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Abstract. As a result of the globalization and internationalization of the mathematics curricu-
lum, there is, for example, a rapidly developing interest in including computational/algorithmic
thinking (CT/AT) in mathematics education. After briefly presenting an emerging educational
context regarding the application of CT, this contribution first examines critical issues of CT/AT
concerning the notion of CT/AT, the state of CT/AT-oriented educational research, and the inte-
gration of CT/AT in the school mathematics curriculum. Then, it presents how CT might be
cultivated through data practice and, to this end, data modeling using interactive displays is
applied. The contribution ends with a summary of the issues examined and implications for
research and practice. This contribution is an extended version of a keynote talk delivered at the
symposium ‘“Mathematics in Education.”

1. Introduction

Today, technology is increasingly used in all areas of work and life. To practice prob-
lem solving with technology successfully, apart from applying disciplinary reasoning
(i.e., reasoning applied in the particular discipline such as mathematics), students
need to apply computational thinking (CT), which, in short, denotes reasoning pro-
cesses used in solving problems when solutions are represented in forms that can
efficiently be performed by computers [63]. CT clearly involves some degree of algo-
rithmic thinking (AT) that is applied in the work with algorithms. This is because
algorithms are used to describe, in a precise manner, which steps (e.g., calculations,
visualizations, logical inferences) need to be taken and in what order, to solve the
problem under consideration (e.g., [9]).

Recent educational research evidences a growing number of researchers and edu-
cators who call for cultivating CT, not only in teaching computer science (informatics)
but also in teaching other subjects, such as mathematics and statistics. To illustrate
this state, the role of CT in three international projects is summarized below.
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e Students’ knowledge and skills regarding computer and information literacy have
been evaluated worldwide using International Computer and Information Literacy
Study carried out by the International Association for the Evaluation of Educa-
tional Achievement (https://www.iea.nl/). In a 2018 study cycle, students’ CT
was assessed for the first time, using tasks that required them to analyze problems,
divide these into subproblems, and then find steps that lead to their solutions [18].

e The Organization for Economic Co-operation and Development (https://www.
oecd.org/) has evaluated educational achievements in reading, mathematics, and
science worldwide using the well-known PISA study (Program for International
Student Assessment). In its current 2021 cycle [48], students’ CT is assessed for
the first time by including it in the steps of mathematical modeling that have
already been used in this study (e.g., in the step of employing, one may apply
technology to find exact/approximate solutions).

e The growing need for experts in the field of data science, i.e., for the so-called
data scientists (e.g., [34]), demands the development of skills required by such
a profession, including CT. Within an international project named International
Data Science in Schools Project (http://www.idssp.org/), the content of the high
school subject on data science has been developed, aiming at the integration of
computational and statistical thinking. The development of various resources to
support teachers in the realization of this subject is planned [23].

In the remaining text of this contribution, we first consider critical CT/AT issues
concerning their definition, state of research, and curricular integration. This con-
sideration is primarily based on a recently published encyclopedia entry [56]. Then
we present a way to cultivate CT through data practice to support the position that
other learning practices (not only programming, as is often assumed) could be used
to develop CT/AT. This presentation is mainly based on two recently published con-
tributions: a chapter in an edited book [31] and an entry in an encyclopedia [33]. The
contribution concludes with a summary of the issues examined and implications for
research and practice.

2. Critical CT/AT issues

This section comprises three subsections. The first clarifies the notion of CT/AT, the
second summarizes the current state of CT/AT-oriented educational research, whereas
the third examines the integration of CT/AT in the school mathematics curriculum.

2.1. Definition

As mentioned in Section I, algorithms are used to describe, in a precise manner,
which steps (e.g., calculations, visualizations, logical inferences) need to be taken and
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in what order to solve the problem under consideration. It is usually assumed that the
notion of AT is used to describe reasoning processes applied in work with algorithms,
which require their user/developer to comprehend, test, evaluate, correct, improve, or
design them. CT clearly involves work with algorithms because to apply computers in
problem solving, problem solutions have to be represented in an algorithmic fashion
(“do this, do that, in the following order”) using forms that are recognized by the
computer programs applied.

CT is widely spread and increasingly used in educational research. As CT is based
on AT, it may be expected that most researchers agree on what the notion of CT
stands for. This is not true, however, because a widely accepted definition of CT is
lacking [45].

