz critical points can be viewed as complex analogs of Morse critical
points, and they correspond to 2-handles. As a result, one obtains a handle decom-
position of the 4-manifold X. Since a Lefschetz fibration is locally trivial in the
complement of finitely many singular fibers, it can also be described combinatori-
ally by means of its monodromy. Locally, the fiber of the map (zq, z;) — zf + z%
above 0 # ¢ € C is smooth (topologically an annulus), while the fiber above the ori-
gin has a transverse double point (aka nodal singularity) and is obtained from the
nearby fibers by collapsing an embedded simple closed curve called the vanishing
cycle, as illustrated in Figure 1.

Let m: X — X be a Lefschetz fibration and let y be a loop in ¥ enclosing a
single critical value, whose critical fiber has a single node. Then = restricts to surface
fibration over y, whose monodromy (a diffeomorphism of the fiber) is given by the
right-handed Dehn twist about the vanishing cycle, as depicted in Figure 2.

For the purposes of this article, we assume that each singular fiber carries a unique
singularity and there are no homotopically trivial vanishing cycles. Moreover, we
restrict our attention to the following two cases.

First case, ¥ = S2, 0X = 0, and hence the fibers are closed surfaces. Suppose that
qg1.-...qx € D? C S? are the critical values of a genus g Lefschetz fibration 7: X —
S2. Let go € D? be a regular value and for each 1 <i <k, let y; C D? be a loop
based at g¢ enclosing a single critical value ¢; as shown in Figure 3. By the discussion
above, the monodromy of the fibration over each y; is a positive Dehn twist along the
corresponding vanishing cycle.

Since the fibration 7 is trivial over the complement S? \ D?, the product of pos-
itive Dehn twists along the vanishing cycles is isotopic to the identity. The upshot is
that a Lefschetz fibration 77: X — S? is characterized by a positive Dehn twist fac-
torization of the identity element in Map,, the mapping class group of an oriented
closed surface of genus g.
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Figure 2. The right-handed (positive) Dehn twist.

Figure 3. Loops in the base disk.
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Figure 4. Fibers in a Lefschetz fibration.
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Figure 5. Blowing up the base-locus of a Lefschetz pencil.

Second case, & = D?, the fibers have nonempty boundary and hence X # @. In
this case, the global monodromy over the boundary of the base disk D? is a product
of positive Dehn twists in Map, , (the mapping class group of an oriented genus g
surface with r > 0 boundary components), with no other constraints (see Figure 4).
Moreover, 0X inherits a natural open book decomposition, which we will discuss in
details later in Section 3.

Definition 2.2. A Lefschetz pencil on a closed and oriented 4-manifold X is a map
w: X —{by,...,by} — S?, submersive except for a finite set {py, ..., px}, conform-
ing to local models

(1) (z1,22) = z1/z» near each b; and

(i) (z1,22) = z% + z3 near each p;.
By blowing up X at the base-locus {by, ..., b,}, we obtain a Lefschetz fibration
X #nCP? - §?

with n disjoint sections, which are the exceptional spheres in the blow-up, as illus-
trated in Figure 5.
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In the early twentieth century, Lefschetz showed that every algebraic surface (4-
manifold arising as the zero-locus of a collection of homogeneous polynomials in
CP™) admits “Lefschetz” pencils, which enabled him to study the topology of alge-
braic surfaces. This result was extended by Donaldson, to the case of the much larger
class of symplectic 4-manifolds (i.e., those admitting closed non-degenerate 2-forms).

Theorem 2.3 (Donaldson [19]). Any closed symplectic 4-manifold admits a Lefschetz
pencil.

For a sketch of the proof of Theorem 2.3 (other than Donaldson’s original papers
[18,19]), the interested reader may consult the lecture notes [6] of Auroux and Smith,
which is a wide-ranging survey, touching on the uses of Donaldon’s theory of Lef-
schetz pencils and their relatives in 4-dimensional topology and mirror symmetry.

Conversely, generalizing a similar result of Thurston [58] on surface bundles over
surfaces, Gompf [33] showed that if 7 : X — X is a Lefschetz fibration for which the
fiber represents a non-torsion homology class,' then X admits a symplectic structure
with symplectic fibers. As a corollary, he showed that any closed 4-manifold which
admits a Lefschetz pencil, is symplectic.

