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Covering and growth for group subsets and representations

Aner Shalev

Abstract. Deep results on products of subsets of finite groups, and of finite simple groups in
particular, were obtained this century. Gowers’ theory of quasi-random groups, further devel-
oped and applied by Nikolov and Pyber, focuses on covering results, while the theory of
approximate subgroups and the product theorem, developed by Helfgott, Hrushovski, Breuil-
lard, Green and Tao, and Pyber and Szabó, focus on growth results.

In recent joint works with Larsen and Tiep, following works with Liebeck and Tiep, we
explore analogous problems in representation theory. We replace subsets of a group by its char-
acters, and subset products by products of characters. We also study covering and growth for
normal subsets of finite simple groups and derive various applications. In particular, we prove
that every element of a sufficiently large finite simple transitive permutation group is a product
of two derangements.

The product theorem establishes 3-step growth of the form jA3j � jAj1C" for (certain)
subsets A of finite simple groups of Lie type of bounded rank. Surprisingly, stronger results
hold for characters. We obtain 2-step growth for characters of finite simple groups of Lie type,
including those of unbounded rank. For a character � of G, we set j�j D

P
i �i .1/

2, where �i

are the (distinct) irreducible constituents of �. For a finite simple group G of Lie type, we show
that for every ı > 0 there exists " > 0 such that if � is an irreducible character of G satisfying
j�j � jGj1�ı , then j�2j � j�j1C". In addition, we obtain results for reducible characters and
establish faster growth of the form j�2j � j�j2�" if j�j � jGjı .

Following a recent work of Sellke, we also study covering phenomena in representation
theory, proving that if j�1j � � � j�mj is a sufficiently large power of jGj, then every irreducible
character of G is a constituent of �1 � � ��m. Finally, we obtain related results for characters of
compact semisimple Lie groups.

1. Subset products and covering

In the past two decades, there has been considerable interest in the products of subsets
of finite groups, especially (nonabelian) finite simple groups. The so-called Gowers’
trick, which is part of the theory of quasi-random groups (see [1, 17, 57]), establishes
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a useful 3-step covering result. Let m.G/ denote the minimal degree of a non-trivial
irreducible character of a finite group G. The density of a subset A � G is defined
as jAj=jGj. Let A, B , and C be subsets of G satisfying jAjjBjjC j � jGj3=m.G/.
Then, Gowers’ trick shows that ABC D G. In particular, if the density of A is at
least m.G/�1=3, then A3 D G.

A family F of finite groups is said to be quasi-random ifm.G/!1 asG ranges
over the groups in F . It follows that if F is a quasi-random family of finite groups,
" > 0, G 2 F , and the density of A;B;C � G is at least ", then ABC D G provided
that jGj is sufficiently large.

Much less is known about the products of two subsets, which is the main topic
of this section. It is easy to see that the above assertion fails to hold for length
2 products AB . Moreover, for every positive integer k, there exist infinitely many
finite groups G and subsets A;B � G such that jAj; jBj � jGj=.k C 1/ and jABj �

jGj � k. To see this, fix k � 1, and let G be any finite group of order divisible by
k C 1. Let A; S � G be subsets satisfying jAj D jGj=.k C 1/ and jS j D k. Define
B WD G n A�1S (where A�1 WD ¹a�1 W a 2 Aº). Note that jBj D jGj � jA�1S j �

jGj � jS jjAj D jGj � kjGj=.kC 1/D jGj=.kC 1/. Clearly, AB \ S D ; (if ab D s

for some a 2A, b 2B , and s 2 S , then bD a�1s, soB \A�1S ¤;, a contradiction).
Thus, AB � G n S and jABj � jGj � k, proving the claim.

Can we still obtain 2-step covering results under suitable stronger assumptions?
A trivial observation (which is still useful) is that if subsets A;B � G have den-

sities ˛ and ˇ, respectively, and ˛C ˇ > 1, then AB D G. In particular, if A;B � G

have size greater than jGj=2, then AB D G. This observation will play a role in the
complicated proof of the main result of Section 2 (see Theorems 2.4 and 2.8).

Next, let us assume that F is the family of all finite simple groups G. It is well
known that F is quasi-random (see [29] for detailed information on m.G/). Let
S; T � G be normal subsets of G; this means that S; T are closed under conju-
gation by elements of G, and so they are unions of conjugacy classes of G. What can
we say about the product ST and about related distributions?

Products of two (or more) normal subsets of finite simple groups have been
extensively studied. This includes the challenging case of products of two conjugacy
classes. A major motivation is a longstanding conjecture of Thompson, which asserts
that every finite simple group G has a conjugacy class C such that C 2 D G. In spite
of considerable progress (see Ellers and Gordeev [8] and the references therein) and
the proof of the related Ore conjecture (see [42]), Thompson’s conjecture is still open
for various infinite families of groups of Lie type over fields with q � 8 elements. A
weaker result, that all finite simple groups G of order exceeding 2630 have conjugacy
classes C1, C2 such that C1C2 � G X ¹eº, is obtained in [36]; this was improved,
using computational group theory and other tools, by Guralnick and Malle in [18],
where the same conclusion is established for all finite simple groups.
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See also [65], where a probabilistic approximation to Thompson’s conjecture is
obtained. It is shown there that, for finite simple groups G and random (not necessar-
ily independent) elements x;y2G, the sizes of xGyG and of .xG/2 are .1�o.1//jGj.
Thus, the square of the conjugacy class xG of a random element x 2 G almost cov-
ers G as jGj ! 1. Very recently, Larsen and Tiep [39] have proved Thompson’s
conjecture for additional infinite families of finite simple groups.

