
Abstract

In his PhD thesis, Einstein derived an explicit first-order expansion for the effective
viscosity of a Stokes fluid with a suspension of small rigid particles at low density.
His formal derivation relied on two implicit assumptions: (i) there is a scale separation
between the size of the particles and the observation scale; and (ii) at first order, dilute
particles do not interact with one another. In mathematical terms, the first assumption
amounts to the validity of a homogenization result defining the effective viscosity
tensor, which is now well understood. Next, the second assumption allowed Einstein
to approximate this effective viscosity at low density by considering particles as being
isolated. The rigorous justification is, in fact, quite subtle as the effective viscosity
is a nonlinear nonlocal function of the ensemble of particles and as hydrodynamic
interactions have borderline integrability.

In the present memoir, we establish Einstein’s effective viscosity formula in the
most general setting. In addition, we pursue the low-density expansion to arbitrary
order in form of a cluster expansion, where the summation of hydrodynamic inter-
actions crucially requires suitable renormalizations. In particular, we justify a cele-
brated result by Batchelor and Green on the second-order correction and we explicitly
describe all higher-order renormalizations for the first time. In some specific settings,
we further address the summability of the whole cluster expansion. Our approach
relies on a combination of combinatorial arguments, variational analysis, elliptic reg-
ularity, probability theory, and diagrammatic integration methods.
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