
Chapter 5

Elliptic curves

5.1 General case

Throughout this subsection E is an elliptic curve (abelian scheme of dimension 1)
over R� , and we fix an invertible 1-form ! on E. By a formal group over a ring we
will always understand a formal group law (i.e, a tuple of elements in a formal power
series ring). For every familyˆ WD .�1; : : : ; �n/ of Frobenius automorphisms ofKalg

define
N r
�;ˆ WD Ker.J r�;ˆ.E/! bER�

/:

Consider an admissible coordinate T on E. Exactly as in [10, Proposition 4.45]N r
�;ˆ

is a group object in the category of p-adic formal schemes overR� whose underlying
p-adic formal scheme can be identified with the p-adic completion of the affine space

.AnC���Cnr

R�
/bD Spf R� Œı�;�T j � 2 Mr;C

n �b
and whose group law is obtained as follows. One considers the formal group law
F.T1; T2/ 2 R�JT1; T2K of E with respect to T and one considers the group law on
N r
�;ˆ defined by the series F� WD .ı�;�F /jTD0 for � 2 Mr

n (which turn out to be
restricted power series rather than just formal power series).

Proposition 5.1. The R� -module Hom.N r
�;ˆ;

cGa/ has rank

rankR�
Hom.N r

�;ˆ;
cGa/ D D.n; r/ � 1 D nC � � � C nr :

Proof. Denote by .N r
�;ˆ/

for the formal group over R� associated to N r
�;ˆ and to the

variables ı�;�T , � 2 Mr;C
n , and denote by .N r

�;ˆ/
for
K�

the induced formal group law
over K� which is isomorphic to a power of the additive formal group law Gfor

a=K�

(since .N r
�;ˆ/

for
K�

is commutative over a field of characteristic zero). We have natural
injective maps of K� -vector spaces

Hom.N r
�;ˆ;

cGa/˝R�
K� ! Homfor.gr...N

r
�;ˆ/

for
K�
;Gfor

a;K�
/ ' KnC���Cnr

� :

On the other hand we will construct, in what follows, D.n; r/ � 1 K� -linearly inde-
pendent elements in Hom.N r

�;ˆ;
cGa/; from this our proposition follows. Recall the

logarithm series `.T /D `!.T / 2K�JT K normalized with respect to !. Recalling the
integer N.�/ in (4.1) we have that, for � 2 Mr;C

n , the series

L
�
�;ˆ WD .��.`.T ///jTD0 2 K�Jı�;�T j � 2 Mr;C

n K (5.1)



Elliptic curves 38

satisfies
QL
�
�;ˆ WD pN.�/L

�
�;ˆ 2 R� Œı�;�T j � 2 Mr;C

n �b: (5.2)

It follows that
QL
�
�;ˆ 2 Hom.N r

�;ˆ;
cGa/: (5.3)

It is trivial to check that the elements QL
�
�;ˆ are K� -linearly independent, which ends

our proof.

Remark 5.2. Exactly as in [12, Proposition 4.6] we get that for every � 0j� and � 2

Mr
n the element pN.�

0/�N.�/ QL
�
�;ˆ ˝ 1 is the image of QL

�
� 0;ˆ via the homomorphism

R� 0 Œı� 0;�T j � 2 Mr;C
n �b! R� Œı�;�T j � 2 Mr;C

n �b˝R�
R� 0 :

Remark 5.3. Assume � D p. As in [10, page 124] for all i1 : : : ir 2 Mr;C
n we have

�i1:::irT � T p
r

� p.ıirT /
pr�1

2 .pT; p2/ � RŒı�T j � 2 Mr
n�:

Hence, following [10, Proposition 4.41] we get that

QL
i1:::ir
�;ˆ � .ıirT /

pr�1

mod p in RŒıp;�T j � 2 Mr;C
n �b:

Remark 5.4. Consider the following standard cohomology sequence (cf. [10, page
191] for the case n D 1):

0 D Hom.bE;cGa/! Hom.J r�;ˆ.E/;cGa/! Hom.N r
�;ˆ;

cGa/
@r

! H 1.bE;O/ (5.4)

and consider the isomorphism defined by Serre duality,

h�; !i W H 1.bE;O/! R� :

