
Chapter 2

Purely arithmetic PDEs

2.1 Frobenius automorphisms

We start with the following standard definition.

Definition 2.1. By a Frobenius lift for an A-algebra ' W A! B we understand a ring
homomorphism � WA!B such that the induced homomorphism � WA=pA!B=pB

equals the composition of the induced homomorphism ' W A=pA! B=pB with the
p-power Frobenius on A=pA. If B D A and ' D 1A we say that � is a Frobenius lift
on A.

For every, not necessarily algebraic, field extensionF �Lwe denote by G.L=F /

the group of all field automorphisms of L that are the identity on F . For every field
L we denote by GL the absolute Galois group G.Lalg=L/, where Lalg is an algebraic
closure of L.

We recall the main setting in [12]. Consider the field of p-adic numbers with
absolute value j j normalized by jpj D p�1. Let Qalg

p be an algebraic closure of Qp ,
let Qur

p be the maximum unramified extension of Qp inside Qalg
p , let K be the metric

completion of Qur
p and letKalg be the algebraic closure ofK in the metric completion

Cp of Qalg
p . We still denote by j j the induced absolute value on all of these fields.

We denote by Zur
p ;Z

alg
p ; R; R

alg;Cı
p the valuation rings of Qur

p ;Q
alg
p ; K; K

alg;Cp ,
respectively. In particular, R WD cZur

p . We set k WD R=pR; so k ' F alg
p .

Remark 2.2. The natural ring homomorphism

Qalg
p ˝Qur

p
K ! Kalg (2.1)

is an isomorphism. Indeed, this map is surjective because by Krasner’s lemma, we
have Kalg WD KQalg

p ; cf. [5, Proposition 5, page 149]. To check that the map (2.1)
is injective write and Qalg

p D
S
Fi with Fi=Qp finite and let F 0i � Fi be the maxi-

mum unramified extension of Qp contained in Fi ; so Fi=F 0i is totally ramified and
Qur
p D

S
F 0i . It is enough to check that Fi ˝F 0

i
K ! Kalg is injective for all i . To

check this note that Fi=F 0i is generated by a root of an Eisenstein polynomial fi
in F 0i Œx�; but every such polynomial is an Eisenstein polynomial in KŒx� and so
Fi ˝F 0

i
K D KŒx�=.fi / is a field, therefore it injects into Kalg.

Definition 2.3. Let L be a subfield of Cp containing Qp . A Frobenius automorphism
of L is a continuous automorphism � 2 G.L=Qp/ such that � induces the p-power
Frobenius on the residue field of the valuation ring of L. We denote by F.1/.L=Qp/

the set of Frobenius automorphisms of L.
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More generally the theory of the present memoir can be developed based on the
set F.s/.L=Qp/ of all continuous automorphisms � 2 G.L=Qp/ such that � induces
the ps-power Frobenius on the residue field of the valuation ring ofLwhere s is some
fixed positive integer; for simplicity we will not consider this more general situation
in what follows.

Note that if � is a Frobenius automorphism ofKalg then � sendsR intoR, induces
the Frobenius lift onR, and induces an automorphism ofRalg (which is however not a
Frobenius lift onRalg in the sense of Definition 2.1). Conversely, every automorphism
� 2 G.Kalg=Qp/ extending the Frobenius lift on R is a Frobenius automorphism of
Kalg. Indeed, for every finite Galois extension L0 of Qp , the field L WD L0K is sent
onto itself by � and the absolute values j j and j�. /j on L have the same restriction to
K, hence must coincide; cf. [25, page 32]; in particular � is continuous and induces
the p-power Frobenius on k.

The set F.1/.Kalg=Qp/ is a principal homogeneous space for the absolute Galois
group GK under the action given by .
;�/ 7! 
� for � 2F.1/.Kalg=Qp/ and 
 2GK .
On the other hand, by the fact that the homomorphism (2.1) is an isomorphism we
immediately get that the restriction homomorphism GK ! GQur

p
an isomorphism

of topological groups and the restriction map F.1/.Kalg=Qp/ ! F.1/.Qalg
p =Qp/ is

a bijection. Note that F.1/.Qalg
p =Qp/ has a purely (topological) group character-

ization as a subset of GQp
; cf. [31, Lemma 12.1.8, page 665]. The elements of

F.1/.Qalg
p =Qp/ are referred to in loc.cit. as Frobenius lifts but adopting that termi-

nology here would conflict with our Definition 2.1.
By the way, the absolute Galois group GQp

is known to have 4 topological gen-
erators one of which is in F.1/.Qalg

p =Qp/; the relations among these topological
generators are also known, cf. [22] or [30, Theorem 7.5.10, page 360]. We say that a
subset of a topological group is a set of topological generators if the subgroup gener-
ated by this set is dense in the group. One can easily see, by the way, that one can find
a set of 4 topological generators of GQp

that is contained in F.1/.Qalg
p =Qp/. We will

not use this observation in what follows. What we will be interested in is the monoid
(rather than the group) generated by our Frobenius automorphisms, as explained in
the next subsection.

