
Chapter 1

Introduction

A classical question in differential geometry is the following one, posed in [140,144]:

(KW-1) Given a manifold M and a function KWM ! R, find a Riemannian
metric Og on M such that the scalar curvature R Og of Og coincides with K.

In general, the answer to the above problem is negative. For example, in dimension
n D 2, the scalar curvature is twice the Gaussian curvature. Therefore, if M is com-
pact without boundary, by the Gauss–Bonnet theorem,Z

M

Rg dVg D 4��.M/:

In particular, if there is a solution to the prescribed curvature problem, somewhere K
has to possess the sign of �.M/.

Another version of the above problem is the restriction to a fixed conformal class:

(KW-2) Given a Riemannian metric g on M , try to solve (KW-1) with a
metric Qg in the conformal class of g, i.e. Qg is of the form Qg.x/ D ƒ.x/g.x/,
where ƒ is a smooth positive function on M .

Main focus of these notes. We will assume that .M n; g/ is closed, meaning – unless
specified – compact without boundary and of dimension n � 3. We mainly deal with
the conformal version (KW-2) of the above problem. In fact, as we will see in Chap-
ter 3, (KW-1) is solvable under rather mild requirements on the prescribed curvature
function K.

There are both conceptual and technical differences for the case n D 2. We will
make several comments here and there in this regard.

Remark 1.1. We point out the following facts:

(i) There exists a version of the problem between (KW-1) and (KW-2): this con-
sists in prescribing the scalar curvature combining conformal changes and
pull-backs of the metric via diffeomorphisms on M . In the terminology of
Kazdan–Warner, such changes of metric are referred to as conformal equiv-
alences, but not in our notation!

(ii) The following are interesting particular cases of (KW-2) (conformal case):

• Yamabe’s problem [218]: on .M n; g/ closed with n� 3, find a conformal
metric with constant scalar curvature. By [15, 193, 211] this is always
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solvable. For n D 2 this is the classical uniformization problem, initiated
by Klein, Koebe, and Poincaré.

• Nirenberg’s problem: on .M n; g/ D .Sn; gSn/, prescribe conformally a
non-constant function. This is a well-studied problem, originally posed
for n D 2, and we will give an account in the notes of several results on
this research line.

The books [16,65,97,130,131,209] are particularly useful references for the pur-
poses of these notes, and contain detailed presentations of some of the topics covered
here.

1.1 Problem (KW-1)

Even though we will mainly focus on (KW-2), we will illustrate the solvability of the
first version of the Kazdan–Warner problem since its proof is rather self-contained,
apart from the fact that it requires the resolution of Yamabe’s problem. This will not
be discussed in detail here, even though we will present the main ingredients needed
to prove it. We begin by introducing the following definition.

Definition 1.2. A closed manifold M of dimension n � 3 is said to be of type I if it
admits a metric of non-negative and non-identically zero scalar curvature. It is said
to be of type II if it admits a metric of non-negative scalar curvature, but any such
metric has scalar curvature identically equal to zero. The manifold M is said to be of
type III if the scalar curvature of any metric on M has to be negative somewhere.

An important fact to note is that if M n is closed and of dimension n � 3, then by
a result in [13] there always exists a metric Ng with R Ng < 0. Indeed, there even exists
Ng with Ric Ng < 0 [110, 160]. However, not all manifolds carry a metric with positive
scalar curvature: understanding when it happens is a hard problem, with important
contributions such as [116, 197, 206]; see e.g. the recent survey [50].

The flexibility in the choice of metric for problem (KW-1) yields the following
general result, by which it is possible to prescribe a large class of functions.

Theorem A ([141–143]). Suppose M n is closed, with n � 3. If M is of type I , then
(KW-1) is solvable for everyK 2 C1.M/. IfM is of type II, then (KW-1) is solvable
for every K 2 C1.M/, which is either negative somewhere or identically zero. If
M is of type III, then (KW-1) is solvable for every K 2 C1.M/ that is negative
somewhere.

Concerning the first statement of the latter theorem, Kazdan and Warner assumed
the existence of metrics with positive and constant scalar curvature. Indeed, at the
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time this was not known to hold in general, but was later proved in [15, 193, 211]
for every conformal class, and hence Theorem A can be stated without any extra
assumptions.