Various CT definitions have been proposed in the literature. To define CT, re-
searchers have referred to its main facets, practices, concepts, components, and di-
mensions, and examined them within the specific educational context. This context
ranged from specific subject area(s), such as programming or STEM (Science, Tech-
nology, Engineering, and Mathematics) education, to a general educational setting
such as K-12 subjects [56]. In a high school STEM context, for example, CT may
be applied in (and thus cultivated by) various learning practices, including data prac-
tices (e.g., preparing data and visualizing them), modeling and simulation practices
(e.g., building and using computational models), and computational problem-solving
practices (e.g., programming, troubleshooting) [61].

A recent review showed that to clarify the notion of CT, researchers have used and
combined entities of different sorts. Most of these entities refer to thinking processes
(e.g., abstraction), problem solving methods (e.g., simulation), standard implementa-
tion practice (e.g., debugging), and general skills (e.g., technology solution design)
[43]. To make progress in CT/AT-related research, researchers may focus on similar-
ities in proposed CT definitions rather than on their differences. CT entities are still
common in many of these definitions, such as decomposition (i.e., breaking a prob-
lem down into subproblems), abstraction (i.e., making general statements concerning
particular examples), and algorithms [55]. These three entities are highly relevant to
mathematics learning through programming because during this learning, CT makes
use of decomposition, abstraction, pattern recognition, and algorithmic thinking [22].

Regarding CT’s main entities (cornerstones), instead of decomposition, abstrac-
tion, pattern recognition, and algorithmic thinking, researchers may consider decom-
position, abstraction, algorithmization, and automation. There are two reasons for this
conceptual shift. Firstly, pattern recognition may be viewed as an instance of abstrac-
tion and generalization [53]. Secondly, CT relies on automation of calculations, i.e.,
using computers that apply certain computational models; a human may formulate a
problem solution, but this solution is primarily carried out by a computer not by a
human [39]. Although the term CT was coined more than forty years ago [49], it can
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Known facts about triangle
side(a).

side(b).

angle(alpha).

angle(beta).
opposite(alpha, a).
opposite(beta, b).
greater_side(a, b).

New fact added
greater_angle(alpha, beta).

Discovered rule afterwards
greater_angle(X, Y) :- angle(X), angle(Y), opposite(X, X1), opposite(Y, Y1),
side(X1l), side(Yl), greater_side(X1l, Y1).

Figure 1. Rule discovery.

be said that CT has been used for centuries to design computational procedures and
computing machines to automate them; to formalize a computing procedure, math-
ematicians have usually described its steps using an algorithm [12], which may also
deal with (frequently overlooked) model of computation (to be) applied [11].

If we accept the conceptual shift mentioned above, AT main entities (corner-
stones) might then be defined as decomposition, abstraction, and algorithmization,
and it is precisely the application of automation that separates AT from CT. This
means that AT is not equal to CT but is rather included in it [28, 32]. Interestingly,
mathematics educators/researchers may prefer to use AT even when technology is
applied, whereas computer science educators/researchers may prefer to use CT even
when technology is not used (see [6,42] for this preference), which may be the result
of distinguishing (securing) the position and role of AT/CT in their discipline.

Although the relevance of automation to CT cannot be questioned, its importance
to the development of mathematical thinking might be lower than that of other CT
cornerstones (decomposition, abstraction, algorithmization), which were also critical
learning activities in P6lya’s [50] approach to problem solving [13]. Such a state
that puts automation in the CT background was found in a recent study involving
twenty-five mathematics and computer science experts. They considered CT aspects
in mathematics courses and reached a much lower consensus for applying automation
than that for using decomposition, abstraction, and algorithmic thinking [36].

It might be that the role of automation is devaluated in general for a few rea-
sons but this position is questionable. By applying abstraction (e.g., through selecting
variables), we provide building blocks for automation to be carried out. However,
computer programs may not only provide means to support abstraction (e.g., through
the work with classes in object-oriented programming), but also they may do abstrac-
tion themselves as well. Think about a computer program that enables rule discovery
(e.g., [10]). Figure 1 presents facts that may be needed to support the discovery of the
well-known rule that says that a greater angle of a triangle is opposite a greater side.



Computational/algorithmic thinking in school mathematics 753

A similar bi-directional relationship holds true for decomposition. By applying
decomposition (through identifying substantial or relational sub-problems [52]), we
also provide building blocks for automation to be carried out. Regarding the contri-
bution of automation to decomposition, consider computer programs (the so-called
expert systems) that instruct their users which sub-problems to solve first and how to
use their solutions in order to solve the initial problems (e.g., [24,25]). A video avail-
able at https://www.mi.sanu.ac.rs/~djkadij/FRA20.avi presents the work with such a
system concerning problems on multiple proportion (e.g., if three workers repaired 6
windows working 8 hours, how many workers are needed to repair 9 windows work-
ing 6 hours?)