2.2 Monomial independence

In what follows monoids will not necessarily be commutative. Let Mn be the free
(non-commutative) monoid with identity generated by the set ¹1; : : : ; nº,

Mn WD ¹0º [ ¹i1 : : : is j l 2 N; i1; : : : ; is 2 ¹1; : : : ; nººI

its elements will be referred to as words, the length j�j of a word � WD i1 : : : is is
defined by j�j D s, 0 is called the empty word and its length is defined by j0j D 0.
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Multiplication is given by concatenation .�; �/ 7! �� and 0 is the identity element.
For all r 2 N [ ¹0º let Mr

n be the set of all elements in Mn of length � r . Set
MC
n WD Mn n ¹0º and Mr;C

n WD Mr
n n ¹0º.

Definition 2.4. A family of distinct elements �1; : : : ; �n in a monoid G with identity
1 is called monomially independent if the monoid homomorphism

Mn ! G; � D i1 : : : il 7! �� WD �i1 : : : �il ; for l 2 N; and 0 7! 1

is injective.

Remark 2.5. Note that in our notation above we have the formula ���� D ��� for
�; � 2 Mn. Note also that if G is a group and �1; : : : ; �n 2 G are monomially inde-
pendent in G then the subgroup of G generated by �1; : : : ;�n is not necessarily freely
generated by �1; : : : ; �n; an example that naturally occurs in our context is given in
Remark 2.9.

The following lemma follows trivially from the well known “algebraic indepen-
dence of field automorphisms” but, for convenience, we provide a proof.

Lemma 2.6. Let L be a field of characteristic zero and let �1; : : : ; �n be monomially
independent elements in G.L=Q/. Let F D F.: : : ; x�; : : :/ be a polynomial with L-
coefficients in the variables x� with � 2 Mn and consider the function f W L! L

defined by
f .�/ D F.: : : ; ��.�/; : : :/; � 2 L:

Let A be a subring of L and assume f .�/ D 0 for all � 2 A. Then F D 0.

Proof. By Artin’s independence of characters, cf. [26, page 283], if A is a monoid
then every family of distinct monoid homomorphisms A!L� isL-linearly indepen-
dent in theL-linear space of all maps A !L. Let A DA n ¹0º. Then by Artin’s inde-
pendence of characters it is enough to check that for distinct vectors e WD .e�/�2Mn

with entries non-negative integers, almost all zero, the maps fe W A! L defined by

fe.�/ WD
Y
�

.��.�//
e� ; � 2 A

are distinct. Assume fe D fe0 and let us show that e D e0. For all integers m 2 Z we
have Y

�

.mC ��.�//
e� D

Y
�

.mC ��.�//
e0� ; � 2 A:

Since L has characteristic zero we have an equalityY
�

.t C ��.�//
e� D

Y
�

.t C ��.�//
e0� ; � 2 A
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in the ring of polynomialsLŒt�. Looking at degrees in t we get
P
� e�D

P
� e

0
�DW d .

Picking out the coefficient of td�1 we getX
�

e���.�/ D
X
�

e0���.�/; � 2 A:

By monomial independence of the �i ’s and, again, by Artin’s independence of char-
acters, the family .��/�2Mn

is L-linearly independent in the L-linear space of maps
A ! L so, since L has characteristic zero, we conclude that e� D e0� for all �.

Example 2.7. In what follows we show that the set F.1/.Kalg=Qp/ of Frobenius
automorphisms of Kalg contains large subsets of monomially independent elements
that remain monomially independent on “small” (abelian) extensions ofK. We recall
some standard constructions from Iwasawa theory; cf. [21]. Let l ¤ p be a prime.
Consider sequences �m 2 Kalg and �lm 2 K with m � 0 such that

�0 D p; �l0 D 1; � lmC1 D �m; �
l
lmC1 D �lm ; m � 0:

Since the polynomial xl
m
� p is Eisenstein overK and �m is one of its roots we have

that the field K�m
WD K.�m/ generated by �m is isomorphic to KŒx�=.xl

m
� p/

and K�m
is Galois over K with cyclic Galois group of order lm generated by the

automorphism �m satisfying �m�m D �lm�m. Define

K.l/ WD
[
m�0

K�m
: (2.2)

Clearly the automorphisms �m are compatible and yield an automorphism �.l/ 2

G.K.l/=K/. For all 
 2 Zl one defines �

.l/

2 G.K.l/=K/ as follows: if 
 � bm
mod lm with bm 2 Z then one lets �


.l/
to be �bm

.l/
on K.�m/. Then the map Zl !

