Chapter 1

General overview

1.1 Historical context

At the dawn of the 20th century, the debate was still raging on the existence of atoms,
and Einstein’s PhD thesis “A New Determination of Molecular Dimensions” [22]
aimed to support the atomic theory. This was the second of his five celebrated 1905
contributions and still constitutes his most cited work. The main part was devoted
to the hydrodynamic derivation of a formula for the effective viscosity of a fluid
with a dilute suspension of rigid particles: the so-called Einstein formula in fluid
mechanics, which is the focus of the present memoir. In the same work, Einstein also
derived a relation between the diffusion constant for suspended particles and their
mobility: the so-called Einstein relation in kinetic theory. He then applied these two
relations to sugar dissolved in water: using available empirical data, he deduced an
estimate of the Avogadro number and of the size of sugar molecules (after eliminating
a calculation error [23]). We refer to [61] for an inspiring account of this seminal
work. As discussed by Perrin in his extensive report [58] at the first Solvay conference
in 1911 in Brussels, these discoveries were confirmed by further experiments and
shown to agree with other methods to determine the Avogadro number, which sealed
the triumph of the atomic theory.

We briefly describe Einstein’s argument to estimate the effective viscosity of a
dilute suspension. Viscosity of a fluid is usually measured by shear-flow experiments:
a cylindrical vessel is filled with the fluid, a rotating spindle is immersed in it, and
one measures the torque needed to make it rotate at constant angular speed. Assume
now that the fluid contains a suspension of small rigid spherical particles and con-
sider their influence on the measured viscosity. As particles are rigid, they act as
obstacles and hinder the fluid flow, thus effectively increasing the measured viscosity.
A first challenging question concerns the dynamics of the particles: do they reach a
statistical steady state? If this is the case and if one indeed measures a constant-in-
time effective viscosity, then the latter depends on the steady state, hence possibly on
the speed of the spindle itself, which corresponds to possible non-Newtonian behav-
iors [31, Section 7]. Einstein’s main idea in [22] was that, in the low-density regime,
for spherical particles, the first-order effective change in viscosity should only depend
on the volume fraction of the particles and not on their distribution. In particular, this
universality would relegate non-Newtonian effects to higher-order corrections. More
precisely, in 3D, given a fluid with isotropic viscosity Id and given suspended spher-
ical particles with small volume fraction ¢ < 1, Einstein’s formula for the effective
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viscosity takes the form
= 5
B=1Id (1 +§<p+0(<p)). (1.1)

Heuristically, the argument is as follows: at low density, particles are scarce and typ-
ically well separated, hence their interactions are negligible to leading order. The
first-order effect on the viscosity should thus be proportional to the volume fraction
and correspond to the energy dissipation of a single isolated particle in the fluid. The
latter can be computed explicitly for spherical particles and leads to the celebrated %
factor in (1.1); we refer to Section 2.6 below, where this classical calculation is repro-
duced.

This type of low-density expansion was not new in the physics community at
the time: it was very much in line with other work on the micromechanics of het-
erogeneous media in the late 19th century. Einstein’s formula is indeed comparable
to the Clausius—Mossotti formula for the effective dielectric constant [10, 51, 52],
to Maxwell’s formula for the effective conductivity in electrostatics [49], or to the
Lorentz—Lorenz formula for the effective refractive index in optics [46,47]; we refer
to [48] for an account of the historical context.

Einstein’s formula triggered a lot of long-lasting activity in fluid mechanics: the
large-scale rheology of suspensions was soon considered as a topic in its own right
[24,41,42]. Various works have aimed at understanding to what extent Einstein’s
formula is robust and accurate. Robustness has been addressed in particular by estab-
lishing corresponding formulas for particles of different shapes, as e.g. the explicit
formulas by Jeffery [40] for suspensions of ellipsoids (see also [35,44]). Accuracy
is a more subtle issue and essentially amounts to capturing the next-order term in
the low-density expansion. While particle interactions are neglected at first order, the
next-order correction consists of including the effects of pairwise interactions. Due
to their long-range nature, the sum of pairwise contributions is not summable and
some renormalization is therefore needed. This was first achieved by Batchelor and
Green [7], and we refer to [1,34,56] for other formal renormalization ideas. A related,
yet different, topic concerns the sedimentation of suspended particles under gravity
and the computation of their effective settling speed, which happens to require a sim-
ilar renormalization: the above-mentioned contribution by Batchelor and Green [7]
was indeed inspired by Batchelor’s work [6] on sedimentation. Interestingly, the
renormalization of higher-order corrections to the effective viscosity had remained
an open problem in the physics community.