It is useful to recall the explicit construction of the map @r . By Proposition 2.31
there exists an affine open cover E D

S
i Ui and sections sri W bUi ! pr�1r .Ui / of the

projection prr W pr�1r .Ui /! bUi induced by the projection prr W J
r
�;ˆ.E/!

bE. Then
for all L 2 Hom.N r

�;ˆ;
cGa/ the element @r.L/ is defined as the cohomology class

ŒL ı .sri � s
r
j /� 2 H

1.bE;O/
of the cocycle

.L ı .sri � s
r
j //ij ; L ı .sri � s

r
j / W

bUi \cUj ! N r
�;ˆ ! cGa:

The definition above is independent of the choice of sections sri ; such a change would
change the cocycle by a coboundary.

Following [10, page 194] and recalling the elements in (5.3), we introduce the
following.



General case 39

Definition 5.5. For � 2 Mr;C
n we define the primary arithmetic Kodaira–Spencer

class of E attached to � by the formula

f� WD h@r. QL
�
�;ˆ/; !i 2 R�

and consider the vector

KSr�;ˆ.E/ D .f�/�2Mr;C
n

2 RMr;C
n

� :

Remark 5.6. A few comments are important at this point.
(1) The elements f� are easily seen to depend only on the pair .E; !/ and not

on the choice of T . This follows from the easily-checked fact that our construction
can be presented in a coordinate-free manner: instead of the rings R�JT K, K�JT K
one may consider the completion A of the local ring of E at the closed point of the
identity section and the corresponding completion AK�

for E ˝R�
K� . Instead of

R�Jı�;�T j � 2 Mr
nK; K�Jı�;�T j � 2 Mr

nK; R�JT KŒı�;�T j � 2 Mr;C
n �b;

one may consider certain new types of “�-jet algebras” Ar ; ArK�
; QAr , attached to A

respectively, satisfying certain new corresponding universal properties. We will not
go here into defining these new types of �-jet algebras. Then ` 2 AK�

is defined by
the condition that it “vanishes” at the ideal of the zero section and d` D ! in the
completed module of Kähler differentials of AK�

, ��` makes sense as an element of
ArK�

while ��`jTD0 makes sense as an element of QAr .
(2) We will write f�.E;!/ instead of f� if we want to emphasize the dependence

on .E; !/. With notation as in Remark 2.14, we have

f�.E; �!/ D ���C1f�.E; !/

for all � 2R�
� ; this follows from the fact that if one replaces ! by �! in our construc-

tion then, since `�!.T / D �`!.T /, we have that L��;ˆ gets replaced by ��.�/L
�
�;ˆ.

(3) It is easy to see that the elements f� do not change if r changes, as long
as � 2 Mr;C

n ; this follows from the fact that changing r amounts to changing the
defining cocycle in our construction by a coboundary which does not change the
cohomology class. This justifies not including r in our notation for f�. In particular,
if KSr�;ˆ.E/ ¤ 0 for some r � 1 then KSr

0

�;ˆ.E/ ¤ 0 for all r 0 � r .
(4) It is easy to check that the formation of the elements f� is compatible with

face maps in the sense that for every �0 2 Mr;C
n0 we have, in the above notation:

f�0 D f�.�0/: (5.5)

On the other hand note that in general

fi� ¤ �if�:
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(5) For every isogeny u W E 0 ! E of degree d prime to p of elliptic curves over
R� and every invertible 1-form ! on E, setting !0 D u�!, we have

f�.E
0; !0/ D d � f�.E; !/:

The argument is entirely similar to the one in [10, page 264].
(6) Let us write f�;� instead of f� if we want to emphasize dependence on � .

Then for all � 0j� we clearly have

f� 0;�.E� 0 ; !� 0/ D pN.�
0/�N.�/f�;�.E; !/ 2 R� 0

where E� 0 WD E ˝R�
R� 0 and !� 0 is the induced form.

