
Chapter 1

Introduction

Arithmetic analogues of ordinary differential equations were introduced in [6]. The
role of functions of one variable t was played by elements of the completed valuation
ring R of the maximal unramified extension of Qp . The role of the derivation d

dt
was

played by the p-derivation ıp D ı W R! R defined by

ıa WD
�.a/ � ap

p
; a 2 R;

where � W R ! R is the unique Frobenius lift on R. One interpreted ı as an “arith-
metic differentiation” with respect to the “arithmetic direction” p. This theory was
successfully applied to a series of problems in Diophantine geometry [7–10, 13]. For
example a special case of the main results of [13] states that for the modular curve
X WD X1.N / over R (with N � 4 coprime to p) and an elliptic curve E over R
if ‚WX ! E is any surjective morphism then the intersection the CL-locus of X
with the inverse along ‚ of any finite rank subgroup of E.R/ must be finite. This is
morally done by producing interesting homomorphisms  WE.R/! R and showing
that CL \ ‚�1.Ker. // is finite where CL is the CL-locus of canonical lift points
(which are the analogues, in the local setting, of CM points). The functions  are
arithmetic versions of Manin maps (“ı-characters”) of order 2 while the theory of
“ı-modular forms” provides functions that vanish on CL. The ı-characters, as well
as the ı-modular forms, are basic examples of arithmetic ODEs of order � r where
the latter are defined as R-valued functions on sets of R-points of schemes which are
locally given, in the Zariski topology, by restricted power series in the p-derivatives
ıiaj of the affine coordinates aj of the points with i � r . In particular, this theory
only applies to unramified settings and concerns a single Frobenius lift.

In this memoir, we describe a significant enhancement of the foundational theory
of arithmetic differential equations. On the one hand, for any prime element � in
a Galois extension of Qp , we consider the ramified setting R� WD RŒ��, where the
elements of R� are viewed as analogues of functions of several variables. Also, we
will consider several Frobenius lifts ��;1; : : : ; ��;n on R� and their corresponding
�-derivations, ı�;i W R� ! R� ,

ı�;ia WD
��;i .a/ � a

p

�
; a 2 R� ; i 2 ¹1; : : : ; nº;

leading to an arithmetic PDE theory. We will present a series of applications. As an
example for n D 2 and E an elliptic curve over R� , we produce a genuinely new
homomorphism  WE.R�/ ! R� which is an order 1 arithmetic PDE analogue of
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a Manin map, for which we can prove the following finiteness theorem replacing
CL with the locus of quasi-canonical lifts considered in [20]. For an open set X �

X1.X/R�
, denote by QCL.X.R�// the set of quasi-canonical lift points in X.R�/

i.e., points corresponding to ordinary elliptic curves whose Serre–Tate parameter is a
root of unity. We prove the following finiteness result (cf. Corollary 7.69).

Theorem 1.1. Consider a surjective morphism of R� -schemes‚ W X1.N /! E and
denote by ‚R�

W X1.N /.R�/! E.R�/ the induced map. There exists an open set
X � X1.N / with non-empty reduction mod � such that for all except finitely many
cosets C of Ker. / in E.R�/ the set QCL.X.R�// \‚�1

R�
.C / is finite.

As a further application we will show that the map  above (and other maps
similar to it) satisfy a remarkable “Reciprocity theorem” as follows. Let E0 be an
ordinary elliptic curve over R�=�R� . For every ˛; ˇ 2 R� with absolute value less
than p� 1

p�1 let E˛ and Eˇ be the elliptic curves over R� with reduction E0 and with
logarithms of the Serre–Tate parameters equal to ˛ and ˇ respectively. Furthermore,
let P˛;ˇ 2 Eˇ .R�/ and Pˇ;˛ 2 E˛.R�/ be the points whose elliptic logarithms equal
˛ and ˇ, respectively. Finally, let  ˛ and  ˇ be the corresponding arithmetic PDE
Manin maps of order 1 attached to E˛ and Eˇ , respectively. The Reciprocity theo-
rem for our arithmetic Manin maps referred to above is the following statement (cf.
Theorem 7.44).

Theorem 1.2. The following equality holds,

 ˇ .P˛;ˇ /C  ˛.Pˇ;˛/ D 0:

1.1 Background

The present work is essentially self-contained. However, for convenience, we explain
its background in what follows.