2.2. State of research

The notion of CT originated from learning mathematics with technology, i.e., the
work with Turtle Geometry through LOGO programming more than forty years ago
[49]. Since 2000, due to the elaboration of CT done by a computer scientist Wing
[63, 64], this notion has been mostly used by computer science experts, who link
it with computer science topics, mostly programming [21]. As a result, during the
previous decade, CT has become a critical curricular component in computer science
(informatics) education in a number of countries worldwide (e.g., [59]).

Due to limited research on CT in mathematics learning, CT has not had a similar
status in mathematics education. Studies on linking CT and learning mathematics in
an explicit way are rather rare, and in doing so they mostly refer to areas that are tradi-
tionally connected to programming, including numbers and operations, algebra, and
geometry. There are, of course, other areas suitable for this linking, such as functions,
probability, and statistics. Functions might be explored through modeling, probability
through simulations, whereas statistics could better be understood through data anal-
ysis [21]. In solving problems, these areas are often combined. Data analysis may, for
example, reveal the most probable distribution of the values of a particular variable,
and this distribution might be used to build a mathematical model with simulation.

To pursue these explorations successfully, appropriate learning paths need to be
followed. Such paths have been proposed outside the mathematics education com-
munity, such as an understand-debug-extend path [8], or a use-modify-create path
[40], which, when combined, may result in the following path: use problem solutions
(to understand or evaluate them) — modify problem solutions (to debug or extend
them) — create problem solutions, i.e., develop problem solutions from scratch. Math-
ematics educators have proposed CT pedagogy for the work with various conceptual
or digital objects in the classroom [38]. The proposed pedagogy assumes that this
work makes use of four overlapping activities: unplugging (not using computers),
tinkering (dividing existing objects into their components and changing or modify-
ing these components), making (constructing new objects), and remixing (producing
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new objects through the appropriation of existing objects or their components). As
an example of unplugging, consider sorting mathematical expressions. Tinkering is
applied when the content of a spreadsheet is modified, whereas remixing is prac-
ticed when a dashboard (a set of interactive reports) is created through combining
and modifying existing interactive reports. Although these four activities (unplug-
ging, tinkering, making, remixing) are present in the combined learning path men-
tioned above, this pedagogy can be applied without using computers, which opens
the question “What is actually being developed when computers are not used: CT or
(nevertheless) AT only?”

AT is a central activity in mathematics. Although AT is widely practiced in math-
ematics classes (though mostly implicitly), research on AT in mathematics learning
is also limited. There are, however, several studies whose valuable findings may con-
tribute to fostering both AT and mathematics learning. It was found, for example,
that procedural knowledge rich in connections could be developed through designing
and implementing procedures and algorithms [42]. AT may also be used to develop
conceptual knowledge representing a deeper conceptual understanding when a spe-
cial case of an algorithm in general, or a formula in particular, is considered in detail
to ask advanced questions about its result [1]. In other words, AT may contribute to
developing and relating procedural and conceptual mathematical knowledge. When
AT is supported by technology (i.e., when CT is practiced in our terms), it is important
to understand in what ways mathematics learning could be mediated by technology
[14], especially in developing and relating these two types of mathematical knowl-
edge (e.g., [2,30]). To develop AT gradually, the following learning path (derived
from the combined path mentioned above) could be applied: consider formulas, pro-
cedures, and algorithms given (to understand or evaluate them) — modify formulas,
procedures, and algorithms given (to debug or extend them) — create formulas, proce-
dures, and algorithms, i.e., develop them from scratch. Furthermore, as in case with
CT, the activities comprising this path are not realized separately but, as a rule, over-
lap each other.

Although research on CT/AT in mathematics learning is limited at present, it
seems to be a growing research area as evidenced, for example, with the inclusion
of CT in PISA 2021 [48]. Also, in 2021, research and practice regarding CT/AT were
explicitly represented (probably for the first time) at an international congress on
mathematical education. In particular, at the 14th International Congress on Math-
ematical Education” (ICME-14, https://www.icmel4.org), there was a topic study
group titled “Teaching and learning of programming and algorithms” (TSG-14) and
a discussion group titled “Computational and algorithmic thinking, programming
and coding in the school mathematics curriculum: Sharing ideas and implications
for practice” (DG-1), whose participants emphasized the importance of fostering
CT/AT in mathematics education. This might be done through problem solving using
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a CT/AT lens described in this contribution. Such an approach would result in more
focused (and explicit!) instruction on AT and its core components (decomposition,
abstraction, algorithmization), possibly supported by particular computer programs.
As assumed by a model of mathematical thinking based on the triad abstraction-
modeling-problem solving [15], these components denote critical activities applied
in mathematics learning.

