Chapter 3

Partial §-characters

3.1 Definition and the additive group

We start with the following PDE definition extending the ODE case in [6].

Definition 3.1. A partial 6, -character of order < r of a commutative smooth group
scheme G/ Ry is a group homomorphism J (G) — Gy in the category of p-adic
formal schemes. (So in particular a partial §,-character can be identified with an
element of O(J 4(G)), i.e., with an arithmetic PDE of order < r.) We denote by

" 5(G) := Hom(J] 4(G). Gy)

the R,-module of partial §,-characters of G of order < r which we identify with a
submodule of O(J] (G)). For 'lw we set Xy 0(G) := Xy, 0(Gx/), and we call
the elements of the latter partial 8,-characters of G. For n = 1 partial §,-characters
will be referred to as ODE 8z -characters. An element of X7 (G) will be said to
have order r if it is not in the image of the canonical (injective) map ¢ : X;_ql (G) —>
X' 4(G) induced by ¢. We also consider the naturally induced semilinear ﬁlaps i :
X;’_ql (G) — X, (G) induced by ¢;.

Consider the R,-module X;”P(G)T of totally §-overconvergent partial §,-char-
acters of G. So inside the ring O (J! 4(G)) we have

X76(G) =X 6(6) N0y 4(G)".

Note that if ¥ € X 4(G) and if Wy ele 0(J;.6(G)) ®R, Ry is the image of
some (necessarily unique) ¥» € O(J], 4(G)) then ¥pr € X7, 5(G). In particular,
we have the following.

Lemma 3.2. The image of the natural map
X! o(G)" — Fun(G(R™®), K¥2), y >y
is contained in Homg (G (R™2), K*¢) where Homy, is the Hom in the category of
abstract groups.
We also record the following obvious lemma.

Lemma 3.3. [f an element Y of X] (G) times a power of p belongs to X;,(I,(G)T
then  itself belongs to X;,q,(G)T.
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We have the following description of partial §,-characters of the additive group
Gy = Spec Ry [T]. For u =iy ...is € M, and r > s recall that we write

GruT = bmiy - i, T € Ry[$xnT [ v € M) = O(J; 6(Ga)).
Consider the embedding
0y 6(Ga)) C Kn[8zpT |veM] = Kn[¢prnT | v e M]
and consider the groups
KpoT =Y KppzuT C KnlpnnT | v €My].
neM)
Rl T = Z Ru¢npT C KL g
HeMy,
These groups are naturally isomorphic to the groups of symbols K7 4 and R} 4,
respectively.
Proposition 3.4. The following equality holds,
X} 6(Ga) = (K}, 6T) N (Rz[87,T | v € My)), 3.1

where the intersection is taken inside the ring K [¢prT | v € M"]. In particular

X 5(Ga) = X}, 6(Ga)'.

Proof. The inclusion D in (3.1) is clear. To check the inclusion C note that every
element in X7 4 (G, ) defines an additive polynomial in the ring Ky [z T | v eML]
hence, since K has characteristic 0, a linear polynomial. [

Lemma 3.5. Fory := 3} cyr AuuT in the group in (3.1) the following hold:
(1) Ao € Ry.
Q) Ify =0mod T in Kp[8zT | v € MJ ] then A, =0 forall p € MY

(@) Ifn = 1then Ay, € Ry forall u € M,. In other words the intersection in the
right-hand side of (3.1) equals R} &T.

Proof. Part 1 follows by picking out the coefficient of T'.

Part 2 follows by induction on the number of non-zero terms in y. For the induc-
tion step one orders M, by letting all members of M \ M3~! be greater than all
members of Mi$~! forall s € {1,...,r} and by taking an arbitrary total order on each
set M \ Mfl_l. Then one picks out the coefficient of 8, ,,7 in ¥ where u is the
largest element in M, with é, , T appearing in .

Part 3 follows again by induction on the number of non-zero terms in 1. For the
induction step one picks out the coefficient of 77" in 1 where # is the largest integer
such that 77" appears in . ]
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Remark 3.6. Assertion 3 in Lemma 3.5 fails for n > 2. For instance, for 7 = p, one
immediately checks that

§¢1¢2T — %¢2¢1T € X 5(Ga) \ (RGT).