As already mentioned above, a theory of arithmetic ordinary differential equations
(ODEs) was initiated in [6] and had a series of Diophantine applications; cf. [6–8,
13]. In particular, in [6] arithmetic analogues of the classical Manin maps [27] were
constructed and in [6, 8] arithmetic analogues of Manin’s theorem of the kernel were
proved. We recall that, for a function field F , the classical Manin maps are F -valued
non-linear differential operators of order 2 defined on the set of F -rational points of
an abelian F -variety. Similarly, the arithmetic Manin maps in [6] had order 2 and
were defined on the set of points of an abelian variety over a p-adic field. Other basic
ODEs were shown to have arithmetic analogues. This is the case for Schwarzian-type
ODEs satisfied by classical modular forms, cf. [3, 9] and [10, Chapter 8] where a
theory of differential modular forms was developed.
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In the framework of [6, 10] the only solutions of arithmetic ODEs that were
defined were “unramified solutions” i.e., solutions (with coordinates) in the comple-
tion R of the maximum unramified extension of Zp . Subsequently, the ı-overconver-
gence machinery in [12, 14] allowed one to define “ramified solutions” to the main
arithmetic ODEs of the theory, i.e., solutions in the ring of integers Ralg of the alge-
braic closure Kalg of K WD RŒ1=p� and sometimes even in the ring of integers Cı

p of
the complex p-adic field Cp .

A theory of arithmetic PDEs with two “directions” one of which was arithmetic
and the other geometric was then developed in [17, 18]. This theory combined an
arithmetic differentiation ıp in the “arithmetic direction p” with usual differentiation
ıq WD

d
dq

with respect to a “geometric direction” defined by a variable q. The two
operators ıp and ıq were viewed as acting on the power series ring RJqK and solu-
tions were well defined (and extensively studied) in this ring. A somewhat surprising
outcome of [15] was that, in this arithmetic PDE context, analogues of Manin maps
exist that have order 1 (rather than 2) and interesting interactions were found between
the order 2 ODE Manin maps (both arithmetic and geometric) and the newly discov-
ered order 1 PDE Manin maps. In some sense the existence of order 1 Manin maps
was an effect of the arithmetic direction p and the geometric direction q “conspiring”
to create lower order Manin maps. In [18] a theory of differential modular forms in
this setting was developed. This version of the theory was an “unramified theory” in
the sense that solutions were defined in RJqK and did not make sense in RalgJqK.

It is reasonable instead to hope for a “purely arithmetic” PDE theory i.e., a PDE
theory in which all the directions are “arithmetic.” Along these lines a theory of arith-
metic PDEs with n � 2 arithmetic directions was developed in [4, 16] in which n
arithmetic differentiation operators were attached to n distinct prime integers. In this
version of the theory, the solutions of arithmetic PDEs were only defined in number
fields that were unramified at the primes in question. Arithmetic Manin maps were
constructed in this context using a technique introduced in [16] called analytic con-
tinuation between primes. The order of the arithmetic Manin maps in this setting was
2n � 4; hence, in some sense, the primes involved acted as if they obstructed each
other in the process of creating Manin maps.

There is a basic version of the theory that is missing from the above series of
approaches, namely a purely arithmetic PDE theory where the several arithmetic
differentiations are all attached to one fixed prime p. For such a theory to be rel-
evant one needs to make sense of “ramified solutions,” i.e. of solutions in Ralg. It
is the aim of the present work to systematically develop such a theory and provide
new applications. We have already made clear in the introduction that tangible Dio-
phantine applications will come out of this enhancement. However, there is even
more. Additionally, certain ODE versions of the PDEs appearing in classical Rie-
mannian geometry related to Chern and Levi-Civita connections have been developed
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(cf. [11]). The fundamental framework we describe here will have ramifications in
that theory as well, and will be explored in upcoming work.

1.2 Framework of this memoir

Our starting point is the observation that in the ramified p-adic world one should
envision not one but many arithmetic directions reflecting the fact that the absolute
Galois group of Qp does not have one but several (in fact one can take 4) topological
generators (cf. [22]). These topological generators can be chosen to be Frobenius
automorphisms of Qalg

p ; cf. Definition 2.3. One can then develop the theory starting
from an arbitrary finite collection �1; : : : ; �n of Frobenius automorphisms of Kalg.
Remarkably this approach, combined with the ı-overconvergence technique in [12,
14], allows one to define solutions to our equations in Ralg. As an application we will
again construct arithmetic Manin maps which (as in [17] but unlike in [16]) have order
1; so the various arithmetic differentiation operators at p conspire, again, to create
lower order arithmetic Manin maps. On the other hand for n D 2 one can introduce a
remarkable order 2 arithmetic PDE Manin map that can be viewed as the “Laplacian”
of our context. This is very different from the order 4 arithmetic Laplacian in the
context of [16]. An arithmetic PDE version of the theory of differential modular forms
in [3, 9, 10] will also be developed in this memoir and a series of new “purely PDE”
phenomena will be put forward.