G.K.l/=K/ given by 
 7! �



.l/
is an isomorphism. On the other hand the fields K�m

possess compatible automorphisms extending the Frobenius lift on R and fixing the
�m’s; they induce an automorphism �.l/ on K.l/. One trivially checks that �.l/�.l/
and �p

.l/
�.l/ coincide on all roots of unity in K (and hence on K) and also on all

�m’s; so �.l/�.l/ D �
p

.l/
�.l/ in G.K.l/=Qp/. For each 
 2 B we set �.
/

.l/
WD �




.l/
�.l/ 2

G.K.l/=Qp/, and we let �.
/ 2 F.1/.Kalg=Qp/ be an arbitrary extension of �.
/
.l/

.

Proposition 2.8. The following hold:

(1) �.0/
.l/
; : : : ; �

.p�1/

.l/
are monomially independent in G.K.l/=Qp/. In particular,

�.0/; : : : ; �.p�1/ are monomially independent in G.Kalg=Qp/.

(2) Let 
1; : : : ; 
n 2 Zl be Z-linearly independent. Then �.
1/

.l/
; : : : ; �

.
n/

.l/
are

monomially independent in G.K.l/=Qp/; in particular �.
1/; : : : ; �.
n/ are
monomially independent in G.Kalg=Qp/.
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Proof. We will prove Part 2. Part 1 is proved similarly. Write �i;l WD �
.
i /

.l/
for i 2

¹1; : : : ; nº. Let �D i1 : : : is where i1; : : : ; is 2 ¹1; : : : ; nº and similarly �0 D i 01 : : : i
0
s0

where i 01; : : : ; i
0
s0 2 ¹1; : : : ; nº. Assume

�i1;l : : : �is ;l D �i 0
1
;l : : : �i 0

s0
;l

and let us prove that�D�0. We first note that for all integers j � 0we have �.l/�
j

.l/
D

�
pj

.l/
�.l/; this follows by induction on j . We conclude that �.l/�




.l/
D �

p


.l/
�.l/ for all


 2 Zl ; this equality holds because it holds on every K�m
. Next note that for all

integers i � 1 and for all 
 2Zl we have �i
.l/
�



.l/
D �

pi


.l/
�i
.l/

; this follows by induction
on i . Using the latter equalities we get

�i1;l : : : �is ;l D �

i1

.l/
�.l/ : : : �


is

.l/
�.l/ D �


i1
Cp
i2

C���Cps�1
is

.l/
�s.l/

and similarly for �0, so we get

�

i1

Cp
i2
C���Cps�1
is

.l/
�s.l/ D �



i0
1
Cp


i0
2
C���Cps0�1
is0

.l/
�s

0

.l/:

Since �.l/ has infinite order on K we get s D s0. Since �.l/ has infinite order on K.l/

we get

i1 C p
i2 C � � � C ps�1
is D 
i 0

1
C p
i 0

2
C � � � C ps�1
i 0s (2.3)

in F . We will be done if we prove the following.

Claim. An equality of the form (2.3) implies that ij D i 0j for all j 2 ¹1; : : : ; sº.

The claim can be proved by induction on s. The case s D 1 is trivial. The induc-
tion step follows if we show that the equality (2.3)implies that i1D i 01. Assume i1¤ i 01
and seek a contradiction. Recalling that 
1; 
2; : : : ; 
n are Z-linearly independent
write the left-hand side of (2.3) as a sum

Pn
iD1 ci


i with ci 2 Z and write the right-
hand side of (2.3) as a sum

Pn
iD1 c

0
i
i with c0i 2Z. So ci D c0i for all i . Since 
i1 ¤ 
i 0

1

we get that ci1 � 1 mod p while c0i1 � 0 mod p, a contradiction. This ends the proof
of our claim and hence of our proposition.

Remark 2.9. Note that, in spite of the fact that s1 WD �
.0/

.l/
D �.l/ and s2 WD �

.1/

.l/
D

�.l/�.l/ are monomially independent in G.K.l/=Qp/ we have that the subgroup of
G.K.l/=Qp/ generated by s1 and s2 is not freely generated by s1 and s2; indeed we
have the following relation:

s1.s2s
�1
1 / D .s2s

�1
1 /ps1:
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2.3 �-Frobenius lifts

Throughout the memoir we denote by … the set of all elements � 2 Qalg
p such that

there exists a finite Galois extension E=Qp with the property that � is a prime ele-
ment in OE . Note that … consists exactly of those elements � 2 Qalg

p which are
roots of Eisenstein polynomials with coefficients in Zur

p and for which Qur
p .�/=Qp is

Galois. We have Qalg
p D Qur

p .…/. For any � 2…writeK� DK.�/ and letR� DRŒ��
which equals the valuation ring of K� . We write � 0j� if and only if K� � K� 0 . Note
that Kalg D K.…/. Clearly for � 2 … the field K� is mapped into itself by every
Frobenius automorphism � of Kalg. By continuity of � we have an induced automor-
phism �� W R� ! R� (which we sometimes still denote by �) inducing the p-power
Frobenius on R�=�R� D k.