2.3. Curricular CT/AT integration

This subsection comprises three parts. The first explains the rationale for this cur-
ricular CT/AT integration, the second summarizes different models of integrations
applied worldwide, while the third examines various educational implications of this
integration.

2.3.1. Rationale for integration. More and more workplaces require specialized
knowledge based on the use of modern information-communication technology
(ICT); tens of millions of specialists with this knowledge are needed today world-
wide [4]. Among them data scientists are particularly important, whose competencies
(e.g., [3]) are essentially supported by CT/AT. An increasing demand to (better)
prepare students for a range of ICT-based jobs (with many future ones unknown
at present) clearly provides a good rationale for the inclusion of CT/AT in school
mathematics. There is another good rationale for this inclusion. Due to an increas-
ing reliance on computations in scientific inquiry (e.g., [17]), students should learn
how to solve problem with technology for the development of their mathematical
thinking. To this end, they should act as information-processing agents (e.g., [64]).
Although these two rationales clearly represent different perspectives (a societal one
vs a professional one [7]), they are not separated, obviously influencing each other.
Note that an extensive rationale for including CT in school mathematics (at least
for senior high school students) was elaborated in a discussion paper developed by
four mathematical and computer science academies in France by using the following
arguments: (1) CT is becoming increasingly embedded in university courses in math-
ematics; (2) certain areas such as graphs, combinatorics, and logic could be used to
establish creative interfaces between mathematics and computer science; (3) CT can
strengthen students’ mathematical development [ 19]. This paper also contains a num-
ber of examples that can be used to foster creative interfaces between mathematics
and informatics (computer science).

2.3.2. Models of integration. Various models of the integration of CT in the school
mathematics curriculum have been applied worldwide. Let us provide some exam-
ples. To integrate CT/AT across different school subjects, a cross-curriculum model
may be applied like in Finland. If this integration is realized within the curriculum of
an information technology (IT) subject, an IT model may be in use like in Australia
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and England. CT/AT may be integrated in mathematics and other school subjects
in several grades gradually, meaning that a gradualist model is being applied, like
in Japan where the focus is on programming thinking not on CT/AT. Finally, the
integration may be realized within a new school subject, like in France (subject
Algorithmique et Programmation in the middle grades taught by mathematics and
IT teachers) and Australia (subject Algorithmics in the senior high school). Clearly,
although CT/AT integration has often been realized within one or several existing
subjects, it could be done within new subjects as well. Although all these models
remain unexamined and are by and large untested, certain pros and cons can be iden-
tified. For example, the cross-curriculum model might be implemented in a shallow
way; in the IT model, teachers may focus more on using technology than on math-
ematical connections; the gradualist model allows time for teacher preparation, but
creating interfaces between school subjects with entrenched boundaries would be
challenging; a separate subject, especially if taught by mathematics and IT teachers,
can provide opportunities for exploring interfaces between mathematics and com-
puter science, but may, at a higher educational level, require rich prior experience
with CT/AT [56]. For a thorough evaluation, the curricular integration of CT may be
examined in terms of critical curricular components (e.g., goals, content, materials,
forms of teaching, student activities, assessment [47]). Note that a detailed integration
of CT in the school mathematics curriculum is planned in Australia. The new Aus-
tralian F-10 curriculum for mathematics (from Foundation to Year 10) calls for the
application of CT in problem solving, and gives examples and instructions of doing
that from Year 4 to Year 10 [5]. In this document, the phrase computational thinking
occurs almost forty times (e.g., Year 10: “apply computational thinking to model and
solve algebraic problems graphically or numerically”). In July 2021, the status of this
document was “waiting for approval.”

2.3.3. Educational implications. Due to technological advances, computational
mathematics has been increasingly used in research mathematics; there are great num-
ber of respectable research publications with the words computational and mathemat-
ics in their titles, whose authors, stated briefly, primarily examine various algorithms
carried out by computers. Such a reliance on computations has changed the prac-
tice of scientific inquiry in which “together with theory and experimentation, a third
pillar of scientific inquiry of complex systems has emerged in the form of a combina-
tion of modeling, simulation, optimization, and visualization” [17, p. 2]. Hence, the
development of CT/AT in mathematical classes should cultivate such an inquiry by
applying different kinds of practice, such as those already mentioned data practices
(e.g., preparing data and visualizing them), modeling and simulation practices (e.g.,
building and using computational models), and computational problem-solving prac-
tices (e.g., programming, troubleshooting) [61]. To this end, instruction may relate
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(integrate) content, technology, and pedagogy through, for example, identifying rel-
evant CT/AT practice(s) for each curriculum strand content descriptor and computer
tool available (e.g., [51]).