We summarize our discussion above in the following table. Here Npr below is the
number of primes involved, Nari is the number of arithmetic directions, and Ngeo is
the number of geometric directions.

Reference Npr Nari Ngeo Ramified solutions defined
[6] 1 1 0 NO
[12] 1 1 0 YES
[17] 1 1 1 NO
[16] n n 0 NO

This work 1 n 0 YES

1.3 Terminology

In this memoir, unless otherwise stated, all rings will be commutative with identity.
A morphism of Noetherian rings will be called smooth if it is of finite type and is 0-
smooth in the sense of [28, page 193]. Throughout this memoir we fix an odd prime
p 2 Z and for any ring S and any Noetherian scheme X we denote by bS and bX
the respective p-adic completions. The superscript “alg” will mean algebraic closure.
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The superscript “ur” will mean maximum unramified extension. By an elliptic curve
over a ring we mean an abelian scheme of relative dimension one. There are two
contexts in which the word “ordinary” appears in this memoir: one as in “ordinary
versus partial differential equation”; and the other as in “ordinary versus supersingular
elliptic curve.” To avoid confusion we will always say “ODE” instead of “ordinary”
in the first situation. Also, we will often use “ODE” and “PDE” as adjectives as in
“ODE arithmetic Manin maps,” “PDE differential modular forms,” etc.

1.4 Main results

In what follows we explain some of our main results including the previously men-
tioned theorems in more context. For the precise definitions of our concepts we refer
to the body of the memoir. For simplicity we assume, for the rest of this introduction,
that the number of Frobenius automorphisms is n D 2. Some of the results below
have variants that will be proved for arbitrary n.

Let… be the set of all prime elements � in all finite Galois extensions of Qp . With
R D cZur

p and K D RŒ1=p� and � 2 … as above let R� WD RŒ�� and K� WD K.�/.
Recall from [6] that a �-derivation on a flat R� -algebra A is a map ı� W A ! A

such that the map � W A! A defined by �.x/ D xp C �ı�.x/ is a ring homomor-
phism which is then referred to as a �-Frobenius lift. We fix a pair ˆ D .�1; �2/ of
Frobenius automorphisms of Kalg; the automorphisms �1; �2 induce �-derivations
on R� . For any smooth scheme X over R� we will define a sequence of p-adic for-
mal schemes J r�;ˆ.X/ called the partial �-jet spaces of X . The ring of functions
on J r�;ˆ.X/ will be referred to as the ring of (purely) arithmetic PDEs on X order
� r (cf. Definition 2.25). We will then define its subring of totally ı-overconvergent
elements (cf. Definition 2.28). There is a natural action of �1; �2 on the colimit
as r ! 1 of these rings. Every arithmetic PDE f on X defines a map of sets
fR�

W X.R�/! R� . If f is totally ı-overconvergent then the map fR�
extends to a

map of sets f alg WD f
alg
R�

W X.Ralg/! Kalg and the preimage of 0 under this map is
the set of solutions in Ralg of the arithmetic PDE f .

Let E be an elliptic curve over R� . We define a partial ı� -character of order
� r on E to be an arithmetic PDE of order � r which, viewed as a morphism
J r�;ˆ.E/!

cGa, is a group homomorphism; cf. Definition 3.1. Extending terminol-
ogy from [6] “partial ı� -characters” is the name for our “arithmetic Manin maps” in
our PDE setting. To each E and every basis ! for the 1-forms on E we will attach
two families of elements in R� called (primary, respectively secondary) arithmetic
Kodaira–Spencer classes; cf. Definitions 5.5 and 5.15. Finally, to each partial ı� -
character of E we will attach a Picard–Fuchs symbol which is a formal K� -linear
combination of non-commutative monomials in �1; �2; cf. Definition 3.7. The arith-
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metic Kodaira–Spencer classes appear then as coefficients of the symbols of certain
distinguished partial ı� -characters. Among the primary Kodaira–Spencer classes a
special role will be played by elements denoted by f1; f2 2 R� . One of our main
results will be the following (cf. Corollaries 5.14, 3.9 and Proposition 3.13). This can
be viewed as a simultaneous generalization of the main results in [6] and [12].