A special role will be played later by the primary arithmetic Kodaira–Spencer
classes fi ; fi i ; fi i i ; : : : We will write

fir WD fi :::i with i repeated r times:

These classes are the images, via the corresponding face maps, of the corresponding
classes obtained by replacing ˆ by ¹�iº in all our constructions. Note that in [3] and
[10] the forms fir were denoted by f r .

Proposition 5.7. Assume E over R� has ordinary reduction and assume fi D 0 for
some i . Then for all � 2 Mn we have f� D 0.

This proposition cannot be proved at this point in the memoir but is an immediate
consequence of Theorem 7.39 that will be stated and proved later.

Lemma 5.8. Assume � D p. Then for all � 2 Mr
n and all � 2 †n we have

f�� D f�:

Proof. Let sri W bU i ! J rp;ˆ.pr�1r .Ui // be local sections of the projection prr WJ
r
p;ˆ.E/

!bE as in Remark 5.4, and consider the group automorphism over E,

� W J rp;ˆ.E/! J rp;ˆ.E/

induced by � 2 †n. Consider the local sections � ı sri W bU i ! J rp;ˆ.pr�1r .Ui //. By
the independence of f� on the choice of local sections we get

f� DhŒ QL
�
�;ˆ ı .sri � s

r
j /�; !i

Dh QL
�
�;ˆ ı .� ı sri � � ı srj /; !i

Dh QL
�
�;ˆ ı � ı .sri � s

r
j /; !i

Dh QL
��
�;ˆ ı .sri � s

r
j /; !i

Df��:



General case 41

Remark 5.9. Assume � Dp and fix an index i . By its very construction fi D 0 if and
only if E possesses a Frobenius lift (i.e., a scheme endomorphism reducing modulo
p to the p-power Frobenius). Recall that if E has ordinary reduction then E has a
Frobenius lift if and only if E is a canonical lift of its reduction [29, Appendix]. On
the other hand recall from [10, Corollary 8.89] that if E has supersingular reduction
then fi ¤ 0. We conclude that for an arbitrary E over R D Rp we have fi D 0 if and
only if E has ordinary reduction and is a canonical lift of its reduction.

Consider the K� -linear space

K
r;C
�;ˆ D

² X
�2Mr;C

n

����

ˇ̌̌̌
�� 2 K�

³
� Kr�;ˆ

and the projection

� W Kr�;ˆ ! K
r;C
�;ˆ; �

� X
�2Mr

n

����

�
D

X
�2Mr;C

n

����:

We may consider the K� -linear space of relations among the primary arithmetic
Kodaira–Spencer classes:

KSr�;ˆ.E/
?
WD

² X
�2Mr;C

n

���� 2 K
r;C
�;ˆ

ˇ̌̌̌ X
�2Mr;C

n

��f� D 0

³
(5.6)

and its R� -submodule of “integral elements,”

KSr�;ˆ.E/
?
int WD

² X
�2Mr;C

n

���� 2 KSr�;ˆ.E/
?

ˇ̌̌̌
�� 2 R�

³
:

Finally, recall the symbol homomorphism

� W Xr�;ˆ.E/! Kr�;ˆ;  7! �. /:

Theorem 5.10. The following claims hold.

(1) There exists an R� -module homomorphism P as in (5.7) below such that the
composition

KSr�;ˆ.E/
?
int

P
�! Xr�;ˆ.E/

�
� Xr�;ˆ.E/

�
�! Kr�;ˆ

�
�! K

r;C
�;ˆ (5.7)

is the multiplication by pN.�/C1 map. So for � D p the composition (5.7) is
the inclusion KSr�;ˆ.E/

?
int � K

r;C
�;ˆ.

(2) The map � ı � is injective. In particular, if �. / 2K� for some  2 Xr�;ˆ.E/
then  D 0 and hence �. / D 0.
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Proof. To prove Part 1 note that if

ƒ WD

X
�2Mr;C

n

���� 2 KSr�;ˆ.E/
?
int

and if
Lƒ WD

X
�2Mr;C

n

�� QL
�
�;ˆ 2 Hom.N r

�;ˆ;
cGa/

then @.Lƒ/ D 0 so Lƒ is the restriction of a unique element

P.ƒ/ 2 Hom.J r�;ˆ.E/;cGa/ D Xr�;ˆ.E/: (5.8)

