
Appendix

Partial �-jet spaces with relations

Throughout this memoir, commutation relations between Frobenius lifts on particular
fieldsK� played no role; and similarly, no role was given to the inverses of our Frobe-
nius lifts. In short, we assumed no dependence among the Frobenius lifts chosen. The
aim of the Appendix is to briefly discuss a more general theoretical framework in
which commutation relations and inversion of Frobenius lifts are “built into” our jet
spaces. We will also provide some simple computations illustrating the complexity of
this more general framework.

A.1 Main definitions

We now discuss technical structures on monoids which help to describe relationships
among Frobenius lifts and their inverses. At the most basic, for every homomorphism
� W M ! M0 of monoids with identity one defines its kernel K� to be the set of all
pairs .�; �/ 2 M � M such that �.�/ D �.�/.

Fix in what follows � 2 …, R� , K� as in Subsection 2.3, and a family

ˆ D .�1; : : : ; �n/

of distinct Frobenius elements in G.Kalg=Qp/. Furthermore, fix an integer n� so that
0 � n� � n and set

ˆ�
D .�nC1; : : : ; �nCn�/ WD .��1

1 ; : : : ; ��1
n� /:

By convention, for n� D 0 we take ˆ� D ;. For all i 2 ¹1; : : : ; n�º we write i� D

nC i . From now on we set

M WD MnCn� ; Mr
WD Mr

nCn� :

We have a canonical monoid homomorphism

can� W M ! G.K�=Qp/

defined by
can�.i/ D ��;i ; i 2 ¹1; : : : ; nC n�º:

Finally, fix a homomorphism of monoids with identity

� W M ! M0
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into a monoid with identity M0 such that .i i�; 0/ and .i�i; 0/ belong to the kernel K�

for all i 2 ¹1; : : : ; n�º and assume � is compatible with � in the sense that

K� � Kcan�
:

We set
Kr
� WD .Mr

� Mr/ \ K�:

We will also fix a subset M� �M with following properties (such a set always exists):

(1) For all � 2 M there exists a unique element � 2 M� such that �.�/ D �.�/.

(2) For all � 2 M we have j�j � j�j, where j j denotes the length of a word.

Example A.1. We will consider later the following special cases:
(i) (Invertible case) Take n D n� and � W M D M2n ! G where G is a group. In

case G is the free group on n generators and � sends 1; : : : ; n into the generators one
can take M� to be the set of all words � 2 M such that no sequence of 2 consecutive
letters in � is of the form i i� or i�i .

(ii) (Abelian case) Take n� D 0 and

� W M WD Mn ! Mab WD Mn;ab WD Zn�0

the canonical homomorphism �.i/D .0; : : : ; 1; : : : ; 0/ with 1 on the i -th position. We
assume that �1; : : : ; �n commute on K� so � is compatible with � . In this case we
can take M� � M to consist of all words of the form 1i1 : : : nin . We will identify M�

with Mab via the bijection induced by �.

As � is fixed throughout, we will sometimes drop � from the notation ı�;i ; ��;i ;
this should not create confusion as the meaning of ıi ; �i will be clear every time from
the context.

Definition A.2. Define the category ProlD Prol�;ˆ;ˆ�;� as follows. An object of this
category is a countable family of p-adically complete Noetherian flat R� -algebras
S� D .S r/r�0 equipped with the following data:

(1) R� -algebra homomorphisms 'WS r ! S rC1;

(2) �-derivations ıi WS r ! S rC1 with attached Frobenius lifts mod � denoted by
�i WS

r ! S rC1 for 1 � i � n;

(3) ring homomorphisms �j WS r ! S rC1 for nC 1 � j � nC n�.