Theorem 1.3. Let E be an elliptic curve over R� .

(1) If f1 ¤ 0 or f2 ¤ 0 then the R� -module of partial ı� -characters of order
� r has rank equal to 2rC1 � 3.

(2) If f1 D f2 D 0 then the R� -module of partial ı� -characters of order � r has
rank equal to 2rC1 � 2.

(3) Every partial ı� -character  is totally ı-overconvergent and the induced
group homomorphism alg WE.Kalg/!Kalg can be extended to a continuous
homomorphism  Cp W E.Cp/! Cp . If �1; �2 are monomially independent
then  is uniquely determined by  alg.

The homomorphisms  alg are not given by algebraic (or even by analytic) func-
tions in the coordinates but rather by analytic (in fact rigid analytic) functions in the
coordinates and their various “ı� 0-derivatives” for various � 0’s dividing � . The recipe
for defining these maps involves the notion of total ı-overconvergence which is anal-
ogous to the one in [12] and will be explained in the body of the memoir. Note that
sinceE is projective overR� we haveE.Kalg/DE.Ralg/; however, it is an important
feature of the theory that the images of the maps  alg are not contained in Ralg.

For the case of order � 2 we have more precise results. Consider the subset
M2;C
2 WD ¹1; 2; 11; 22; 12; 21º of non-empty words of length � 2 in the free monoid

with identity generated by the set ¹1;2º. There are 6 primary Kodaira–Spencer classes
of order � 2,

f�; � 2 M2;C
2 : (1.1)

The classes f1; f2; f11; f22 come from the ODE theory [10]. On the other hand
the classes f12; f21 are “genuinely PDE” (not “reducible to ODEs”). The secondary
Kodaira–Spencer classes will be denoted by

f�;� ; �; � 2 M2;C
2 ; � ¤ �: (1.2)

They satisfy f�;� C f�;� D 0. The classes f11;1; f22;2 come from the ODE theory
while the others classes f�;� are, again, “genuinely PDE”. By the theory in [10] the
secondary classes fi i;i , i 2 ¹1; 2º, are known to be expressible in terms of the primary
ones fi as fi i;i D p�ifi ; cf. Remark 7.17. Note that if E has ordinary reduction then
fi D 0 for some i if and only if f� D f�;� D 0 for all � and �, if and only if “the”
Serre–Tate parameter of E is a root of unity; cf. Proposition 7.39. Finally, note (cf.
Theorem 5.33) that there exist �; �1; �2 and a pair .E; !/ over R� such that E has
ordinary reduction and all classes (1.1) and (1.2) attached to .E; !/ are non-zero.
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In case � D p we can be more specific. Indeed, for all .E; !/ over R we have
f1 D f2, f11 D f22 and f1;2 D f11;22 D 0. (In [3] and [10] fi was denoted by f 1

and fi i was denoted by f 2.) In this case we have that fi D 0 if and only if E has
ordinary reduction and is a canonical lift of its reduction; cf. Remark 5.9. Also, if E
comes from a curve EZp

over Zp and has ordinary reduction but is not a canonical
lift then fi i D apfi ¤ 0 where ap 2 Z is the trace of Frobenius on the reduction mod
p of EZp

; cf. Remark 5.27.
Going back to the general situation when � is arbitrary we let N.�/ be the

smallest integer N 2 Z such that for all integers n � 1 we have �n=n 2 p�NZp;
in particular N.p/ D �1. If � D i 2 ¹1; 2º we set �� D �i while for � D ij with
i; j 2 ¹1; 2º we set �� D �i�j . We also set Qf� D pN.�/C1f�. We will prove (see
Corollaries 5.23 and 5.24) the following summary result, which also may be viewed
as a generalization of the main results of [6].

Theorem 1.4. Assume in Theorem 1.3 that f1f2 ¤ 0. The following hold:

(1) For all �; � 2 M2;C
2 there is a unique ı� -character  �;� with Picard–Fuchs

symbol Qf��� � Qf��� C f�;� .

(2) A basis modulo torsion of the R� -module of partial ı� -characters of order
� 1 consists of  1;2.

(3) A basis modulo torsion of the R� -module of partial ı� -characters of order
� 2 consists of the elements  1;2; �1 1;2; �2 1;2;  11;1;  22;2:

Here and in the following by a basis modulo torsion of anR� -moduleM we mean
a family of elements in M inducing a basis of the K� -linear space M ˝R�

K� .
One is tempted to view  11;22 as the “Laplacian” equation in our context while

 12;21 reflects, in some sense, the non-commutation of �1 and �2 and can be viewed
as a “Poisson bracket operator.” In case f1 D f2 D 0 a result similar to Theorem 1.4
will be proved; cf. Corollary 5.14.