Remark 1.3. We note the following:

(i) For n D 2 and M closed, (KW-1) is solvable provided somewhere K attains
the sign of �.M/.

(ii) If M n, n � 3 is non-compact and diffeomorphic to an open set U of a com-
pact manifold xM , then (KW-1) is solvable for every K 2 C1.M/.

The proof of Theorem A relies on tools that are of functional-analytic nature,
and exploits the invertibility of the operator that assigns to each conformal factor the
scalar curvature of the metric it induces. The idea is then, starting from a metric with
constant scalar curvature, to get any other function close to that constant inLp to it by
composing with a proper diffeomorphism on M . In positive curvature, this argument
needs a special spectral property of the linearized equation for the scalar curvature,
guaranteed by the above-mentioned results by Trudinger, Aubin, and Schoen.

1.2 Problem (KW-2)

Recall that for this version of the problem one tries to prescribe a given function on
M as the scalar curvature via conformal deformations of a background metric g. As
will be shown in Chapter 2, for Qg.x/D u.x/

4
n�2g.x/, n � 3, the scalar curvature Rg

transforms as

�cn�guCRgu D R Qgu
nC2
n�2 ; cn D

4.n � 1/

n � 2
:

Therefore, (KW-2) becomes equivalent to finding a positive solution u to

�cn�guCRgu D Ku
nC2
n�2 on M: (EK)

The linear operator Lg on the left-hand side is the so-called conformal Laplacian,
and it transforms naturally under conformal changes of metric; see Section 2.2. In
two dimensions, the problem instead becomes

��gw C
1

2
Rg D

1

2
R Qge

2w ; Qg D e2wg:

Problem (KW-2) is more rigid than (KW-1), so there are more obstructions to
existence, as shown by the following two examples.
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Example 1. If Rg has a given sign for n � 3, then it is impossible to reverse it using
conformal deformations; see Chapter 3. This aspect is somehow more similar to the
two-dimensional case.

Example 2. There is a well-known obstruction due to Kazdan–Warner on the stan-
dard sphere. Suppose u solves (EK) on .Sn;gSn/�RnC1, n� 3, and let y1; : : : ;ynC1

be the Euclidean coordinates restricted to Sn. Then one has the identity (see Sec-
tion A.2)Z

Sn
hrgSn

K;rgSn
yi iu

2n
n�2 dVgSn

D 0 for every i D 1; : : : ; nC 1:

In dimension n D 2, the above identity becomesZ
S2
hrS2K;rS2y

i
ie2w dVgS2

D 0 for every i D 1; 2; 3:

As a consequence, equation (EK) is not solvable on .Sn; gSn/ if K is monotone
with respect to any of the Euclidean variables, for example when it is affine. More
obstructions to existence are given in [36, 166, 208]; see Chapter 9.

The above non-existence result on .Sn; gSn/ is due to the presence of the Möbius
group. This is a non-compact group of conformal maps on Sn, which is obtained
by composing the stereographic projection, Euclidean dilations, and then the inverse
stereographic map. In this respect, the global maximum of K acts like an attractor
for the conformal volume; see Chapter 4.

For reasons of brevity we will limit ourselves to the case of curvatures with
constant sign: for the changing-sign case we refer the interested reader to the non-
exhaustive list [16, 19, 35, 84, 100, 133, 162, 186, 189].

1.3 Variational analysis of (KW-2)

Each conformal class of metrics carries naturally scalar curvatures with a given sign,
which is determined by two quantities introduced in Chapter 3. The first is the prin-
cipal eigenvalue of the conformal Laplacian, �1.Lg/, whose sign is a conformal
invariant. The second is the Yamabe quotient, defined on conformal factors as

Qg.u/ WD

R
M
.cnjrguj

2 CRgu
2/ dVg�R

M
u2
�
dVg

� 2
2�

; 2� WD
2n

n � 2
:

Its infimum, the Yamabe constant, is conformally invariant and denoted by Y.M; Œg�/.
It turns out that Y.M; Œg�/ and �1.Lg/ have the same sign.
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In negative curvature it is possible to prove existence of solutions for (KW-2)
rather directly using a variational approach. In fact, consider the functional

IK.u/ WD
1

2

Z
M

.cnjrguj
2
g CRgu

2/ dVg �
1

2�

Z
M

Kjuj2
�

dVg ;

defined on the space H 1.M/ of functions u that are of class L2.M/, together with
their gradients. IfK is everywhere negative onM , then IK admits a global minimizer,
which is then a solution of (EK).