For all i 2 ¹1; : : : ; nC n�º we write

�i WD

´
ıi if 1 � i � n;

�i if nC 1 � i � nC n�:



Main definitions 95

For � WD i1 : : : il 2 M and r � 0 we write

�� D �i1 : : : �il W S r ! S rCl ;

�� D �i1 : : : �il W S
r
! S rCl :

We require that �i on S r be compatible with the �i on R� for i 2 ¹1; : : : ; nC n�º,
and we have

�i ı ' D ' ı �i for all i 2 ¹1; : : : ; nC n�º;

�� D �� on S r for all r � 0; .�; �/ 2 K�:

Morphisms in this category are defined in the obvious way.

Note that since .i i�; 0/; .i�i; 0/ 2 K2
� we always have in the above definition that

�i .�i�.x// D �i�.�i .x// D x

for all x 2 S r with r � 0 and all i 2 ¹1; : : : ; n�º. So the homomorphisms �i� play
the role of “inverses” of �i for i 2 ¹1; : : : ; n�º.

We next consider variables ��ys for � 2 M and s 2 ¹1; : : : ; N º and consider the
rings

J r�;ˆ;ˆ�.R� ŒN �/ WD R� Œ��ys j � 2 Mr ; s 2 ¹1; : : : ; N º�b:
We define ring homomorphisms

�i W J
r
�;ˆ;ˆ�.R� ŒN �/! J rC1�;ˆ;ˆ�.R� ŒN �/; i 2 ¹1; : : : ; nC n�º;

extending �i on R� by letting

�i .��ys/ WD

´
.��y/

p C ��i� if 1 � i � n;

�i�ys if n � i � nC n�:

We then have �-derivations

ıi W J
r
�;ˆ;ˆ�.R� ŒN �/! J rC1�;ˆ;ˆ�.R� ŒN �/; i 2 ¹1; : : : ; nº;

with
ıi .��ys/ D �i�ys:

For each pair .�; �/ 2 Kr
� define the N -tuple

��;� WD ��y � ��y:

For an ideal I in a ring A we denote by I W p1 the ideal of all a 2 A for which
there exists an integer m.a/ � 0 such that pm.a/a 2 I . If A is a Z.p/-algebra then

A=.I W p1/ ' .A=I /=tors:
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Let I � R� ŒN � be an ideal. For r � 1 define

Ir WD .��I;��;� j � 2 Mr ; .�; �/ 2 Kr
�/ W p

1
� J r�;ˆ;ˆ�.R� ŒN �/:

Definition A.3. For every finitely generated R� -algebra A WD R� ŒN �=I define the
�-�-jet algebra of A by the formula

J r�;ˆ;ˆ�;�.A/ WD J r�;ˆ;ˆ�.R� ŒN �/=Ir :

If m D 0 (hence ˆ� D ;) we write J �
�;ˆ;;;�.A/ DW J �

�;ˆ;�.A/.

Clearly the rings J r�;ˆ;ˆ�;�.A/ are torsion free as groups, so they are flat over
R� . They are also Noetherian and p-adically complete. We claim they inherit �-
derivations and ring homomorphisms from those on J r�;ˆ;ˆ�.R� ŒN �/. This follows
from the fact that for all i 2 ¹1; : : : ; nC n�º we have that the components of the tuple
�i .��;�/ belong to the ideal .��;� ; �i�;i�/ and hence

ıiIr � Ir : (A.1)

We claim J �
� .A/ WD J �

�;ˆ;ˆ�;�.A/ WD .J r�;ˆ;ˆ�;�.A// is an object of Prol. Indeed, for
all .�; �/ 2 Kr

� we have ��as D ��as where as is the image of ys . So ��a D ��a

for all a 2 A. In particular,

����a D ���a D ���a D ����a

for all a 2 A and all � 2 Mr . Using the fact that � is a non-zero divisor in J r� .A/ we
get that ����a D ����a for a 2 A. By p-adic continuity we get that ��b D ��b for
all b 2 J r� .A/.