We also refer to [2, 55, 63] for the asymptotic analysis of the effective viscosity
for dilute periodic arrays of suspended particles and, in a more mathematical spirit,
we mention the pioneering work by Sanchez-Palencia et al. [45, 60] using formal
two-scale expansions for locally periodic suspensions.
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1.2 Mathematical reformulation and objectives

As described above, Einstein’s formal derivation of (1.1) in [22] relies on the follow-

ing two implicit hypotheses:

(E1) Scale separation. There is a scale separation between the “microscopic” par-
ticle size and the “macroscopic” observation scale. Therefore, the suspension
behaves on the observation scale like an “effective” fluid with some effective
viscosity tensor B that can then be measured by shear-flow experiments.

(E2) Particle interactions are negligible. In the low-density regime, particles are typ-
ically well separated and therefore, to leading order, they do not interact and
can be treated as being isolated.

We briefly discuss the validity of these two working hypotheses and then turn to
describing the literature and our objectives in the present memoir.

1.2.1 Einstein’s hypothesis (E1): Scale separation

This first hypothesis concerns the definition of a notion of effective viscosity for sus-
pensions when the particle size O(¢) is much smaller than the observation scale O(1).
Consider a shear-flow experiment to measure the viscosity, say using a rotational vis-
cometer. Let D denote the fluid domain in this device and let {x} ,}, C D stand for
positions of suspended particles at time ¢, which evolve over time in the fluid flow.
If inertia is neglected, the dynamics is greatly simplified: given particle positions at
a given time, the fluid velocity satisfies steady Stokes equations, which determine
instantaneous particle velocities. In this context, the emergence of an effective vis-
cosity can be split into two parts:

— Steady-state microstructure. As the measured effective viscosity is expected not
to depend on time, it implicitly requires particle positions to reach a statistical
steady state in the long run. Focussing on a portion of the fluid in the bulk, we may
consider without much loss of generality that the statistical ensemble is station-
ary (henceforth, “stationarity” stands for statistical spatial homogeneity). In other
words, the point set {xé’n }n can be approximately replaced by a random point set
{exn : ex, € D} that is the e-rescaling of some stationary random point process
&P = {x,}n. The law of this steady state may depend itself on the prescribed shear
flow in the viscometer, which leads to possible non-Newtonian effects [31, Sec-
tion 7].

— Steady homogenization problem. Given a statistical ensemble of particle positions,
under an ergodicity assumption, the steady Stokes equations for the fluid velocity
are expected to homogenize on the macroscopic observation scale, in the sense
that it can be replaced by effective steady Stokes equations with some effective
viscosity tensor B, which amounts to an averaged effect of suspended particles.
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While the rigorous analysis of the steady-state flow-induced microstructure remains
a fully open problem at this time, the steady homogenization problem, in contrast,
has been extensively studied under various assumptions in our recent series of arti-
cles [13,18,19,21] and is by now very well understood. Given a statistical ensemble
of particle positions, this provides a rigorous definition of the effective viscosity
together with a homogenization result. More precisely, considering the system at the
particle scale, we denote by I = | J,, I, the random ensemble of particles (not nec-
essarily spherical), centered at the points of a point process & = {x,},, say in the
d-dimensional Euclidean space R for generality. The effective viscosity tensor B is
defined as a quadratic form on the set Mf)ym C R¥*4 of trace-free symmetric matrices,

E:BE :=E[DWg) + E|’] = |[EP + E[|D(yr)|?]. EeM™, (12

where D(Yg) is the unique stationary symmetric gradient solution, with bounded
second moment and vanishing expectation, of the corrector problem