Although classroom practice should be different from disciplinary practice (in-
creasingly using computation to support experimentation, approximation, conjecture
testing, visualization, and other aspects of mathematicians’ work), the latter should
inform the former and help design it [41]. Hence, students may in general use CT/AT
to define (construct) objects, identify their possible properties (of algebraic, geomet-
ric, or other nature), and verify these properties. Furthermore, like mathematicians
who apply computation to find approximate solutions to intractable problems, stu-
dents may use CT/AT to approximate solutions of mathematical models that cannot
(easily) be solved in the context of school mathematics (e.g., [37]). Regarding the
use of algorithms in particular, it may, for example, support students to (1) unpack
concepts and procedures, (2) identify the mathematical structure of a given problem
and generalize its solution, (3) familiarize themselves with modeling, optimization,
operations research, and experimental mathematics, and (4) generate examples of
problems for which the given algorithm works or does not work [56].

Some readers may insist on the position that despite the fact that various CT/AT-
based practices might be applied to solve a variety of task types, CT/AT should
nevertheless be promoted primarily through programming. The following examples
may help these readers make this position less strict. In preparing these examples,
it was supposed that we apply CT whenever we recognize aspects of computations
in problem solving and deals with them in appropriate ways by using tools and tech-
niques from computers science [57]. Regarding this computing support, the examples
make us of Wolfram Alpha (https://www.wolframalpha.com/). Of course, the use of
computing support in general may generate various learning challenges and appropri-
ate didactic treatments need to be applied to alleviate them (e.g., [20,26]).

Example 1. To determine the greatest common divisor, one can simply use a built-
in command gcd, such as gcd(24,16) that yields 8. Another way to do this is to
apply a four-step-approach: (1) find the set of the first number divisors, (2) find the
set of the second number divisors, (3) determine the intersection of these sets, and
(4) find the maximum value in the intersection set (with each step supported by an
important algorithm). To combine these steps, clearly in an algorithmic fashion, use
the following commands: Max [intersect [divisors(24) ,divisors(16)]1].

Example 2. To discover functional dependence that connects two arrays of natural
numbers, we may apply a curve fitting approach with perfect fit. The number of diag-
onals in a triangle, quadrilateral, and pentagon are 0, 2, and 5, respectively. If the
number pairs (3, 0), (4,2), (5,5) are fitted with a quadratic model, the following
dependence is found 0.5x2 — 1.5x, and this fit is perfect because R? = 1. When this


https://www.wolframalpha.com/

D. M. Kadijevich 758

dependence is factorized, the result is 0.5(x — 3)x, directing students what key ele-
ments to consider: the role of x is clear, but why 0.5 and x — 3 are included? Relevant
commands are quadratic fit{3,0},{4,2},{5,5} and factor(0.5x% — 1.5).

As AT is critical to the processes of conjecturing and proving, the development
of algorithms may be connected with these processes. There are some areas of dis-
crete mathematics (e.g., combinatorics, graph theory) that are particularly suitable
for fostering creative interfaces between mathematics and computer science through
exploring relations between algorithm, proof, logic, and programming [44]. In this
exploration, different conceptions of algorithm might emerge: an algorithm is implic-
itly included in the proof of a theorem (if the activity is from a problem to a theorem
to a proof, or, in short, problem-theorem-proof); a proof of the correctness of an algo-
rithm is given (problem-algorithm-proof); an algorithm is given as a computer pro-
gram whose validity is established in some way (problem-program-validation) [16].

Although the exploration sketched in the previous paragraph may only be suit-
able for senior high school students, an algorithm should be considered not only as
a useful tool that can solve certain problems, but also as a separate entity that can be
investigated in itself. For example, apart from applying the algorithm for determining
the greatest common divisors of two natural numbers when we use this algorithm as a
tool, we may examine its applicability to whole or other numbers (or its complexity in
terms of the number of operations needed to complete it) when we treat the algorithm
as a separate entity (e.g, [16]). Such an approach calls for considering the so-called
process-object nature of algorithm, whenever this approach is appropriate and acces-
sible to students. This dual nature also characterizes other mathematical entities, such
as relations and functions (e.g., [54]).

3. Cultivating CT through data practice

3.1. Preliminaries

As mentioned in Section 2.2, CT has mostly been cultivated through programming
(e.g., [21]), which is hence often assumed as a dominant learning practice that would
support CT development. However, to this end, other learning practices might be
applied as well (e.g., [61]). Among these are data practices (e.g., data preparation
and visualization) that may activate different CT components, such as abstraction,
decomposition, and pattern recognition.