The main flavor of our results above is “global on E”. However, by looking at
the completion of E at the origin, one obtains in particular the following integrality
statement; cf. Corollary 5.19.

Theorem 1.5. Let E be an elliptic curve over R� with logarithm
P1

ND1
bN

N
T N ,

bN 2 R� . Let �; � 2 M2;C
2 and let r; s 2 ¹1; 2º be the lengths of the words �; �,

respectively. Assume r � s. Then the following relations hold for all N � 1:

Qf�
��.bN /

N
� Qf�

��.bpr�sN /

pr�sN
C f�;�

bprN

prN
2 pR� : (1.3)

This integrality statement can be viewed as an analogue (for several “conjugates”
of an elliptic curve) of the integrality statement of Atkin and Swinnerton-Dyer for a
given elliptic curve [1, 34].
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The next step in the theory will be to extend some of the theory of ı-modular
forms [10] to the PDE case by defining partial ı-modular forms (whose weights
are Z-linear combinations of non-commutative monomials in �1; �2) and isogeny
covariance for such forms; cf. Chapter 7. We will also attach symbols to isogeny
covariant partial ı-modular forms for weights of degree �2; these symbols are, again,
K-linear combinations of non-commutative monomials in �1; �2.

To state our main result we need to consider the standard modular curve Y1.N /D
X1.N / n ¹cuspsº over R� (with N � 4 coprime to p) and the natural Gm-bundle
B D B1.N / over the Y1.N /; so B classifies pairs consisting of an elliptic curve with
�1.N /-structure and a basis for the 1-forms. Let Bord be the preimage in B of the
ordinary locus in Y1.N /. We will show (cf. Theorems 7.11, 7.13, 7.18, 7.19, 7.34,
Proposition 7.38 and Corollary 7.30) the following characterization of these forms.

Theorem 1.6. The following hold:

(1) The classes f� and f�;� are induced by isogeny covariant partial ı-modular
forms, denoted by f jet

� and f jet
�;� , of weight �1 � �� and ��� � �� , respec-

tively.

(2) There exists c 2 Z�
p such that for every distinct words �;� 2 M2;C

2 of lengths
r; s 2 ¹1;2º, respectively, the symbols of f jet

� and f jet
�;� are equal to c.�� �pr/

and c.ps�� � pr��/, respectively.

(3) The forms f jet
� and f jet

�;� naturally induce totally overconvergent arithmetic
PDEs on B and the induced maps B.Ralg/ ! Kalg restricted to Bord.R

alg/

extend to continuous maps Bord.Cı
p/! Cp .

(4) The form f
jet
1;2 is a basis modulo torsion of the module of isogeny covariant

partial ı-modular forms of order � 1 and weight ��1 � �2.

The forms f jet
� ;f

jet
�;� in the theorem satisfy a series of cubic and quadratic relations

(cf. Theorems 7.18 and 7.19). We will use these relations to determine the Serre–Tate
expansions of the forms involved (cf. Theorem 7.28) which is what, in particular,
leads to the determination of the corresponding symbols in part 2 of the theorem
above. As a consequence of these computations we will derive some explicit formulae
for the values of ı-characters in terms of Serre–Tate parameters. These formulae will
exhibit a rather unexpected antisymmetry property that translates into a Reciprocity
theorem similar to Theorem 1.2 and valid for arbitrary ı-characters �;� where�;� 2
M2;C
2 ; cf. Theorem 7.44 for details and a precise statement. The critical map  in

Theorems 1.1 and 1.2 is the following. For � 2 … and an elliptic curve E over R�
we recall our ı� -character  1;2. The map  in Theorems 1.1 and 1.2 is the induced
group homomorphism

 R�
WD . 1;2/R�

WE.R�/! R� :
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We also note that the proof of Theorem 1.1 utilizes a version of a classic theorem of
Strassman, see Lemma 7.68. It would be immediate to conclude a uniform version of
Theorem 1.1 from a uniform version of Lemma 7.68.

In addition, our considerations above will lead to an explicit description of the
kernel of  alg

�;�;ˇ
in terms of ˇ. This result can be viewed as an arithmetic PDE The-

orem of the kernel analogue of Manin’s theorem of the kernel [27] and extending the
arithmetic ODE results in [6, Theorems A and B] and [8, Theorem 1.6]. This utilizes
an interesting pairing defined as follows.

