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Introduction

Athanase Papadopoulos

This is a detailed overview of the content of all the chapters of this book. At the same time, it
is a survey of the mathematical world of Norbert A’Campo.

The present volume consists of a collection of essays dedicated to Norbert A’Campo
on the occasion of his 80th birthday. The topics discussed include hyperbolic and
super hyperbolic geometry, 3-manifolds, metric geometry, mapping class groups,
linear groups, Riemann surfaces, Teichmüller spaces, high-dimensional complex geo-
metry, differential topology, symplectic geometry, singularity theory, number theory,
algebraic geometry, dynamics, mathematical physics and philosophy of mathemat-
ics. These topics are very diverse, but they are all part of Norbert’s interests, and the
whole set is a sign of the broadness of his mind.

I often say, with Norbert, that as mathematicians, we have the chance of choosing
the topics on which we work, and, perhaps more importantly, the people with whom
we work. Most of the chapters that constitute this book are written by friends of
Norbert or friends of mine, and several among them are common friends. Independ-
ently of this fact, I am pleased that this collective volume turns out to be a glimpse
into a good number of interesting geometrical topics, old and new.

I will now give a rather detailed overview of these chapters. I have tried to organise
them in sections, but this was not easy to realize. There is however a certain logic in
the order I chose.

Chapter 2, which immediately follows this introduction, is a Vita of Norbert, in the
form of recollections of facts I learned on him, during conversations we had, spread
over a long period of friendship. About this friendship, only one thing I want to say
here: it was constantly at the same level, there were never ups and downs.

The next three chapters contain personal recollections and thoughts on mathem-
atics, by three mathematicians.
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Chapter 3, by Dennis Sullivan, is titled Learning about dynamics, Kleinian
groups, quasiconformality, and period doubling universality: Orsay Chapter. In this
chapter, Sullivan recounts a series of episodes that were important in his mathematical
life and that took place in Orsay or Bures-sur-Yvette in the 1970s, which is the epoch
where Norbert was present there. I would like to emphasize, without further com-
ment, the word “learning” in the title. The topics that Dennis touches upon include
foliations, dynamics, monodromy of isolated singularities, quasiconformality, circle
diffeomorphisms, period doubling, universality, ergodicity, KAM theory, Thurston’s
theory of surface diffeomorphisms and the Ahlfors–Bers theory of quasiconformal
deformations of Kleinian groups. Sullivan also mentions animal vision and works
by physicists. This overview, showing only one part of Sullivan’s broad interests, is
intended to give a taste of the questions that were discussed in Orsay and Bures among
him, Norbert and others.

Valentin Poénaru was another colleague of Norbert at Orsay. In Chapter 4, titled
My mathematical world, he gives a personal account, written in an informal philo-
sophical tone, of his approach to the two problems that are haunting him since
his youth: the 3-dimensional Poincaré conjecture and the 4-dimensional Schoenflies
problem. At the same time, he reviews some important notions he encountered in his
mathematical life and he mentions a few conjectures (which are still open) that he
proposed while he was working on the two major problems we mentioned. These
notions include simple connectivity at infinity, the QSF (quasi-simply filtered) and
GSC (geometric simply connected) properties for groups. About the latter, he writes:
“I feel that the ubiquity of GSC gives a certain sense of unity to that mathematical
world of mine.” Poénaru, throughout this short article, mentions several mathem-
aticians with whom he interacted and who played a significant role in his life.

Chapter 5, by Alexey Sossinsky, is written in French, and is titled Le Diable,
le Bon Dieu et la Sphère de dimension n (The Devil, the Good Lord and the n-
dimensional Sphere). It consists of variations on the theme: Why is it so hard to
see any logic or any beauty in the sequences of integers associated with construc-
tions involving n-dimensional spheres? Indeed, one may wonder why, for instance,
the sphere packing problem is solved in only five cases: dimensions 1, 2, 3, 8, and
24. We recall that this problem is part of Hilbert’s Problem VIII (which contains
3 distinct questions); in fact, Hilbert asks for the densest packing of solids of an
unspecified shape, but it is usually assumed that it concerns packings of spheres. The
problem goes back at least to Kepler. In fact, Sossinsky discusses not exactly this
problem, but a related one, viz. the problem of calculating the maximum number of
spheres of the same diameter that can be arranged around an n-dimensional sphere
(again of the same diameter) in the Euclidean .nC 1/-dimensional space. This is the
famous “kissing number” in which, as Sossinsky recalls, Isaac Newton and David
Gregory were interested towards the end of the 17th century. This sequence of num-
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bers, the kissing numbers in dimension n, is known for its very first terms: n =1, 2, 3,
4, and then only for n D 8 and 24. Isn’t that awkward? Among the other sequences
of integers that arise in geometry with no apparent reason, Sossinsky mentions the
set of integers n such that the n-dimensional sphere admits a unique triangulation
up to PL-equivalence. Here, the set of integers satisfying the given property includes
n D 1; 2 and 3, it does not include any n � 5, and the problem is still open in the
case n D 4, a case which turns out to be much more difficult than all the others.
Any human being with some sense of order would have asked: Why these numbers?
Where is the logic behind this? There is also the sequence of integers n such that the
n-sphere admits an exotic differentiable structure: It is known that the 7-dimensional
sphere admits 28 different differentiable structures, while the 8-dimensional sphere
admits only two and the 9-dimensional sphere eight different such structures; we also
know that the 12-dimensional sphere admits a unique differentiable structure, that
the sphere of dimension 15 has more than 16 000 such structures, and there are a
few more other known cases, where some numbers occur for no apparent reason.
There is no clear logic in that anarchy. Another problem that puzzles the author
is the apparent lack of order in the sequence of homotopy groups of n-spheres. In
view of this persistent disorder, Sossinsky addresses the philosophical question of
the existence of order and beauty in Creation. This is the main problem addressed in
Chapter 5.

When Sossinsky sent me a first version of his paper, in French, I asked him
whether he wanted it to be published in French. He said yes, because of the title –
reference to a play by Sartre. This play, titled Le Diable et le Bon Dieu, is a drama
in which the French philosopher puts into action the dilemma between good and evil,
which, in fact, he considers to be a false dilemma, because of man’s inability to do
either one or the other. The main character of the play, in his attempts to do either
good or evil, ends up, in both cases, destroying human lives.

I know another reason for which Sossinsky prefers French; this is because this
article is also a literary composition and his French is superb, more suitable than his
English (which by the way is excellent) for such an exercise.

The mention of n-dimensional spheres also reminds us of Norbert’s first import-
ant result, namely, his construction of a foliation on the 5-sphere (Un feuilletage de
S5, 1971).

Chapter 6, by Bob Penner, titled Super Hyperbolic Law of Cosines: same formula
with different content, is an immersion into the world of supergeometry, a modern
generalization of differential and algebraic geometry which is also the geometry of the
Standard Model of high energy physics. The word supersymmetry, which appeared
in physic in the 1970s, is only one predecessor of several other words with the prefix
“super” (super-gauge transformation, superalgebra, supermanifold, super Minkowski
space, super Teichmüller space, super Lie group, etc.). I know that Bob is unhappy
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with the attribute super for such a geometry. He tells me (half seriously and half
humorously) that the reason is the perhaps pejorative connotation it gives to the
“ordinary” non-super case! For him, supergeometry is just geometry. But the word
became standard.

