Chapter 3

Partial δ-characters

3.1 Definition and the additive group

We start with the following PDE definition extending the ODE case in [6].

Definition 3.1. A partial δ_{π} -character of order $\leq r$ of a commutative smooth group scheme G/R_{π} is a group homomorphism $J^r_{\pi,\Phi}(G) \to \widehat{\mathbb{G}_a}$ in the category of *p*-adic formal schemes. (So in particular a partial δ_{π} -character can be identified with an element of $\mathcal{O}(J^r_{\pi,\Phi}(G))$, i.e., with an arithmetic PDE of order $\leq r$.) We denote by

$$\mathbf{X}^{r}_{\pi,\Phi}(G) := \operatorname{Hom}(J^{r}_{\pi,\Phi}(G),\widehat{\mathbb{G}_{a}})$$

the R_{π} -module of partial δ_{π} -characters of G of order $\leq r$ which we identify with a submodule of $\mathcal{O}(J_{\pi,\Phi}^r(G))$. For $\pi'|\pi$ we set $\mathbf{X}_{\pi',\Phi}(G) := \mathbf{X}_{\pi',\Phi}(G_{\pi'})$, and we call the elements of the latter *partial* $\delta_{\pi'}$ -characters of G. For n = 1 partial δ_{π} -characters will be referred to as *ODE* δ_{π} -characters. An element of $\mathbf{X}_{\pi,\Phi}^r(G)$ will be said to have order r if it is not in the image of the canonical (injective) map $\varphi : \mathbf{X}_{\pi,\Phi}^{r-1}(G) \to \mathbf{X}_{\pi,\Phi}^r(G)$ induced by φ . We also consider the naturally induced semilinear maps $\phi_i : \mathbf{X}_{\pi,\Phi}^{r-1}(G) \to \mathbf{X}_{\pi,\Phi}^r(G)$ induced by ϕ_i .

Consider the R_{π} -module $\mathbf{X}_{\pi,\Phi}^{r}(G)^{\dagger}$ of totally δ -overconvergent partial δ_{π} -characters of G. So inside the ring $\mathcal{O}(J_{\pi,\Phi}^{r}(G))$ we have

$$\mathbf{X}_{\pi,\Phi}^{r}(G)^{\dagger} = \mathbf{X}_{\pi,\Phi}^{r}(G) \cap \mathcal{O}(J_{\pi,\Phi}^{r}(G))^{\dagger}.$$

Note that if $\psi \in \mathbf{X}_{\pi,\Phi}^r(G)$ and if $p^N \psi \otimes 1 \in \mathcal{O}(J_{\pi,\Phi}^r(G)) \otimes_{R_{\pi}} R_{\pi'}$ is the image of some (necessarily unique) $\psi_{\pi'} \in \mathcal{O}(J_{\pi',\Phi}^r(G))$ then $\psi_{\pi'} \in \mathbf{X}_{\pi',\Phi}^r(G)$. In particular, we have the following.

Lemma 3.2. The image of the natural map

$$\mathbf{X}_{\pi,\Phi}^{r}(G)^{\dagger} \to \operatorname{Fun}(G(R^{\operatorname{alg}}), K^{\operatorname{alg}}), \quad \psi \mapsto \psi^{\operatorname{alg}}$$

is contained in $\operatorname{Hom}_{gr}(G(R^{\operatorname{alg}}), K^{\operatorname{alg}})$ where Hom_{gr} is the Hom in the category of abstract groups.

We also record the following obvious lemma.

Lemma 3.3. If an element ψ of $\mathbf{X}_{\pi,\Phi}^{r}(G)$ times a power of p belongs to $\mathbf{X}_{\pi,\Phi}^{r}(G)^{\dagger}$ then ψ itself belongs to $\mathbf{X}_{\pi,\Phi}^{r}(G)^{\dagger}$. We have the following description of partial δ_{π} -characters of the additive group $\mathbb{G}_a = \operatorname{Spec} R_{\pi}[T]$. For $\mu = i_1 \dots i_s \in \mathbb{M}_n$ and $r \ge s$ recall that we write

$$\phi_{\pi,\mu}T := \phi_{\pi,i_1} \dots \phi_{\pi,i_s}T \in R_{\pi}[\delta_{\pi,\nu}T \mid \nu \in \mathbb{M}_n^r] = \mathcal{O}(J_{\pi,\Phi}^r(\mathbb{G}_a)).$$