—AYEg +VIg =0, inR?\ T,

div(yg) =0, inR4\ I,

D(yg + Ex) =0, in T, (1.3)
faln ogv =0, Vn,

faln O(x —x,)-0gv =0, Vn, VO € MV,

in terms of the associated Cauchy stress tensor
og :=0(Wg + Ex,Xg) :=2D(Yg + Ex) — X Id, (1.4)

where M*¢¥ ¢ R4*9 is the set of skew-symmetric matrices. Throughout this work,
we assume for simplicity that the plain fluid has isotropic viscosity Id. The so-called
corrector Y g can be viewed as the correction of the linear straining flow

x+— Ex

in presence of rigid suspended particles {/,},. The last two boundary conditions
in (1.3) correspond to the balance of forces and torques on each particle. Note that, if
I contains an unbounded chain of touching particles, then the rigidity constraint

D(WEg + Ex)|7 =0

entails that the field g would grow linearly along this chain, which would prevent
D(y k) from having vanishing expectation: it shows that this corrector problem can
only be well posed provided that some suitable non-clustering assumption is made.
Different sets of sufficient assumptions are recalled in Section 2.1 below and we refer
to our previous work [13,18,19,21] for a detailed account.
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1.2.2 Einstein’s hypothesis (E2): Interactions are negligible

As it appears from (1.3), the corrector ¥ g depends nonlocally and nonlinearly on the
set I of particles via boundary conditions: this corresponds to the multibody nature
of hydrodynamic interactions. Einstein’s second hypothesis can be reinterpreted as
claiming that g can be approximated around each inclusion 7, by the unique decay-
ing solution w{"} of the single-particle corrector problem

—Ayim st — o, inRY\ I,
div (v ) = inRY\ I,
D(y i + Ex) =0, in I, (1.5)

fazn U(Vf{n} + Ex, 2{"})1; =0,
faln O(x — xn) - U(W{n} + Ex, E{En})v =0, VO e Mskev,

This amounts to neglecting the effect of other particles on ¥ g around 7, thus pre-
cisely neglecting the multibody nature of the problem. To give a more precise state-
ment, consider the Voronoi tessellation {V;}, associated with the set of particles
{1}, that is,
= {x :dist(x, [,) < inf dist(x, In)}.
m:m#n

The relevant approximation of /g then takes the form

D(WE) ~ \I/%imtem . ZD w{n} V,- (16)

Inserting this into the definition (1.2) of the effective viscosity yields, after straight-
forward calculations,

E:BE = |EP +E[|D(yr)|*]
~ |E|2 +E[|qj%instein|2]
:|E|2+ZE[1°€’"/ ID( ,{5"})|2]
n |In| Vn

{n})|2

and thus, replacing single-particle energies || V. |ID(y
sponding whole-space energies,

R 2 oel, {n}
E:BE ~ |E| +ZIE[ T / ID(y )| ] (1.7)

In case of spherical particles, single-particle problems can be solved explicitly and
we get

in Voronoi cells by corre-

_ d+2
E:BE = |E|2(1+%<p+0((p)), (1.8)
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in terms of the particle volume fraction

¢ =@(I):= lim R"¢|INRO| (1.9)
Rtoo

where Q := [—%, %]d stands for the unit cube. We refer to Section 2.6 for the detailed
computation, and we note that in 3D we recover Einstein’s celebrated % factor, cf.
(1.1). Corrections to Einstein’s formula are naturally obtained by further taking into
account particle interactions. As we shall see, in the low-density regime, this is nat-
urally captured in form of a cluster expansion: the next-order correction, known in
the physics literature as the Batchelor—Green correction [7], involves the sum of two-

particle contributions, and so on.

1.2.3 Objectives

In this memoir, we focus on the rigorous analysis of Einstein’s hypothesis (E2): we
start from the relevant notion of effective viscosity (1.2) as defined by homogeniza-
tion theory and we study its asymptotic behavior at low density, aiming to justify
Einstein’s formula (1.8) and to describe all higher-order corrections.