Working in the super Minkowski model, Penner answers a purely geometrical
question: “What are the Laws of Cosines and Sines for triangles in the hyperbolic
superplane?” It is good to remember here that the trigonometric formulae, in any
geometry, constitute the heart of that geometry. This was particularly stressed by
Nikolay Lobachevsky who, in his Pangeometry and in other writings, deduced all the
basic theorems of his new geometry from the trigonometric formulae he first estab-
lished. This makes me say that the result of this chapter is a fundamental step toward
understanding super Minkowski geometry.

The next six chapters are concerned with various aspects of surfaces, their map-
ping class groups, their complex moduli and their Teichmüller spaces.

Chapter 7, by Hugo Parlier, is titled The topological types of length bounded mul-
ticurves. In this chapter, the author presents inequalities involving lengths of closed
geodesics or systems of disjoint closed geodesics on hyperbolic surfaces. There are
two classical such inequalities, namely, an upper bound on systoles (the lengths of a
shortest curve on the surface), and the so-called Bers inequality, which is an existence
theorem for “short pants decompositions”. More precisely, the Bers inequality says
that an arbitrary closed hyperbolic surface carries a pair of pants decomposition by
closed geodesics whose lengths are bounded above by a certain constant (the “Bers
constant”) which depends only on the topological type of the surface. The results
discussed in Chapter 7 follow this tradition. They include a characterization of the
topological types of closed curves and systems of closed curves that are homotopic
to a closed geodesics or systems of closed geodesics satisfying certain given length
inequalities.

Chapter 8, by Öykü Yurttaş, titled A recipe for the dilatation of families of pseudo-
Anosov braids, is a survey of the author’s work on the computation of the dilatation
and the characterization of the invariant measured foliations of each member of a cer-
tain family of pseudo-Anosov braids. The methods use what she calls the Dynnikov
coordinates. The author notes that the family of braids considered is of interest in the
study of braids with low dilatations. Results on the dilatations of this family were
previously obtained by E. Hironaka and E. Kin, using the more familiar train track
techniques, in their paper A family of pseudo-Anosov braids with small dilatation
(2006). The author, in Chapter 8, gives an alternative way of computing these dilata-
tions.

Chapter 9, by Marc Burger and Alessandra Iozzi, is titled `2-stability and homo-
morphisms into the mapping class group. In this chapter the authors formulate a
new cohomological vanishing condition, in the bounded cohomology of a group,
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which they call `2-stability and which implies a superrigidity type result for homo-
morphisms from that group into a mapping class group. We recall that the term
“superrigidity” designates the fact that a certain homomorphism (e.g., a linear repres-
entation of a discrete group in an algebraic group) can, under certain circumstances,
be enhanced to (for instance) a representation of the algebraic group itself. The first
typical situation where the term “superrigidity” was used is the case where the famous
Margulis theorem holds. This is in the context of homomorphisms from irreducible
lattices in real semisimple Lie groups of rank � 2 into simple Lie groups. The term
was extended later to the setting of surface mapping class groups, when a fruitful
analogy between algebraic properties of these groups and results on lattices in higher
rank groups was exploited. In Chapter 9, Burger and Iozzi give new examples of `2-
stable groups. At the same time they provide a unifying setting for some existing
superrigidity results for mapping class groups. Talking about superrigidity, I take this
opportunity to mention the paper by Marc Burger and Norbert A’Campo, Réseaux
arithmétiques et commensurateur d’après G. A. Margulis (1994).

Chapter 10, by Christian Blanchet, is titled Heisenberg homology of surface con-
figurations via ribbon graphs. In this chapter, the author reviews the Heisenberg
homology of the configuration space of unordered points on an oriented surface with
boundary. This is a homology with local coefficients that arises from a representa-
tion of the Heisenberg group. In the case of a surface with one boundary component,
the topic was introduced and studied in a previous joint paper by Blanchet, Martin
Palmer and Awais Shaukat (Heisenberg homology on surface configurations, 2021).
One interesting feature of this homology is that it carries a twisted action of the map-
ping class group of the surface.

After a review of the theory of Heisenberg homology for a surface with one
boundary component, Blanchet extends it to oriented compact surfaces with an arbit-
rary positive number of boundary components. He then considers the surface associ-
ated with a ribbon graph and shows that its Heisenberg homology can be extracted
from this graph, and more generally from what he calls a relative ribbon graph. Tête-
à-tête twists appear in this theory. These are mapping class group elements that gen-
eralize Dehn twists; they are associated with graphs instead of simple closed curves.
These objects were introduced by A’Campo as a combinatorial tool for describing
mapping classes of surfaces with boundary arising as monodromies of curve singu-
larities.

Chapter 11, by Hiroshige Shiga, is titled Quasicircles and Dirichlet finite har-
monic functions on Riemann surfaces. Here, a quasidisc is the image of the unit disc
in the complex plane by a quasiconformal self-mapping of this plane. A quasicircle
is the image of the unit circle by such a quasiconformal self-mapping. Quasicircles
and quasidiscs admit several characterizations. In particular, there is a classical char-
acterization of quasidiscs involving the existence of a double inequality on Dirichlet
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finite harmonic functions on a Jordan domain. The author in Chapter 11 is interested
in the extendability of such a characterization to quasicircles on general Riemann
surfaces, of finite or infinite type. In this setting, a simple closed curve on a Riemann
surface is called a quasicircle if one can find an annular neighborhood of this curve
and a conformal mapping from this annulus to the complex plane such that the image
of the curve by the mapping is a quasicircle in the complex plane. The author notes
that his work is motivated by a paper by Schippers and Staubach, Transmission of
harmonic functions through quasicircles on compact Riemann surfaces (2020). The
theory developed in Chapter 11 works for general open Riemann surfaces including
surfaces of infinite type.

Chapter 12 by Tadashi Ashikaga and Yukio Matsumoto, titled Universal degen-
eration of Riemann surfaces and fibered complex surfaces, is concerned with the
complex structure of the Teichmüller space of a surface. The authors start by recall-
ing a canonical construction by Kodaira of elliptic surfaces with given monodromies
and J -invariants (K. Kodaira, On compact analytic surfaces II, 1963). Their aim is to
generalize this construction to the case of fibered complex surfaces of genus � 2. In
doing so, they introduce a new orbifold fiber space, obtained by patching Kuranishi
families of stable curves, which has the property that any fibered complex surface can
be pulled back from this fibering by a certain orbifold moduli map which they con-
struct. Because of this universal property, the authors call the orbifold fibration they
obtain the universal degenerating family of Riemann surfaces. Their construction is
inspired by a description given by Arbarello and Cornalba in their book Geometry of
Algebraic Curves (2011) of a bordification of Teichmüller space using real blow-ups
and methods of the so-called log geometry developed by Kato–Nakayama and Usui.

The work in Chapter 12 is based on previous work by Matsumoto in which he
constructed a new orbifold structure over the Deligne–Mumford compactification of
the moduli space of Riemann surfaces, using a certain bordification of Teichmüller
space (The Deligne–Mumford compactification and crystallographic groups, 2020).