Consider the embedding

$$\mathcal{O}(J_{\pi,\Phi}^{r}(\mathbb{G}_{a})) \subset K_{\pi}\llbracket \delta_{\pi,\nu}T \mid \nu \in \mathbb{M}_{n}^{r}\rrbracket = K_{\pi}\llbracket \phi_{\pi,\nu}T \mid \nu \in \mathbb{M}_{n}^{r}\rrbracket$$

and consider the groups

$$K_{\pi,\Phi}^{r}T := \sum_{\mu \in \mathbb{M}_{n}^{r}} K_{\pi}\phi_{\pi,\mu}T \subset K_{\pi}\llbracket\phi_{\pi,\nu}T \mid \nu \in \mathbb{M}_{n}^{r}\rrbracket,$$
$$R_{\pi,\Phi}^{r}T := \sum_{\mu \in \mathbb{M}_{n}^{r}} R_{\pi}\phi_{\pi,\mu}T \subset K_{\pi,\Phi}^{r}T.$$

These groups are naturally isomorphic to the groups of symbols $K_{\pi,\Phi}^r$ and $R_{\pi,\Phi}^r$, respectively.

Proposition 3.4. The following equality holds,

$$\mathbf{X}_{\pi,\Phi}^{r}(\mathbb{G}_{a}) = (K_{\pi,\Phi}^{r}T) \cap (R_{\pi}[\delta_{\pi,\nu}T \mid \nu \in \mathbb{M}_{n}^{r}]),$$
(3.1)

where the intersection is taken inside the ring $K_{\pi} \llbracket \phi_{\pi,\nu} T \mid \nu \in \mathbb{M}_{n}^{r} \rrbracket$. In particular

$$\mathbf{X}_{\pi,\Phi}^{r}(\mathbb{G}_{a}) = \mathbf{X}_{\pi,\Phi}^{r}(\mathbb{G}_{a})^{\dagger}.$$

Proof. The inclusion \supset in (3.1) is clear. To check the inclusion \subset note that every element in $\mathbf{X}_{\pi,\Phi}^r(\mathbb{G}_a)$ defines an additive polynomial in the ring $K_{\pi}[\![\phi_{\pi,\nu}T \mid \nu \in \mathbb{M}_n^r]\!]$ hence, since K_{π} has characteristic 0, a linear polynomial.

Lemma 3.5. For $\psi := \sum_{\mu \in \mathbb{M}_n^r} \lambda_\mu \phi_\mu T$ in the group in (3.1) the following hold:

- (1) $\lambda_0 \in R_{\pi}$.
- (2) If $\psi \equiv 0 \mod T$ in $K_{\pi}[\delta_{\pi,\nu}T \mid \nu \in \mathbb{M}_n^r]$ then $\lambda_{\mu} = 0$ for all $\mu \in \mathbb{M}_n^{r,+}$.
- (3) If n = 1 then $\lambda_{\mu} \in R_{\pi}$ for all $\mu \in \mathbb{M}_{n}^{r}$. In other words the intersection in the right-hand side of (3.1) equals $R_{\pi,\Phi}^{r}T$.

Proof. Part 1 follows by picking out the coefficient of T.

Part 2 follows by induction on the number of non-zero terms in ψ . For the induction step one orders \mathbb{M}_n^r by letting all members of $\mathbb{M}_n^s \setminus \mathbb{M}_n^{s-1}$ be greater than all members of \mathbb{M}_n^{s-1} for all $s \in \{1, \ldots, r\}$ and by taking an arbitrary total order on each set $\mathbb{M}_n^s \setminus \mathbb{M}_n^{s-1}$. Then one picks out the coefficient of $\delta_{\pi,\mu}T$ in ψ where μ is the largest element in \mathbb{M}_n^r with $\delta_{\pi,\mu}T$ appearing in ψ .

Part 3 follows again by induction on the number of non-zero terms in ψ . For the induction step one picks out the coefficient of T^{p^n} in ψ where *n* is the largest integer such that T^{p^n} appears in ψ .