For normal subsets S (not equal to ;, ¹eº) of arbitrary finite simple groups G, the
minimal k > 0 such that Sk D G is determined by Liebeck and me in [45] up to an
absolute multiplicative constant. Indeed, we show there that log jGj= log jS j � k �

c log jGj= log jS j and derive various applications. Note that the lower bound on k is
trivial and that the upper bound on k is also an upper bound on the diameter of the
Cayley graph �.G; S/.

A beautiful improvement of this result in the case G D PSLn.q/ was obtained
by Rodgers and Saxl [59]. They show that if C1; : : : ; Ck are conjugacy classes of G
satisfying jC1j � � � jCkj > jGj12, then C1 � � �Ck D G.

Very recently, Maróti and Pyber [54] have obtained an impressive common exten-
sion of [45, 59], proving the following covering result.

Theorem 1.1 (Maróti and Pyber, 2021). There exists an absolute constant c such that
if G is any finite simple group, k 2 N, and T1; : : : ; Tk � G are normal subsets of G
satisfying jT1j � � � jTkj � jGjc , then T1 � � �Tk D G.

In [41], Liebeck, Nikolov, and I conjectured that there is an absolute constant c
such that if G is any finite simple group and A � G is any subset of size at least
two, then there is k � c log jGj= log jAj and elements g1; : : : ; gk 2 G such that
Ag1 � � �Agk D G (where Ag D g�1Ag). This conjecture is still open in general, but
Gill, Pyber, Short, and Szabó [15] confirmed it for finite simple groups of Lie type of
bounded rank.

The following stronger covering conjecture, which implies Theorem 1.1, was
stated by Gill, Pyber, and Szabó in [16] and proved there for finite simple groups
of Lie type of bounded rank.

Conjecture 1.2. There is an absolute constant c such that if G is any finite simple
group, k 2 N, and A1; : : : ; Ak � G are subsets of G satisfying jA1j � � � jAkj � jGjc ,
then there exist elements g1; : : : ; gk 2 G such that Ag1

1 � � �A
gk

k
D G.

Some covering results have deep applications, also to the theory of expander
graphs. It is now known that all finite simple groups can be made expanders uniformly
with respect to bounded generating sets. Remarkable pioneering work by Kassabov
established this for alternating groups [28] and then for special linear groups of
unbounded rank. A key step in proving expansion for the remaining finite simple
groups was to present the simple groups of Lie type of bounded rank (except the
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Suzuki groups, shown to be expanders in [6]) as a bounded product of subgroups of
the types SL2.q/ and PSL2.q/. This is done effectively in [40] with explicit bounds
and ineffectively (using a model-theoretic approach based on work by Hrushovski
and Pillay) by Lubotzky in [51].

In the work [43], Liebeck, Schul, and I show that the product of two small nor-
mal subsets of finite simple groups has size close to the product of their sizes (see
Section 3 for more details).

An interesting context in which the products of normal subsets of finite simple
groups play a role is the Waring problem for finite simple groups; see, for instance,
[21,22,32,33,36,37,42,55,60,66], the references therein, and Segal’s monograph [61]
on word width and the affirmative solution by Nikolov and Segal of Serre’s problem,
whether every finite index subgroup of a (topologically) finitely generated profinite
group is open.

By a word, we mean an element w D w.x1; : : : ; xd / of the free group Fd freely
generated by x1; : : : ;xd . A wordw and a groupG give rise to a word mapw W Gd!G

induced by substituting group elements g1; : : : ; gd in x1; : : : ; xd , respectively; its
image, denoted by w.G/, is a normal subset of G.

The classical Waring problem in number theory, solved by Hilbert and subse-
quently by Hardy and Littlewood using the circle method, deals with sums of nth
powers of natural numbers (see [56]). In [55, 60], the analogous problem for finite
simple groups G is studied; it is shown there that for every integer n > 1 there is
a number f .n/ such that if G is a finite simple group not satisfying the identity
xn D 1, then every element of G is a product of f .n/ nth powers. In other words, if
w D wn WD xn, then w.G/f .n/ D G for such groups G.

This result is improved in [66] for sufficiently large finite simple groups in sev-
eral ways: the inexplicit function f (depending on w) is replaced by the fixed small
number 3; the equality w.G/3 D G holds for all non-trivial words w provided that
jGj �Nw ; moreover, it is shown in [66] that, for all non-trivial wordsw1;w2;w3 2Fd

and all sufficiently large finite simple groups G, we have w1.G/w2.G/w3.G/ D G.
This is improved by Larsen, Tiep, and me in [36] for length 2 products; i.e., for non-
trivial words w1; w2 2 Fd and all sufficiently large finite simple groups G, we have

w1.G/w2.G/ D G: (1.1)

The tools we apply in proving this and other results on word maps include rep-
resentation theory and the Deligne–Lustig theory of characters, as well as algebraic
geometry and some model theory; see Hrushovski’s work on the elementary theory
of Frobenius automorphism [27] and Varshavsky’s strengthening of Fujiwara’s proof
of Deligne’s conjecture [68].

There are various asymptotic results showing that word maps associated with
words w ¤ 1 on finite simple groups G have large image; see [31–33, 57]. In partic-
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ular, it is shown by Larsen in [31] that jw.G/j � jGj1�" for any " > 0 provided that
jGj � 0, and that for G of Lie type and bounded rank there exists " > 0 (depending
only on the rank of G) such that for all words w ¤ 1 we have jw.G/j � "jGj. In the
recent preprint [35], we attempt to understand to what extent (1.1) can be extended to
products of arbitrary large normal subsets of finite simple groups.

Let " > 0 be a constant. Let G be a finite simple group and S and T normal
subsets ofG such that jS j; jT j> "jGj. We are particularly interested in the following
questions.

Question 1.3. Does every element in G X ¹eº lie in ST if jGj is sufficiently large?

Question 1.4. Does the ratio between the number of representations of each g 2

G X ¹eº and jS j jT j

jGj
tend uniformly to 1 as jGj ! 1?