The next two chapters are concerned with 3-manifolds.
Chapter 13, by Ken’ichi Ohshika, is titled Surface bundles in 3-dimensional topo-

logy. Surface bundles over the circle play a very important role in 3-dimensional
geometry and topology. As Ohshika recalls, such manifolds already appear in the
work of Poincaré who, in his 1895 Analysis situs, studied torus bundles over the
circle. By the middle of the 1970s, Robert Riley and Troels Jørgensen gave examples
(considered as the first examples) of hyperbolic surface bundles over the circle. Soon
later, Thurston showed that in a precise sense most of surface bundles over the circle
admit such structures; for instance, mapping tori of pseudo-Anosov homeomorphisms
are all hyperbolic. By the end of the 1970s, Thurston made the important conjecture
that any closed hyperbolic 3-manifold has a finite-sheeted covering which is fibered
over the circle. This conjecture, which became known as the “virtually fibered con-
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jecture”, was proved in several steps over a period of a few decades. The final step,
which settled the case of all closed hyperbolic 3-manifolds, was achieved by Ian Agol
in 2012. An excellent survey of Thurston’s work on hyperbolic manifolds fibered
over the circle, until 1980, is Sullivan’s Bourbaki seminar, Travaux de Thurston sur
les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur
S1 (1980).

In Chapter 13, Ohshika gives an overview, with sketches of proofs, of the devel-
opment of the theory of 3-dimensional surface bundles, starting from Poincaré’s
work, passing through Stalling’s theorem on fibrations over the circle, Thurston’s
classification of surface mapping classes and their action on Teichmüller space, his
double limit theorem, and the existence of hyperbolic structures on mapping tori with
pseudo-Anosov monodromy. The chapter ends with an exposition of recent results on
volumes of hyperbolic surface bundles. A substantial part of this survey is dedicated
to the important work of Thurston.

Chapter 14, by Charalampos Charitos, is titled The complex of incompressible
surfaces of a handlebody. In this chapter, the author associates with a 3-dimensional
handlebody of genus � 2 a simplicial complex called its complex of incompressible
surfaces. As the name suggests, the vertices of this complex are the isotopy classes of
incompressible surfaces in the handlebody, and for every k � 0, k C 1 vertices form
a k-simplex if they can be represented by a collection of disjoint incompressible sur-
faces. Charitos proves that for g � 3, any automorphism of this complex is induced
by a homeomorphism of the handlebody. This rigidity result follows several rigidity
results of the same kind for surfaces and their mapping class groups, obtained starting
in the 1980s. Typically, in the surface case, one studies simplicial complexes whose
k-faces are homotopy classes of k C 1 homotopically non-trivial and pairwise non-
homotopic disjoint simple closed curves on which some property may be imposed (to
separate the surface into two connected components, etc.). After several works on sur-
faces, with simplicial complexes built using such collections of simple closed curves,
several complexes appeared in the realm of 3-manifolds, including the complex of
essential discs (which, in the case where the 3-manifold is a handlebody, coincides
with the complex of meridians), introduced by McCullough (Virtually geometrically
finite mapping class groups of 3-manifolds, 1991). A rigidity result for this com-
plex was obtained by Korkmaz and Schleimer (Automorphisms of the disk complex,
2009). Other rigidity results for complexes associated with surfaces in 3-manifolds
were obtained by Charitos–Papadoperakis–Tsapogas (A complex of incompressible
surfaces for handlebodies and the mapping class group, 2012 and On the complex of
separating meridians in handlebodies, 2022). The work in Chapter 14 is a sequel to
these works.

Chapter 15, by Krishnendu Gongopadhyay, Tejbir Lohan and Chandan Maity, is
titled Reversibility and real adjoint orbits of linear maps. The authors extend classical
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results on the classification of the elements of the general linear groups over R and
C that are reversible (that is, conjugate to their inverse) to the case of the group
GL.n;H/. They also provide a new proof of the known classification results for the
groups GL.n;R/ and GL.n;C/. At the same time, they give a classification of the
real adjoint orbits in the Lie algebras gl.n;R/ and gl.n;C/.

The next four chapters are on knot theory, and the first two of them are concerned
with Seifert surfaces, that is, surfaces embedded in the sphere whose boundary is the
given knot (or link).

Chapter 16, by Mikami Hirasawa, Ryota Hiura and Makoto Sakuma, is titled
Invariant Seifert surfaces for strongly invertible knots. The setting is that of strongly
invertible knots, that is, smooth knots in the 3-sphere for which there exists a smooth
involution of this sphere which preserves the knot and fixes a simple loop intersect-
ing it in two points. A related and older notion is that of (cyclically) periodic knot
with period n, that is, a knot in the 3-sphere for which there exists a periodic diffeo-
morphism of period n of the ambient sphere which leaves the knot invariant and fixes
a simple loop in its complement. The importance of periodic knots was realized in
the 1960s–1980s, in works of Trotter and Murasugi, then Edmonds and Livingston.
Edmonds and Livingston proved that every periodic knot admits an invariant incom-
pressible Seifert surface. In the present chapter, Hirasawa, Hiura and Sakuma study
the general question of existence of invariant Seifert surfaces for strongly invertible
knots. They prove that for such a knot, the gap between the equivariant genus, that is,
the minimum of the genera of invariant Seifert surfaces, and the (usual) genus may
be arbitrarily large. This result is in sharp contrast with a result of Edmonds, obtained
in 1984, stating that every periodic knot admits an invariant incompressible minimal
genus Seifert surface. Edmonds used this result in his proof of Fox’s conjecture stating
that any nontrivial knot has only finitely many periods. Hirasawa, Hiura and Sakuma,
in Chapter 16, obtain variants of Edmonds’ theorem which are useful in the study
of invariant Seifert surfaces for strongly invertible knots. On the same occasion, they
report on the relations between their work and a construction of fibered links in the
3-sphere using divides, that is, immersions of 1-manifolds in the disc, discovered by
A’Campo in his study of isolated singularities of complex hypersurfaces and which
has been a source of inspiration for their work (cf. A’Campo’s Generic immersions of
curves, knots, monodromy and Gordian number, 1998).

Chapter 17, by Sebastian Baader, Pierre Dehornoy and Livio Liechti, titled Minor
theory for quasipositive surfaces, is concerned again with Seifert surfaces in link
complements. Given a pair of Seifert surfaces †1 and †2 for a knot in R3, †1 is said
to be a minor of†2 if†1 is isotopic to an incompressible subsurface†01 of†2, that is,
†01 is contained in†2 such that the complement†2 n†01 has no disc component. The
authors in Chapter 17 note that the word “minor” originates in graph theory, where a
minor refers to a graph obtained from a finite graph by a finite number of operations
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of vertex and edge deletions and edge contractions. Baader, Dehornoy and Liechti,
in Chapter 17, study the order relation on Seifert surfaces induced by the property of
incompressible inclusion. They consider quasipositive surfaces, that is, Seifert sur-
faces associated with quasipositive links. Such surfaces originate in the study of
complex plane curves, and they are also used in contact geometry. A quasipositive
link is the braid closure of a quasipositive braid, that is, a product of conjugates of the
standard generators of the Artin braid group. Quasipositivity is related to the fact that
the braid closure admits a canonical Seifert surface of minimal genus. The authors
show that the set of quasipositive surfaces is closed under the relation of incompress-
ible inclusion. They also prove that the order induced by incompressible inclusion
on fiber surfaces of positive braid links containing a fixed root of a full twist is a
well-quasi-order, that is, it has the property that every infinite family contains two
comparable elements.