Clearly ƒ 7! P.ƒ/ is an R� -linear map. By an argument entirely similar to the one
in the proof of [12, Theorem 6.1] and using Remark 5.2 above it follows that P.ƒ/ is
totally ı-overconvergent: P.ƒ/ 2 Xr�;ˆ.E/

�. By an argument entirely similar to the
one in the proof of [10, Proposition 7.20] one gets that

�.P.ƒ//T � pN.�/C1
� X
�2Mr;C

n

����T

�
mod T

in the ring K� Œı�;�T j � 2 Mr
n�. By Lemma 3.5, Part 2, we have

�.P.ƒ//T D pN.�/C1
� X
�2Mr;C

n

����T

�
C �0T

for some �0 2 R� . Hence

�.�.P.ƒ/// D pN.�/C1
� X
�2Mr;C

n

����

�
and Part 1 follows.

Part 2 follows from the observation that if �. / 2 K� for some  2 Xr�;ˆ.E/
then by Remark 3.8, Part 1 it easily follows that

 2 O.J 2�;ˆ.E// \K�JT K D O.bE/
and hence  defines a homomorphism bE ! cGa; but the only such homomorphism
is the zero homomorphism.

Remark 5.11. Note that P in Theorem 5.10 is automatically injective. For all ƒ 2

KSr�;ˆ.E/
?
int we write  ƒ WD P.ƒ/; hence, by Remark 3.8, Part 2, we have

�. ƒ/ D pN.�/C1ƒC �0.ƒ/
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for some �0.ƒ/ 2 pR� . Clearly the map

KSr�;ˆ.E/
?
int ! pR� ; ƒ 7! �0.ƒ/

is an R� -module homomorphism.

Remark 5.12. The map P in Theorem 5.10 is compatible with the face maps (2.7)
in an obvious sense.

Remark 5.13. If fi D 0 for some i then �i 2 KSr�;ˆ.E/
?
int hence

 i WD  �i
2 X1�;ˆ.E/

�:

Moreover, the symbol of  i is given by

�. i / D pN.�/C1�i C �0.�i /:

Corollary 5.14. The following claims hold.

(1) If KSr�;ˆ.E/ ¤ 0 (in particular if KS1�;ˆ.E/ ¤ 0), then we have Xr�;ˆ.E/ D
Xr�;ˆ.E/

� and the rank of this R� -module equals D.n; r/ � 2.

(2) If KS1�;ˆ.E/ D 0 (equivalently, if fi D 0 for all i 2 ¹1; : : : ; nº) then the
equality Xr�;ˆ.E/ D Xr�;ˆ.E/

� holds, the rank of this R� -module equals
D.n; r/ � 1, and a basis modulo torsion for this R� -module is given by

¹�� i j � 2 Mr;C
n ; i 2 ¹1; : : : ; nºº: (5.9)

(3) The cokernel of the injective homomorphism P in Theorem 5.10 is a torsion
R� -module.

Proof. If KSr�;ˆ.E/ ¤ 0 then the module KSr�;ˆ.E/
?
int has rank D.n; r/ � 2. Since

P in Theorem 5.10 is injective the module Xr�;ˆ.E/
� has rank at least D.n; r/ � 2.

On the other hand by Proposition 5.1 and by the exact sequence (5.4) the module
Xr�;ˆ.E/ has rank at mostD.n; r/� 2. So the modules Xr�;ˆ.E/ and Xr�;ˆ.E/

� have
the same rankD.n;r/� 2 and hence they are equal by Lemma 3.3. This proves Part 1.

Assume now KS1�;ˆ.E/ D 0. The subset (5.9) of Xr�;ˆ.E/
� is linearly indepen-

dent (because so is the set of symbols of its elements). It follows that Xr�;ˆ.E/
�

has rank at least D.n; r/ � 1. On the other hand by Proposition 5.1 and the sequence
(5.4) the module Xr�;ˆ.E/ has rank at mostD.n;r/� 1. So the modules Xr�;ˆ.E/ and
Xr�;ˆ.E/

� have the same rank D.n; r/ � 1 and hence they are equal by Lemma 3.3,
with basis modulo torsion given by (5.9). This proves Part 2.