For �; � of lengths r and s respectively define the Qp-bilinear map

h ; i�;� W K
alg

�Kalg
! Kalg

by the formula

h˛; ˇi�;� D ˇ��˛�� � ˇ��˛�� C ps.˛ˇ�� � ˇ˛��/C pr.ˇ˛�� � ˛ˇ�� /:

The version of the Theorem of the kernel (cf. Theorem 7.42) is as follows.

Theorem 1.7. We have a natural group isomorphism

Ker. alg
�;�;ˇ

/˝Z Q ' ¹˛ 2 Kalg
j h˛; ˇi�;� D 0º:

Note that for Eˇ ordinary with ˇ not a root of unity we have that Ker. alg
�;�;ˇ

/

(which always contains the torsion group of Eˇ .Ralg/) does not reduce to the torsion
group.

Another application of our theory of ı-modular forms is the construction, for
every weight w, of a ı-period map

pw W Y1.N /.R
alg/ss

w ! PNw .Ralg/

where Y1.N /.Ralg/ss
w � Y1.N /.R

alg/ is a natural set of semistable points; cf. Defi-
nition 7.35. The terminology is motivated by the following analogy with geometric
invariant theory. Group actions are replaced, in our setting, with the action of Hecke
correspondences and the “components” of our ı-period maps are given by isogeny
covariant ı-modular forms which should be viewed as analogues of invariant sections
of line bundles in geometric invariant theory. As we shall see the ı-period maps are
rather non-trivial already for w of order 2 and degree 4; cf. Example 7.37. On the
other hand isogeny covariance will imply the following result (cf. Theorem 7.36).

Theorem 1.8. The ı-period maps pw are constant on prime to p isogeny classes.

Next, as in [3,9,10], we will construct certain ‘crystalline forms’ f crys
� ; f

crys
�;� and

prove they are proportional to the forms f jet
� ; f

jet
�;� ; cf. Corollary 7.52. In addition,

we will consider ı-modular forms on the ordinary locus. (Such forms were called
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“ordinary” in [10, Chapter 8] but here we will avoid this term so that no confusion
arises with its use in the ODE/PDE distinction.) Then using a crystalline construction
as in loc.cit. we will completely determine the structure of the spaces of isogeny
covariant ı-modular forms on the ordinary locus for the weights of degree 0 and �2;
cf. Corollary 7.58.

1.5 Leitfaden

In Chapter 2, we begin by discussing Frobenius lifts and Frobenius automorphisms of
Kalg after which we introduce partial ı� -jet spaces which are a PDE analogue of the
ODE �-jet spaces in [6]. In Chapter 3, we introduce and study ı� -characters of group
schemes as well as their Picard–Fuchs symbols. Chapter 4, is devoted to analyzing
these concepts for the multiplicative group Gm. Chapter 5, does a similar analysis for
elliptic curves. Here we introduce and study the arithmetic Kodaira–Spencer classes
f�; f�;� and the ı� -characters  �;� . All the above discussion is made in the context
of an arbitrary number n of Frobenius automorphisms and an arbitrary order r . We
next specialize our discussion of elliptic curves to the case n D r D 2, and we derive
a series of quadratic and cubic relations satisfied by the arithmetic Kodaira–Spencer
classes. Chapter 6, summarily explains how all the above theory can be developed
in a “relative setting;” this is necessary for Chapter 7 where we introduce partial ı-
modular forms which are a PDE version of the ODE concept introduced in [9]. The
relative arithmetic Kodaira–Spencer classes define such forms. We then introduce
and compute the Serre–Tate expansions of these forms, we construct our ı-period
maps, and we derive the Theorem of the kernel and the Reciprocity theorem for arith-
metic Manin maps. We continue by discussing the crystalline side of the story and
forms on the ordinary locus, and we present a construction of finite covers defined
by ı-modular forms (cf. Theorem 7.64) which is then used to prove our main Dio-
phantine application to modular parameterizations (cf. Corollary 7.69). We end our
Chapter 7 by introducing a PDE version of the ODE ı-Serre operators in [3,10]; these
PDE ı-Serre operators lead to genuine (not arithmetic) PDEs satisfied by our arith-
metic PDEs and can be viewed as Pfaffian systems of equations on the arithmetic jet
spaces. The memoir ends with an Appendix where we briefly discuss a more general
theoretical framework in which commutation relations and inversion of Frobenius
lifts are “built into” our jet spaces. We will provide there some simple computations
illustrating the complexity of this more general framework.