Question 1.5. What happens in the special case S D T ?

An affirmative answer to Question 1.4 implies an affirmative answer to Ques-
tion 1.3 (and the same holds in the special case S D T ).

We exclude the identity element e of G in Questions 1.3 and 1.4 because every
conjugacy classC in a non-trivial finite groupG satisfies jC j D

jGj

n
for some n� 2, so

each such group has a normal subset S with jGj

3
� jS j � 2jGj

3
. Setting T D G X S�1,

we have jT j � jGj

3
and e … ST .

If G is non-trivial and we do not assume that S; T � G are normal subsets, then
we may choose S; T � G of size at least

�
jGj

2

˘
such that ST 6� G X ¹eº; indeed, fix

g 2 G X ¹eº, choose S of the specified size, and let T D G X S�1g.
Our answers to these questions are listed below.

Theorem 1.6. (1) The answers to Questions 1.3 and 1.4 are negative ifG ranges
over all finite simple groups, or even just over the alternating groups, or just
over all projective special linear groups.

(2) In the S D T case, the answer to Question 1.4 is still negative for alternating
groups.

(3) In the S D T case, the answer to Question 1.3 is positive for alternating
groups.

(4) IfG is a group of Lie type of bounded rank, then the answers to Questions 1.3
and 1.4 are both positive.

In view of this, we may say that the simple groups of Lie type of bounded rank
are the most well behaved in this context, and that the alternating groups are mildly
well behaved.

Let us now outline the proof of Theorem 1.6, starting with the case of alternating
groups An. Part (3) in this case follows from the more detailed result below.
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Proposition 1.7. For every s; t � 0 with sC t � 1, there are normal subsets Sn; Tn �

An such that jSnj=jAnj ! s, jTnj=jAnj ! t , and SnTn contains no 3-cycle.

It follows that, for normal subsets S; T � An, even the inequalities jS j; jT j �

.1=2 � o.1//jAnj do not imply ST � An n ¹eº.
As for part (3) of Theorem 1.6, namely, the positive result for An in the case

S D T , the following more detailed proposition shows that we obtain a covering
result even when "! 0 rather fast.

Proposition 1.8. For every 0 < ˛ < 1=4, there exists N > 0 such that if n � N and
T � An is a normal subset satisfying jT j � exp.�n˛/ � jAnj, then T 2 D An.

The main tool in the proof of Proposition 1.8 are strong character bounds for
symmetric groups obtained in [32]. Roughly speaking, we show that for each � 2 Sn

there is a well-defined E.�/ 2 Œ0; 1� such thatˇ̌
�.�/

ˇ̌
� �.1/E.�/Co.1/ for all � 2 Irr.Sn/:

Applying these character bounds and other tools, we deduce thatE.�/ < 1=4 implies
.�Sn/2 D An for all n � 0. It is also shown in [32] that, for every subset T � An

satisfying jT j � exp.�n˛/ � jAnj with ˛ < 1=4, a random � 2 T satisfiesE.�/ < 1=4
almost surely. We therefore deduce that there is � 2 T such that .�Sn/2 D An if
n � 0. Finally, replacing �Sn with �An and using Erdős–Turán’s statistical group
theory (see, for instance, [9]), we show that T 2 D An for n� 0.

We now turn to projective special linear groups PSLn.q/. We show the following.

Proposition 1.9. Let q be a fixed prime power. Then, there exists " > 0 such that,
for every n � 2 which is relatively prime to q � 1, there are normal subsets Sn; Tn �

SLn.q/Š PSLn.q/ of density at least " such that SnTn does not contain any transvec-
tion.

This result completes the proof of part (1) of Theorem 1.6.
Our proof of part (4) of Theorem 1.6, dealing with Lie-type groups of bounded

rank, depends on a new result in algebraic geometry, which may be of independent
interest; it may be regarded as a refinement of the classical Lang–Weil estimate [30]
(see also Varshavsky [68]), which concerns the number of points in a finite product
set inside a product variety which lies on a subvariety of the product variety. Another
major ingredient of the proof is character theory. To explain the connection, we need
some notation. For normal subsets R1; : : : ; Rk of a finite group G and g 2 G, let
PR1;:::;Rk

.g/ denote the probability that x1 � � � xk D g, where xi 2 Ri are randomly
chosen. Using this notation, we formulate and establish the following result, which is
equivalent to part (4) of Theorem 1.6.
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Theorem 1.10. Let G D Xr.q/, a finite simple group of Lie type of rank r over Fq .
Suppose that r is bounded and q!1. Fix " > 0 and let S;T �G be normal subsets
of size � "jGj. Then, for every g 2 G n ¹eº we have

PS;T .g/ D
�
1C o.1/

�
jGj

�1:

The relevance of character theory and character bounds to the proof of Theorem
1.10 stems from a classical result of Frobenius: let C1; : : : ; Ck � G be conjugacy
classes, and g 2 G. Then,

PC1;:::;Ck
.g/ D jGj

�1
X

�2Irr.G/

�.C1/ � � ��.Ck/�.g/

�.1/k�1
:

Frobenius’ formula above is also useful for classical groups of unbounded rank.
In this case, part (1) of Theorem 1.6 and the more detailed Proposition 1.8 provide
counterexamples to 2-step covering by large normal subsets. It turns out that 3-step
covering is achieved. More specifically, Question 1.3 for products of three normal
subsets has a positive answer with a tiny "D jGj�ı , which tends to zero as jGj !1.

Theorem 1.11. There exists a fixed ı > 0 such that if G is a finite simple classical
group and R; S; T � G are normal subsets of size � jGj1�ı , then RST D G.