Part 3 follows from the fact that the source and target of P have the same rank.
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As an application to Theorem 5.10 we construct a series of special ı� -characters
of E as follows. Let �; � 2 Mr;C

n be distinct and let ! be an invertible 1-form on E.
Recalling the integers N.�/ in (4.1) set

Qf� WD pN.�/C1f�; � 2 Mn: (5.10)

In particular, if � D p then Qf� D f�.
Note that

f��� � f��� 2 KSr�;ˆ.E/
?
int

so we may consider the partial ı� -character

 �;� WD  f����f���
2 Xr�;ˆ.E/

�: (5.11)

By Theorem 5.10 we have

�. �;�/ D Qf��� � Qf��� C f�;� (5.12)

for some f�;� 2 pR� .

Definition 5.15. The above element f�;� 2 pR� is called the secondary arithmetic
Kodaira–Spencer class attached to � and �.

Remark 5.16. Note that  �;� and f�;� do not change if r changes which justifies r
not being included in the notation. Note also that  �;� and f�;� effectively depend
on (E and) ! and if we want to emphasize this dependence we denote them by
 �;�.E; !/ and f�;�.E; !/, respectively. Similarly, we write Qf�.E; !/ in place of
Qf�. Then for all � 2 R�

� we have (using the notation in Remark 2.14):

f�;�.E; �!/ D ���C��f�;�.E; !/:

Indeed, by Remark 3.8, Part 1, and Remark 5.6, Part 1, we have the following equal-
ities

 �;�.E; !/ D
1

p
. Qf�.E; !/�� � Qf�.E; !/�� C f�;�.E; !//`!.T /;

 �;�.E; �!/ D
1

p
. Qf�.E; �!/�� � Qf�.E; �!/�� C f�;�.E; �!//`�!.T /

D
1

p
.���C1 Qf�.E; !/�� � ���C1 Qf�.E; !/��

C f�;�.E; �!//.�`!.T //

D
1

p
.���C��C1 Qf�.E; !/�� � ���C��C1 Qf�.E; !/��

C �f�;�.E; �!//`!.T /:
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We get

 �
WD���C��C1 �;�.E; !/ �  �;�.E; �!/

D
1

p
.���C��C1f�;�.E; !/ � �f�;�.E; �!//`!.T /:

Hence
�. �/ D

1

p
.���C��C1f�;�.E; !/ � �f�;�.E; �!// 2 K� :

By Theorem 5.10, Part 2, �. �/ D 0 which ends the proof.

Remark 5.17. For all distinct �; � we have

f�;� C f�;� D 0: (5.13)

Indeed, switching � and � in (5.12) we get

�. �;�/ D Qf��� � Qf��� C f�;�: (5.14)

Adding (5.12) and (5.14) we may conclude by Theorem 5.10, Part 2.

Remark 5.18. Fix in what follows the elliptic curve E over R� and an invertible 1-
form !. Write, as before, `.T / D `!.T / D

P1

mD1
bm

m
Tm, bm 2 R� . Let �; � 2 Mn

be distinct of lengths r � s, respectively. By Remark 3.8, Part 1, we have that

 �;� D
1

p
. Qf��� � Qf��� C f�;�/`.T / 2 R�Jı�;�T j � 2 Mr

nK: (5.15)

On the other hand we can write

��;�T D T p
r

CG�; ��;�T D T p
s

CG�

with G�; G� in the ideal Ir of R� Œı�;�T j � 2 Mr
n� generated by the set

¹ı�;�T j � 2 Mr;C
n º:

A direct computation shows

p �;� D Qf�

�X
m

��.bm/

m
.T p

r

CG�/
m
�

� Qf�

�X
m

��.bm/

m
.T p

s

CG�/
m
�

C f�;�

�X
m

bm

m
Tm

�
:
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Reducing the above equality modulo the ideal Ir we get

Qf�

�X
m

��.bm/

m
T p

rm
�
� Qf�

�X
m

��.bm/

m
T p

sm
�
C f�;�

�X
m

bm

m
Tm

�
2 pR�JT K:

For all integers N � 1, picking out the coefficients of T p
rN , we get the following

analogue of the integrality conditions of Atkin and Swinnerton-Dyer [1, 34].