The relevance of data practices to developing CT is, for example, recognized by
a CT definition that refers to core CT facets, assuming that these facets might be:
abstraction (data collection and analysis, pattern recognition, modeling), decompo-
sition, algorithms (algorithm design, parallelism, efficiency, automation), iteration,
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debugging, and generalization [55]. Bearing in mind this relevance, CT assessment
may also include some aspects of data practice. This was, for example, done in a large
worldwide assessment named ICILS 2018 (International Computer and Information
Literacy Study completed in 2018), which used tasks that called for programming as
well as structuring and manipulating datasets [18].

As mentioned in Section 2.3.1, tens of millions of workers with specialized ICT
knowledge are needed worldwide today, among whom data scientists are particularly
important, applying various (often complex) techniques from mathematics, statistics,
and computer science to obtain useful information from (big) datasets. It is reasonable
to expect that in their future jobs most students would have to work with data as a
foundation for their claims and actions regarding various professional issues, and, to
this end, they may primarily use some simple data science techniques. Among these
is exploratory data analysis that is applied to summarize the main characteristics of
the dataset analyzed by using data visualization methods, primarily charts, aiming at
discovering what the data can tell us not at formal data modeling or hypothesis testing
[58]. This expectation regarding such use of exploratory data analysis is supported by
the increasing application of dashboards (e.g., [62]), which are particularly suitable
tools for this kind of analysis. In a specialized computer environment, building charts
and dashboards (combining various types of charts and summary measures) can be
(relatively effortlessly) done visually using the drag-and-drop approach.

Dashboards are interactive displays that are composed of two or more interac-
tive reports, mostly charts, whose content updates automatically whenever there are
changes in data or variables considered [33]. Dashboards are today used in various
industries and areas (for a gallery of dashboards, visit https://www.yellowfinbi.com/
analytics-best-practice/dashboard-gallery). Among them is learning analytics in edu-
cation (e.g., [60]), where such interactive displays summarize the values of various
learning indicators. Dashboards may also be used in education to support the work
with data in various school subjects and university courses. If this work is practiced
within a suitable learning cycle (e.g., a mathematical modeling cycle [29]), it would
not only support the understanding of this cycle and the realization of its values in
capturing the main features of disciplinary thinking (i.e., thinking applied in the par-
ticular discipline), but also support the development of important (disciplinary or
general) notions, such as variable and functional dependence [33]. In other words,
although interactive displays are primarily a means for visualizing data, they can
also be a learning tool if used within an appropriate learning cycle [31]. Note that a
growing demand for the inclusion of data science in secondary education (e.g., [23])
may, at introductory levels, profit from the work with interactive displays, whose
visualizations (although mostly based on simple mathematical models such as fre-
quencies, sums, and means) can support the discovery of useful (interesting) patterns,
trends, effects, and interactions in the data examined. To find an interesting inter-
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action in a tourism dataset, the reader may examine the visualizations available at
https://www.mi.sanu.ac.rs/~djkadij/Dashboard.htm.

3.2. Data modeling using dashboards

The key activities in data modeling using dashboards (key stages) may be Asking
questions, Preparing data, Visualizing data, Answering questions, Validating model-
ing, and Recommending changes. Apart from Visualizing data, the use of dashboards
would support other data modeling steps, especially Answering questions and Val-
idating modeling. In Answering questions, students have to match patterns, trends,
effects, and interactions found with the questions posed, whereas in Validating mod-
eling they might improve the modeling applied by using other variables or charts,
or even other data or another dashboard. When datasets to model are not given to
students, the use of dashboards may also support (though not primarily) the stage of
Preparing data, because they may signal some oddities in data (e.g., outliers, missing
or inappropriate data) that should be addressed before the stage of Visualizing data is
applied. In most cases, datasets to model should be given to data modelers, especially
novices, because removing these oddities is a very challenging task, even for data sci-
entists who usually spend most of their time preparing data, i.e., collecting, cleaning,
and organizing data [29].