Note that this result does not follow from Gowers’ trick. Indeed, for G of rank
r ! 1, jGj�ı � q�ar2

is much smaller than m.G/�1=3 � q�br .
The proof of Theorem 1.11 relies heavily on recent developments in representa-

tion theory and, more specifically, on the theory of exponential character bounds for
finite simple groups G; these are bounds of the formˇ̌

�.g/
ˇ̌
� �.1/˛.g/;

for various g 2 G, where ˛.g/ 2 Œ0; 1� is an explicit function of g.
For symmetric and alternating groups, such bounds were first obtained by Fomin

and Lulov [10] in 1997 for the so-called homogeneous permutations. Bounds for
almost homogeneous permutations were subsequently obtained in [46] (see also [48])
with various applications to Fuchsian groups, Higman’s conjecture, subgroup growth,
and representation varieties. In [32], Larsen and I obtain essentially best-possible
exponential character bounds for most permutations in Sn, with applications to word
maps and other topics.

Exponential character bounds for finite simple groups of Lie type were recently
obtained by Bezrukavnikov, Liebeck, Tiep, and me in [2], by Guralnick, Larsen, and
Tiep in [19, 20], and by Taylor and Tiep in [67].
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The proof of Theorem 1.11 relies mainly on the level theory of characters devel-
oped by Guralnick, Larsen, and Tiep in [19, 20], combined with earlier results on the
Witten zeta function

�G.s/ D
X

�2Irr.G/

�.1/�s

and its abscissa of convergence obtained by Liebeck and me in [47].
More specifically, we apply a theorem from [20] according to which there exists

an absolute constant  > 0 such that if G is a finite simple classical group and g 2 G

satisfies jCG.g/j � jGj , then j�.g/j � �.1/1=4 for all � 2 Irr.G/.
We then apply Frobenius’ formula and [47, Theorem 1.2], stating that, for any

fixed s > 0 and r sufficiently large (in terms of s), �G.s/ converges and tends to 1 as
r ! 1. In fact, the case s D 1=4 suffices.

We now turn to applications of Theorem 1.6. We start with a direct (yet highly
non-trivial) application to word maps. A major application, the proof of which is
considerably harder, will be discussed in the next section (see Theorem 2.8).

For a non-trivial word w 2 Fd and a finite group G, consider the word map w W

Gd ! G, and define Pw;G.g/ WD jw�1.g/j=jGjd . Thus, Pw;G.g/ is the probability
that w.g1; : : : ; gd / D g as g1; : : : ; gd 2 G are chosen uniformly and independently.

In [37, Theorem 4], we show that for every ` � 1 there exists N D N.`/ WD

2 � 1018 � `4 such that if 1 ¤ w1; : : : ; wN 2 Fd are pairwise disjoint words of length
� `, G is a finite simple group, and UG is the uniform distribution on G, then

kPw1���wN ;G � UGk1 ! 0 as jGj ! 1I

namely, Pw1���wN ;G is almost uniform with respect to the L1 norm.
Surprisingly, changing the probabilistic model and using Theorem 1.10, we obtain

an almost uniform distribution in L1 much more rapidly.

Corollary 1.12. Let 1 ¤ w1; w2 2 Fd and let G be a finite simple group of Lie type
of bounded rank. Then,

kPw1.G/;w2.G/ � UGk1 ! 0 as jGj ! 1:

A version for classical groups of unbounded rank was previously implicitly ob-
tained by Nikolov and Pyber in [57] using Gowers’ theory of quasi-random groups;
it shows that

kPw1.G/;w2.G/;w3.G/ � UGk1 ! 0 as jGj ! 1:

Note that Theorem 1.11 extends this result, since wi .G/ are normal subsets of size at
least jGj1�ı by [31].
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2. Permutation groups and derangements

A major application of our results from Section 1 on products of normal subsets
concerns permutation groups and fixed-point-free permutations, also called derange-
ments.

The study of derangements goes back three centuries.
In 1708, Monmort proved that the proportion of derangements in the symmetric

group Sn (in its natural action) tends to 1=e as n ! 1. Passing to general permu-
tation groups G � Sn, it is easy to see that if G is intransitive it need not contain
derangements (e.g., all permutations in G may have a common fixed point).

In the 1870s, Jordan showed that ifG � Sn is transitive and 2� n<1, then there
exists a derangement g 2 G (this result fails to hold for infinite transitive permutation
groups).

What can be said about the proportion of derangements in finite transitive permu-
tation groups?

In 1990, Cameron and Cohen [7] proved that the proportion of derangements in
transitive permutation groups of degree n is at least 1=n and that this lower bound
is sharp (as shown by the example of Frobenius groups). Subsequently, it was con-
jectured that a much better lower bound holds for finite simple transitive permutation
groups.

Conjecture 2.1 (Boston–Shalev, 1990s). The proportion of derangements in any
finite simple transitive permutation group is at least " for some fixed " > 0.

LetG�Sn be a transitive permutation group. LetD.G/ denote the set of derange-
ments in G. Clearly, D.G/ D D.G/�1 and D.G/ is a normal subset of G. Let H be
a point stabilizer in G. The set of derangements in G in this case is also denoted by
D.G;H/. Clearly,

D.G;H/ D G n

[
g2G

Hg :

Conjecture 2.1 states that if G is simple, thenˇ̌
D.G/

ˇ̌
� "jGj;

for some absolute positive constant ".
Impressive work on Conjecture 2.1 was carried out in 2002–2018 by Fulman and

Guralnick (see, e.g., [11–13]), culminating in the following result.

Theorem 2.2 (Fulman–Guralnick, 2018). The Boston–Shalev conjecture holds.
Moreover, if G is sufficiently large we may take " D 0:016.

It would be nice to find an explicit number N such that if the finite simple transi-
tive permutation group G has order at least N , then jD.G/j � 0:016jGj or to find an
explicit (possibly smaller) " > 0 such that jD.G/j � "jGj without exceptions.
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Since finite simple groups are quasi-random, Theorem 2.2, combined with Gow-
ers’ trick, yields the following.