For positive curvature the problem is more challenging, as the above Example 2
shows. The energy IK is in this case unbounded from below, so it is convenient to
introduce a modified functional in the form of a Sobolev-type quotient, namely

JK.u/ WD

R
M
.cnjrguj

2 CRgu
2/ dVg�R

M
Kjuj2

�
dVg

� 2
2�

:

Notice that if �1.Lg/ > 0, the quadratic form in the numerator is equivalent to the
squared norm of H 1.M/. The advantage of this formulation is that JK is bounded
from below by the Sobolev embedding ofH 1.M/ intoL2

�

.M/, and its critical points
give rise to solutions of (EK), after a proper dilation by a positive constant.

However, the latter embedding being non-compact, minimizing sequences may
not converge. This phenomenon can be clearly illustrated on the round sphere, espe-
cially in relation to the Kazdan–Warner obstruction.

When K � 1, JK on .Sn; gSn/ reduces to

JK�1.u/ WD

R
Sn.cnjrguj

2 C n.n � 1/u2/ dVgSn�R
Sn juj

2� dVgSn

� 2
2�

: (1.1)

It turns out that on the round sphere the infimum Y.Sn; ŒgSn �/ of the above quotient is
equal to n.n � 1/jSnj

2
n , and that minimizers can be explicitly classified due to some

independent work by Aubin and Talenti; see Chapter 4. Minimizers turn out to be of
the form

'p;� D
� 2�

�2 C 1 � .�2 � 1/ cos dSn.p; x/

�n�2
2

; p 2 Sn; � > 0: (1.2)

Such functions, called bubbles, arise as conformal factors of Möbius maps from Sn to
itself: for �D 1, 'p;� is identically equal to 1, while for � large the conformal volume
density '2

�

p;�
associated to the corresponding Möbius map concentrates distribution-

ally as a Dirac mass, precisely as jSnjıp . It also turns out that both the numerator
and the denominator in (1.1) are independent of p and �. It is then possible to prove
that JK on .Sn; gSn/ has no minimizer unless K is identically constant; see Proposi-
tion 4.3.
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Extending a result by Moser [178] for the two-dimensional sphere, Escobar and
Schoen were able to prove an existence theorem for symmetric functions, stated here
in a particular form.

Theorem B ([100]). Let n D 3 and let KWS3 ! R be positive and antipodally sym-
metric. Then (EK) is solvable.

The strategy relies on working in the class of antipodally symmetric functions,
where loss of compactness may only occur with the formation of multiple bubbles
at couples of antipodal points. The minimal blow-up energy in a symmetric situation
can be computed explicitly as 21�

2
2� Y.S3; ŒgS3 �/; see Chapter 4. Escobar and Schoen

proved that for � large one has

JK.'p;� C '�p;�/ < 2
1� 2

2� Y.S3; ŒgS3 �/;

showing that minimizing sequences within the symmetric class must stay compact.

1.4 Sub-critical approximation and blow-up analysis

For a given function K not necessarily symmetric, in view of the above-mentioned
non-existence of minimizers, one may wonder whether there could be critical points
of saddle type for the functional JK . Such critical points are usually found via min-
max schemes or Morse-theoretical tools. When a lack of compactness occurs, as in
the present case, these topological tools yield in general Palais–Smale sequences,
namely sequences of functions along which JK converges and the gradient of JK
tends to zero. Such sequences were analyzed for a slightly different setting in [207],
where it was proved that they split into their weak limit and a given number of bubbles
as in (1.2) with � large.

Since there is no information in general about the location or the concentration
rates of such bubbles, a useful tool for studying the problem without any symmetry
requirement is the sub-critical approximation of (EK), in the spirit of the well-known
paper [192] by Sacks and Uhlenbeck.