Remark A.4. (1) The object J �
�;ˆ;ˆ�;�.A/ has the obvious universal property: for

every object S� in Prol and every R� -algebra homomorphism u W A! S0 there is a
unique morphism J �

�;ˆ;ˆ�;�.A/! S� in Prol compatible with u.
(2) One has the following compatibility with fractions. For every object S� D

.S r/ in Prol and every f 2 S0 n �S0 the sequence .cS r
f
/ has a natural structure of

object in Prol. To check this it is enough to check that for every r � 0 and every

i 2 ¹1; : : : ; nC n�º we have that �i .f / is invertible in 1S rC1
f

. If i 2 ¹1; : : : ; nº the
element �i .f / D f p C �ıif has inverse

1

f p

�
1 � �

ıif

f p
C �2

�ıif
f p

�2
C � � �

�
:

If i 2 ¹1; : : : ; n�º we have

f D �i�.�i .f // D �i�.f /
p
C ��1

i .�/ � �i�ıif
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hence the element �i�.f / has inverse

�i�.f /
p�1

f

�
1C ��1

i .�/ �
�i�ıif

f
C ��1

i .�/2 �
��i�ıif

f

�2
C � � �

�
:

Using the above compatibility we get that for every finitely generated R� -algebra A,
f 2 A n �A, and every r � 0 one has natural isomorphisms

J r�;ˆ;�.Af / ' ..J r�;ˆ;�.A//f /
b: (A.2)

In view of (A.2) the functors A 7! J r�;ˆ;ˆ��.A/ can be globalized to give functors
X 7! J r�;ˆ;ˆ�;�.X/ from (not necessarily smooth) schemes of finite type over R� to
p-adic formal schemes. In case ˆ� D ; we write J r�;ˆ;ˆ�;�.X/ DW J r�;ˆ;�.X/.

(3) If n� D 0 and � is injective, then for A smooth over R� we have that the
ring J r�;ˆ;;;�.A/ coincides with the ring J r�;ˆ.A/ previously defined in the body of
the memoir; this is because the ring J r�;ˆ.A/ is, in this case, torsion free. So for X
smooth over R� we have that J r�;ˆ;�.X/ coincides with the formal scheme J r�;ˆ.X/
defined in the body of the memoir.

(4) For every f 2 J r�;ˆ;ˆ�;�.A/ and X WD Spec.A/ we have an induced map
fR�

W X.R�/! R� .

A.2 Structure over Q

The �-�-jet algebras mod � have a complicated structure as we shall presently see.
However, we have the following theorem about the behavior of these algebras over Q.
We need the following trivial fact.

Lemma A.5. Let A be a flat R� -algebra, P a prime ideal in A not containing � ,
A0 WD A˝R�

K� , and P 0 WD PA0. Then AP ' A0
P 0 .

In what follows for a local ring B we denote by B for the completion of B with
respect to its maximal ideal. For a finitely generated R� -algebra A we simply denote
by J r� .A/ the algebra J r�;ˆ;ˆ�;�.A/. For u W A! R� an R� -algebra map with ker-
nel P we denote by Pr the kernel of the surjective homomorphism J r� .A/ ! R�
induced by u via the universal property of �-jet algebras; we refer to Pr as the r-th
prolongation of P . We continue to denote by P 2 X.R�/ the point of X WD Spec.A/
defined by u W A! R� .

Theorem A.6. Let A be a finitely generated R� -algebra and A ! R� be an R� -
algebra map with kernel P . Write A D R� Œy�=I where y is an N -tuple of variables
such that P D .y/=I and let Pr be the prolongation of P . Then there is a canonical
isomorphism

.J r� .A/Pr
/for

'
K�J��y j � 2 Mr

�K
.��I j � 2 Mr

�/
:
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Moreover, if the image of some F 2J r�;ˆ;ˆ�.R� ŒN �/ inK�J��y j�2MrK belongs to
the ideal .��;� j .�; �/ 2 Kr

�/ and if f is the image of F in J r� .A/ then fR�
.P / D 0.