Remark 3.6. Assertion 3 in Lemma 3.5 fails for $n \ge 2$. For instance, for $\pi = p$, one immediately checks that

$$\frac{1}{p}\phi_1\phi_2T - \frac{1}{p}\phi_2\phi_1T \in \mathbf{X}^2_{p,\Phi}(\mathbb{G}_a) \setminus (R^r_{\Phi}T).$$

3.2 Picard–Fuchs symbol

Definition 3.7. Let *G* have relative dimension 1 over R_{π} and let ω be an invariant 1-form on *G*. By an *admissible coordinate* for *G* we mean an étale coordinate $T \in \mathcal{O}(U)$ on a neighborhood *U* of the origin of *G* generating the ideal of the origin of *G* in $\mathcal{O}(U)$. Let

$$\ell(T) = \ell_{\omega}(T) = \sum_{m=1}^{\infty} \frac{b_m}{m} T^m \in K_{\pi}\llbracket T \rrbracket, \ b_m \in R_{\pi},$$

be the logarithm of the formal group of G (with respect to T) normalized with respect to ω ; so ℓ is the unique series in $K_{\pi}[T]$ without constant term such that $d\ell = \omega$ in $K_{\pi}[T]dT$. (We have $b_1 \in R_{\pi}^{\times}$.) Let $e(T) = e_{\omega}(T) \in K_{\pi}[T]$ be the exponential normalized with respect to ω , i.e., the compositional inverse of $\ell(T)$. Then the series e(pT) belongs to $pR_{\pi}[T]$ and so defines a morphism of groups in the category of p-adic formal schemes, $\mathcal{E} : \widehat{\mathbb{G}}_a \to \widehat{G}$. For every partial δ_{π} -character $\psi \in \mathbf{X}_{\pi,\Phi}^r(G)$ the composition

$$\theta(\psi): J^r_{\pi,\Phi}(\mathbb{G}_a) \xrightarrow{\mathcal{E}^r} J^r_{\pi,\Phi}(G) \xrightarrow{\psi} \widehat{\mathbb{G}_a}$$

is a partial δ_{π} -character of \mathbb{G}_a so, identified with an element of $\mathcal{O}(J^r_{\pi,\Phi}(\mathbb{G}_a))$, can be written (cf. Proposition 3.4 and Lemma 3.5, Part 1) as

$$\theta(\psi) = \sum_{\mu \in \mathbb{M}_n^r} \lambda_\mu \phi_{\pi,\mu} T \in \mathbf{X}_{\pi,\Phi}^r(\mathbb{G}_a) \subset K_{\pi,\Phi}^r T, \ \lambda_\mu \in K_\pi, \ \lambda_0 \in R_\pi.$$
(3.2)

We define the *Picard–Fuchs symbol* (still denoted by $\theta(\psi)$) of ψ (with respect to *T* and ω) by

$$\theta(\psi) := \sum_{\mu \in \mathbb{M}_n^r} \lambda_\mu \phi_\mu \in K^r_{\pi, \Phi}.$$

The latter induces a \mathbb{Q}_p -linear map

$$\theta(\psi)^{\mathrm{alg}}: K^{\mathrm{alg}} \to K^{\mathrm{alg}}.$$

Remark 3.8. (1) By our very definition, viewing ψ as an element of $R_{\pi} [\![\delta_{\pi,\mu} T \mid \mu \in \mathbb{M}_{n}^{r}]\!]$, we have the following equality in $K_{\pi} [\![\delta_{\pi,\mu} T \mid \mu \in \mathbb{M}_{n}^{r}]\!]$:

$$\psi = \frac{1}{p}\theta(\psi)\ell(T).$$

(2) For every ψ , writing $\theta(\psi) = \sum_{\mu} \lambda_{\mu} \phi_{\mu}$ we have that

 $\lambda_0 \in pR_{\pi}$.

Indeed, by the equality in Part 1 we have that

$$\theta(\psi)\ell(T) \in pR_{\pi}[\![\delta_{\pi,\mu}T \mid \mu \in \mathbb{M}_n^r]\!]$$

and we are done by picking out the coefficient of T.

(3) The map

$$\theta: \mathbf{X}^{r}_{\pi,\Phi}(G) \to K^{r}_{\pi,\Phi}, \ \psi \mapsto \theta(\psi)$$
 (3.3)

is a group homomorphism. Moreover, for all μ we have

$$\theta(\phi_{\mu}\psi) = \phi_{\mu}\theta(\psi).$$

(4) If $\pi = p$ then the action of Σ_n on $J_{p,\Phi}^r(G)$ induces an action of Σ_n on $\mathbf{X}_{p,\Phi}^r(G)$. We also have an obvious action of Σ_n on K_{Φ}^r and the homomorphism (3.3) is Σ_n -equivariant.

In what follows let $\mathfrak{m} = \mathfrak{m}(R^{alg})$ be the maximal ideal of R^{alg} , let

$$G(\mathfrak{m}) := \operatorname{Ker}(G(R^{\operatorname{alg}}) \to G(k)),$$

and let $\ell^{\text{alg}} : G(\mathfrak{m}^{\text{alg}}) \to K^{\text{alg}}$ be the map induced by the logarithm series $\ell(T)$.