Remark 2.10. We take the opportunity to correct here a typo in [12]: in the definition
of … of Section 2.1 the exponent “ur” in the condition “Qur

p .�/=Qp is Galois” was
inadvertently dropped.

More generally we will need the following.

Definition 2.11. Let A be an R� -algebra. By a �-Frobenius lift for an A-algebra
' W A! B we understand a ring homomorphism � W A! B such that the induced
homomorphism � W A=�A ! B=�B equals the composition of the induced homo-
morphism ' W A=�A! B=�B with the p-power Frobenius on A=�A. If B D A and
' D 1A we say that � is a �-Frobenius lift on A.

In particular, for every Frobenius automorphism � of Kalg and every � 2 … the
induced automorphism �� of R� is a �-Frobenius lift.

2.4 Rings of symbols

Definition 2.12. Consider a family ˆ WD .�1; : : : ; �n/, �i 2 F.1/.Kalg=Qp/ of dis-
tinct Frobenius automorphisms and let � 2 …. Let Mˆ be the free monoid with
identity on the set ˆ; so we have an isomorphism Mn ' Mˆ, i 7! �i . We define
the ring of symbols K�;ˆ to be the free K� -module with basis Mˆ equipped with
multiplication defined by

�i � � D �i .�/ � �i (2.4)

for � 2 K� , i 2 ¹1; : : : ; nº. If in the above definition we replace K� we obtain a ring
R�;ˆ.

So every element in K�;ˆ (respectively R�;ˆ) can be uniquely written asX
�2Mn

����
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with �� in K� (respectively in R� ). These rings have filtrations “by order” given by
the subgroups:

Kr�;ˆ WD

² X
�2Mr

n

���� j �� 2 K�

³
� K�;ˆ;

Rr�;ˆ WD

² X
�2Mr

n

���� j �� 2 R�

³
� R�;ˆ:

The ring K�;ˆ is a K� -linear space with left multiplication by scalars but, of course,
it is not aK� -algebra. If Endgr.K

alg/ denotes the ring of all group endomorphisms of
Kalg then we have a natural K� -linear ring homomorphism

K�;ˆ ! Endgr.K
alg/; � 7! � alg: (2.5)

Remark 2.13. Note that if �1; : : : ; �n 2 F.1/.Kalg=Qp/ are monomially independent
in G.Kalg=Qp/ then, by Lemma 2.6 (and in fact directly from Artin’s “independence
of characters”) the natural ring homomorphism (2.5) is injective.

Remark 2.14. One can also consider the free ring Zˆ generated byˆwhich we refer
to as the ring of integral symbols; as an abelian group it is the free abelian group with
basis Mˆ. So every element of this ring can uniquely be written as

w D

X
�2Mn

m���; m� 2 Z:

This ring has an order (with non-negative elements defined as those with non-negative
coefficients) and has a filtration “by order” given by the subgroups Zrˆ consisting of
Z-linear combinations of elements �� with � 2 Mr

n. Then for all � 2 R�
� and all

w 2 Zˆ we write
�w D

Y
�2Mn

.��.�//
m� 2 R�

� :

For every w D
P
m��� 2 Zˆ we define the degree of w to be deg.w/ D

P
m�.

2.5 Partial �-jet spaces

For � 2 … let Cp.X; Y / 2 ZŒX; Y � be the polynomial

Cp.X; Y / WD
Xp C Y p � .X C Y /p

p
:

Following [6, 7, 23] a �-derivation from an R� -algebra A into an A-algebra B is a
map ı� W A! B , x 7! ı�x, such that ı�.1/ D 0 and

ı�.x C y/ D ı�x C ı�y C
p

�
Cp.x; y/;
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ı�.xy/ D xp � ı�y C yp � ı�x C � � ı�x � ı�y;

for all x; y 2 A. Given a �-derivation as above and denoting by ' W A ! B the
structure map of the A-algebra B we always denote by �� W A! B the map �.x/ D
'.x/p C �ı�x; then �� is a �-Frobenius lift. If � is a non-zero divisor in B then the
above formula gives a bijection between the set of �-derivations from A to B and the
set of �-Frobenius lifts from A to B .

Definition 2.15. By a partial ı� -ring we understand an R� -algebra A equipped with
an n-tuple .ı�;1; : : : ; ı�;n/ of �-derivations A! A. (We do not assume any “com-
mutation relation” between them.)