Proof. In what follows (if not otherwise stated) � runs through Mr
n and .�; �/ run

through Kr
�. In particular, Pr D .ı�y/=Ir . By Lemma A.5 we have

.J r� .A//.ı�y/ ' .J r� .A/˝R�
K�/.ı�y/: (A.3)

Note that

J r� .A/˝R�
K� ' .3R� Œı�y�˝R�

K�/=..ı�I;��;�/ W p
1/

' .3R� Œı�y�˝R�
K�/=.��I;��;�/:

(A.4)

Also, one easily checks that

..R� Œı�y�
b
˝R�

K�/.ı�y//
for

' K�Jı�yK ' K�J��yK: (A.5)

Finally note that since I � .y/, we have that

��f � ��f 2 .��;�/: (A.6)

Using (A.5) and (A.6) we compute:

....3R� Œı�y�/˝R�
K�/=.��I;��;�//.ı�y//

for

' ...3R� Œı�y�/˝R�
K�/.ı�y//

for=.��I;��;�/

' K�J��yK=.��I;��;�/
' K�J��yW � 2 Mr

�K=.��I j � 2 Mr
�/:

(A.7)

We conclude the first assertion of the theorem by combining the isomorphisms (A.3),
(A.4), (A.7). To check the second assertion of the theorem note that if the image of
F 2 J r�;ˆ;ˆ�.R� ŒN �/ inK�J��y j� 2MrK belongs to the ideal .��;� j .�;�/ 2Kr

�/

then the image of F in K� J��y j �2Mr
�K

.��I j �2Mr
�/

is 0 hence the image of f in J r� .A/Pr
is zero.

So the image of f via the homomorphism J r� .A/Pr
! K� is zero. Hence the image

of f via the homomorphism J r� .A/! R� is zero, hence fR�
.P / D 0.

Corollary A.7. Under the assumptions of Theorem A.6 if A is smooth over R� then
the rings J r� .A/Pr

are regular and the canonical homomorphisms

J r� .A/Pr
! J rC1� .A/PrC1

are injective.
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Proof. If the R� -algebra A is smooth the .y/-adic completion of A˝R�
K� is iso-

morphic to K�JT K for some tuple of variables T and hence

K�J��y j � 2 Mr
�K

.��I j � 2 Mr
�/

' K�J��T j � 2 Mr
�K:

The latter power series ring is a regular local ring hence so is the ring J r� .A/Pr
. Hence

the canonical homomorphisms in the theorem are injective because the corresponding
homomorphisms between the power series rings are injective.

Remark A.8. It would be interesting to know if for A smooth over R� the rings
J r� .A/ themselves are regular. If these rings even just domains then this would also
imply that the homomorphisms

J r� .A/! J rC1� .A/

are injective.

A.3 Invertible �-jets

Assume nD n� and � WMDM2n!G withG a group; cf. Example A.1 (i). We refer
to the algebra J r�;ˆ;ˆ�;�.A/ as the invertible �-jet algebra of order r of A attached
to �. The reduction modulo � of this algebra has a complicated structure as we shall
illustrate in what follows.

First note that since .i i�; 0/; .i�i; 0/ 2 K2
� for i 2 ¹1; : : : ; nº the following ele-

ments belong to the ideals Ir for all r � 2, s 2 ¹1; : : : ; N º, and i 2 ¹1; : : : ; nº:

�i i�;0;s D �i�i�ys � ys D .�i�ys/
p
C �ıi�i�ys � ys;

�i�i;0;s D �i��iys � ys D .�i�ys/
p
C ��1

i � � �i�ıiys � ys:

Take now N D 1, n D 2, y D y1 (so we drop the index s), I D 0, and � D

can� W M D M4 ! F2 the natural homomorphism to the free group on 2 generators.
Consider the “linear relations:”

Fi WD ıi�i�y �
��1
i �

�
�i�ıiy:

Then we have

J 2�;ˆ;ˆ�;can�
.R� Œy�/ D J 2�;ˆ;ˆ�.R� Œy�/=..�13;0; �31;0; �24;0; �42;0/ W p

1/

D .J 2�;ˆ;ˆ�.R� Œy�/=.�13;0; �24;0; F1; F2//=tors:
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A.4 Abelian �-jets

Assume n� D 0 and � W M WD Mn ! Mab WD Mn;ab WD Zn�0 is the canonical homo-
morphism. We identify Mab with the subset M� of M consisting of words of the
form 1i1 : : : nin ; cf. Example A.1, (ii). We assume that �1; : : : ; �n commute on K�
so � is compatible with � . The algebra J r�;ˆ;;;ab.A/D J r�;ˆ;ab.A/ is referred to as the
abelian �-jet algebra of order r . The reduction modulo � of this algebra also has a
complicated structure and some comments on this will be made in what follows.

Assume for simplicityN D 1 y D y1, I D 0. We begin with the following obser-
vation.

Lemma A.9. For � D i1; : : : ; ir and variable y we have

��.y/ � yp
r

C �.ıi1�/.ıi2�/
p
� � � .ıir�1

.�/p
r�2

/.ıiry/
pr�1

mod �2:

Proof. We proceed by induction on r . The case r D 1 holds by definition. For the
inductive step note that, for any fixed Frobenius lift � mod � with associated �-
derivation ı, any m � 0 and any F 2 R� Œı�yj� 2 M� we have

�.F p
m

/ D .F p C �ıF /p
m

� F p
mC1

C pm�F p.p
m�1/ıF mod �2: (A.8)

Now assume r � 2 and set �0 D i2 : : : ir and � D �i1 so � D i1�
0. By induction

��0.y/ � yp
r

C �.ıi2�/.ıi3�/
p
� � � .ıir�1

�/p
r�3

.ıiry/
pr�2

mod �2:

Repeatedly using (A.8) we have

�.�.ıi2�/.ıi3�/
p
� � � .ıir�1

�/p
r�3

.ıiry/
pr�2

/

� .�pC�ı�/..ıi2�/
p
C�ııi2�/ � � � ..ıiry/

pr�1

C�pr�2ııiry.ıiry/
p.pr�2�1//

� .�ı�/.ıi2�/
p
� � � .ıir�1

�/p
r�2

.ıiry/
pr�1

mod �2:

The result follows.

For each � D i1 : : : ir with r � 2 set

F� WD .ıi1�/.ıi2�/
p
� � � .ıir�1

�/p
r�2

.ıiry/
pr�1

:

Note in particular that F� has order 1. Note also that if .�;�/ 2 Kr
� then � and � must

have, in particular, the same length and the difference F� � F� is a pr�1-th power of
a linear polynomial in the variables ıiy.

Proposition A.10. One has a surjective ring homomorphism

kŒy; ı1y; : : : ; ıny�

.¹F� � F� W .�; �/ 2 Kr
�º/
Œı�yW� 2 Mr

n M1�! J r�;ˆ;ab.R� Œy�/=.�/:
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For n D r D 2 the above homomorphism is an isomorphism, i.e.,

J 2�;ˆ;ab.R� Œy�/=.�/ '
kŒy; ı1y; ı2y�

.ı1� � .ı2y/p � ı2� � .ı1y/p/
Œı21y; ı1ı2y; ı2ı1y; ı

2
2y�:

Proof. Recall that J r�;ˆ;ab.R� Œy�/ is obtained as J r�;ˆ;ˆ�.R� Œy�/ divided by the ideal
Ir D .¹��;�º/ Wp

1, where the generators run over all .�;�/2Kr
�. From Lemma A.9,

�.F� � F�/ � ��;� mod �2, and so F� � F� 2 .Ir ; �/. Then the first part of the
proposition follows. Assume now n D r D 2. Since � is a prime element in the ring
J 2�;ˆ.R� Œy�/ and does not divide F12;21 in this ring it follows that

I2 WD .�12;21/ W p
1

D .F12;21/

which implies the second part of the proposition.

