
Chapter 3

Partial ı-characters

3.1 Definition and the additive group

We start with the following PDE definition extending the ODE case in [6].

Definition 3.1. A partial ı� -character of order � r of a commutative smooth group
scheme G=R� is a group homomorphism J r�;ˆ.G/!

cGa in the category of p-adic
formal schemes. (So in particular a partial ı� -character can be identified with an
element of O.J r�;ˆ.G//, i.e., with an arithmetic PDE of order � r .) We denote by

Xr�;ˆ.G/ WD Hom.J r�;ˆ.G/;cGa/

the R� -module of partial ı� -characters of G of order � r which we identify with a
submodule of O.J r�;ˆ.G//. For � 0j� we set X� 0;ˆ.G/ WD X� 0;ˆ.G� 0/, and we call
the elements of the latter partial ı� 0-characters of G. For nD 1 partial ı� -characters
will be referred to as ODE ı� -characters. An element of Xr�;ˆ.G/ will be said to
have order r if it is not in the image of the canonical (injective) map ' W Xr�1�;ˆ.G/!

Xr�;ˆ.G/ induced by '. We also consider the naturally induced semilinear maps �i W
Xr�1�;ˆ.G/! Xr�;ˆ.G/ induced by �i .

Consider the R� -module Xr�;ˆ.G/
� of totally ı-overconvergent partial ı� -char-

acters of G. So inside the ring O.J r�;ˆ.G// we have

Xr�;ˆ.G/
�
D Xr�;ˆ.G/ \ O.J r�;ˆ.G//

�:

Note that if  2 Xr�;ˆ.G/ and if pN ˝ 1 2 O.J r�;ˆ.G//˝R�
R� 0 is the image of

some (necessarily unique)  � 0 2 O.J r� 0;ˆ.G// then  � 0 2 Xr� 0;ˆ.G/. In particular,
we have the following.

Lemma 3.2. The image of the natural map

Xr�;ˆ.G/
�
! Fun.G.Ralg/;Kalg/;  7!  alg

is contained in Homgr.G.R
alg/; Kalg/ where Homgr is the Hom in the category of

abstract groups.

We also record the following obvious lemma.

Lemma 3.3. If an element  of Xr�;ˆ.G/ times a power of p belongs to Xr�;ˆ.G/
�

then  itself belongs to Xr�;ˆ.G/
�.
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We have the following description of partial ı� -characters of the additive group
Ga D Spec R� ŒT �. For � D i1 : : : is 2 Mn and r � s recall that we write

��;�T WD ��;i1 : : : ��;isT 2 R� Œı�;�T j � 2 Mr
n�
b
D O.J r�;ˆ.Ga//:

Consider the embedding

O.J r�;ˆ.Ga// � K�Jı�;�T j � 2 Mr
nK D K�J��;�T j � 2 Mr

nK

and consider the groups

Kr�;ˆT WD

X
�2Mr

n

K���;�T � K�J��;�T j � 2 Mr
nK;

Rr�;ˆT WD

X
�2Mr

n

R���;�T � Kr�;ˆT:

These groups are naturally isomorphic to the groups of symbols Kr�;ˆ and Rr�;ˆ,
respectively.

Proposition 3.4. The following equality holds,

Xr�;ˆ.Ga/ D .Kr�;ˆT / \ .R� Œı�;�T j � 2 Mr
n�/; (3.1)

where the intersection is taken inside the ring K�J��;�T j � 2 Mr
nK. In particular

Xr�;ˆ.Ga/ D Xr�;ˆ.Ga/
�:

Proof. The inclusion � in (3.1) is clear. To check the inclusion � note that every
element in Xr�;ˆ.Ga/ defines an additive polynomial in the ringK�J��;�T j � 2 Mr

nK
hence, since K� has characteristic 0, a linear polynomial.

Lemma 3.5. For  WD
P
�2Mr

n
����T in the group in (3.1) the following hold:

(1) �0 2 R� .

(2) If  � 0 mod T in K� Œı�;�T j � 2 Mr
n� then �� D 0 for all � 2 Mr;C

n .

(3) If n D 1 then �� 2 R� for all � 2 Mr
n. In other words the intersection in the

right-hand side of (3.1) equals Rr�;ˆT .