Data modeling using dashboards clearly calls for abstraction (e.g., in using vari-
ables), decomposition (e.g., in deciding what charts to include in a dashboard, or what
variables to use in a chart and in what role), and pattern recognition (e.g., in recog-
nizing an effect or a trend in data). Apart from decomposition, this modeling would
promote other computational strategies, such as top-down and bottom-up approaches
[31], recalling that these approaches are relevant to mathematical problem solving
proposed Pélya’s [50]. A top-down approach is applied when the modeler goes from a
dashboard as a whole to its individual reports as parts, whereas a bottom-up approach
is used when he/she starts from some individual reports and combine them to cre-
ate a dashboard; instead of a single approach, their combination is often applied.
In addition, building a dashboard may make use of another computational strategy
called rapid prototyping, which denotes an iterative process through which the mod-
eler incrementally presents what the dashboard under development will look like in
order to get feedback and validation from peers and future users [31]. This strategy
is, in general, relevant to mathematical modeling whenever models of increased com-
plexity are developed in an incremental fashion. To consider a way to promote these
computational strategies, the reader may consider the development of a dashboard
whose content is presented in Figure 2, but it should be kept in mind that only a
basic understanding of these strategies may be promoted because the applied dash-
board development (as is the case most often) calls for simple system engineering
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Achievement by gender
55
54
53
52
Assessment report 51
50
Number of students: 850 29
Average achievement: 50.5 23
46
45
Male Female
Achievement by study group Achievement by study group and gender
55 55
54 54
53 53
52 52
51 51 u Male
50 50 W Female
49 49
8 48
47 47
46 46
5 45
Group A Group B Group C Group A Group B Group C

Figure 2. Assessment dashboard.

[31]. Note that although the three computational strategies, especially rapid prototyp-
ing, have been under-represented in CT-related research, there is a CT facet named
iteration [55] under which these strategies might be discussed.

As the previous consideration shows, the presented work with data offers a num-
ber of learning opportunities: cultivating a modeling (or a data inquiry) cycle; sup-
porting the development of important disciplinary notions (e.g., variable and func-
tional dependence); promoting a basic understanding of CT strategies, such as decom-
position as well as rapid prototyping, and top-down and bottom-up approaches. To
be practiced skillfully, this work requires the modeler to demonstrate a range of
skills, such as choosing relations to examine, identifying dependent and independent
variables (Asking questions), selecting charts and measure to use (Visualizing data),
recognizing regularities in charts produced, and connecting regularities to questions
asked (Answering questions) [31]. A number of challenges would be faced in the
development and use of these skills. Among them are the following: using appropri-
ate sets of variables to answer questions; selecting appropriate charts and measures;
considering context properly to interpret findings. There are several possible reasons
for these challenges, such as complexity of this data practice when considered as a
design task; limited experience in using various charts and measures; and complex
interactions of knowledge from different domains [27, 29]. To alleviate these and
other challenges, hints and supports (the so-called scaffolds) need to be provided to
modelers, which would hopefully enable them to complete successfully, on their own,
data modeling using dashboards. These scaffolds may connect key stages using their
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underlying skills (e.g., variables selection with charts production; charts production
with regularities recognition) and link contextual/conceptual and technology-related
issues (e.g., between questions to ask and chart types to use, visualizations produced
and questions to answer, or modeling features to validate and technology components
used) [29,31].

Data modeling using dashboards should be practiced within a rich computational
environment that supports various CT assets, such as ZOHO Analytics (https://www.
zoho.com/analytics/). Bearing in mind the learning paths examined in Section 2.2,
to support (and empower) this practice, the following learning path may be applied:
examine dashboards to understand or evaluate data modeling (DM) completed — mod-
ify dashboards to debug or extend DM done — create dashboards to perform DM
by yourself. To assess the outcome of data modeling using dashboards, the instruc-
tor may examine students’ portfolios about dashboards evaluated, improved, or fully
developed (done individually or through a cooperative work), focusing on success
of pursuing each key DM stage and connecting these stages in terms of major skills
underlying them and their links [31].

Although the presentation of data modeling using dashboards is linked to foster-
ing CT in a mathematical context, this modeling may also contribute to fostering CT
in other school subjects if embedded in another disciplinary context using an appro-
priate learning cycle (e.g., in statistics using a data inquiry cycle). Such a data practice
is also in accord with a CT pedagogy regarding a range of disciplines that calls for
focusing on interactive visualizations or simulations, modeling and troubleshooting
of datasets, and searching for patterns in large datasets [46]. Regarding the work with
data in general, this focus aligns with an already underlined today’s practice of sci-
entific inquiry, whose three pillars are theory, experimentation, and a combination of
modeling, simulation, optimization, and visualization [17].