Remark A.11. In particular, for n D r D 2 the reduced ring

.J 2�;ˆ;ab.R� Œy�/=.�//red

is isomorphic to a polynomial ring in 6 variables. However, note that, contrary to
what one might expect, there is no equality (or even relation) in this ring between the
images of the variables ı1ı2y and ı2ı1y; instead we have an identification between
the images of .ı1�/1=p � ı2y and .ı2�/1=p � ı1y. As we see, a relation between the
images of the variables ı1ı2y and ı2ı1y pops up in the ring J 3�;ˆ;ab.R� Œy�/=.�/; cf.
Proposition A.12.

To tackle the case n D 2 and r D 3 note that since p � 3,

�1�2y D �1.y
p
C �ı2y/

D .yp C �ı1y/
p
C �1.�/..ı2y/

p
C �ı1ı2y/

� yp
2

C p�yp.p�1/ı1y C �ı1� � .ı2y/
p
C �2ı1� � ı1ı2y mod �3:

hence

L�12;21 WD
1

�
�12;21 D

�1�2y � �2�1y

�
� AC pB C �C mod �2

where

A D ı1� � .ı2y/
p
� ı2� � .ı1y/

p

B D yp.p�1/.ı1y � ı2y/

C D ı1� � ı1ı2y � ı2� � ı2ı1y:

Let i 2 ¹1; 2º. Using the fact that for any element z in a ı� -ring we have

ı�z
p
� 0 mod �
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and assuming for simplicity that R� ¤ R (so p=� 2 �R� ) we get that

ıi .A/ � ıiı1� � .ı2y/
p2

� ıiı2� � .ı1y/
p2

mod �;

ıi .pB/ � 0 mod �;

ıi .�C / � ıi� � Cp mod �:

Hence

ıi . L�12;21/ �ıi .AC pB C �C/ mod �

�ıi .A/C ıi .pB/C ıi .�C / mod �

�ıiı1� � .ı2y/
p2

� ıiı2� � .ı1y/
p2

C ıi� � .ı1� � ı1ı2y � ı2� � ı2ı1y/
p mod �:

On the other hand, by (A.1) and since L�12;21 2 .�12;21/ W p
1 it follows that

ıi . L�12;21/ 2 I3 D .��;� j .�; �/ 2 K3
�/ W p

1:

In particular, we have proved the following.

Proposition A.12. Assume that R� ¤ R. The image of the element

ıi� � .ı1� � ı1ı2y�ı2� � ı2ı1y/
p
Cıiı1� � .ı2y/

p2

�ıiı2� � .ı1y/
p2

2 J 3�;ˆ.R� Œy�/

in the ring J 3�;ˆ;ab.R� Œy�/=.�/ is 0.

Note that the image of the above element in J 3�;ˆ.R� Œy�/=.�/ is a p-th power. A
similar (but slightly more complicated) formula holds in case R� D R.

A.5 ı�-�-characters

We conclude with a discussion of characters for �-�-jets. Specifically, partial charac-
ters restrict to �-�-characters, but we will show this restriction map is not injective in
the abelian case. It is a question whether the restriction map is surjective.

Definition A.13. Fix G a smooth commutative group scheme over R� . The R� -
module

Xr�;ˆ;ˆ�;�.G/ WD Hom.J r�;ˆ;ˆ�;�.G/;
cGa/:

will be called the module of ı�-�-characters of G of order � r . Let

�free W MnCn� ! Fn

be the unique homomorphism of monoids with identity into the free group Fn on
¹1; : : : ; nº that is the identity on Mn and sends i� into i�1 for all i 2 ¹1; : : : ; nº.
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Note that K�free � K�, so we have an induced closed immersion J r�;ˆ;ˆ�;�.G/ !