The early works [32,45, 60] focussed on Einstein’s formula for locally periodic
dilute arrays of particles. It was extended in [33, 54] to the dilute disordered set-
ting under the simplifying assumption that the minimal interparticle distance is large
enough (that is, £($) >> 1 with the notation (1.13) below). The next-order Batchelor—
Green correction was captured in [27,29] in the same setting. The uniform separation
assumption is particularly convenient as it allows to exploit the reflection method
and rigorously neglect many-particle interactions, e.g. [36—39,54], but it is physically
quite restrictive and unsatisfactory. More recently, it was replaced in [28] by some
weaker non-concentration condition in the proof of Einstein’s formula, however still
requiring some control on the minimal interparticle distance. In this context, we shall
address the following two main points:

— We shall justify Einstein’s formula under the weakest assumptions under which
homogenization is known to hold, in particular covering the case of the general
subcritical percolation condition in [21]. At the same time, we aim at optimal error
estimates: the error o(p) in (1.1) was often claimed to be O(¢?) in the physics
literature, but we shall see that it actually strongly depends on the structure of the
random ensemble of particles.

— We shall describe higher-order corrections to Einstein’s formula in form of a
cluster expansion. Due to the long-range nature of hydrodynamic interactions,
renormalizations are needed to make sense of cluster contributions. In the physics
literature, formal renormalizations were actually still missing beyond the second-
order Batchelor—Green correction. On the rigorous side, even the justification of
the latter was restricted to some specific regimes [26,27,29].
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In terms of techniques, previous results on the topic mostly relied on a determinis-
tic analysis, more precisely on various forms of the reflection method. In the present
memoir, we rather take inspiration from our work [15] on the Clausius—Mossotti con-
ductivity formula based on the triad consisting of: (1) finite-volume approximation;
(2) cluster expansion; (3) uniform £! — £2 energy estimates. Substantially refining on
this analysis, we go far beyond [15] (and beyond [26], which also builds on the clus-
ter expansion of [15]) as we manage to cover general dilute regimes (beyond the case
of explicit dilution by random deletion in [15]). We further describe explicitly for the
first time the renormalization of cluster coefficients to all orders.

1.3 Cluster expansion formalism

While Einstein’s formula (1.8) is obtained by considering dilute particles as being
isolated, next-order corrections amount to taking into account many-particle interac-
tions and the multibody structure of the corrector field ¥ g. At low density, particles
are scarce, hence have weak interactions, and one might want to consider contribu-
tions of finite subsets of particles only. As in [15], taking inspiration from statistical
mechanics, see e.g. [62, Chapter 19], this is naturally expressed by means of clus-
ter expansions, which provide natural asymptotic series at low density. We recall the
formalism, discuss the accuracy of cluster expansions, and describe the key difficulty
to apply it to the effective viscosity problem: the long-range nature of hydrodynamic
interactions.

1.3.1 Cluster expansions of multibody quantities

We recall the cluster expansion formalism in the compact form that we introduced
in [15]. As particles are indexed by natural numbers, we denote by P(N) the set
of subsets of the index set N and we consider the space M(N) of set functions
from P(N) to a given vector space V. Starting from the corrector problem (1.3), for
any index subset H € P(N), we may consider' the associated corrector yr g obtained
by replacing the full set I of particles by its corresponding subset T# := Unen In
in the corrector equation (1.3). The map

yEHe g

is then viewed as an element of M (N), where 1//? = 0 and where 1/f§I = Y is the
original corrector defined in (1.3).