Corollary 5.19. For all integers N � 1

Qf�
��.bN /

N
� Qf�

��.bpr�sN /

pr�sN
C f�;�

bprN

prN
2 pR� : (5.16)

Remark 5.20. For every isogeny u WE 0 !E of degree d prime to p of elliptic curves
over R� and every invertible 1-form ! on E, setting !0 D u�!, we have

f�;�.E
0; !0/ D d � f�;�.E; !/:

Indeed, we may identify two admissible coordinates forE andE 0 (call this parameter
T ) in which case we identify the images of !0 and ! in R�JT KdT , and we identify
the two series `! and `!0 in R�JT K. As in 5.15 we consider the partial ı� -characters
of E and E 0 respectively:

 WD  �;� D
1

p
. Qf�.E; !/�� � Qf�.E; !/�� C f�;�.E; !//`.T /; (5.17)

 0
WD  0

�;� D
1

p
. Qf�.E

0; !0/�� � Qf�.E
0; !0/�� C f�;�.E

0; !0//`.T /: (5.18)

Identifying with its image in the space of ı�-characters ofE 0 and using Remark 5.6,
Part 5, we get that

 0
� d �  D .f�;�.E

0; !0/ � d � f�;�.E; !//`!.T /:

Hence
�. 0

� d �  / D f�;�.E
0; !0/ � d � f�;�.E; !/ 2 R� :

By Theorem 5.10, Part 2, �. 0 � d �  / D 0 which ends the proof.

Remark 5.21. Let us write f�;�;� and  �;�;� instead of f�;� and  �;� if we want to
emphasize dependence on � . Then for all � 0j� we have

 � 0;�;� D p2N.�
0/�2N.�/ �;�;� 2 Xr� 0;ˆ.E/; (5.19)

f� 0;�;� D p2N.�
0/�2N.�/f�;�;� 2 R� 0 : (5.20)

This follows from Remark 5.6, Part 6 by an argument similar to that in Remark 5.20.
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5.2 The case n D r D 2

We continue to consider an elliptic curve E over R� and a 1-form !. Consider, in
what follows, ˆ D .�1; �2/. We consider in this subsection the arithmetic Kodaira–
Spencer classes of order � 2, and we derive some basic quadratic and cubic relations
among them that will play a key role in the next section.

Specializing the construction in the previous section to our case we may consider
the partial ı� -character

 1;2 D  f2�1�f1�2
2 X1�;�1;�2

.E/�:

Remark 5.22. If f1f2 ¤ 0 then  1;2 is a “genuinely partial” object (not expressible
in terms of ODE objects via face maps); indeed, in this case, by Theorem 5.10, we
have X1�;�1

.E/D X1�;�2
.E/D 0. On the other hand 112 can be viewed as an analogue

of the transport equation in [17].

By Theorem 5.10 we have

�. 1;2/ D Qf2�1 � Qf1�2 C f1;2:

By Remark 5.16 the dependence of f1;2 on ! is as follows:

f1;2.E; �!/ D ��1C�2f1;2.E; !/:

Next, for i 2 ¹1; 2º, we may consider the partial ı� -characters (induced via face
maps by the ODE arithmetic Manin maps in [6]):

 i i;i WD  Qfi�
2
i
� Qfii�i

2 X2�;�1;�2
.E/�:

By Theorem 5.10 we have

�. i i;i / D Qfi�
2
i �

Qfi i�i C fi i;i :

By Remark 5.16 the dependence of fi i;i on ! is as follows:

fi i;i .E; �!/ D ��iC�
2
i fi i;i .E; !/:

Finally, we may consider the partial ı� -character

 11;22 WD  f22�
2
1
�f11�

2
2
2 X2�;�1;�2

.E/�:

By Theorem 5.10 we have

�. 11;22/ D Qf22�
2
1 �

Qf11�
2
2 C f11;22:
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By Remark 5.16 the dependence of f11;22 on ! is as follows:

f11;22.E; �!/ D ��
2
1
C�2

2f11;22.E; !/:

One has the following 6 elements in the module X2�;�1;�2
.E/,

 1;2; �1 1;2; �2 1;2;  11;1;  22;2;  11;22: (5.21)

So if f1 ¤ 0 or f2 ¤ 0, since X2�;�1;�2
.E/ has rank 2 C 22 � 1 D 5 (cf. Theorem

5.10), it follows that there must be a non-trivial R� -linear relation among these 6
elements:

�1 1;2 C �2�1 1;2 C �3�2 1;2 C �4 11;1 C �5 22;2 C �6 11;22 D 0; (5.22)

for some �1; : : : ; �6 2 R� , not all zero. The existence of such a relation implies the
vanishing of all 6 � 6 minors of the 6 � 7 matrix � of the coefficients of the Picard–
Fuchs symbols of the elements in (5.21) with respect to the basis

�21 ; �
2
2 ; �1�2; �2�1; �1; �2; 1 (5.23)

of K2�;�1;�2
. One can compute this matrix explicitly. Indeed, denote by �1; : : : ; �6

the Picard–Fuchs symbols of the elements in (5.21), let e1; : : : ; e7 be the elements in
(5.21) and let � D .
ij / be the 6 � 7 matrix defined by the equalities

�i D

7X
jD1


ij ej ; i D 1; : : : ; 6:

We have the following matrix

� D

0BBBBBBBBBBB@

0 0 0 0 Qf2 � Qf1 f1;2

Qf
�1

2 0 � Qf
�1

1 0 f
�1

1;2 0 0

0 � Qf
�2

1 0 Qf
�2

2 0 f
�2

1;2 0

Qf1 0 0 0 � Qf11 0 f11;1

0 Qf2 0 0 0 � Qf22 f22;2

Qf22 � Qf11 0 0 0 0 f11;22

1CCCCCCCCCCCA
:

The upper left 5 � 5 minor of the matrix � is non-zero if f1f2 ¤ 0. In particular,
the following corollary is proved.

Corollary 5.23. If f1f2 ¤ 0 then the first 5 elements in (5.21) are R� -linearly inde-
pendent and hence they form a basis up to torsion of X2�;ˆ.E/.
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On the other hand the linear combination of the rows of � with coefficients
�1; : : : ; �6 is 0 from which we get the following corollary.

Corollary 5.24. If f1f2 ¤ 0 then in (5.22) we have �2 D �3 D 0.

Assume f1f2¤ 0 and denote by Q� the 4� 5matrix obtained from � by removing
the 3rd and 4th columns as well as the 2nd and the 3rd rows. The rows of Q� are
then linearly dependent, so we get that all 4 � 4 minors of the matrix Q� vanish. The
vanishing of the minor obtained by removing the fifth column of Q� is tautologically
trivial, so it does not yield any information. The vanishings of the rest of the minors
of Q� is equivalent to one cubic relation (5.24) given in the following corollary.

Corollary 5.25. If f1f2 ¤ 0 then the following relation holds in R� :

f11f22f1;2 C f2f22f11;1 � f11f1f22;2 � f1f2f11;22 D 0: (5.24)

Proposition 5.26. Assume � D p. Then the following equalities hold in R:

(1) f1 D f2, f12 D f21.

(2) f11;1 D f22;2.

(3) f1;2 D f11;22 D 0.

Proof. Part 1 follows from Lemma 5.8. Part 2 follows from the compatibility with
face maps. In order to check Part 3 consider the compatible actions of †2 D ¹e; �º

on X1p;ˆ.E/ and K1p;ˆ. We have

�.� 1;2/ D �.�. 1;2// D �.f1�1 � f1�2 C f1;2/ D f1�2 � f1�1 C f1;2:

Hence
�. 1;2 C � 1;2/ D 2f1;2 2 K� :

By Theorem 5.10, Part 2, it follows that f1;2 D 0. The equality f11;22 D 0 follows
similarly.

Remark 5.27. Assume that E comes from a curve EZp
over Zp and denote by ap

the trace of Frobenius on EZp
˝ Fp . Also fix an index i . It follows from [8, Theorem

1.10], that if E is not a canonical lift of an ordinary elliptic curve then

fi i D apfi ; fi i;i D pfi :

Recall that, if in addition p � 5, then ap D 0 if and only if E has supersingular
reduction.