Corollary 2.3. For all sufficiently large finite simple transitive permutation groupsG,
every permutation in G is a product of three derangements, namely, D.G/3 D G.

Can we replace three by two? Note that the proof of Corollary 2.3 does not use
the fact that D.G/ is a normal subset of G. Using the normality of D.G/, Theorem
1.6 becomes highly relevant. Applying parts (3) and (4) of it, noting that e 2 D.G/2,
we immediately obtain the following.

Theorem 2.4. Let G be a finite simple transitive permutation group which is alter-
nating or of Lie type of bounded rank. If jGj � 0, then D.G/2 D G; namely, every
element of G is a product of two derangements.

Indeed, we proved for the groups above that T 2 D G for every normal subset
T � G of size � "jGj, so take T WD D.G/.

In order to extend Theorem 2.4 to all types of finite simple groups, it remains
to deal with classical groups G of unbounded rank (since the sporadic groups have
bounded order). We may assume that G is primitive; i.e., a point stabilizer H < G

is a maximal subgroup. Indeed, if H is not maximal, it is contained in a maximal
subgroup M of G, and

D.G;H/ D G n

[
g2G

Hg
� G n

[
g2G

M g
D D.G;M/;

so D.G;M/2 D G implies that D.G;H/2 D G.
We need some additional tools in order to deal with the remaining case of classical

groups of unbounded rank.
In 1993, Łuczak and Pyber [52] proved a conjecture of Cameron that as n! 1,

almost all permutations in Sn do not lie in a proper transitive subgroup (not containing
An). In the same paper, they pose a similar problem for GLn.p/, where p is a fixed
prime and n! 1. In 1998, this problem was solved in [64].

Theorem 2.5. Let q be a fixed prime power. Then, as n! 1, almost all matrices in
GLn.q/ do not lie in a proper irreducible subgroup (not containing SLn.q/).

In 2018, Fulman and Guralnick [13] proved a stronger result for all classical
groups in dimension n ! 1, where the size of the underlying field need not be
fixed. In the case G D Spn.2

k/, they exclude (apart from irreducible subgroups) the
subgroups O˙

n .2
k/. We apply this to obtain the following.

Corollary 2.6. Let G be a finite simple classical group in dimension n � 0. Let
H <G be a maximal subgroup. Suppose thatH is irreducible and notO˙

n .2
k/ when

G D Spn.2
k/. Then, D.G;H/2 D G.
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To prove this, letX.G/ denote the union of the above maximal subgroupsH <G.
Then, jX.G/j=jGj ! 0 as n ! 1. Therefore, jX.G/j < jGj=2 for n � 0. Fixing
one such subgroup H (noting that X.G/ is closed under conjugation), we see thatS

g2G H
g � X.G/ implies that jD.G;H/j � jGj � jX.G/j > jGj=2. Applying an

observation from Section 1, it follows that D.G;H/2 D G.
Hence we may assume that H is reducible (namely, a parabolic subgroup) or

G D Spn.2
k/ and H D O˙

n .2
k/.

Our next result settles the problem in additional cases.

Proposition 2.7. There are absolute constants c1, c2 such that the following holds.
Let G 2 Cln.q/ be a finite simple classical primitive permutation group with point
stabilizerH . If q is even, assume .G;H/¤ .Spn.Fq/;O

˙
n .Fq//. Suppose that n� c1

and the action is not a subspace action on subspaces of dimension k � c2. Then,
D.G/2 D G.

To show this, we may assume that H is reducible; namely, G acts in subspace
action, say on subspaces (non-degenerate or totally singular for G ¤ PSLn.q/) of
dimension k, with 1 � k � n=2. Theorems 6.4, 9.4, 9.10, 9.17, and 9.30 of [12] show
that, as k!1, the proportion of derangements inG is 1�O.k�0:005/, which tends
to 1. The result follows as before.

We are left with very concrete cases, of subspace action on subspaces of bounded
dimension and of Spn.Fq/ for q even acting on cosets of GO˙

n .Fq/. These cases
are handled using character methods and the theory of symbols. Roughly speaking,
we apply the method of [53] and its extension in [36] and use weakly orthogonal
tori T1; T2 and regular semisimple elements ti 2 Ti such that only few (unipotent)
characters � 2 Irr.G/ satisfy �.t1/�.t2/ ¤ 0. This helps show that tG1 t

G
2 � G n ¹eº.

This rather long case-by-case study completes the proof of the main result of this
section (see [34]).

Theorem 2.8. Let G be a finite simple transitive permutation group. If G is suffi-
ciently large, then every element of G is a product of two derangements.

We conjecture that the assumption that G is sufficiently large is not needed;
namely:

Conjecture 2.9. Let G be a finite simple transitive permutation group. Then, every
element of G is a product of two derangements.

Computations carried out by Eamonn O’Brien provide strong evidence in favor
of this conjecture, but proving it seems to require new methods.
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3. Subset growth

The celebrated product theorem of [5,58], which is part of the deep theory of approx-
imate subgroups [4] following the pioneeing work of Helfgott on SL2.p/ [24] (see
also [25]) and Hrushovski’s model-theoretic approach [26], shows that for finite sim-
ple groups G of Lie type and bounded rank there exists " > 0 such that, for every
subset A � G which generates G, either jA3j � jAj1C" or A3 D G.

Can we extend this result to general finite simple groups? The answer is known
to be negative, as shown by counterexamples for classical groups of unbounded rank
and alternating groups of unbounded degree.

However, the situation changes dramatically if we replace arbitrary subsets by
normal subsets. A first result in this direction was obtained in [66] before the product
theorem was fully established. Indeed, Theorem 2.7 there states the following.