The corrector problem (1.3) is, in fact, not well posed in general for a given deterministic
infinite subset H of particles. In the sequel, we shall rather consider finite-volume approxima-
tions of the corrector problem, for which well-posedness is always trivial. We skip this detail at
the level of the present discussion.
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In this setting, for all n € N, we introduce a difference operator sint s M(N) —
M(N), defined for all ® € M(N) by

sl .= sl @AVt .= @AV _oH g C N,
which provides a natural measure of the sensitivity of ® with respect to the index n
(it plays the role of a discrete derivative). Note that for all n # m,

(5{'1})2 — _5{11}’ gintglmy — glmigin}

For any finite ' C N, we also define the higher-order difference operator

§F = ] 8",

nerF

which acts as follows: for all ® € M(N),

sFpH — Z (_I)IF\qu)GUH’ H c N. (1.10)
GCF

We take the natural convention §2 ®H := ® These difference operators are the
building blocks to construct the so-called cluster expansions, e.g. [62, Chapter 19]: to
order k, the cluster expansion of ® € M(N) takes the form

+ #
1 1
N»\., z {n} 1@ _ {ni,n2} 1@ . - {ni,...nx} x9
@ q>+25c1>+2!25 2 + +k!25 2,
n ni,np ni,...,R

where we use the shorthand notation Zfl ; for sums over j-tuples (ny,...,n j)
of distinct indices. This can be rewritten in the more compact form

k
oN ~ Z Z sF o2, (1.11)

J=04F=j

where ) - _ ; stands for the sum over all sets F* of j distinct indices. This expansion
is particularly relevant in the low-density regime when particles are very scarce: the
Oth-order term corresponds to the situation without any particle, the 1st-order term
corresponds to contributions of isolated particles, the 2nd-order term to contributions
of pairs of particles, etc. Formally, it can be viewed as a Taylor expansion at & with
respect to the difference operator &, where under suitable assumptions higher-order
terms will be shown to be indeed of higher order at low density. Note that, if ® €
M(N) only depends on indices in a finite subset K C N in the sense that ¥ =
®HOK forall H C N, then the expansion (1.11) is always a finite sum and is actually
equal to ®N provided that k > #K.
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1.3.2 Multi-point intensities

The general estimation of the terms in the cluster expansion (1.11) naturally leads to
the notion of multi-point intensities, which appear as refined measures of diluteness
and seem new to the literature. Given an ergodic stationary point process & = {x, }»,
we start by recalling the standard notion of intensity of the point process (or one-point
intensity in our terminology below),

A(P) = A (P) = IE[jj({P N Q)].
By the ergodic theorem, we have almost surely

A(P) = éiggo R™%t4{n : x, € RO}. (1.12)

In particular, provided that random shapes satisfy |/;)| >~ 1 almost surely for all n,
this relates to the particle volume fraction (1.9) via

¢(I) = MP),

so that the low-density regime ¢(I) < 1 is equivalently characterized by the con-
dition A(#) < 1. Yet, as we consider nonlinear functions of the point process (like
the effective viscosity B), this linear notion of diluteness is not strong enough and we
need to introduce refined notions of “multi-point intensities”.
For that purpose, we start by introducing a notation for the minimal distance of
the point process &,
C:=L0(P) := inf |x; — Xm|oo, (1.13)

n#m
which is almost surely a deterministic characteristic length of . The point process
is called hardcore if £() > 0, which is the case of all the processes considered in
this memoir, cf. (H,) below. For all j > 1, provided £ = £(#) > 0, we then define
the j-point intensity

£
A;(P):= sup E[ > z—d]lQl(zl)(xnl)...e—dnge(zj)(xnj)}, (1.14)

Z1oeensZj ny,....nj

where Q,(z) := z + rQ stands for the cube of sidelength r centered at z. Note that,
by definition (1.13), each cube Q¢ (z) contains at most one point of &. This definition
corresponds to the maximum expected number of j -tuples of points of & that lie in
the £-neighborhood of an element of (Rd )/, properly normalized by £. Alternatively,
recalling that the j-point density f; associated with & is the nonnegative function
defined by the following relation,

+
E[ﬂ];nj {(xnl, ce. ,xnj)i| = /(Rd)j g’f] forall ¢ € C:o((Rd)j), (1.15)
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the definition (1.14) of j-point intensity can be reformulated as

Aj(P) = sup (1.16)

J
2152 7[Qz(21)><'"><Qz(Zj)
In the case £(8) = 0, this definition is naturally extended to A; () = || f; Il oo (ra)/)
for completeness. In view of upcoming arguments, it is convenient to further intro-
duce the following quantities,