Proof. Part 1 follows by picking out the coefficient of T .
Part 2 follows by induction on the number of non-zero terms in  . For the induc-

tion step one orders Mr
n by letting all members of Ms

n n Ms�1
n be greater than all

members of Ms�1
n for all s 2 ¹1; : : : ; rº and by taking an arbitrary total order on each

set Ms
n n Ms�1

n . Then one picks out the coefficient of ı�;�T in  where � is the
largest element in Mr

n with ı�;�T appearing in  .
Part 3 follows again by induction on the number of non-zero terms in  . For the

induction step one picks out the coefficient of T p
n

in  where n is the largest integer
such that T p

n
appears in  .
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Remark 3.6. Assertion 3 in Lemma 3.5 fails for n � 2. For instance, for � D p, one
immediately checks that

1

p
�1�2T �

1

p
�2�1T 2 X2p;ˆ.Ga/ n .R

r
ˆT /:

3.2 Picard–Fuchs symbol

Definition 3.7. Let G have relative dimension 1 over R� and let ! be an invariant 1-
form onG. By an admissible coordinate forG we mean an étale coordinate T 2O.U /

on a neighborhood U of the origin of G generating the ideal of the origin of G in
O.U /. Let

`.T / D `!.T / D

1X
mD1

bm

m
Tm 2 K�JT K; bm 2 R� ;

be the logarithm of the formal group ofG (with respect to T ) normalized with respect
to !; so ` is the unique series in K�JT K without constant term such that d` D ! in
K�JT KdT . (We have b1 2 R�

� .) Let e.T / D e!.T / 2 K�JT K be the exponential
normalized with respect to !, i.e., the compositional inverse of `.T /. Then the series
e.pT / belongs to pR� ŒT �band so defines a morphism of groups in the category of
p-adic formal schemes, E W cGa ! bG. For every partial ı� -character  2 Xr�;ˆ.G/
the composition

�. / W J r�;ˆ.Ga/
Er

�! J r�;ˆ.G/
 
�! cGa

is a partial ı� -character of Ga so, identified with an element of O.J r�;ˆ.Ga//, can be
written (cf. Proposition 3.4 and Lemma 3.5, Part 1) as

�. / D
X
�2Mr

n

����;�T 2 Xr�;ˆ.Ga/ � Kr�;ˆT; �� 2 K� ; �0 2 R� : (3.2)

We define the Picard–Fuchs symbol (still denoted by �. /) of  (with respect to T
and !) by

�. / WD
X
�2Mr

n

���� 2 Kr�;ˆ:

The latter induces a Qp-linear map

�. /alg
W Kalg

! Kalg:

Remark 3.8. (1) By our very definition, viewing as an element ofR�Jı�;�T j� 2

Mr
nK, we have the following equality in K�Jı�;�T j � 2 Mr

nK:

 D
1

p
�. /`.T /:
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(2) For every  , writing �. / D
P
� ���� we have that

�0 2 pR� :

Indeed, by the equality in Part 1 we have that

�. /`.T / 2 pR�Jı�;�T j � 2 Mr
nK

and we are done by picking out the coefficient of T .
(3) The map

� W Xr�;ˆ.G/! Kr�;ˆ;  7! �. / (3.3)

is a group homomorphism. Moreover, for all � we have

�.�� / D ���. /:

(4) If � D p then the action of †n on J rp;ˆ.G/ induces an action of †n on
Xrp;ˆ.G/. We also have an obvious action of†n onKrˆ and the homomorphism (3.3)
is †n-equivariant.

In what follows let m D m.Ralg/ be the maximal ideal of Ralg, let

G.m/ WD Ker.G.Ralg/! G.k//;

and let `alg W G.malg/! Kalg be the map induced by the logarithm series `.T /.

Corollary 3.9. Let  2 X�;ˆ.G/� be a totally ı-overconvergent ı� -character and
consider the homomorphism  alg W G.Ralg/! Kalg. The following hold:

(1) The restriction  m of  alg to G.m/ fits into a commutative diagram

G.m/
`alg

//

 m

��

Kalg

�. /alg

��

Kalg Kalg

(3.4)

(2) The homomorphism  alg can be extended to a (necessarily unique) continu-
ous homomorphism  Cp W G.Cı

p/! Cp .

Proof. Part 1 follows directly from Remark 3.8, Part 1. To check Part 2 note that since
 alg is a homomorphism it is enough to check it can be extended by continuity on a
ball in G.Cı

p/ around the origin, cf. [12, Section 4.2]. This follows directly, exactly
as in [12, proof of Proposition 6.8], from Part 1.