Assume we are given a family ˆ WD .�1; : : : ; �n/ 2 F.1/.Kalg=Qp/
n of distinct

Frobenius automorphisms ofKalg. Note that for every � 2… we get an induced tuple
ˆ� D .��;1; : : : ; ��;n/ of (not necessarily distinct) �-Frobenius lifts on R� , called
the restriction of ˆ to R� . We therefore get an induced tuple .ı�;1; : : : ; ı�;n/ of �-
derivations on R� and hence a structure of partial ı� -ring on R� .

Following the lead of [6] we need to consider the following generalization of the
notion of partial ı� -ring.

Definition 2.16. Define a category Prol��;ˆ as follows. An object of this category is
a countable family of p-adically complete R� -algebras S� D .S r/r�0 equipped with
the following data:

(1) R� -algebra homomorphisms 'WS r ! S rC1;

(2) �-derivations ı�;j WS r ! S rC1 for 1 � j � n.

We require that ı�;i be compatible with the �-derivations on R� and with ', i.e.,
ı�;j ı ' D ' ı ı�;j . Morphisms are defined in a natural way. We denote by ��;j W

S r ! S rC1 the corresponding �-Frobenius lifts, defined by ��;j .x/ D '.x/p C

�ı�;jx. Also, for all � WD i1 : : : il 2 Mn and all x 2 S r we set ı�;�x WD .ı�;i1 ı

: : : ı ı�;il /.x/ 2 S
rCl and ��;�x WD .��;i1 ı : : : ı ��;il /.x/ 2 S

rCl .

The objects of Prol��;ˆ are called prolongation sequences (over R� with respect
toˆ orˆ� ). We sometimes identify elements a 2 S r with the elements '.a/ 2 S rC1

if no confusion arises. We sometimes write S� D .S r ;';ı�;1; : : : ; ı�;n/. We denote by
Prol�;ˆ the full subcategory of Prol��;ˆ whose objects are the prolongation sequences
.S r/ such that all S r ’s are Noetherian and flat over R� .

Remark 2.17. (1) If S is a p-adically complete partial ı� -ring whose �-derivations
are compatible with those on R� then the sequence S� D .S r/ with S r D S has
a natural structure of object of Prol��;ˆ with ' the identity and obvious ı�;j . If in
addition S is Noetherian and flat over R� then S� is an object of Prol�;ˆ. The initial
object in Prol��;ˆ (and also of Prol�;ˆ) is the sequence R�

� D .Rr�/ with Rr� WD R� .
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(2) If S� D .S r ; '; ı�;1; : : : ; ı�;n/ is an object of Prol��;ˆ then the ring

lim
!
'

S r

has a natural structure of partial ı� -ring.

Remark 2.18. For every � 0j� and every object S� in Prol�;ˆ the sequence

S�
˝R�

R� 0 WD .S r ˝R�
R� 0/r�0

is naturally an object of Prol� 0;ˆ; cf. [12, Section 4.1].

Remark 2.19. For � D i1 : : : ir 2 Mr
n n Mr�1

n we define the integral symbol:

w.�/ WD 1C �i1 C �i1i2 C �i1i2i3 C � � � C �i1i2i3:::ir�1
2 Zˆ:

For every object S� D .S r/ in Prol��;ˆ, every r � 1, every � 2 Mr
n nMr�1

n and every
a 2 S0 there exists a� 2 S r�1 such that

��;�a D �w.�/ı�;�aC '.a�/I (2.6)

this is trivially proved by induction on r .

Definition 2.20. Consider two families of distinct Frobenius automorphisms ˆ0 WD

.�0
1; : : : ; �

0
n0/ and ˆ00 WD .�00

1 ; : : : ; �
00
n00/ of Kalg. Also let � 2 …. A map of sets

� W ¹1; : : : ; n0º ! ¹1; : : : ; n00º (2.7)

is called a selection map (with respect to .ˆ0; ˆ00; �/) if for all j 2 ¹1; : : : ; n0º we
have that ��;j D ��;�.j /. Consider next an object of Prol�p;ˆ00 ,

S�
D .S r ; '; ı00�;1; : : : ; ı

00
�;n/;

and let � be a selection map as above. One defines the object S�
� in Prol�p;ˆ0 by:

S�
� WD .S r ; '; ı00�;�.1/; : : : ; ı

00
�;�.n0//:

This construction depends only on the restrictions ˆ0
� and ˆ00

� of ˆ0 and ˆ00 to K� .