Ai(P) = Zmin @ <22 = Jmax JTr:. (1.17)

i Ji=J i iJi=] i

For a Poisson point process, these quantities are, in fact, all equivalent since indepen-
dence yields A;(#) = A(P)” forall j > 1, hence Aj(P) = Xj (P) = A(P)/ . For a
hardcore Poisson point process, we similarly find A; () ~; A($)/. In other words,
the one-point intensity A () is enough to fully describe low-density regimes in those
cases. However, multi-point intensities are nontrivial in general: for any 8 € [0, 1],
one can construct examples of point processes with A, (P) ~ A(P)! 18 (see last para-
graph of Section 5.1). For instance, given e € R4, the point process

Po = PU(P +e)

consists of pairs of points {X,,x, + e} and thus satisfies A2(Pe) =~ £(Pe) 4 A(Pe),
hence A, () >~ A(P.) provided that P, is hardcore. This indicates that heuristically
the condition A, () <K A(P) can be understood as the scarcity of clusters in &, and
more generally the condition Ag1 () <K Ax(P) as the scarcity of k-point clusters.
The following lemma states some general properties.

Lemma 1.1 (Multi-point intensities). Let * = {x,}, be an ergodic stationary ran-
dom point process.

(1) Forall j > 1, we have
2j41(P) < UPY 25 (P).
(ii) If P is strongly mixing, then for all j > 1 we have
MPY = 1;(P) < Xj(P) = 4;(P).

(The same holds for all j < n under the mixing assumption (Mix])) intro-
duced in Section 4.3 provided the rate o decays at infinity.)

(iii) Given j > 2 and 6 € [0, 1], for any nonnegative function ¢ € C° (R9)7)
that satisfies

i 1zi — 2000 < 0L(P
{maXz|Zz leoo— ( ) SN ¢(Zl’.__72j)SCQS(Zi’""Z/A)’

min; £; |z; — Zjloo > £(P)



Cluster expansion formalism 11

we have

[, e = o)

(G R4k

Proof. Aseach cube Q¢ (z) contains at most one point of the point process &, we find

that ), 1 0,(2)(Xn) < ¢=4, so that item (i) readily follows from definition (1.14).
We turn to the proof of (ii). Given j > 1, for any partition 0 = k; < kp < --- <

k; = j, setting j; := ki1 — ki, the strong mixing of the point process implies

ﬁ—ﬁ(

i=1

ﬁ)»a

]éz(zl)x'"xQe(Zj) ][Qe(zki+1)><"'><Qe(Zk,-+l)

as min; ;- dist(Z;, Z;7) — oo, where we have set for shortness
Zi = AZkjt1 s Zhigy )

In view of (1.16), using stationarity, this proves the estimate A; (#) > ]_[f=1 Aj; (P),
from which the claim (ii) easily follows.

Finally, item (iii) is a direct consequence of definition (1.16) of multi-point inten-
sities, further using that the j-point density satisfies fj(xy,...,x;) = 0 whenever
there are some indices i # i’ with |x; — x;/| < £(P). ]

1.3.3 Scaling of cluster expansions

With the above definitions, we may now determine the scaling of the terms in the clus-
ter expansion (1.11) and show the relevance of multi-point intensities in this context.
For that purpose, by way of illustration, we place ourselves in the elementary set-
ting of short-range interactions, which will serve as a guideline in the sequel. More
precisely, consider a set function @ : P(N) — R of the form

o :=]E[g(2h(xn))], (1.18)
neH

for some / : R — R and g : R — R such that
(a) h is short-range, in the sense that [p4 (supp(z) 1)) dz < oo;
(b) g is smooth, in the sense that g € C.°(R),
and set ®? = g(0). The cluster expansion of ®N, cf. (1.11), then takes the form

o0
1 —. _.
N B Jo_ ; F 9
) Zj!ob . where ®/ := j! Y 577 (1.19)
j=0 HF=j
Although cluster coefficients {®/ }; are defined by infinite series, these series are

always summable in this short-range setting and we show that they are naturally esti-
mated by multi-point intensities. In particular, the second-order coefficient ®2 is of



General overview 12

order O(A,()), which contradicts in general the bound O(A(P)?) = O(p?) that
one could have naively expected. Our main goal in this memoir is precisely to estab-
lish corresponding expansions and estimates for the effective viscosity (1.2).