J r�;ˆ;ˆ�;�free
.G/. The latter induces a restriction R� -module homomorphism

Xr�;ˆ;ˆ�;�free
.G/

res
�! Xr�;ˆ;ˆ��.G/:

For the further development of the theory it is important to understand the behavior
of this canonical restriction. Note that in case ˆ� D ; we have that J r�;ˆ;ˆ�;�free

.G/

and Xr�;ˆ;ˆ�;�free
.G/ identify with J r�;ˆ.G/ and Xr�;ˆ.G/ as defined in the body of

the memoir.

Of particular interest are the abelian ı� -characters of a commutative smooth
group scheme G, defined as the ı�-ab-characters, i.e., the elements of the R� -module

Xr�;ˆ;ab.G/ WD Hom.J r�;ˆ;ab.G/;
cGa/:

We therefore have a naturally induced restriction homomorphism

Xr�;ˆ.G/! Xr�;ˆ;ab.G/: (A.9)

Define the K� -module of abelian symbols Kr�;ˆ;ab as the free K� -module with basis
Mr

ab and define Rr�;ˆ;ab similarly. We would like to briefly look into the abelian ı� -
characters of Ga and Gm.

Write Ga D Spec R� ŒT �. Recall from Corollary A.7 that we have an injective
homomorphism

O.J r�;ˆ;ab.Ga//Pr
! K�J��T W� 2 Mr

abK (A.10)

where Pr D .ı�T W� 2 Mr/. We may define

Kr�;ˆ;abT D

X
�2Mr

ab

K���T � K�J��T W� 2 Mr
abK

and similarly for Rr�;ˆ;abT which again are naturally isomorphic to the groups of
abelian symbols. As in the non-abelian case, the image of Xr�;ˆ;ab.Ga/ via the homo-
morphism (A.10) is contained in Kr�;ˆ;abT , so we get an induced homomorphism

Xr�;ˆ;ab.Ga/! Kr�;ˆ;abT;  7!  .T /: (A.11)

If G has relative dimension 1 with invariant 1-form !, the standard theory pro-
vides again a map of p-formal schemes E W cGa ! bG. This again yields for each
 2 Xr�;ˆ;ab.G/ a composition  ı Er 2 Xr�;ˆ;ab.Ga/,

 ı Er W J r�;ˆ;ab.Ga/
Er

�! J r�;ˆ;ab.G/
 
�! cGa:

We get an induced homomorphism

Xr�;ˆ;ab.G/! Kr�;ˆ;abT;  7! . ı Er/.T /: (A.12)
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Writing . ı E/.T / D
P
����T we define

�. / WD
X

���� 2 Kr�;ˆ;ab

to be the abelian Picard–Fuchs symbol of  .
Write now Gm D Spec R� Œx; x�1�. Let n D 2 and note that �21.x/ is invertible

in the ring

J 2�;ˆ.Gm/ D R� Œx; x
�1; ı1x; ı2x; ı

2
1x; ı1ı2x; ı2ı1x; ı

2
2x�

b:
We can now show the restriction map (A.9) can fail to be injective.

Proposition A.14. Let N be the smallest integer so that  WD
�N

p
log

�
�12.x/
�21.x/

�
be-

longs to the ring J 2�;ˆ.Gm/. Then the restriction of  2 Xr�;ˆ.Gm/ to Xr�;ˆ;ab.Gm/

vanishes.

Proof. We can write

�12.x/

�21.x/
D 1C

��12.x/
�21.x/

� 1
�
D 1C

�12x � �21x

�21x
D 1C �

�12;21.x/

�21x

which yields

�N

p
log

��12.x/
�21.x/

�
D
�N

p

X
.�1/n

�n

n

��12;21.x/
�21x

�n
:

Clearly the latter series is in the ideal generated by �12;21 hence lies in the ideal I2
and is therefore zero in O.J 2�;ˆ;ab.Gm//.

Remark A.15. The previous discussion offers a glimpse into what the theory of
abelian ı� -characters should look like; the first non-trivial steps would have to tackle
the case of elliptic curves which will not be pursued at this time.