Chapter 18 by Rinat Kashaev, titled The Alexander polynomial as a universal
invariant, is concerned with universal quantum knot invariants. These constitute an
algebraic tool that is used for encoding in a representation-independent way the mul-
titude of quantum invariants associated with a given Hopf algebra. Kashaev addresses
the question of identifying the universal invariant of long knots in one of the simplest
cases of non-trivial Hopf algebras, namely, the case of the commutative complex
algebra B1 D CŒa˙1; b� with its structure of complex Hopf algebra induced from
its interpretation as the algebra of regular functions on the affine linear algebraic
group of complex invertible upper triangular 2x2 matrices of the form

�
a b
0 1

�
. He

proves that the universal invariant of a long knot K associated with B1 is the recip-
rocal of the canonically normalized Alexander polynomial�K.a/. The main result of
this chapter is then a proof of a conjecture which Kashaev proposed in 2019, which
gives a new point of view on the Melvin–Morton–Rozansky conjecture saying that
the Alexander–Conway polynomial of a knot can be retrieved from the coefficients
of the Jones polynomials of its cables. This conjecture was settled by Bar-Nathan and
Garoufalidis in 1996, and later, in an analytic form, by Garoufalidis and Lê, in 2011.
It has applications to the so-called Generalized volume conjecture, an important con-
jecture formulated by Kashaev in 1997 and by Hitoshi and Jun Murakami in 2001,
connecting two different approaches to knot theory, namely Topological Quantum
Field Theory and hyperbolic geometry.

Chapter 19, by Eva Bayer, is concerned with high-dimensional knots. It is titled
Alexander polynomials and signatures of some high-dimensional knots. The gen-
eral question addressed in this chapter is to find the possibilities for an integer to
be the signature of a knot with a given Alexander polynomial. This question was
already answered by the same author for classical knots, that is, 1-dimensional knots
in the 3-sphere. In this chapter, she studies the same question for high-dimensional
knots, and more especially, for m-dimensional knots Km in the sphere SmC2 with
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m � �1 .mod 4/. The case m D 3 (that is, 3-dimensional knots in the 5-sphere)
requires a special discussion.

Now we pass to dimension four.
Chapter 20, by Anna Beliakova and Marco de Renzi, is titled Refined Bobtcheva–

Messia invariants of 4-dimensional 2-handlebodies. The authors develop, in the
setting of 4-manifolds, an analogue of the theory of quantum invariants of 3-
manifolds. More precisely, they deal with 4-dimensional smooth 2-handlebodies, that
is, smooth 4-manifolds with boundary obtained from the 4-ball by attaching finitely
many 1-handles and 2-handles. They consider these 4-manifolds up to a certain equi-
valence relation called 2-deformation, or 2-equivalence. They define invariants of
pairs .W; !/ where W is such a 4-manifold and ! a relative cohomology class in
H 2.W; @W IG/ and where G is some abelian group. The algebraic input required for
this construction is a unimodular ribbon Hopf G-coalgebra. The authors discuss in
detail these invariants for the restricted quantum group U D Uqsl2 at a root of unity
q of even order 2p, which is a unimodular Hopf Z=2Z-coalgebra which contains the
small quantum group NU as its degree zero part, and for its braided ribbon extension
QU D QUqsl2, which fits in this setting where G D Z=2Z. They deduce formulae that

generalize a well-known decomposition of the Witten–Reshetikhin–Turaev invariants
in terms of spin structures and cohomology classes. The term “Bobtcheva–Messia
invariants” in the title of Chapter 20 refers to an invariant of 4-thickenings of 2-
dimensional CW Complexes that was introduced by I. Bobtcheva and M. Messia in
their article HKR-type invariants of 4-thickenings of 2-dimensional CW complexes
(2003). The authors work with an extended version of this invariant.

The next two chapters constitute an excursion in the world of differential topology.
Chapter 21, by François Laudenbach, is titled Conic singularities and immedi-

ate transversality. The author starts by recalling the notion of submanifold with C 1

conic singularities. Such an object appears in the closure of invariant submanifolds
of Morse gradients (that is, gradients of Morse functions) under some assumptions
on the simplicity of this gradient. He proves a result concerning immediate trans-
versality by flow, a notion which has other potential applications and which he intro-
duced in a recent work on A1-structures on Morse complexes (H. Abbaspour and
F. Laudenbach, Morse complexes and multiplicative structures, to appear). Here,
given a smooth manifold M with two smooth submanifolds S and †, an ambient
isotopy �t on M is said to be of immediate transversality of S with respect to † if
�t .S/ is transverse to † for every small enough positive real t . The important case
studied in the paper quoted is when S D†. In Chapter 21, this theory is extended, and
the author shows that the notion of immediate transversality is useful in the setting
of arbitrary compact submanifolds with C 1 conic singularities and not only in that
of Morse theory. These details provide, for Laudenbach, an opportunity for reviewing
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several elements of singularity theory. References to the work of Thom arise naturally
in this discussion.

Chapter 22, by Yakov Eliashberg and Dichant Pancholi, titled Honda–Huang
work on contact convexity revisited, is based on some recent important work by Ko
Honda and Yang Huang on contact convexity in high dimensions. In this setting,
a hypersurface in a contact manifold is said to be convex if it admits a transverse
contact vector field. In their article titled Convex hypersurfaces in contact topology
(2019), Honda and Huang, generalizing work of Emmanuel Giroux in dimension
three, proved that in any manifold with a co-oriented contact structure, an arbitrary
co-oriented hypersurface can be C 0-approximated by an isotopic convex surface. In
Chapter 22, Eliashberg and Pancholi provide a shorter and more accessible proof of
this result, clarifying the original proof at some delicate points.

The terms Milnor fiber, Milnor fibration, etc. refer to a device, introduced by
Milnor in the 1960s, in the study of the germ of a complex analytic function f at
a critical point x whose image (the critical value) is assumed to be 0, by examin-
ing nearby fibers, after normalizing the map f by dividing it by jf j. The geometry
of such a nearby fiber turns out to be a valuable information on the singularity at
x. The Milnor fibration of a singularity of a complex polynomial, and the study of
the monodromy of this fibration, have been probably the most useful tools for study-
ing the structure of such a singularity. This construction has several variants which
depend on the setting, and it led to important developments in the study of isolated
hypersurface singularities and more generally in differential topology and (complex)
algebraic geometry. In the next seven chapters, the notion of Milnor fiber and some
other related notions play a key role. A’Campo’s contribution is visible in this setting.