Combining the results of Donaldson and Gompf, we obtain a topological charac-
terization of symplectic 4-manifolds which has lead to a renewed interest in Lefschetz
pencils/fibrations and hundreds of papers have been devoted to the study of various
aspects and generalizations of Lefschetz fibrations, over the past twenty years. Here
is one of the earlier results.

Theorem 2.4 (Ozbagci and Stipsicz [47]). There are infinitely many pairwise non-
homeomorphic closed 4-manifolds, each of which admits a genus two Lefschetz fibra-

tion over S? but does not carry complex structure with either orientation.”

The examples in Theorem 2.4 are obtained by fiber sums of genus two Lefschetz

fibrations S2 x T2 # 4 CP? — §2 of Matsumoto [39], which also shows that fiber
sums of holomorphic Lefschetz fibrations are not necessarily holomorphic.

3. Topological characterization of contact 3-manifolds
Definition 3.1. An open book decomposition of a closed and oriented 3-manifold Y

is a pair (B, w) consisting of an oriented link B C Y, and a locally trivial fibration
7: Y — B — S such that B has a trivial tubular neighborhood B x D? in which 7 is

IThis hypothesis is automatically satisfied if the fiber genus is not equal to one.
2This result was independently observed by Ivan Smith.
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Figure 6. I am an open book! Figure 7. (2, 3)-torus knot (the trefoil).

given by the angular coordinate in the D2-factor (see Figure 6). Here B is called the
binding and the closure of each fiber of 7, which is a Seifert surface for B, is called

a page.

Example 3.2 (Milnor’s fibration). Consider the polynomial f: C? — C given by
f(z1,22) = zP + I, where p,q > 2 are relatively prime. Then B = f~1(0) N S3
is the (p, ¢)-torus knot in S whose complement fibers over S!:

— f(z1,22)
' ‘f(Zl,Zz)"

Hence (B, ) is an open book for S3 with connected binding. The torus knot for the
case p = 2 and g = 3 is depicted in Figure 7.

7: 83— B > S!

For any given open book, one can choose a vector field which is transverse to the
pages and meridional near the binding. Then the isotopy class of the first return map
on a fixed page is called the monodromy of the open book. The topology of an open
book is determined by the topology of its page and its monodromy.

Suppose that 7 : X — D? is a Lefschetz fibration such that the regular fiber F
has nonempty boundary dF. Then dX is the union of two pieces:

o the horizontal boundary, dF x D? (see Figure 8) and
o the vertical boundary, 7 ~1(dD?) (see Figure 9),

glued together along the tori F x dD2. It follows that dX inherits a natural open
book, whose page is the fiber F' and whose monodromy coincides with the mon-
odromy of the Lefschetz fibration 7 : X — D?2.

A differential 1-form o on a 3-manifold Y is called a contact form if a A da is
a volume form. A 2-dimensional distribution £ in T'Y is called a contact structure if
it can be given as the kernel of a contact form «. The pair (Y, ) is called a contact
3-manifold.
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Figure 8. The vertical boundary: 7! (3D?).  Figure 9. The horizontal boundary: 0F x D2.

There are no local invariants of contact structures by Darboux’s theorem, which
says that any point in a contact 3-manifold has a neighborhood isomorphic to a neigh-
borhood of the origin in the standard contact structure § = ker(dz + xdy) in R3,
which is depicted in Figure 10.

We advise the reader to turn to the book [28] of Geiges, for a thorough introduc-
tion to contact topology in general dimensions and to the book [49] of Stipsicz and
the author for a rapid course in dimension 3.

A classical theorem of Alexander [5] says that every closed oriented 3-manifold
admits an open book decomposition and Martinet [38] showed that every closed ori-
ented 3-manifold carries a contact structure. In 1975, Thurston and Winkelnkemper
[59] presented an alternate proof of Martinet’s theorem by constructing contact forms
on closed 3-manifolds using open books.

Definition 3.3. A contact structure & on a 3-manifold Y is said to be supported by
an open book (B, w) if £ can be given by a contact form « such that ¢(B) > 0 and
do > 0 on every page.

In view of Definition 3.3, the result of Thurston and Winkelnkemper can be
rephrased as follows: every open book on a closed oriented 3-manifold supports a
contact structure.

The converse (i.e., every contact structure on a closed oriented 3-manifold is sup-
ported by an open book) was proven by Giroux. In fact, he proved the following
theorem, which is known as Giroux’s correspondence.