Motivated by Proposition 2.8, introduce variables denoted by ı�;�yj for � 2 Mn,
� 2 …, j 2 ¹1; : : : ; N º. Fix an integer N and consider the ring R� Œy1; : : : ; yN � and
the rings

J r�;ˆ.R� Œy1; : : : ; yN �/ WD R� Œı�;�yj j � 2 Mr
n; j 2 ¹1; : : : ; N º�b: (2.8)

The sequence J �
�;ˆ.R� Œy1; : : : ; yN �/ WD .J r�;ˆ.R� Œy1; : : : ; yN �// has a unique struc-

ture of object in Prol�;ˆ such that ı�;iı�;�y WD ı�;i�y for all i D 1; : : : ; n. We
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have an induced evaluation map FR�
W RN� ! R� : for .a1; : : : ; aN / 2 RN� we let

FR�
.a1; : : : ; aN / 2 R� be obtained from F by replacing the variables ı�;�yj with

the elements ı�;�aj . Note that the map

J r�;ˆ.R� Œy1; : : : ; yN �/! Fun.RN� ; R�/; F 7! FR�
(2.9)

is not injective in general, even if ˆ is monomially independent. Here and in the fol-
lowing “Fun” stands for the set of set-theoretic maps. For instance if � D p we have
.ıp;iy � ıp;jy/R D 0. This is in stark contrast with [12]. See, however, Remark 2.34.

Definition 2.21. For every R� -algebra of finite type A WD R� Œy1; : : : ; yN �=I , we
define

J r�;ˆ.A/ WD J r�;ˆ.R� Œy1; : : : ; yN �/=.ı�;�I j � 2 Mr
n/:

This algebra is called the partial �-jet algebra of A of order r .

Note that J r�;ˆ.A/ is Noetherian and p-adically complete but generally not flat
overR� , even if � Dp andA is flat overR� as one can see by takingADRŒx�=.xp/.
It is trivial to see that the sequence J �

�;ˆ.A/ WD .J r�;ˆ.A// has a natural structure of
prolongation sequence, i.e., it is an object of Prol��;ˆ (but, as just noted, it is not
generally an object of Prol�;ˆ). Also note that J r�;ˆ.A/ depends only on r; �; A and
on the restriction ˆ� of ˆ to R� .

Proposition 2.22. If A is a smooth R� -algebra, and uWR� ŒT1; : : : ; Td �! A is an
étale morphism of R� -algebras, then there is a (unique) isomorphism

AŒı�;�Tj j � 2 Mr;C
n ; j 2 ¹1; : : : ; dº�bŠ J r�;ˆ.A/

sending ı�;�Tj into ı�;�.u.Tj // for all j and �. In particular, J r�;ˆ.A/ is flat over
R� so the sequence J �

�;ˆ.A/ is an object of Prol�;ˆ.

Proof. Similar to [10, Proposition 3.13].

We have the following universal property.

Proposition 2.23. Assume A is a finitely generated (respectively smooth) R� -alge-
bra. For every object T � of Prol��;ˆ (respectively in Prol�;ˆ) and every R� -algebra
map u W A ! T 0 there is a unique morphism J �

�;ˆ.A/ ! T � over S� in Prol��;ˆ
(respectively in Prol�;ˆ) compatible with u.

Proof. Similar to [10, Proposition 3.3].

We next record the existence of “prolongations of derivations.” Let S be a ring.
Recall that by an S -derivation from an S -algebra A to an A-algebra B one under-
stands an S -module endomorphism A! B satisfying the Leibniz rule.
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Proposition 2.24. Let A be a smooth R� -algebra equipped with an R� -derivation
D W A ! A. Then for every r � 1 and every � 2 Mr

n there exists a unique R� -
derivation D� W J r�;ˆ.A/! J r�;ˆ.A/ satisfying the following properties:

(1) D���a D pr � ��Da for all a 2 A;

(2) D���a D 0 for all a 2 A and all � 2 Mr
n n ¹�º:

Proof. Similar to [10, Proposition 3.43]. We recall the argument. Uniqueness is clear.
To prove existence let u W S WD R� ŒT1; : : : ; Td �! A be an étale map and let ai WD
DTi 2 A. Then consider the derivation

pr

�w.�/

dX
iD1

a
��

i

@

@ı�;�Ti
W J r�;ˆ.S/ D R� Œı�;�T j � 2 Mr

n�! J r�;ˆ.A/:

By Proposition 2.22 this derivation extends to a derivationD� W J r�;ˆ.A/! J r�;ˆ.A/.
To check properties (1) and (2) it is enough to check them for a D Ti because if (1)
and (2) hold for two elements of J r�;ˆ.S/ then (1) and (2) hold for their sum and their
product. But for a D Ti the equalities (1) and (2) hold in view of formula (2.6).

The jet construction can be globalized as follows.

Definition 2.25. For every smooth scheme X over R� define the p-adic formal
scheme

J r�;ˆ.X/ D
[

Spf.J r�;ˆ.O.Ui ///;

called the partial �-jet space of order r of X , where X D
S
Ui is (any) affine open

cover. The gluing involved in this definition is well defined because the formation of
�-jet spaces is compatible with fractions; cf. Proposition 2.22. The elements of the
ring O.J r�;ˆ.X//, identified with morphisms of p-adic formal schemes J r�;ˆ.X/!cA1, are called (purely) arithmetic PDEs on X over R� of order � r .