The first one in this series of chapters, Chapter 23, is written by François Loeser
and it is titled Rambling around the Milnor fiber. The author’s goal in this chapter,
as he puts it himself, is “to present the pervading influence of Norbert’s works on
monodromy and the Milnor fiber in current research, and their interplay with other
topics like non-archimedean geometry, finite fields or symplectic geometry.” The
developments accounted for include the computation of the Lefschetz numbers of
monodromies, based on two early works by A’Campo titled Le nombre de Lefschetz
d’une monodromie (1973) and La fonction zêta d’une monodromie (1975). Loeser
then discusses versions of the Milnor fiber in the setting of non-Archimedean geo-
metry, and the computation of the monodromy zeta functions for discriminants of
finite Coxeter groups. The connection with symplectic geometry stems from the fact
that a Milnor fiber is viewed as a symplectic manifold, with its boundary endowed
with a contact structure.

In Chapter 24, titled Singular fibrations over surfaces, Louis Funar studies smooth
maps from compact connected oriented 4-manifold onto compact oriented surfaces
with finitely many critical points. Such a map is said to be a singular fibration if all
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its critical points are regular and its singularities cone-like. Funar presents several
constructions of singular fibrations, including ones with a unique singularity, and the
so-called achiral singular fibrations of the 4-sphere over the 2-sphere, originating in
work of Yukio Matsumoto. He establishes classification results for singular fibrations
which are similar to those known for achiral Lefschetz fibrations. He shows that rel-
atively minimal singular fibrations are determined by their monodromies. The work
presented in this chapter owes a lot to A’Campo’s study of isolated singularities of
planar curves and his construction of fibered links from divides. At the same time,
Funar outlines works of Hirzebruch and Hopf on 2-plane fields with finitely many
singularities, making connections between these works and those of Neumann and
Rudolph on the Hopf invariant. He uses these results to prove that a closed orientable
4-manifold with large first Betti number and vanishing second Betti number does not
admit any singular fibration. He discusses several open problems, and in particular
the question of whether any smooth closed simply connected oriented 4-manifold is
the total space of a singular fibration over some surface.

Chapter 25 by Masahaku Ishikawa, Yuya Koda and Hironobu Naoe, titled
Presentation of the fundamental groups of complements of shadows, is a continuation
of work started by A’Campo on the relation between divides, the links they generate,
and the associated shadowed polyhedra. Here, a shadowed polyhedron is a polyhed-
ron with some extra structure encoded by half integers assigned to some regions called
gleams. The polyhedron is embedded in a compact, oriented, smooth 4-manifold as
a spine of that manifold. A shadowed polyhedron represents its ambient manifold in
some precise sense. The notion of shadow was introduced by Turaev, and has played
an essential role in 3- and 4-dimensional topology, and it is also intimately related to
the theory of singularities of maps from 3- and 4-dimensional manifolds to surfaces
developed by A’Campo. The relation between A’Campo’s divides and Turaev’s shad-
ows was already highlighted in a 2020 paper by Ishikawa and Naoe, titled A’Campo’s
divide and Turaev’s shadow.

In Chapter 25, Ishikawa, Koda and Naoe consider more particularly contractible
shadows obtained from the unit disk by attaching annuli along some closed curves
generically immersed in this disk. In this context, the underlying 4-manifold is the
4-ball. Milnor fibers of plane curve singularities can be represented in this way. In
fact, the union of a Milnor fiber of a plane curve singularity and the disks bounded by
its vanishing cycles is a polyhedron embedded in the so-called Milnor ball, a small
4-ball in C2 centered at the singular point. In this case, the polyhedron becomes the
union of the unit disk with a finite number of annuli attached to it along some curves
immersed in that disc. The resulting polyhedron is simple and contractible. The main
result in Chapter 25 is a presentation of the fundamental group of the complement
of a sub-polyhedron of a shadowed polyhedron in its ambient 4-manifold, in the case
where the shadow consists of the unit disk and of annuli attached to it along immersed
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curves, so that the polyhedron is simple and contractible. The authors apply this the-
ory to polyhedra of fibrations of divides, and in particular to polyhedra of Milnor
fibrations and to complexified real line arrangements.

Chapter 26, by Sabir Gusein-Zade, is titled A’Campo type equations and integrals
with respect to the Euler characteristic. In 1975, A’Campo established equations for
the Euler characteristic of the Milnor fiber of a germ of a holomorphic function and
for its monodromy zeta function at a singular point, in terms of a resolution. (This
is A’Campo’s paper La fonction zêta d’une monodromie.) Equations of this kind are
called A’Campo type equations, and they constitute a predecessor of Viro’s notion
of integral with respect to Euler characteristic, which Viro introduced in 1988. In
Chapter 26, Gusein-Zade shows that A’Campo type equations arise from some integ-
rals with respect to the Euler characteristic over infinite-dimensional spaces such as
projectivizations of spaces of function germs and spaces of divisors on a singular-
ity. He also shows that in some cases the values of these integrals coincide with the
zeta functions of certain monodromy operators. The results obtained in this chapter
are instances of situations where analytic invariants (the integrals with respect to the
Euler characteristics) coincide with topological ones (zeta functions of monodrom-
ies or Alexander polynomials). This chapter is also the occasion of presenting some
beautiful mathematics discovered by Norbert.

Chapter 27, by Mutsuo Oka, is titled Almost non-degenerate functions and a
Zariski pair of links. In this chapter, the author gives a generalization of a formula
due to Varchenko for the zeta function of the Milnor fibration of a Newton non-
degenerate function. This generalization concerns germs of analytic functions that
have some Newton degenerate faces. This work uses in an essential way A’Campo’s
1975 paper, La fonction zêta d’une monodromie, in which the latter gave a formula
for the zeta function of the Milnor monodromy of the germ of an analytic function
of n complex variables at a singular point, given a local resolution of the singularity.
This paper is probably the most quoted work by A’Campo. As an application, Oka
obtains an example of a pair of hypersurfaces with the same Newton boundary and
the same zeta function but with different tangent cones.

Walter Neumann and Nathalie Wahl, in a paper published in 2002 and titled Uni-
versal abelian covers of surface singularities, introduced the class of splice type
surface singularities, a class which contains all known examples of integral homology
spheres that appear as links of isolated complete intersections of dimension two. Such
singularities are determined, up to equisingularity, by decorated trees called splice
diagrams. The Milnor fiber conjecture, formulated by the same authors in 2005, says
that any choice of an internal edge of a splice diagram determines a special kind of
decomposition into pieces of the Milnor fibers of the associated singularities.

In Chapter 28, titled The Milnor fiber conjecture of Neumann and Wahl and an
overview of its proof, Maria Angelica Cueto, Patrick Popescu-Pampu and Dmitry
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Stepanov provide an overview of the conjecture mentioned in the title together with
a detailed outline of a proof they obtained of it. The proof uses techniques from
toric, tropical and log geometry in the sense of Fontaine and Illusie. The latter geo-
metry is reviewed in detail in this chapter. A central ingredient is the operation of
rounding a complex logarithmic space, introduced in 1999 by Kato and Nakayama.
This is a functorial generalization of an operation introduced by A’Campo in 1975,
in his study of Milnor fibrations, called real oriented blowup. In the same chapter,
Cueto, Popescu-Pampu and Stepanov show that A’Campo’s operation gives canon-
ical representatives of the Milnor fibration over the circle of a smoothing, provided
an embedded resolution of this smoothing is given. The outline of the proof of the
Milnor fiber conjecture is presented in 8 steps in the introduction to Chapter 28 and
in 28 steps in the last section of the same chapter. The detailed proof is announced to
appear in one or several papers.