3.2 Picard-Fuchs symbol

Definition 3.7. Let G have relative dimension 1 over R and let @ be an invariant 1-
form on G. By an admissible coordinate for G we mean an étale coordinate 7 € O (U)
on a neighborhood U of the origin of G generating the ideal of the origin of G in
OU). Let

oo
b
UT) =L,(T) = Y —2T™ € Kx[T]. bm € Ry,
m
m=1

be the logarithm of the formal group of G (with respect to T') normalized with respect
to w; so £ is the unique series in K, [T] without constant term such that d¢ = w in
K[T]dT. (We have by € RX.) Let e(T) = e,(T) € K[T] be the exponential
normalized with respect to w, i.e., the compositional inverse of £(T"). Then the series

e(pT) belongs to pR, [T] and so defines a morphism of groups in the category of
p-adic formal schemes, & : (G — G. For every partial 8 -character ¥ € X] 4(G)
the composition

&r v o~
0) : J;.6(Ga) — J; 6(G) — Gg
is a partial 8 -character of G, so, identified with an element of O(J 4(Gq)), can be

written (cf. Proposition 3.4 and Lemma 3.5, Part 1) as

0W) = Y AupruT € X} 0(Ga) C KL oT. Ay € Kn, Ao € Ry, (3.2)
HeM;,

We define the Picard—Fuchs symbol (still denoted by 6(y)) of ¥ (with respect to T
and w) by

0W) = Y Aupp €K

HeEM;,

The latter induces a Q,-linear map
O(y)"e : K& — K.

Remark 3.8. (1) By our very definition, viewing ¥ as an element of Ry [, T | p €
M ], we have the following equality in K [85,,7T | © € MZ]:

¥ = Lo,
)4
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(2) For every , writing 6(y) = }_, ¢, we have that
Ao € pRy.
Indeed, by the equality in Part 1 we have that
OWIT) € pRx 87T | € My ]

and we are done by picking out the coefficient of 7.
(3) The map
0 :X70(G) > Kp o, ¥ 0(Y) (3.3)

is a group homomorphism. Moreover, for all © we have

9(¢MW) = ¢u0(1ﬁ)-

(4) If 7 = p then the action of X, on Jp’ 4(G) induces an action of ¥, on
X', 4(G). We also have an obvious action of X, on Kg and the homomorphism (3.3)
is X, -equivariant.

In what follows let m = m(R¥¢) be the maximal ideal of R*¢, let
G(m) := Ker(G(R™) — G(k)).

and let £¥¢ : G(m™¢) — K% be the map induced by the logarithm series £(7).

Corollary 3.9. Let ¥ € X;.6(G)" be a totally §-overconvergent 8, -character and
consider the homomorphism ¥¥2 : G(R¥¢) — K¢, The following hold:

(1) The restriction Y™ of Y to G(m) fits into a commutative diagram

alg
G(m) -5 gale (3.4)
wml O(y)de
Kalg Kalg

(2) The homomorphism Y2 can be extended to a (necessarily unique) continu-
ous homomorphism y<» G(Cp) — Cp.

Proof. Part 1 follows directly from Remark 3.8, Part 1. To check Part 2 note that since
Y2 is a homomorphism it is enough to check it can be extended by continuity on a
ball in G(Cp) around the origin, cf. [12, Section 4.2]. This follows directly, exactly
as in [12, proof of Proposition 6.8], from Part 1. |

The following is a PDE version of the arithmetic ODE analogue (cf., [6, 8]) of
Manin’s Theorem of the kernel [27].
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Corollary 3.10. For every ¢ € X,,,q;(G)T there is a natural group isomorphism
(Ker(y%)) ®z Q = Ker(0(y)™). (3.5)
Proof. The exact sequence
0 — G(m) — G(R™) — G(k)
induces an exact sequence
0 — Ker(y™) — Ker(¥¥¢) — G(k).
Since the group G (k) is torsion we get an induced group isomorphism