For all � 0j� we write X� 0 WD X ˝R�
R� 0 . Clearly J 0� 0;ˆ.X� 0/ D bX� 0 . Note also

that J r� 0;ˆ.X� 0/ only depends on r; � 0; X and on the restriction ˆ� of ˆ to R� .

Proposition 2.26. Assume A is a smooth R� -algebra. For all � 00j� 0j� there are nat-
ural homomorphisms

�� 00;� 0 W J r� 00;ˆ.A/! J r� 0;ˆ.A/˝R�0 R� 00 (2.10)

such that the homomorphism

�� 00;� W J r� 00;ˆ.A/! J r�;ˆ.A/˝R�
R� 00 (2.11)

equals the composition

J r� 00;ˆ.A/
��00;�0

�! J r� 0;ˆ.A/˝R�0 R� 00

��0;�˝1

�! .J r�;ˆ.A/˝R�
R� 0/˝R�0 R� 00 ; (2.12)
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where the targets of the maps (2.11) and (2.12) are naturally identified. Moreover, the
homomorphisms (2.10) are injective.

Proof. This follows similarly to [12, Proposition 4.1 (1)] and [14, Proposition 2.2].
The map �� 00;� 0 is guaranteed by Proposition 2.23 as .J r� 0;ˆ.A/˝R�0 R� 00/ is nat-
urally an object of Prol� 00;ˆ; cf. Remark 2.18. The factorization (2.11) arises from
naturality of base change. Finally, to address the injectivity of (2.10), pick an étale
homomorphismR� ŒT1; : : : ;Td �!A. Both the source and target of (2.10) then embed
in the common ring

K� 00Jı� 00;�Tj j � 2 Mr
n; j D 1; : : : ; dK Š K� 00Jı� 0;�Tj j � 2 Mr

n; j D 1; : : : ; dK

recovering the natural base change (2.10) from which the injectivity is clear.

Remark 2.27. For every smooth algebra A over R� and every selection map � with
respect to .ˆ0;ˆ00; �/ we get (by the universality property of J r ) a natural morphism
of prolongation sequences over R� with respect to ˆ0, J �

�;ˆ0.A/ ! J �
�;ˆ00.A/� , cf.

Definition 2.20 for the subscript notation. Hence for every smooth scheme X over
R� we get morphisms

J r�;ˆ00.X/! J r�;ˆ0.X/: (2.13)

We shall be interested later in four special cases of this construction.

(1) Assume � D p, ˆ0 D ˆ00, and � W ¹1; : : : ; nº ! ¹1; : : : ; nº is a bijection.
Then the above construction defines an action of the symmetric group †n on
J r�;ˆ.X/.

(2) Assume n0 D s, n00 D n, ˆ0 D .�0
1; : : : ; �

0
s/, ˆ

00 D ˆ D .�1; : : : ; �n/,

�0
1D�i1 ; : : : ;�

0
s D�is ; 1 � i1 < i2 < � � � < is � n; �.1/D i1; : : : ; �.s/D is:

Then we get a natural morphism (referred to as a face morphism)

J r�;ˆ.X/ D J r�;�1;:::;�n
.X/! J r�;�i1

;:::;�is
.X/:

(3) Assume � D p, n0 D n, n00 D 1, ˆ0 D ˆ D .�1; : : : ; �n/, ˆ00 D ¹�º, and
hence � is the constant map. Then we get a natural morphism (referred to as
the degeneration morphism):

J r�;�.X/! J r�;ˆ.X/:

(4) Assume � D p and ˆ D ¹�1; : : : ; �nº. Then one trivially checks that for all
i 2 ¹1; : : : ; nº the composition of the face and degeneration morphisms below
is the identity:

id W J rp;�i
.X/! J rp;ˆ.X/! J rp;�i

.X/:
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2.6 Total ı-overconvergence

The notion of ı-overconvergence was introduced in [14] and exploited in [12], cf.
[12, Definition 2.5].

Definition 2.28. Assume A is a smooth R� -algebra. An element f� 2 J r�;ˆ.A/ is
called totally ı-overconvergent if it has the following property: for all � 0j� there
exists an integer N � 0 such that pNf� ˝ 1 is in the image of the map

�� 0;� W J r� 0;ˆ.A/! J r�;ˆ.A/˝R�
R� 0 : (2.14)

Let us denote by J r�;ˆ.A/
� the R-algebra of all totally ı-overconvergent elements

in J r�;ˆ.A/. For every smooth scheme X=R� an element (arithmetic PDE), f 2

O.J r�;ˆ.X//, will be called totally ı-overconvergent if for all affine open set U � X

(equivalently for every affine open set of a given affine open cover of X ) the image
of f in the ring O.J r�;ˆ.U // D J r�;ˆ.O.U // is totally ı-overconvergent. We denote
by O.J r�;ˆ.X//

� the ring of all totally ı-overconvergent elements of O.J r�;ˆ.X//. A

morphism J r�;ˆ.X/!
cA1 will be called totally ı-overconvergent if the corresponding

element in O.J r�;ˆ.X// is totally ı-overconvergent.