Theorem 3.4 (Giroux [30]). On a closed oriented 3-manifold, there is a one-to-one
correspondence between the set of isotopy classes of contact structures and open
books up to positive stabilization.
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Figure 10. The standard contact structure § = ker(dz + xdy) in R3.

For a detailed sketch of the proof of Theorem 3.4, we refer to Etnyre’s lecture
notes [21].

4. Topological characterization of Stein domains of complex
dimension two

Definition 4.1. A Stein manifold is an affine complex manifold, i.e., a complex man-
ifold that admits a proper holomorphic embedding into some C¥ .

Suppose that ¢: X — R is a smooth function on a complex manifold (X, J).
Let g denote the 2-form —d(d¢ o J). Then the map ¢: X — R is called J-convex
(aka strictly plurisubharmonic) if wg(u, Ju) > 0 for all nonzero vectors u € TX. It
follows that wg is an exact symplectic form on X.
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Grauert’s characterization. A complex manifold (X, J) is Stein if and only if it
admits a proper J-convex function ¢: X — [0, 00).

We advise the reader to turn to the book [17] of Eliashberg and Cieliebak, for
a meticulous treatment of Stein (and Weinstein) manifolds. For the purposes of this
article, we now restrict our attention to Stein surfaces (of complex dimension two),
for which the reader may consult [32] for an elaborate discussion.

Suppose that (X, J) is a Stein surface. For any proper J-convex Morse function
¢: X — [0, 00), each regular level set Y of ¢ is a contact 3-manifold, where the
contact structure is given by the kernel of oy = —d¢ o J or, equivalently, by the
complex tangencies TY N JTY . For any regular value c of ¢, the sublevel set W =
¢~ 1([0, ¢]) is called a Stein domain. We also say that the compact 4-manifold (W, J)
is a Stein filling of its contact boundary (0W, ker o).

By the work of Eliashberg [20] and Gompf [32] a handle decomposition of a
Stein domain (W, J) is well understood: it consists of a 0-handle, some 1-handles,
and some 2-handles attached along Legendrian knots (those tangent to the contact
planes) with framing —1 relative to the contact planes.

The following theorem, whose proof is based on the handle decomposition above,
is somewhat analogous to Donaldson’s theorem on the existence of Lefschetz pencils
on closed symplectic manifolds.

Theorem 4.2 (Akbulut and Ozbagci [1] and Loi and Piergallini [36]). A Stein domain
admits an allowable® Lefschetz fibration over D? and, conversely, any allowable Lef-
schetz fibration over D? admits a Stein structure.

Moreover, by modifying the proof of Akbulut and the author, Plamenevskaya
[52] showed that the contact structure induced on the boundary of the Stein domain is
supported by the open book inherited by the Lefschetz fibration. As a result we have
the diagram

allowable
Stein domain ~-<——  Lefschetz fibration

contact structure =~ -«———»  open book

which gives a criterion for Stein fillability: a contact 3-manifold is Stein fillable if
and only if it admits a supporting open book whose monodromy can be factorized
into positive Dehn twists.*

3The vanishing cycles are homologically non-trivial.
4This was independently proved by Giroux.
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Definition 4.3. A compact symplectic 4-manifold (X, w) is a (strong) symplectic fill-
ing of a contact 3-manifold (Y, £) if 0X = Y (as oriented manifolds), w is exact near
the boundary, and its primitive o can be chosen so that ker(x|y) = &. A symplectic
filling is called minimal if it does not contain any symplectically embedded sphere of
self-intersection —1.

An active line of research in symplectic/contact topology is to classify all Stein
fillings or more generally all minimal symplectic fillings of a given contact 3-mani-
fold, up to diffeomorphism. It is clear by definition that every Stein filling is a minimal
symplectic filling. The converse, however, is not true as shown by Ghiggini [29],
using the celebrated Ozsvath—Szabd contact invariants [50].

The classification of Stein or more generally minimal symplectic fillings of a
given contact 3-manifold is difficult in general. Nevertheless, this problem has been
solved for many contact 3-manifolds, each of which has finitely many fillings. See
the author’s survey article [46] for the state of affairs until 2015.

The existence of a contact 3-manifold which admits infinitely many distinct Stein
fillings was discovered by Stipsicz and the author. Let Y denote the closed 3-mani-
fold, which is the total space of the open book whose page is a genus g surface with
connected boundary and whose monodromy is the square of the boundary Dehn twist.
Let &, denote the contact structure on Y, supported by this open book.