The following is a PDE version of the arithmetic ODE analogue (cf., [6, 8]) of
Manin’s Theorem of the kernel [27].
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Corollary 3.10. For every  2 X�;ˆ.G/� there is a natural group isomorphism

.Ker. alg//˝Z Q ' Ker.�. /alg/: (3.5)

Proof. The exact sequence

0! G.m/! G.Ralg/! G.k/

induces an exact sequence

0! Ker. m/! Ker. alg/! G.k/:

Since the group G.k/ is torsion we get an induced group isomorphism

.Ker. m//˝Z Q
�
! .Ker. alg//˝Z Q: (3.6)

On the other hand recall that the map `alg in diagram (3.4) has a torsion kernel and
cokernel; cf. [33, Proposition 3.2 and Theorem 6.4]. So tensoring the diagram (3.4)
with Q the resulting upper horizontal map is an isomorphism. Taking the kernels of
the resulting vertical maps we get an induced group isomorphism

.Ker. m//˝Z Q
�
! Ker.�. /alg/: (3.7)

We are done by considering the composition of the map (3.7) with the inverse of the
map (3.6).

The following strengthened version of the above corollary is sometimes useful.
Let L be a filtered union of complete subfields of Kalg, let O be the valuation ring of
L, and let m.O/ be the maximal ideal of O. Assume G comes via base change from
a smooth group scheme GO over O and write GO.O/ DW G.O/.

Corollary 3.11. For every 2 X�;ˆ.G/� the isomorphism in Corollary 3.10 induces
an isomorphism

.Ker. alg/ \G.O//˝Z Q ' Ker.�. /alg/ \ L: (3.8)

In particular, if Ker.�. /alg/ \ L D 0 then

Ker. alg/ \G.O/ D G.O/tors:

Proof. It is enough to prove this for L complete. Let x be in the left-hand side of
(3.8), hence in the left-hand side of (3.5). The image x0 of x in the right-hand side
of (3.5) is obtained as follows. One takes an integer N � 1 such that Nx D P ˝ 1

with P 2 Ker. m/. Then x0 D 1
N
`alg.P /. Since L is complete and ` has coefficients

in O we get that `alg sends GO.m.O// into L, so we get that x0 2 L hence x0 is in
the right-hand side of (3.8). Conversely, let y0 be in the right-hand side of (3.8). The
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image y of y0 in the left-hand side of (3.5) is obtained as follows. There exists an
integer N � 1 such that Ny D `alg.P /˝ 1 with P 2 GO.m.O//. By diagram (3.4)
we have P 2 Ker. alg/. Then y D P ˝

1
N

. So y is in the left-hand side of (3.5).

We end by providing an easy dimension evaluation. Define:

D.n; r/ WD #Mr
n D 1C nC n2 C � � � C nr : (3.9)

The following proposition is trivial to check.

Proposition 3.12. The map Xr�;ˆ.G/! Kr�;ˆ,  7! �. / is injective. In particular

rankR�
Xr�;ˆ.G/ � D.n; r/: (3.10)

3.3 Functions on points

The next proposition shows that, in the case of monomially independent Frobenius
automorphisms, polynomial combinations of ı-characters are completely determined
by their functions on points.

Proposition 3.13. Assume �1; : : : ; �n are monomially independent in G.Kalg=Qp/

and denote by R� ŒXr�;ˆ.G/
�� the R� -subalgebra of O.J r�;ˆ.G// generated by the

elements of Xr�;ˆ.G/
�. Then the R� -algebra map

R� ŒXr�;ˆ.G/
��! Fun.G.Ralg/;Kalg/; f 7! f alg

is injective. In particular, the R� -module homomorphism

Xr�;ˆ.G/
�
! Homalg.G.R

alg/;Kalg/;  7!  alg

is injective.

Proof. Let  1; : : : ;  N 2 Xr�;ˆ.G/
�, let F 2 R� Œy1; : : : ; yN � be a polynomial in the

variables y1; : : : ; yN , and let

f D F. 1; : : : ;  N / 2 O.J r�;ˆ.G//:

Assume that the induced map f alg W G.Ralg/! Kalg is the zero map. Then the com-
position of f alg with the induced map Ealg W Ga.R

alg/ ! G.Ralg/ is the zero map.
Write

�. i / D
X
�

�i;���; �i;� 2 K�:

Then for every � 2 Ralg we have

0 D .f alg
ı Ealg/.�/ D F

�X
�

�1;���.�/; : : : ;
X
�

�N;���.�/
�
:
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Let x� be variables indexed by � 2 Mr
n and consider the polynomial

G.: : : ; x�; : : :/ WD F
�X

�

�1;�x�; : : : ;
X
�

�N;�x�

�
2 R� Œ: : : ; x�; : : :�:

By Lemma 2.6 we get G D 0. But clearly f is obtained from G by replacing x� 7!
1
p
��`.T /. So f D 0.