We continue by considering the partial ı� -character

 12;1 WD  f1�1�2�f12�1
:
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Its symbol is
�. 12;1/ D Qf1�1�2 � Qf12�1 C f12;1:

This symbol must be a linear combination of the symbols of

 1;2; �1 1;2; �2 1;2;  11;1;  22;2:

Let � 0 be the matrix obtained by replacing the last row in � by the row

Œ0 0 Qf1 0 � Qf12 0 f12;1�:

Then the determinants of the matrices obtained from � 0 by deleting the 5th and the
7th columns respectively must be 0. The vanishing of these determinants yields the
following result.

Lemma 5.28. If f1f2 ¤ 0 then the following relations hold in R� :

f12;1f
�1

1 � f11;1f
�1

2 D 0; (5.25)
Qf12 Qf

�1

1 � Qf11 Qf
�1

2 � Qf1f
�1

1;2 D 0: (5.26)

Similarly, by looking at the partial ı� -character

 21;2 WD  f2�2�1�f21�2

we get the following lemma.

Lemma 5.29. If f1f2 ¤ 0 then the following relations hold in R� :

f21;2f
�2

2 � f22;2f
�2

1 D 0; (5.27)
Qf21 Qf

�2

2 � Qf22 Qf
�2

1 � Qf2f
�2

2;1 D 0: (5.28)

Next consider the partial ı� -character

 12;21 WD  f21�1�2�f12�2�1
:

Its symbol is
�. 12;21/ D Qf21�1�2 � Qf12�2�1 C f12;21:

Set
 WD Qf1 Qf2 12;21 � Qf2 Qf21 12;1 C Qf1 Qf12 21;2 � Qf12 Qf21 1;2:

One trivially checks the following identity

�. / D f12;21 Qf1 Qf2 � Qf2 Qf21f12;1 C Qf1 Qf12f21;2 � Qf12 Qf21f1;2:

By Theorem 5.10, Part 1 we get the following.
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Lemma 5.30. If f1f2 ¤ 0 then the following relation holds in R� :

f12;21f1f2 � f2f21f12;1 C f1f12f21;2 � f12f21f1;2 D 0: (5.29)

Similarly consider the partial ı� -characters

Qf1 11;2 � Qf2 11;1 � Qf11 12;

Qf1 11;12 � Qf12 11;1 C Qf11 12;1;

Qf1 12;2 � Qf2 12;1 � Qf12 1;2;

Qf2 11;21 � Qf21 11;2 C Qf11 21;2:

The symbols of these partial ı� -characters are equal to the expressions in the left-
hand sides of the equalities in the Lemma 5.31 below. By Theorem 5.10, Part 1, since
these symbols are in R� they must vanish. So we have the following lemma.

Lemma 5.31. If f1f2 ¤ 0 then the following relations hold in R� :

f1f11;2 � f2f11;1 � f11f1;2 D 0; (5.30)

f1f11;12 � f12f11;1 C f11f12;1 D 0; (5.31)

f1f12;2 � f2f12;1 � f12f1;2 D 0; (5.32)

f2f11;21 � f21f11;2 C f11f21;2 D 0: (5.33)

Moreover, the relations obtained from the above relations by switching the indices 1
and 2 also hold.

Remark 5.32. One can ask if one can “extend” equations (5.24), (5.25), (5.26),
(5.27), (5.28), (5.30), (5.31), (5.32), (5.33) by continuity so that these remain true
without the condition f1f2 ¤ 0. We claim this is the case as an immediate conse-
quence of Theorems 7.18, 7.19 and the formulae (7.6) and (7.7) to be stated and
proved later. By the way we have the following result; this will be proved after the
proof of Proposition 7.38.

Theorem 5.33. Assume �1; �2 are monomially independent in G.Kalg=Qp/. Then
there exist � 2… and a pair .E;!/ over R� such that E has ordinary reduction and
all classes f�, f�;� with �; � 2 M2;C

2 , � ¤ �, attached to .E; !/ are non-zero.