Theorem 4.4 (Ozbagci and Stipsicz [48]). For each odd integer g > 3, the contact
3-manifold (Y ., &) admits infinitely many pairwise non-homeomorphic Stein fillings.

Outline of proof. A positive word in Map,, for g > 3 (generalizing Matsumoto’s
genus two word [39]), was discovered independently by Cadavid [12] and Korkmaz
[34]. For g odd, the word is (cocicz - -+ cga®h?)? = 1, where, by an abuse of nota-
tion, each letter represents the right-handed Dehn twist along the curve decorated
with the same letter, depicted in Figure 11. For each odd integer g > 3, there is a
Lefschetz fibration over S2, which corresponds to the aforementioned word. First we
take (twisted) fiber sums of two copies of this Lefschetz fibration over S2 and then
remove a regular neighborhood of the union of a section and a regular fiber to get
Stein fillings of the common contact boundary. The Stein fillings are distinguished
by the torsion in their first homology groups, coming from the twistings in the fiber
sums.

Remark 4.5. For a fixed odd integer g > 3, all the Stein fillings mentioned in Theo-
rem 4.4 have the same Euler characteristic and the signature. In contrast, Baykur and
Van Horn-Morris [8] showed that there are vast families of contact 3-manifolds each
member of which admits infinitely many Stein fillings with arbitrarily large Euler
characteristics and arbitrarily small signatures.



Lefschetz fibrations, open books, and symplectic fillings 405

Figure 11. Curves on a genus g surface, for odd g.

5. Canonical contact structures on the links of isolated complex
surface singularities

A fruitful source of Stein fillable contact 3-manifolds is given by the links of isolated
complex surface singularities. Let (X, 0) C (C",0) be an isolated complex surface
singularity. Then for a sufficiently small sphere S EZN 1 C CN centered at the origin,
Y = X N S2¥~1is a closed, oriented, and smooth 3-dimensional manifold, which is
called the link of the singularity.

If J denotes the complex structure on X, then the plane field given by the com-
plex tangencies £ := TY N JTY is a contact structure on Y —called the canonical
(aka Milnor fillable) contact structure on the singularity link. The contact 3-manifold
(Y, &) is called the contact singularity link. Note that £ is determined uniquely, up to
isomorphism, by a theorem of Caubel, Némethi, and Popescu-Pampu [14].

We advise the reader to turn to the comprehensive lecture notes [54] of Popescu-
Pampu for an introduction to complex singularity theory and its relation to contact
topology.

The minimal resolution of an isolated complex surface singularity provides a
Stein filling of its contact singularity link (Y, &), by the work of Bogomolov and
de Oliveira [11]. Moreover, if the singularity is smoothable, the general fiber X of
a smoothing is called a Milnor fiber, which is a compact smooth 4-manifold such
that X = Y. Furthermore, X has a natural Stein structure so that it provides a Stein
(hence minimal symplectic) filling of (Y, §). Therefore, a natural question arises as
follows (see, for example, [41]): Does there exist a contact singularity link which
admits Stein (or minimal symplectic) fillings other than the Milnor fibers (and the
minimal resolution)?

The answer is negative for simple and simple elliptic singularities as shown by
Ohta and Ono [43-45]. The answer is negative for cyclic quotient singularities as
shown by the culmination of the work of several people: McDuff [40], Christophersen
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[16], Stevens [56], Lisca [35], and Némethi and Popescu-Pampu [42]. The answer is
negative for non-cyclic quotient singularities as well by the work of Stevens [57],
Bhupal and Ono [9], and H. Park, J. Park, Shin, and Urzda [51].

The first examples where the answer is affirmative were discovered by Akhmedov
and the author.

Theorem 5.1 (Akhmedov and Ozbagci [3]). There exists an infinite family of Seifert
fibered contact singularity links such that each member of this family admits infinitely
many exotic® Stein fillings. Moreover, none of these Stein fillings are homeomorphic
to Milnor fibers.

The exotic fillings mentioned in Theorem 5.1 are not simply connected. The first
examples of infinitely many exotic simply-connected Stein fillings were discovered
by Akhmedov, Etnyre, Mark, and Smith [2].

Moreover, Plamenevskaya and Starkston [53] recently showed that many rational
singularities admit simply-connected Stein fillings that are not diffeomorphic to any
Milnor fibers.