Remark 2.29. We caution the reader about the notation �. It is common for � super-
scripts to also denote overconvergence in a difference sense. Specifically, these super-
scripts are used extensively in the overconvergent Witt vectors or Monsky–Washnitzer
algebras of rigid geometry. This memoir is written entirely in the formal setting.
There are certainly overlaps between concepts used here and those in rigid geom-
etry, however they remain for now in different realms. We hope this notation causes
no confusion. To elucidate, all uses of � are in reference to ı-overconvergence.

Note that, again, the ring O.J r�;ˆ.X//
� depends only on r;�;X and on the restric-

tion ˆ� of ˆ to R� .
Using Proposition 2.22 one trivially checks the following two propositions.

Proposition 2.30. For every smooth scheme X over R� , every r � 0, and every map
as in (2.7) the ring homomorphisms

O.J r�;ˆ0.X//! O.J r�;ˆ00.X//

induced by the morphisms (2.13) induce ring homomorphisms

O.J r�;ˆ0.X//
�
! O.J r�;ˆ00.X//

�:

We will usually view the above ring homomorphisms as inclusions.
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Proposition 2.31. Assume that u W bX ! bY is a morphism between the p-adic com-
pletions of two smooth R� -schemes and let f W J r�;ˆ.Y /!

cA1 be a totally ı-over-
convergent morphism. Then the composition

J r�;ˆ.X/
J r .u/
�! J r�;ˆ.Y /

f
!

cA1
is totally ı-overconvergent, where J r.u/ is the morphism induced by u via the uni-
versal property.

Similarly to [12] we make the following definition.

Definition 2.32. For every f 2 O.J r�;ˆ.X// and every object S� D .S r/ in Prol�;ˆ
the universal property of �-jet spaces yields a map of sets

fS� W X.S0/! S r : (2.15)

On the other hand, if f 2 O.J r�;ˆ.X//
� then for every object S� D .S r/ in Prol�;ˆ

we can define the map of sets

f
alg
S� W X.S0 ˝R�

Ralg/! S r ˝R�
Kalg (2.16)

as follows. We may assume X D SpecA is affine because the construction below
allows gluing in the obvious sense. Let P 2 X.S0 ˝R�

Ralg/. Choose � 0j� such that
P 2 X.S0 ˝R�

R� 0/ and choose N � 1 such that pNf ˝ 1 2 J r�;ˆ.A/˝R�
R� 0 is

the image of some (necessarily unique) element f� 0;N 2 J r� 0;ˆ.A/ via the map (2.14).
View P as a morphism P W A! S0 ˝R�

R� 0 . By the universal property of � 0-jet
spaces we have an induced morphism J r.P / W J r� 0;ˆ.A/! S r ˝R�

R� 0 . Then we
define

f
alg
S� .P / D p�N .J r.P //.f� 0;N / 2 S

r
˝R�

K� 0 � S r ˝R�
Kalg:

The definition is independent of the choice of � 0 and N due to the injectivity part of
Proposition 2.26. On the other hand f alg

S� effectively depends on ˆ (and not only on
the restriction ˆ� on K� ). For S� D R�

� we write fR�
WD fR�

�
and

f alg
WD f

alg
R�

WD f
alg
R�

�
W X.Ralg/! Kalg: (2.17)

Proposition 2.33. Let f 2 O.J r�;ˆ.X// and assume the map fS� is the zero map
for every object S� in Prol�;ˆ with the property that S r are integral domains and
' W S r ! S rC1 are injective. Then f D 0. In particular, if f 2 O.J r�;ˆ.X//

� and
the map f alg

S� is the zero map for every object S� in Prol�;ˆ as above, then f D 0.

Proof. Take S� D .S r/, S r WD O.J r�;ˆ.U // for various affine open sets U � X ; one
gets that the image of f in O.J r�;ˆ.U // is 0, hence f D 0.
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Remark 2.34. Assume �1; : : : ; �n are monomially independent in G.Kalg=Qp/. It
would be interesting to know when/if the ring homomorphism

O.J r�;ˆ.X//
�
! Fun.X.Ralg/;Kalg/; f 7! f alg (2.18)

is injective. For n D 1 this is true; cf. [12, proof of Proposition 4.4]. See also Propo-
sition 3.13 and Proposition 7.38 for related results. Clearly, if we do not assume
�1; : : : ; �n are monomially independent in G.Kalg=Qp/ then (2.18) is not injective
in general: to get an example take X the affine line, n D 2, and �1 D �2.