For � positive and small and Lg the conformal Laplacian, we introduce the prob-
lem

Lgu D Ku
nC2
n�2�� : (EK;� )

Its solutions are critical points of the modified Euler–Lagrange functional

JK;� .u/ WD

R
M
.cnjrguj

2 CRgu
2/ dVg�R

M
Ku2

��� dVg
� 2
2���

:
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This time, by the compactness of the Sobolev embedding H 1.M/! L2
��� .M/, it

is easy to minimize JK;� , and to find (positive) solutions of (EK;� ). Furthermore, by a
result in [112], for � positive there is an upper bound (depending on � ) on all positive
solutions of this equation.

On the other hand, as � ! 0, the latter might sometimes blow up. Indeed, this
must necessarily happen in situations where the Kazdan–Warner obstruction holds,
since there cannot be non-trivial limits in this case. The hope, however, is that some
classes of solutions might anyway stay bounded for suitable K, in addition to those
that are blowing up.

To understand the diverging behavior one can use the so-called blow-up analysis
method, which consists in rescaling solutions using the dilation covariance (of either
(EK) or (EK;� )) in order to obtain bounded positive functions satisfying

�cn�u D K. Nx/u
nC2
n�2 in Rn;

where Nx is a blow-up point. Such limiting profiles were classified in [47], and for
K. Nx/ D cnn.n � 2/ are of type

U�;x0.x/ WD �
n�2
2 U.�.x � x0//; � > 0; x0 2 Rn;

where
U.x/ WD

1

.1C jxj2/
n�2
2

:

If the value of K. Nx/ is different, it is sufficient to multiply the above expression by
a suitable factor, due to the double homogeneity of the equation. Since in the blow-
down procedure for solutions of (EK;� ) one can obtain entire solutions in Rn which
are upper bounded by, say, the constant 1, it means that original solutions with large
L1-norm have the shape of U�;0.x/ in suitable coordinates x for some large �.

The above analysis helps in proving that blow-ups for equation (EK;� ) are some-
times isolated simple, meaning that near each blow-up point there is formation of
at most one bubbling profile. This is a rather delicate property that depends on the
dimension, on the underlying manifold, and on the structure of the function K, espe-
cially on its Taylor-type expansion near its critical points.

There are several results in this direction, some of which are recalled in Chapter 6.
The properties that are most relevant for our purposes are the following ones. We
consider a sequence �j & 0 and a sequence .uj /j of positive solutions of .EK;�j /
(i.e. of (EK;� ) with � D �j ) with K satisfying

K > 0 is a Morse function such that �gK.x/ ¤ 0 whenever rgK.x/ D 0: (ND)
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Then the following properties hold:

(i) If n D 3 and K satisfies (ND), there is at most one blow-up point, which is
isolated simple. If .M 3; g/ is not conformally equivalent to .S3; gS3/, then
there cannot be blow-ups of solutions.

(ii) If n D 4 and K satisfies (ND), blow-ups are finitely many and isolated sim-
ple.

(iii) If n� 5 andK satisfies (ND), blow-ups are finitely many and isolated simple
provided that the sequence .uj /j is uniformly bounded in the norm H 1.M/

with zero weak limit.

In each of these three cases, blow-ups for .uj /j may only occur at critical points
of K with negative Laplacian. More comments for higher dimensions are given in
Chapter 10.

The above results are complemented by Theorem 7.1, proven in Chapter 7, in
which solutions with isolated simple blow-ups, possibly multiple in dimension n� 4,
are constructed via a refined implicit function argument. One can also characterize the
limit values of JK;�j on such solutions for j tending to infinity, as well as their Morse
index.

In dimension n D 4 there are indeed restrictions on the location of blow-up
points (see Remark 7.2), while in dimension n � 5 blow-up may occur at any cho-
sen set among critical points of K with negative Laplacian. If in dimension n � 5
one removes the above extra assumptions on the Sobolev norm and the weak limit of
solutions, then the blow-up behavior might be more involved; see e.g. [62,63]. Exclu-
sion of blow-ups on three-dimensional manifolds differing from the sphere is proved
via the positive mass theorem by Schoen–Yau; see [198].