Theorem 5.2 (Akhmedov and Ozbagci [4]). For any finitely presented group G, there
exists a contact singularity link which admits infinitely many exotic Stein fillings such
that the fundamental group of each filling is G.

Some key ingredients in the proofs of Theorem 5.1 and Theorem 5.2 are Lut-
tinger surgery [37], symplectic sum [31], Fintushel-Stern knot surgery [24], and the
Seiberg—Witten invariants [61].

We now turn our attention to Lefschetz fibrations on minimal symplectic fillings
of lens spaces. Let £ denote the canonical contact structure on the lens space L(p, q),
which is the link of a cyclic quotient surface singularity. The minimal symplectic fill-
ings of (L(p, q), §) have been classified by Lisca [35], generalizing the classification
by McDuff [40] for (L(p, 1), §).

Theorem 5.3 (Bhupal and Ozbagci [10]). There is an algorithm to describe any min-
imal symplectic filling of (L(p, q), §) as an explicit genus-zero allowable Lefschetz
fibration over D?. Moreover, any minimal symplectic filling of (L(p,q),£) is obtained
by a sequence of rational blowdowns® starting from the minimal resolution of the cor-
responding cyclic quotient singularity.

Theorem 5.3 was recently extended to the case of non-cyclic quotient singularities
by H. Choi and J. Park [15].

SHomeomorphic but pairwise not diffeomorphic.
®Rational blow-down is a surgery operation discovered by Fintushel and Stern [23], where
a negative definite linear plumbing submanifold is replaced by a rational 4-ball.
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Remark 5.4. Since (L(p, q), §) is known to be planar [55], i.e., it admits a planar
open book that supports &, it also follows by a theorem of Wendl [60], that each
minimal symplectic filling of (L(p, q), &) is deformation equivalent to a genus-zero
allowable Lefschetz fibration over D2, although we have not relied on Wend!’s theo-
rem in our proof of Theorem 5.3.

6. Lefschetz fibrations and trisections

A handlebody is a compact manifold admitting a handle decomposition with a single
0-handle and some 1-handles. A trisection of a closed 4-manifold X is a decompo-
sition of X into three 4D-handlebodies, whose pairwise intersections are 3D-handle-
bodies and whose triple intersection is a closed embedded surface.

A trisection of a 4-manifold is analogous to a Heegaard splitting of a closed 3-
manifold, which is a decomposition into two 3D-handlebodies whose intersection is
an embedded surface. Moreover, trisections can be presented by trisection diagrams,
similar to the Heegaard diagrams. We refer to Gay’s lecture notes [27] for a gentle
introduction to trisections of 4-manifolds.

Theorem 6.1 (Gay and Kirby [25]). Every closed oriented 4-manifold admits a tri-
section.

Based on a splitting of an arbitrary closed 4-manifold into two achiral” Lefschetz
fibrations over D? due to Etnyre and Fuller [22] and a gluing technique for rela-
tive trisections for 4-manifolds with boundary, Castro and the author [13] obtained
an alternate proof of Theorem 6.1 using Lefschetz fibrations and contact geometry,
instead of Cerf theory as utilized by Gay and Kirby. The following result is an appli-
cation of this alternate proof.

Theorem 6.2 (Castro and Ozbagci [13]). Suppose that X is a closed, oriented 4-
manifold which admits a Lefschetz fibration over S? with a section of square —1.
Then, an explicit trisection of X can be described by a corresponding trisection dia-
gram, which is determined by the vanishing cycles of the Lefschetz fibration.

We would like to point out that Gay [26] also constructed a trisection of any 4-
manifold which admits a Lefschetz pencil, turning one type of decomposition into
another, but without describing an explicit trisection diagram.

Remark 6.3. Baykur and Saeki [7] obtained yet another proof of Theorem 6.1, set-
ting up a correspondence between broken Lefschetz fibrations and trisections, using

"Possibly including nodes with opposite orientation.
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Figure 12. A trisection diagram for the Horikawa surface H'(1).

a method which is very different from ours. They also proved a stronger version of
Theorem 6.2.

Example 6.4 ([13]). The Horikawa surface H'(1), a simply-connected complex sur-
face of general type, admits a genus two Lefschetz fibration over $? with a section of
square —1. The trisection diagram obtained by applying Theorem 6.2 is depicted in
Figure 12. Notice that H'(1) is an exotic copy of 5 CP? #29 CP2.
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