(Ker(y™)) ®z Q = (Ker(y%)) ®z Q. (3.6)

On the other hand recall that the map £¢ in diagram (3.4) has a torsion kernel and
cokernel; cf. [33, Proposition 3.2 and Theorem 6.4]. So tensoring the diagram (3.4)
with Q the resulting upper horizontal map is an isomorphism. Taking the kernels of
the resulting vertical maps we get an induced group isomorphism

(Ker(y™)) ®z Q = Ker(0(y)™®). (3.7)

We are done by considering the composition of the map (3.7) with the inverse of the
map (3.6). ]

The following strengthened version of the above corollary is sometimes useful.
Let L be a filtered union of complete subfields of K¢, let  be the valuation ring of
L, and let (@) be the maximal ideal of @. Assume G comes via base change from
a smooth group scheme G over @ and write G (O9) =: G(0O).

Corollary 3.11. For every ¥ € X, o(G)' the isomorphism in Corollary 3.10 induces
an isomorphism

(Ker(y¥8) N G(0)) ®z Q ~ Ker(8(y)*¢) N L. (3.8)
In particular, if Ker(6(y)8) N L = 0 then
Ker(¥¥%) N G(O) = G(O)or.

Proof. 1t is enough to prove this for L complete. Let x be in the left-hand side of
(3.8), hence in the left-hand side of (3.5). The image x’ of x in the right-hand side
of (3.5) is obtained as follows. One takes an integer N > 1 such that Nx = P ® 1
with P € Ker(y™). Then x’ = ﬁﬁalg(P). Since L is complete and £ has coefficients
in O we get that £3¢ sends G (m(0)) into L, so we get that x’ € L hence x’ is in
the right-hand side of (3.8). Conversely, let ¥’ be in the right-hand side of (3.8). The
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image y of y’ in the left-hand side of (3.5) is obtained as follows. There exists an
integer N > 1 such that Ny = ({¥2(P) ® 1 with P € Go(m(O)). By diagram (3.4)
we have P € Ker(y*2). Then y = P ® % So y is in the left-hand side of (3.5). m

We end by providing an easy dimension evaluation. Define:
D(n,r):=#M, =1+n+n*+---+n". (3.9)
The following proposition is trivial to check.
Proposition 3.12. The map X]’T’q)(G) — K;,q), W+ 0(Y) is injective. In particular
rankg, X 4(G) < D(n,r). (3.10)

3.3 Functions on points

The next proposition shows that, in the case of monomially independent Frobenius
automorphisms, polynomial combinations of §-characters are completely determined
by their functions on points.

Proposition 3.13. Assume ¢y, ..., ¢, are monomially independent in & (K¥¢/Q,)
and denote by Rn[X;’q)(G)T] the Ry-subalgebra of O(J] 4(G)) generated by the
elements of X! <I>(G)T. Then the R -algebra map

Rx[X}, (G)'] - Fun(G(R"®), K™), f > [
is injective. In particular, the R, -module homomorphism

X! 4(G)" — Homye(G(R™), K™), ¢ > y™8
is injective.

Proof. Letyy,..., YN € X;,(D(G)T, let F € R;[y1,...,yn] be apolynomial in the
variables yq,..., yn, and let

f=FWi,....¥n) € O(J; 6(G)).

Assume that the induced map ¢ : G(R¥¢) — K2 is the zero map. Then the com-
position of 2 with the induced map £¥¢ : G,(R¥¢) — G(R¥2) is the zero map.
Write
0Wi) =D Aipdus Aip € K.
"

Then for every A € R¥¢ we have

0=(f"o")(0) = F( 3 Miudu@®.-. .Y Anudu(®).
w w
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Let x,, be variables indexed by u € M, and consider the polynomial
G(....xy,...) = F(Zkl,ﬂxﬂ""’ZAN,Mxﬂ) € Rel....xpu....]
I I

By Lemma 2.6 we get G = 0. But clearly f" is obtained from G by replacing x,, —
2¢ul(T). So f = 0. "