1.5 Some general existence results

The above characterizations of blowing-up solutions allow one to derive some general
existence results, not requiring any symmetry onK. For example, on S3 the following
theorem holds true, in the spirit of one by Chang and Yang [59] in two dimensions
(see also [124]).

Theorem C ([24,57]). LetKWSn! R be a positive Morse function satisfying (ND).
Let .xi /i be the (finitely many) critical points ofK, with Morse index ki . Suppose thatX

xi s.t.�K.xi /<0

.�1/ki ¤ .�1/n: (�)

If n D 3, then (EK) is solvable.
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The theorem is proved via a degree-counting formula. By the above results on
blow-up analysis, a dichotomy for solutions of (EK;� ) can be shown, namely that they
either stay uniformly bounded as � ! 0 or they develop simple blow-ups at a single
point. For � small, however, it can be shown via a homotopy argument (deforming
the function K to 1 in an affine way) and a rigidity result from [34, 112] that the
total Leray–Schauder degree of solutions is equal to 1. Subtracting by excision the
contribution to the degree from blowing-up solutions, one obtains from the above
condition (�) that the uniformly bounded solutions of (EK;� ) contribute non-trivially
to the degree formula, proving that they cannot be an empty set.

Remark 1.4. For n D 4, a more complicated formula than (�) appears due to the
presence of multiple blow-ups: more details are given in Remark 6.16. An existence
result on Sn under condition (�) in any dimension was proved in [5, 61] provided K
satisfies a pinching condition, that is,

supSn K

infSn K
< pn;

for some constant pn > 1 close enough to 1. In this case we can use a finite-dimen-
sional reduction of the problem related to one presented in Chapter 7, but using
degree-theoretical arguments for the reduced problem.

Another recent result requiring pinching conditions is the following one.

Theorem D ([166]). Suppose n � 5 and that .M n; g/ is a closed Einstein manifold
of positive scalar curvature. Assume KWM ! R is Morse, satisfies (ND), and that
one of the following two conditions is fulfilled:

(i) supM K

infM K
< 2

1
n�2 and (�) holds;

(ii) supM K

infM K
< .3

2
/
1
n�2 and K has at least two critical points with negative Lapla-

cian.

Then (EK) is solvable.

Remark 1.5. Some comments are in order:

(i) The second pinching condition in Theorem D is clearly stronger than the
first one, but in order for (�) to hold one needs at least two critical points
with negative Laplacian. Notice that, even under the strongest pinching con-
ditions, the inequality in (�) is sufficient but not necessary for existence;
see also [174]. Under hypothesis (i) the theorem is proven in [61] for K D
1C " zK and in [70] for .Sn; gSn/.

(ii) The result is false in dimensions n D 3; 4.
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(iii) As we will see in Chapter 9, assuming that only one critical point of K
has negative Laplacian is not sufficient in general to guarantee existence of
solutions, even if one imposes stronger pinching conditions.

The latter result extends a theorem from [70] which is valid for the sphere under
assumption (i). Recall that Einstein means that Ricg D ƒg for some ƒ 2 R. Also in
this case, the rigidity results from [112] and [34] apply, giving that the total degree of
the solutions of (EK;� ) is equal to 1.

Differently from the three-dimensional case though, blow-ups may now occur at
multiple critical points of K. However, the blow-up analysis presented before still
allows one to compute their contribution to the degree within some given levels of
JK;� that include single- and double-bubbling solutions. We can then conclude the
proof by applying the classical Poincaré–Hopf theorem.

In Chapter 9 we give examples of arbitrarily pinched curvature functions with
only one critical point of negative Laplacian and arbitrary Morse structure such that
(EK) is not solvable, as well as non-existence examples in dimensions n D 3 or 4 for
functions with two critical points of negative Laplacian. These show the sharpness of
the assumptions in Theorem D.

We conclude the notes with some perspectives and a set of open problems. These
concern extensions of the above-mentioned blow-up analysis, the possible use of
Morse homology, higher-order and fully non-linear versions of the Kazdan–Warner
problem, complete manifolds, manifolds with boundary, and the role of conformal
geometry in the study of Einstein’s constraint equations.