Theorem 3.1. For any ı > 0, there exists " > 0 depending only on ı such that if G
is a finite simple group and C is a conjugacy class of G of size at most jGj1�ı , then
jC 3j � jC j1C".

Note that an upper bound on the size of C of the type above is necessary for
the conclusion to hold. The proof of Theorem 3.1 uses tools from character theory,
properties of the Witten zeta function obtained by Liebeck and me in [47], as well as
[24, Lemma 2.2] of Helfgott and its proof.

Can we extend this 3-step growth result to 2-step growth results, replacing C 3 by
C 2? It turns out that the answer is positive if G is a finite simple group of Lie type of
bounded rank. Indeed, we have the following (see [66, Proposition 10.4]).

Theorem 3.2. If C is a conjugacy class of a finite simple group G of Lie type, then
jC 2j � jC j1C", where " > 0 depends only on the rank of G.

The above result was extended by Gill, Pyber, Short, and Szabó in [15, Theo-
rem 1.5], where conjugacy classes C are replaced by arbitrary normal subsets T , and
G is an arbitrary finite simple group.

Theorem 3.3. There are absolute constants b 2 N and " > 0 such that, for any nor-
mal subset T of a finite simple group G, either T b D G or jT 2j � jT j1C".

Subsequently, Liebeck, Schul, and I obtained stronger expansion results for nor-
mal subsets in [43].

Theorem 3.4. Given any " > 0, there exists b 2 N such that, for any normal subset
T of any finite simple group G, either T b D G or jT 2j � jT j2�".

Theorem 3.4 is deduced from the following result.
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Theorem 3.5. Given any " > 0, there exists ı D ı."/ > 0 such that if T is a normal
subset of a finite simple group G satisfying jT j � jGjı , then jT 2j � jT j2�".

Obviously jT 2j � jT j2, so Theorem 3.5 shows that small normal subsets of finite
simple groups expand almost as quickly as possible.

Note that some upper bound on the size of T is needed in order for the conclusion
to hold.

To deduce Theorem 3.4, fix " > 0 and choose ı D ı."/ > 0 as above. Recall that,
by the main result of [45], there exists an absolute constant c and a positive integer
k � c log jGj= log jT j such that T k D G for every (non-trivial) normal subset T of
a finite simple group G. Hence, if jT j � jGjı , then T k D G for some k � cı. Thus,
Theorem 3.4 holds with b D bcıc.

Theorem 3.5 holds vacuously for simple groups of bounded order or of bounded
rank, since for these we may choose ı so small that jT j > jGjı for all non-trivial
normal subsets T ; in particular, it holds for the sporadic groups and the exceptional
groups of Lie type. It therefore remains to prove the theorem for classical groups of
large rank and alternating groups of large degree.

We deduce Theorem 3.5 from the following more general result.

Theorem 3.6. Given any " > 0, there exists ı > 0 such that if T1, T2 are nor-
mal subsets of a finite simple group G satisfying jT1j; jT2j � jGjı , then jT1T2j �

.jT1j jT2j/
1�".

The proof of Theorem 3.6 in [43] is based on results from [44, 45, 47], together
with some new results of independent interest on the size of the conjugacy classes in
classical groups and in symmetric groups in terms of the support of their elements.

The support of a permutation x 2 Sn is the number of points moved by x. Let
C � Sn be a non-trivial conjugacy class and let s be the support of its elements
(obviously all the elements of C have the same support), which may be regarded as
the support of C . Then, 2 � s � n. For our purpose, it is essential to obtain good
estimates on the size of C in terms of its support s. We show that

jC j �
nŠ

.n � s/Šs

for all s and that
jC j �

nŠ

.n � s/Š2s=2bs=2cŠ

for all s ¤ 3.
Note that the above lower bound on jC j is best possible, since it is attained in the

case where the permutations in C decompose into s=2 2-cycles (s even). The upper
bound on jC j is also sharp; it is attained when C consists of s-cycles. Finally, if sD 3,
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then the lower bound does not hold, but it does hold for all s if we replace bs=2c by
ds=2e.

Next, let G be one of the classical groups L˙
n .q/, PSpn.q/ or PO˙

n .q/, and let
V D Vn.q

u/ be the natural module for G with n large, where u D 2 if G is unitary
and u D 1 otherwise. Let F be the algebraic closure of Fq , and let V D V ˝ F . Let
x 2 G, and let Ox be a preimage of x in GL.V /. Define

�.x/ D �V;F .x/ D min
®

dimŒV ; � Ox� W � 2 F
�¯
;

where ŒV ; � Ox� denotes the subspace V .� Ox � IdV /. We shall refer to �.x/ as the
support of x.

Define

a.G/ D

´
1; if G D L˙

n .q/;
1
2
; otherwise:

The inequalities we state below, which are an extension of [44, Lemma 3.4], show
that �.x/ is closely related to the size of the conjugacy class C D xG . Suppose that
�.x/ D s < n

2
, and let a D a.G/. We prove that

c1q
2as.n�s�1/

� jxG
j � c2q

as.2n�sC1/

for some absolute constants c1; c2 > 0.
In fact, under the assumptions of Theorem 3.6, we establish a stronger conclusion:

there exists a single conjugacy class C � T1T2 such that jC j � .jT1j jT2j/
1�". The

notion of the support of elements of G plays a key role in our argument.
A similar result for k subsets follows inductively from Theorem 3.6.

Corollary 3.7. Given " > 0 and k 2 N, there exists ı > 0 such that if T1; : : : ; Tk �G

are normal subsets of a finite simple group G with jTi j � jGjı for i D 1; : : : ; k, then
jT1 � � �Tkj � .jT1j � � � jTkj/

1�". In particular, jT kj � jT jk�" for every normal subset
T of G satisfying jT j � jGjı , where ı depends on " and k.