Chapter 29, by Vladimir Fock, is titled Singularities and clusters. A correspond-
ence between singularities and cluster varieties was observed recently by Sergey
Fomin, Pavlo Pilyavsky, Dylan Thurston, and Eugenii Shustin in their paper titled
Morsifications and mutations (2022). This correspondence is based on certain real
forms of deformations of singularities introduced by A’Campo in his paper Le groupe
de monodromie du déploiement des singularités isolées de courbes planes (1975)
and by Gusein-Zade in his paper Dynkin diagrams of the singularities of functions of
two variables (1974). Fomin, Pilyavsky, Thurston, and Shustin showed that different
resolutions of the same singularity give the same cluster variety. In Chapter 29, Fock
describes a geometric relation between simple plane curve singularities, classified by
simply laced Cartan matrices, and cluster varieties of finite type, classified by the
same matrices. He constructs certain varieties of configurations of flags from Dynkin
diagrams and from singularities, and he shows that they coincide if the Dynkin dia-
gram corresponds to the singularity. In particular, the author describes a map from the
base of a versal deformation of a singularity to the corresponding cluster variety. The
result of this chapter makes Fomin, Pilyavsky, Thurston, and Shustin’s correspond-
ence more geometrical and less mysterious.

Chapter 30, by İsmail Özkaraca and Muhammed Uludağ, is concerned with
dynamics and measure theory. It is titled Deformations of Lebesgue’s measure on
the boundary of the Farey tree. Based on joint work between the second author and
Hakan Ayral, the authors study deformations of the Lebesgue measure on the inter-
val .0; 1/. The latter is seen as a measure on the boundary of the Farey tree realized
in the usual way in the hyperbolic plane: the vertices of this tree are arranged using
an operation on the rationals in .0; 1/ where the tree-structure is a result of using
an “addition” which assigns to two irreducible rational fractions a fraction whose
numerator is the sum of the numerators and whose denominator is the sum of the
denominators. The measures obtained on the boundary of the Farey tree appear then
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as deformations of the Lebesgue measure using two involutions which the authors
call K and .ج The authors prove that these new measures are singular with respect
to Lebesgue’s measure and they compute special values of their cumulative distribu-
tion functions. It turns out that these measures possess a subtle symmetry involving
an outer automorphism of the group PGL.2;Z/, which was introduced by Joan Dyer
in the late 1970s and which induces an involution of the real line that preserves the
set of quadratic irrationals, permuting them in a non-trivial way and commuting with
the Galois action on them. Dyer’s outer automorphism conjugates the Gauss contin-
ued fraction map to the so-called Fibonacci map and it has other interesting features.
The properties that Özkaraca and Uludağ obtain, together with experimental data they
provide, show that these measures constructed on the boundary of the Farey tree have
an arithmetic significance.

The next three chapters are on algebraic geometry, with relations with mathemat-
ical physics.

Chapter 31, by Noémie Combe, Yuri Manin and Matilde Marcolli, is titled Bira-
tional maps and Nori motives. The theory of Nori motives, introduced by Modhav
Nori, is an approach to the theory of mixed motives. The latter is a conjectural abelian
tensor category (whose existence was conjectured by Beilinson) taking values on all
varieties, which is related to several conjectures in algebraic geometry. Nori’s ori-
ginal writings in this domain consist of a set of unpublished notes of lectures given at
Bombay’s TIFR and at the University of Chicago. The theory has been later developed
from different points of view by several authors including Huber, Ayoub, Kontsevich,
Connes, Marcolli, Manin, Levine and others. Nori motives appear in various domains
of algebraic geometry, in particular in geometries in characteristic 1, in the the-
ory of persistence formalism, in the study of the absolute Galois group, and in the
context of Kontsevich’s conjectures on the Grothendieck–Teichmüller group intro-
duced by Drinfeld and Ihara (cf. Kontsevich’s Operads and motives in deformation
quantization, 1999). In the recent monograph Periods and Nori motives by A. Huber
and S. Müller-Stach (2017), this theory was developed systematically and studied
as a universal (co)homology theory of algebraic varieties or schemes in the sense
of Grothendieck. In Chapter 31, Combe, Manin and Marcolli present a sketch of an
approach to the problems of equivariant birational geometry developed by Kontsevich
and Tschinkel, in which the Burnside invariants were introduced, making explicit the
role of the Nori constructions in the latter setting.

Chapter 32, by Alexander Varchenko, is titled Dwork-type congruences and
p-adic KZ connection. The Knizhnik–Zamolodchikov (KZ) equations are differential
equations that appear in conformal field theory, representation theory and enumerative
geometry. In a previous work (Arrangements of hyperplanes and Lie algebra homo-
logy, 1991), Varchenko, together with V. Schechtman, showed that the solutions of
the KZ equations take the form of multidimensional hypergeometric functions. In this
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chapter, Varchenko discusses analogues of hypergeometric solutions of these equa-
tions in a setting where a p-adic field replaces that of the complex numbers. In doing
so, he develops new matrix Dwork-type congruences for Hasse–Witt matrices of KZ
equations.

Chapter 33, by Toshitake Kohno, is titled Temperley–Lieb–Jones category and the
space of conformal blocks. In this chapter, Kohno starts by reviewing the relationship
between homological representations of the braid groups, that is, the action of these
groups on the homology of abelian coverings of certain configuration spaces, and the
monodromy representations of the KZ connection. This leads to a topological method
for computing the monodromy of the space of conformal blocks. Using this method,
the author shows that there is an isomorphism between the space of conformal blocks
and the space of morphisms of the Temperley–Lieb–Jones category which is equivari-
ant under the action of the braid group. As a result, he recovers the unitarity of the
braid group action on the space of conformal blocks by means of the positivity of the
Markov trace.

Chapter 34, by Sumio Yamada and the present author, is titled On the timelike
Hilbert geometry of a simplicial simplex. Timelike geometry is a metric geometry
developed by Herbert Busemann in his paper Timelike spaces (1967). The theory
of timelike spaces is a generalization of Riemannian geometry in which the quad-
ratic form defining the metric infinitesimally is not required to be positive definite.
Busemann introduced this theory as a metric setting for general relativity. In the
axioms of timelike spaces, one starts with a topological space equipped with two
basic objects: a distance function, which plays the role of the indefinite metric, and
a partial order relation <. This order relation corresponds to the causality property
of the space-time of relativity theory. (One thinks of the relation x < y as meaning
that y is in the future of x.) In a timelike space, the distance between a point and
a second one is defined only in the case where the second point is in the future of
the first one. Triples of points x; y; z such that x < y and y < z satisfy the reverse
triangle inequality (called time inequality): d.x; z/ � d.x; y/C d.y; z/. The motiv-
ation comes again from the theory of relativity, where triples of point satisfying the
causality relation are subject to the reverse triangle inequality. Busemann’s theory of
timelike spaces is parallel to the one called “chronogeometry”, which was developed
at about the same time by A. D. Alexandrov in Russia.