4. Closing remarks

After briefly presenting an emerging educational context regarding the application of
CT, this contribution first examined critical issues of CT/AT concerning the notion
of CT/AT, the state of CT/AT-oriented educational research, and the integration of
CT/AT in the school mathematics curriculum. Although a widely accepted defini-
tion of CT is lacking, it was argued that CT cornerstones might be decomposition,
abstraction, algorithmization, and automation, where the first three might comprise
AT. The examination of the state of CT/AT-oriented educational research showed
that research on CT/AT in mathematics learning is limited but growing, being con-
cerned with exploring various areas through different activities to foster this learning,
especially developing and relating procedural and conceptual mathematical knowl-
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edge. Regarding the integration of CT/AT in the school mathematics curriculum, the
rationale for doing that is supported by both societal and professional needs. Vari-
ous models have been used (within one or several existing school subjects or within
new school subjects), but they remain unexamined and are by and large untested.
To develop CT/AT, instruction should, whenever appropriate and accessible to stu-
dents, be based on applying a range of activities designed in accord with disciplinary
practice (increasingly empowered by computations), exploring interfaces between
mathematics and computer science, and considering the dual nature of algorithm (a
tool to apply as well a separate entity to investigate). In doing that, suitable learn-
ing paths may be followed, such as use problem solutions (to understand or evaluate
them) — modify problem solutions (to debug or extend them) — create problem solu-
tions, i.e., develop problem solutions from scratch.

After the examination of these critical CT/AT issues concerning their notion,
examination in educational research, and integration in the school mathematics cur-
riculum, this contribution presented a way to cultivate CT through data practice. This
practice, which has been increasingly advocated in educational research, is based on
using sets of interactive reports called dashboards. The rationale for using such inter-
active displays is supported by an expectation that in their future jobs, most students
would have to work with data as a foundation for their claims and actions regard-
ing various professional issues, and to this end, they may primarily apply exploratory
data analysis with dashboards, because on one hand, this analysis, as an introduc-
tory data science technique, could be accessible to most students, and, on the other,
dashboards, which have been increasingly applied in various industries and areas, are
particularly suitable tools for this kind of analysis. After describing the key stages in
data modeling with dashboards, CT components involved in this modeling are dis-
cussed (e.g., pattern recognition), especially computational strategies (e.g., top-down
approach), which, despite their educational relevance, have been under-represented
in CT-related research. Next, various learning issues concerning the proposed data
modeling with dashboards were discussed, including learning opportunities, under-
lying skills required, expected challenges in practicing this modeling and possible
reasons for these challenges, scaffolds that would alleviate these challenges, as well
as a learning path that may be followed in practicing this modeling. Finally, it was
considered whether the advocated data practice is aligned, in a pedagogical way, with
today’s practice of scientific inquiry. All in all, the presentation showed that data
modeling using dashboards may be a promising way to cultivate CT, provided that
the discussed learning issues are adequately treated.

The content of this contribution has evidenced that more research is needed on
linking CT with mathematics learning. Although it showed how CT could be devel-
oped through exploring the area of statistics using exploratory data analysis with
dashboards, this is just an initial research step in this research direction. Further
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research may be (more) concerned with, for example, exploring various areas (e.g.,
probability) through different activities (e,g., simulation), designing these activities in
accord with disciplinary practice (e.g., experimenting and approximation), exploring
interfaces between mathematics and computer science (e.g., computational geome-
try), and considering algorithm in (more) explicit and detailed way (e.g., its dual
nature). The outcomes of such a directed research would considerably inform instruc-
tion and help designing it.

Bearing in mind that the models of curricular CT integration remain largely unex-
amined, research is also needed on this integration, and, to this end, research could
apply a detailed evaluation, which may, as already suggested, examine critical cur-
ricular components, such as goals, content, materials, forms of teaching, student
activities, and assessment. As materials considerably influence teaching, learning,
and assessment, applying appropriate materials, developed in lines that align with the
proposed goals and content, seems to be the most critical component not only for this
integration, but also for teacher education and further professional development.

To summarize, as there is a long-standing reliance on algorithms in mathemat-
ics, CT/AT should be cultivated in mathematics education, especially today with a
growing application of computer tools in almost every areas of our work and life.
Although thinking supported by technology has been named differently in the liter-
ature — computational, algorithmic, or even programming thinking — and defined in
a number of ways, the focus in mathematics education should be on cultivating the
aspects of mathematical thinking using tools and techniques from computer science.
If this cultivation, supported by various suitable materials describing CT/AT based
activities, is realized in appropriate ways in mathematical classes, the integration of
CT/AT in the school curriculum would be a success. Undoubtedly, such an integra-
tion calls for international cooperation and sharing among educators and researchers
at all educational levels. In doing that, special care may be taken about the following
issues: how to define thinking with technology in a precise way; how to cultivate this
thinking accordingly, focusing on the development of mathematical reasoning; and
how to assess its contribution to this development in an adequate way [35].
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