Finally, we prove a result analogous to Theorem 3.6 for algebraic groups over
algebraically closed fields.

Theorem 3.8. For any " > 0, there exists ı > 0 such that if C1, C2 are conjugacy
classes in a simple algebraic group G satisfying dimCi � ı dimG for i D 1; 2, then
the product C1C2 contains a conjugacy class of dimension at least .1� "/.dimC1 C

dimC2/.

4. Character growth and covering

The main goal of this section, based mainly on the recent preprint [38] with Larsen
and Tiep, is to study covering and growth phenomena in representation theory, with
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emphasis on (complex) representations of the finite simple groupsG of Lie type. Here,
products of subsets of G are replaced by tensor products of representations (or equiv-
alently, products of characters). Our results on tensor product growth are somewhat
stronger than the product theorem in two senses: instead of 3-step growth, we estab-
lish 2-step growth, as well as uniform growth when the rank of G tends to infinity.

In some cases, the results of this section are character-theoretic analogues of
results from the previous section, dealing with product growth of conjugacy classes
(corresponding to irreducible characters) and normal subsets (corresponding to arbi-
trary characters). An irreducible constituent of an arbitrary character may be regarded
as an analogue of a conjugacy class contained in a normal subset.

Covering results by products of characters of finite simple groups were obtained
by Liebeck, Tiep, and me in the recent papers [49,50]. These papers study the McKay
graphs of finite simple groups, with emphasis on their diameter.

We need some background and notation. For a finite group G and a complex
character ˛ ofG, the McKay graphMC.G;˛/ is defined to be the directed graph with
vertex set Irr.G/, and with an edge from �1 to �2 if and only if �2 is a constituent of
˛�1.

A classical result of Burnside and Brauer [3] shows that MC.G; ˛/ is connected
if and only if ˛ is faithful; furthermore, in this case an upper bound for the diameter
diamMC.G; ˛/ is given by N � 1, where N is the number of distinct values of ˛.
This means that

PN�1
jD0 ˛

j contains every irreducible character of G.

An obvious lower bound for diamMC.G;˛/ (when ˛.1/ > 1) is given by log b.G/
log ˛.1/

,
where b.G/ is the largest degree of an irreducible character of G. This lower bound
(which can be slightly improved) is in general far from tight. However, finite simple
groups often behave better than arbitrary groups, and for them we stated the following
conjecture in [50].

Conjecture 4.1. There is an absolute constant c such that, for any finite non-abelian
simple group G and any non-trivial irreducible character ˛ of G, we have

diamMC.G; ˛/ � c
log jGj

log˛.1/
:

This conjecture may be regarded as a representation-theoretic analogue of [45,
Theorem 1.1] on the diameter of the Cayley graph �.G; S/ of a finite simple group
G with respect to a (non-trivial) normal subset S .

Various results supporting this conjecture were obtained in [49, 50], where it is
proved for several families of groups of Lie type and for alternating groups following
Sellke’s paper [62] proving it for symmetric groups. In [49], we also obtain some
results showing that, under suitable assumptions, products �1 � � ��m of possibly dif-
ferent characters cover Irr.G/ (namely, every irreducible character is a constituent of
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the above product). In [39], Larsen and Tiep have completed the proof of Conjec-
ture 4.1.

A more recent covering result of Sellke [63] is a character-theoretic analogue of
Gowers’ trick and the theory of quasi-random groups discussed in Section 1, which
focuses on 3-step covering. We need some notation.

LetG be a finite group. We say that an arbitrary complex character  ofG covers
Irr.G/ if every irreducible character of G is a constituent of  . If X D ¹�1; : : : ; �kº

is a set of (pairwise distinct) irreducible characters of G, we define

jX j D

kX
iD1

�i .1/
2:

This is the Plancherel measure, normalized so that j Irr.G/j D jGj. If � is any char-
acter of G, we define j�j D jX�j, where X� denotes the set of distinct irreducible
constituents of �. We show in [38] that the function sending � to j�j has convenient
properties: it is sub-multiplicative and satisfies the triangle inequality in the sense that

j�1�2j � j�1j � j�2j and j�1 C �2j � j�1j C j�2j: (4.1)

We can now state the covering result mentioned above, which is the main part
of [63, Theorem 1.3]. For a finite group G, let c.G/ denote the minimal size of
a conjugacy class ¤ ¹eº in G. Let us say that a collection F of finite groups is
conjugacy-random if c.G/! 1 as G ranges over the groups in F .

Theorem 4.2 (Sellke, 2021). Let F be a conjugacy-random set of finite groups. Fix
" > 0. Let G 2 F and let �1, �2, �3 be (not necessarily irreducible) characters of G
with the property that j�1j; j�2j; j�3j � "jGj. Then, �1�2�3 covers Irr.G/ provided
jGj is sufficiently large.

While most of our results below establish rapid tensor product growth in vari-
ous situations, some of them, i.e., Theorems 4.8 and 4.9, are covering results, while
Theorem 4.7 establishes a growth-or-covering phenomenon.

Recall that G is quasisimple if G D ŒG;G� and G=Z.G/ is simple.
Our first growth results are as follows.

Theorem 4.3. For all ı > 0, there exists " > 0 such that if G is a finite quasisimple
group of Lie type and � is an irreducible character of G with j�j � jGj1�ı , then
j�2j � j�j1C" and j��j � j�j1C".

We also have a version of this result for general characters in groups of high rank.