From the purely mathematical viewpoint, it is natural to ask what are the ana-
logues in timelike geometry of the usual notions, properties and results that are known
in classical metric geometry. For instance, we know that there are timelike ana-
logues of the classical Funk and Hilbert geometries associated with convex subsets
of n-dimensional Euclidean space, of the n-sphere, and of the hyperbolic n-space.
As a matter of fact, in the timelike setting, one rather talks about “exterior” Funk and
Hilbert geometries, rather than Funk and Hilbert geometries. Yamada and myself have
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expanded these theories, in the paper Timelike Hilbert and Funk geometries (2019).
Several natural questions arise in the timelike setting, and among them the exist-
ence of analogues of the rigidity results that hold for the classical Funk and Hilbert
geometries. For instance, a well-known result (due to Busemann) says that in the
classical Hilbert geometry, a convex set equipped with a Hilbert metric is isometric
to a finite-dimensional vector space if and only if the underlying convex set is a sim-
plex. In Chapter 34, we study an analogous question in the timelike spherical Hilbert
setting, that is, we study the exterior Hilbert geometry of the union of two disjoint
antipodal simplices on the sphere. This question of characterizing the exterior Hilbert
geometry of the union of two disjoint antipodal spherical simplices arose naturally
after we noticed (in the paper mentioned above) that the exterior Hilbert geometry of
a union of two disjoint antipodal geometric discs in the sphere is the familiar de Sitter
geometry.

The last three chapters of this volume are concerned with philosophy of math-
ematics. Topics like those that are covered in these three chapters, that constitute the
culmination of the book, reflect an important aspect of the discussions I have regularly
with Norbert.

Chapter 35 by Victor Pambuccian, is titled The single intuition of a move of time.
The author discusses Brouwer’s claim that mathematics, in its development, needs
only the basic intuition of time. In particular, it does not need an intuition of space.
More generally, Brouwer stated that “the only a priori element in science is time.”
This was against Kant’s view on the “subjective constitution of our mind”, which
is based on two forms of intuition, time and space. Pambuccian explains that the
arguments that Brouwer presents against the validity of a spatial intuition playing a
major role in the foundations of mathematics stems from physics, in particular from
the existence of spaces of constant curvature that are different from Euclidean space.
At the same time, the author examines the role played by geometry in Brouwer’s
philosophical work, and in particular in his intuitionistic approach to mathematics.

Chapter 36, by Arkady Plotnitsky, is titled Continuity and discreteness, between
mathematics and physics. The subject is classical; indeed, the reader might know that
the notions of continuity and discreteness were thoroughly discussed by mathem-
aticians, physicists and philosophers in Greek antiquity, that is, long before the rise
of modern topology and the definitions that are given to these notions in terms of set
theory. The author’s treatment of this subject is very fresh, and it sheds a new light on
the fundamental problems of the philosophy of science.

Plotnitsky, in this chapter, elaborates on the place of discreteness and continuity
in modern mathematics and physics, especially in light of the advent of new theories
like quantum physics. This discussion is also the occasion for the author to reflect
on the more general question of the relation between mathematics and physics, and
in particular on the limitations of the mathematical representation of nature in mod-
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ern physical theories like quantum electrodynamics, quantum mechanics, relativity
and quantum field theories. While he discusses the introduction of probability theory,
of infinite-dimensional Hilbert spaces and of non-commutative algebra in quantum
mechanics and quantum field theories, he addresses the more general question of the
use of mathematical thinking and its limitations in the description of nature, stress-
ing nevertheless the fact that mathematics and physics have always been connected.
In doing so, he develops a new point of view on the relationship between reality
and representation, both in mathematics and physics. In particular, he introduces two
philosophical notions, that of “reality without realism” and that of “ideality without
idealism”. The important philosophical questions of “what is reality” and “what is
being” are also addressed.

Part of the discussion is based on an analysis and an original interpretation of ideas
of prominent mathematicians and physicists who were also philosophers, including
Riemann, Poincaré, Einstein, Weyl, Grothendieck, Dirac, Schrödinger and others. At
the same time, the author comments on important passages from Riemann’s Habil-
itation lecture, On the hypotheses that lie at the foundation of geometry, a piece of
literature which, in Plotnitsky’s words, revolutionised the mathematical foundations
of spatiality and geometry. He emphasizes in particular the places where Riemann
talks about the reality of space and about the discrete vs. the continuous (and Plot-
nitsky points out the fact that the idea, emphasized by Grothendieck, among others,
that the continuous may serve as an approximation of the discrete, rather than the
other way around, originates in a remark by Riemann), actualizing these passages
with comments by later authors, including Heisenberg, Grothendieck and others. The
notions of space, determinism, causality, and the infinitely small (which the author
prefers to call “immeasurably small”) are discussed. Plotnitsky also comments on
passages from Einstein’s work Physics and reality and on the philosophical debates
between Einstein and Bohr concerning the usage of mathematics (algebra, geometry,
probability) in the study of nature. Thom’s ideas on science which were against the
stream, and in some places revolutionary, are highlighted. Philosophical comments
by Grothendieck, Cartier and others involving the roles of the motivic Galois group
in renormalization and QFT, of that of the cosmic Galois group, and of the “symmet-
ries with geometric origin” pointed out by Connes and Marcolli, are also included
in the debate. An interesting distinction is made between Plato’s philosophy and
mathematical Platonism, the latter being, according to the author, a twentieth-century
invention. The reader interested in such ideas may also want to read Plotnitsky’s
recent book Reality without realism: Matter, thought and technology in quantum
physics (Springer, 2021).

Chapter 37, by Stelios Negrepontis, is the last chapter of this book. It is titled
Zeno’s arguments and paradoxes are not against motion and multiplicity but for the
separation of true Beings from sensibles. I would like to linger a bit on this chapter.
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Let me first recall who Zeno is.
Zeno of Elea (c. 490–430 BC) is a Presocratic Greek philosopher who is known

through accounts of Plato, Aristotle and their commentators, mainly Proclus and
Simplicius. According to Diogenes Laërtius’ Lives of the eminent Philosophers,
Aristotle considered that Zeno was the inventor of dialectic, the art of asking ques-
tions and defending successively opposite theses with the aim of finding the truth.
At the heart of his speculations are his theories on the infinite, the unlimited and
the infinitely divisible. According to Aristotle (from his Metaphysics), Zeno was also
interested in the nature of the line, whether it is a collection of points or not – an
important subject of discussion at Plato’s Academy.

Zeno is famous for his arguments and paradoxes which were reported on mainly
by Plato in the Parmenides and in other dialogues, by Aristotle in the Physics, and
later by Simplicius in his Commentaries on Aristotle’s Physics. One of these para-
doxes, known under the name Achilles and the Tortoise, involves Achilles, who was
known to be a very fast runner, and a tortoise he is chasing. The argument says that it
is impossible for Achilles to overtake a turtle. Indeed, while he is running to the point
where the tortoise is at a certain moment, the tortoise has continued to move forward,
and so on, so that the tortoise will always be ahead of Achilles. Another paradox
involves the sound made by falling grains of millet. The problem originates in that,
when falling to the ground, the content of a bushel of grain produces noise, while
the fall of each individual grain produces no noise. This poses several problems at the
same time: Oneness/Multiplicity, Discreteness/Continuity, Motion/Stillness, Theory/-
Experience, and there are others. Some paradoxes concern the numbering of infinities,
and there are also others. These paradoxes have fascinated scientists and common
people for millennia. According to Plato’s Parmenides, the paradoxes were meant to
give support to Zeno’s teacher, the great philosopher Parmenides (c. 520–400 BC),
defending his basic philosophical thesis saying that everything is a single unified and
unchanging whole (“the way of truth”), and that all apparent change and multiplicity
is merely an illusion (“the way of opinion”). Parmenides’ theories reached us through
(a very substantial) fragment of a poem he wrote, whose original title is unknown and
which is known by the name On Nature.