Corollary 3.9. Let $\psi \in \mathbf{X}_{\pi,\Phi}(G)^{\dagger}$ be a totally δ -overconvergent δ_{π} -character and consider the homomorphism $\psi^{\text{alg}} : G(R^{\text{alg}}) \to K^{\text{alg}}$. The following hold:

(1) The restriction $\psi^{\mathfrak{m}}$ of ψ^{alg} to $G(\mathfrak{m})$ fits into a commutative diagram

(2) The homomorphism ψ^{alg} can be extended to a (necessarily unique) continuous homomorphism $\psi^{\mathbb{C}_p} : G(\mathbb{C}_p^{\circ}) \to \mathbb{C}_p$.

Proof. Part 1 follows directly from Remark 3.8, Part 1. To check Part 2 note that since ψ^{alg} is a homomorphism it is enough to check it can be extended by continuity on a ball in $G(\mathbb{C}_p^{\circ})$ around the origin, cf. [12, Section 4.2]. This follows directly, exactly as in [12, proof of Proposition 6.8], from Part 1.

The following is a PDE version of the arithmetic ODE analogue (cf., [6, 8]) of Manin's Theorem of the kernel [27].

Corollary 3.10. For every $\psi \in \mathbf{X}_{\pi,\Phi}(G)^{\dagger}$ there is a natural group isomorphism

$$(\operatorname{Ker}(\psi^{\operatorname{alg}})) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \operatorname{Ker}(\theta(\psi)^{\operatorname{alg}}).$$
(3.5)

Proof. The exact sequence

$$0 \to G(\mathfrak{m}) \to G(R^{\mathrm{alg}}) \to G(k)$$

induces an exact sequence

$$0 \to \operatorname{Ker}(\psi^{\mathfrak{m}}) \to \operatorname{Ker}(\psi^{\operatorname{alg}}) \to G(k).$$

Since the group G(k) is torsion we get an induced group isomorphism

$$(\operatorname{Ker}(\psi^{\mathfrak{m}})) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim} (\operatorname{Ker}(\psi^{\operatorname{alg}})) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

$$(3.6)$$

On the other hand recall that the map ℓ^{alg} in diagram (3.4) has a torsion kernel and cokernel; cf. [33, Proposition 3.2 and Theorem 6.4]. So tensoring the diagram (3.4) with \mathbb{Q} the resulting upper horizontal map is an isomorphism. Taking the kernels of the resulting vertical maps we get an induced group isomorphism

$$(\operatorname{Ker}(\psi^{\mathfrak{m}})) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim} \operatorname{Ker}(\theta(\psi)^{\operatorname{alg}}).$$
(3.7)

We are done by considering the composition of the map (3.7) with the inverse of the map (3.6).

The following strengthened version of the above corollary is sometimes useful. Let *L* be a filtered union of complete subfields of K^{alg} , let \mathcal{O} be the valuation ring of *L*, and let $\mathfrak{m}(\mathcal{O})$ be the maximal ideal of \mathcal{O} . Assume *G* comes via base change from a smooth group scheme $G_{\mathcal{O}}$ over \mathcal{O} and write $G_{\mathcal{O}}(\mathcal{O}) =: G(\mathcal{O})$.

Corollary 3.11. For every $\psi \in \mathbf{X}_{\pi,\Phi}(G)^{\dagger}$ the isomorphism in Corollary 3.10 induces an isomorphism

$$(\operatorname{Ker}(\psi^{\operatorname{alg}}) \cap G(\mathcal{O})) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \operatorname{Ker}(\theta(\psi)^{\operatorname{alg}}) \cap L.$$
(3.8)

In particular, if $\text{Ker}(\theta(\psi)^{\text{alg}}) \cap L = 0$ then

$$\operatorname{Ker}(\psi^{\operatorname{alg}}) \cap G(\mathcal{O}) = G(\mathcal{O})_{\operatorname{tors}}.$$

Proof. It is enough to prove this for *L* complete. Let *x* be in the left-hand side of (3.8), hence in the left-hand side of (3.5). The image *x'* of *x* in the right-hand side of (3.5) is obtained as follows. One takes an integer $N \ge 1$ such that $Nx = P \otimes 1$ with $P \in \text{Ker}(\psi^{\mathfrak{m}})$. Then $x' = \frac{1}{N} \ell^{\text{alg}}(P)$. Since *L* is complete and ℓ has coefficients in \mathcal{O} we get that ℓ^{alg} sends $G_{\mathcal{O}}(\mathfrak{m}(\mathcal{O}))$ into *L*, so we get that $x' \in L$ hence x' is in the right-hand side of (3.8). Conversely, let y' be in the right-hand side of (3.8). The

image y of y' in the left-hand side of (3.5) is obtained as follows. There exists an integer $N \ge 1$ such that $Ny = \ell^{\text{alg}}(P) \otimes 1$ with $P \in G_{\mathcal{O}}(\mathfrak{m}(\mathcal{O}))$. By diagram (3.4) we have $P \in \text{Ker}(\psi^{\text{alg}})$. Then $y = P \otimes \frac{1}{N}$. So y is in the left-hand side of (3.5).