Theorem 4.4. For all ı > 0, there exist " > 0 and R > 0 such that if G is a finite
quasisimple group of Lie type and rank �R and � is any (not necessarily irreducible)
character of G with j�j � jGj1�ı , then j�2j � j�j1C" and j��j � j�j1C".
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An essential tool in the proofs of most of the results in this section is a new
uniform character bound obtained by Larsen and Tiep [39, Theorem A]. The proofs
of Theorems 4.3 and 4.4 present " as an explicit function of ı, e.g., " D cı

4C2c.1�ı/

in Theorem 4.3, where c > 0 is the absolute constant in [39, Theorem A]. Moreover,
if G is sufficiently large but of bounded rank r , and � is irreducible, then " D ı

2�2ı

will do; for example, any irreducible character � of G with j�j � jGj1=2 satisfies
j�2j � j�j3=2. Can we establish faster growth when j�j is smaller?

Our next result provides an affirmative answer and may be regarded as a charac-
ter-theoretic analogue of the main result of Section 3, namely, Theorem 3.6 (which
obviously implies Theorem 3.4).

Theorem 4.5. For any " > 0, there exists an explicit ı > 0 such that the following
statement holds. If G is a finite quasisimple group of Lie type and �1, �2 are any (not
necessarily irreducible) characters of G with j�1j; j�2j � jGjı , then

j�1�2j �
�
j�1j � j�2j

�1�"
:

In particular, if � is a character of G satisfying j�j � jGjı , then j�2j � j�j2�2".

The inequality j�1�2j � j�1j � j�2j mentioned in (4.1) shows that the growth
established in Theorem 4.5 is almost best possible.

Theorem 4.5 is easily extended to products of arbitrary length, in the spirit of
Corollary 3.7 for k normal subsets.

Corollary 4.6. For any " > 0 and any integer k � 1, there exists an explicit  D

."; k/ > 0 such that the following statement holds. If G is a finite quasisimple group
of Lie type and �1; �2; : : : ; �k are any (not necessarily irreducible) characters of G
with j�1j; j�2j; : : : ; j�kj � jGj , then

j�1�2 � � ��kj �
�
j�1j � j�2j � � � j�kj

�1�"
:

In particular, if � is a character of G satisfying j�j � jGj , then j�kj � j�jk�k".

To show this, we prove by induction on k�2 the following equivalent statement.
For any " > 0 and any k � 2, there exists an explicit  > 0 (depending on both "

and k) such that if G is a finite quasisimple group of Lie type and �1; �2; : : : ; �k are
any characters of G with j�1j; j�2j; : : : ; j�kj � jGj , then

j�1�2 � � ��kj �
�
j�1j � j�2j � � � j�kj

�1�k"
:

We will show that this statement holds with  WD ı=.k � 1/, where ı is the con-
stant in Theorem 4.5. The case k D 2 is already established in Theorem 4.5. For the
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inductive step, note that (4.1) and the induction hypothesis yield�
j�2j � � � j�kj

�1�.k�1/"
� j�2 � � ��kj �

kY
iD2

j�i j � jGj
.k�1/

� jGj
ı :

Since j�1j � jGjı , by Theorem 4.5 we have

j�1�2 � � ��kj �
�
j�1j � j�2 � � ��kj

�1�"

�
�
j�1j �

�
j�2j � � � j�kj

�1�.k�1/"�1�"

�
�
j�1j � j�2j � � � j�kj

�1�k"
:

The above result shows that, for any " > 0 and any integer k � 2, there exists an
explicit ı D ı."; k/ > 0 such that, for G as above and any (not necessarily irre-
ducible) character � ofG satisfying j�j � jGjı , we have j�kj � j�jk�"; indeed, define
ı."; k/ D ."=k; k/.

Applying Theorem 4.5, we deduce the following result, which is a character-
theoretic analogue of Theorem 3.4.

Theorem 4.7. For all " > 0, there exists an explicit positive integer b such that ifG is
a finite simple group of Lie type and � is any (not necessarily irreducible) character
of G, then either �b contains every irreducible character of G or j�2j � j�j2�".

In view of Gowers’ theorem, it is natural to ask whether b D 3 suffices in Theo-
rem 4.7 when j�j is sufficiently large. Sellke’s theorem (Theorem 4.2) shows that the
answer to this question is affirmative for large G provided that j�j � jGjı for some
fixed ı > 0. We therefore ask the following.

Question. If G is a finite simple group of Lie type and � is an arbitrary character
of G such that j�j � jGjı for some fixed ı > 0, is it true that j�3j D jGj provided
jGj � 0?

We remark that the stronger equality j�2j D jGj does not always hold, as shown
by the example of PSU2nC1.q/ (see [23, Theorem 1.2]). On the other hand, for certain
simple groups of Lie type, we can bring b down to 6 or 7.

Theorem 4.8. If G D PSLn.q/ and q is sufficiently large in terms of n, then j�j �

jGj11=12 implies that j�6j D jGj. If G D PSUn.q/ and q is sufficiently large in terms
of n, then j�j � jGj11=12 implies that j�7j D jGj.

Our next result is an analogue of Theorem 1.1 by Maróti and Pyber (following
[45] and Rodgers–Saxl [59]), where the normal subsets are replaced by characters
of G. In the case where the characters are irreducible, this analogue was conjectured
by Gill in [14] and proved by Larsen and Tiep in [39, Theorem 8.5]. A more general
version, for arbitrary characters, is given below.
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Theorem 4.9. There exists an explicit constant c>0 such that the following statement
holds. If G is a finite simple group of Lie type,m � 1 any integer, and �1; �2; : : : ; �m

are any (not necessarily irreducible) characters of G with
Qm

iD1 j�i j � jGjc , then
j�1�2 � � ��mj D jGj and thus �1�2 � � ��m contains every irreducible character of G.

Finally, we prove an analogue of Theorem 4.3 for compact semisimple Lie
groups.

Theorem 4.10. Let G be a compact semisimple Lie group. Then, there exists " > 0
such that, for each irreducible character � of G, we have j�2j � j�j1C".

Funding. The author was supported in part by BSF grant 2016072, ISF grant 686/17,
and the Vinik Chair of Mathematics which he holds.
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