Modern commentators generally consider that Zeno’s arguments and paradoxes
are meant to show the impossibility of physical motion and multiplicity, in accordance
with Parmenides’ theories.

As Plato describes in his dialogue Parmenides, Zeno’s “Basic Argument” entails
the simultaneous presence of a variety of dyads of opposite properties, such as dis-
similarity and similarity, infinite and finite, many and one, great and small, motion
and rest. A common feature of modern interpretations is that Zeno meant these dyads
of opposing properties to be self-contradictory, so that no entity whatsoever can sat-
isfy simultaneously these properties. This is what Negrepontis calls the “standard
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interpretation of Zeno’s Basic Argument”, namely, that the compresence of these
opposites properties is a formal contradiction, and this contradiction shows the part-
less Oneness of the true Being.

In Chapter 37, Negrepontis offers a radically new interpretation of Zeno’s para-
doxes. Based on a new interpretation of ancient sources, including Plato, Aristotle,
Eudemus, Proclus, Simplicius and others, he explains that the coexistence of opposite
properties is most definitely not excluded, but on the contrary is specifically satisfied
by Zeno’s true Being. In fact, this coexistence of opposites in the true Being is pre-
cisely what makes it different from the sensible entities. This analysis dismantles
the standard interpretation of Zeno’s basic arguments. It shows that Zeno means to
help his teacher Parmenides, not by showing that physical change and multiplicity
are impossible, but that the sensible entities (the Parmenides way of opinion) are dif-
ferent and inferior to the true Being (the Parmenides way of truth), because they are
characterized by change only without permanence, and by multiplicity only, without
Oneness, while a true Being is changeless as it changes, and is One as it is infinitely
Many, in fact a self-similar and not a partless One.

Negrepontis’ interpretation of Zeno’s arguments and paradoxes is based (a) on
his prior interpretation of Plato’s intelligible Being, as the philosophical analogue of
a dyad of lines in periodic anthyphairesis, and (b) on several arguments showing the
close connection of Plato’s intelligible Being with Zeno’s true Being, including the
identification of both with the so-called indivisible lines and the rejection of both by
Aristotle in his work Physics, for employing the (unacceptable to him) actual infin-
ite. It turns out that Zeno’s paradoxes were inspired by the fundamental Pythagorean
mathematical discovery of incommensurability of the diameter to the side of a square,
and its proof, using the method of infinite anthyphairesis, “finitized” by the conserva-
tion of application of areas/Gnomons. It also turns out that Plato’s intelligible Being
was greatly influenced by Zeno’s true Being, modified by Theaetetus’ further funda-
mental discoveries on general quadratic incommensurabilities, including his change
from the conservation of application of areas to the Logos Criterion.

It may be useful to recall that Zeno, Plato, Aristotle, Eudemus, Proclus, Simplicius
and several other philosophers from ancient Greece were fully aware of the mathem-
atics of their epoch, discussing important mathematical problems in a language which
is obviously different from today’s language, but where the fundamental ideas are the
same as ours. The reading and commentary of the texts and fragments of Ancient
Greece by someone of Negrepontis’ stature, at the same time mathematician and his-
torian of Greek Mathematics – probably the person who has contributed most to our
understanding of the mathematics in Plato’s writings – is always a refreshing draught
of air, both for mathematics and for the philosophy of science.

The reader interested in these questions of philosophy of mathematics may also
want to read the chapter by Farmaki and Negrepontis, titled “The Paradoxical Nature
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of Mathematics”, in the volume dedicated to V. Turaev, published in the same series
(EMS Publishing house, 2021). The anthyphairetic reasoning used by Plato in his
philosophy is also discussed in the chapter “Plato on Geometry and the Geometers”
by Negrepontis in the book Geometry in history which I co-edited with S. G. Dani
(Springer, 2019).

Finishing this Introduction, I feel a bit nostalgic, as at a mathematics conference;
it’s like a family gathering that is ending.

Strasbourg, February, 2023
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Weixu Su, Lüping Jiang and Norbert A’Campo, Conference on group actions, Sanya, December
17, 2014

April 27, 2015, Norbert’s house at Witterswil, with students and friends
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French–Japanese workshop on Teichmüller spaces and surface mapping class groups, Stras-
bourg, June 4, 2015
First row: Krishnendu Gongopadhyay, Athanase Papadopoulos, Lizhen Ji, Ken’ichi Ohshika,
N. N.; Second row: Darshana Prajapati, Valentina Disarlo, Elena Frenkel, Sumio Yamada; Third
row: Norbert A’Campo; Firat Yasar, Jean-Marc Schlenker, Hideki Miyachi, Nariya Kawazumi;
Fourth and fifth row: Vincent Alberge, Hengnan Hu, Yusuke Kuno, Gwénaël Massuyeau,
Takuya Sakasai, Javier Aramayona, Andres Sambarino

S. J. Dani, Jyotsna Dani, Noémie Combe, Norbert A’Campo, Toshikazu Sunada, Sumio
Yamada. Strasbourg, Conference “Geometry in history,” June 11, 2015
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From left to right: Alena Zhukova, Brijesh Kumar Tripathi, Ivan Ismestiev, Olga Kharlampov-
ich, Athanase Papadopoulos, Kalmesh Kumar Dubey, Norbert A’Campo. On the Ganga river
at Varanasi, Winter school on Finsler geometry and applications, Banaras Hindu University,
December 8, 2018

Norbert A’Campo, Athanase Papadopoulos, Sumio Yamada, Oberwolfach (Research in pairs
program), October 16, 2021
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Bob Penner, Norbert A’Campo, Athanase Papadopoulos, Strasbourg, September 8, 2017

Athanase Papadopoulos, Xenia Semenova, Yuri Manin, Norbert A’Campo, Strasbourg, Septem-
ber 13, 2019
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Norbert A’Campo, 2015

Basel, Leonhard Euler’s house, in Riehen (Basel), Krishnendu Gongopadhyay, Norbert
A’Campo, Annette A’Campo, Ken’ichi Ohshika, Yoshiko Ohshika, March 2022
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Strasbourg, Hôtel de Ville (City Hall) reception celebrating Norbert’s 70th birthday. Norbert
A’Campo, Annette A’Campo, Athanase Papadopoulos

Norbert and Annette A’Campo, Mittag-Leffler Institut, February 2015
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May 22, 2020, The Julier Pass in the Swiss Alps

Norbert at his home in Witterswil, October 4, 2022. The figure is a representation of a so-called
“wall crossing” between singularities. This figures, engraved in the marble, illustrates a result
observed by Viro on Arnol’d’s modulo 8 congruence of the number of ovals. On the left, the
picture gives four odd ovals, on the right 4 even ovals. The difference is 8, as it should be. The
two level sets are separated by a wall crossing. This singularity is called E8.