We end by providing an easy dimension evaluation. Define:

$$D(n,r) := \#\mathbb{M}_n^r = 1 + n + n^2 + \dots + n^r.$$
(3.9)

The following proposition is trivial to check.

Proposition 3.12. The map
$$\mathbf{X}_{\pi,\Phi}^r(G) \to K_{\pi,\Phi}^r, \psi \mapsto \theta(\psi)$$
 is injective. In particular
rank _{R_{π}} $\mathbf{X}_{\pi,\Phi}^r(G) \leq D(n,r).$ (3.10)

3.3 Functions on points

The next proposition shows that, in the case of monomially independent Frobenius automorphisms, polynomial combinations of δ -characters are completely determined by their functions on points.

Proposition 3.13. Assume ϕ_1, \ldots, ϕ_n are monomially independent in $\mathfrak{G}(K^{\mathrm{alg}}/\mathbb{Q}_p)$ and denote by $R_{\pi}[\mathbf{X}_{\pi,\Phi}^r(G)^{\dagger}]$ the R_{π} -subalgebra of $\mathcal{O}(J_{\pi,\Phi}^r(G))$ generated by the elements of $\mathbf{X}_{\pi,\Phi}^r(G)^{\dagger}$. Then the R_{π} -algebra map

$$R_{\pi}[\mathbf{X}_{\pi,\Phi}^{r}(G)^{\dagger}] \to \operatorname{Fun}(G(R^{\operatorname{alg}}), K^{\operatorname{alg}}), f \mapsto f^{\operatorname{alg}}$$

is injective. In particular, the R_{π} -module homomorphism

$$\mathbf{X}^{r}_{\pi,\Phi}(G)^{\dagger} \to \operatorname{Hom}_{\operatorname{alg}}(G(R^{\operatorname{alg}}), K^{\operatorname{alg}}), \ \psi \mapsto \psi^{\operatorname{alg}}$$

is injective.

Proof. Let $\psi_1, \ldots, \psi_N \in \mathbf{X}^r_{\pi, \Phi}(G)^\dagger$, let $F \in R_\pi[y_1, \ldots, y_N]$ be a polynomial in the variables y_1, \ldots, y_N , and let

$$f = F(\psi_1, \ldots, \psi_N) \in \mathcal{O}(J^r_{\pi, \Phi}(G)).$$

Assume that the induced map $f^{\text{alg}} : G(R^{\text{alg}}) \to K^{\text{alg}}$ is the zero map. Then the composition of f^{alg} with the induced map $\mathcal{E}^{\text{alg}} : \mathbb{G}_a(R^{\text{alg}}) \to G(R^{\text{alg}})$ is the zero map. Write

$$\theta(\psi_i) = \sum_{\mu} \lambda_{i,\mu} \phi_{\mu}, \quad \lambda_{i,\mu} \in K_{\mu}.$$

Then for every $\lambda \in R^{\text{alg}}$ we have

$$0 = (f^{\text{alg}} \circ \mathcal{E}^{\text{alg}})(\lambda) = F\Big(\sum_{\mu} \lambda_{1,\mu} \phi_{\mu}(\lambda), \dots, \sum_{\mu} \lambda_{N,\mu} \phi_{\mu}(\lambda)\Big).$$

Let x_{μ} be variables indexed by $\mu \in \mathbb{M}_{n}^{r}$ and consider the polynomial

$$G(\ldots, x_{\mu}, \ldots) := F\left(\sum_{\mu} \lambda_{1,\mu} x_{\mu}, \ldots, \sum_{\mu} \lambda_{N,\mu} x_{\mu}\right) \in R_{\pi}[\ldots, x_{\mu}, \ldots]$$

By Lemma 2.6 we get G = 0. But clearly f is obtained from G by replacing $x_{\mu} \mapsto \frac{1}{p}\phi_{\mu}\ell(T)$. So f = 0.