Lemma 1.2 (Cluster expansions in the short-range setting). Let P = {x,}, be an
ergodic stationary point process on R¢ with 0 < £(P) < 1, let ® be a set function
of the form (1.18) satisfying the short-range and smoothness assumptions (a) and (b)
above, and let {®7} j be the associated cluster coefficients (1.19). Then we have for
allk > 1,

N Sk Mer1 (P 1OF| Skgn Mc(P), (1.20)

in terms of multi-point intensities {A;(P)};, cf- (1.14).

Proof. Given a sequence Y := {y,}, C R (that will be chosen as y, = h(x,) below),
define a set function ¥y : P(N) — R by

\I/{,{ :=g(Zy,,), H CN.

neH

By definition of difference operators, cf. (1.10), we find, in the spirit of Taylor’s
remainder formulas,

Ynq Yny
i) @ :/ / e® (- + 1) diy - diy.
0 0

k
¢§_Z Z §F w2

J=04§F=j
Ynq Yngq
= Z / / (kH) 11 + o+l + Z Yn) dty---dig4q.
ny<-<ntg41 n<nj

These identities yield in particular

k
st bW < g ® ooy [T 1y, -
ji=1
k
=303 8P| < g ey > [ Iyal-
J=0fF=j BF=k+1neF

Setting Y := {/(x,)}n, noting that (1.18) reads & = IE[\IJII,{], inserting the defini-
tion (1.19) of cluster coefficients, and recalling the definition (1.15) of multi-point
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density functions, this yields

13 < 1§% o m) / 111 .
(R4)k

k
1
N _S L3l o k+Dyp / B+ o
j;)j! =&+ 1)!||g l[Loe @) (Rd)k+l| | Sret1
By definition (1.16) of multi-point intensities, the conclusion follows. ]

1.3.4 Effective viscosity: long-range issues and renormalization

We now apply the above cluster expansion formalism to the effective viscosity (1.2).
For a finite subset H C N, recall the notation ¥ ]I; for the solution of the corrector
problem (1.3) with the set I of particles replaced by its subset I = J, . I, (this
corrector problem is trivially well posed in H'(R%)? when H is finite). We then
define a symmetric linear map B# on My™ by

E:BYE =E[DWH)0) + E|’]. EeM™

(This indeed makes sense for a given measurable enumeration of the point process.)
In these terms, the formal cluster expansion of the effective viscosity (1.2) takes the
form

B~Y —B/, whereB/:=! ) §"B”. (1.21)
fF=j
Note that B® = B? = 1d is the plain fluid viscosity. In contrast with the short-range
setting of Lemma 1.2 above, however, series defining cluster coefficients {B/};>1 are
not summable due to the long-range nature of hydrodynamic interactions. Indeed, the
first coefficient B! takes the form

E:B'E=) E:§"B’E
=Y E[[Dw M ©)|* +2E : D@ ©0)]. (1.22)

As w‘{gn} satisfies the single-particle problem (1.5), it is easily checked to have bor-

derline decay |D(wl{gn})(x)| ~ (x — x,)~%, which entails that the above series is not
absolutely convergent,

S E[Ipy it )] = .

The same borderline divergence is observed for all cluster coefficients {B/} i>1.In
order to make sense of them, suitable renormalization procedures are thus required
and constitute the major difficulty of the problem.
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To first order, the needed renormalization happens to be trivial: by definition of
the intensity of the point process, identity (1.22) can be equivalently rewritten as
follows (say, in case of deterministic particle shapes),

E:B'E = M(P) /Rd (|D(w%)|2 +2E :D(yp)),

where ¥ 5 stands for the solution of the single-particle problem (1.5) with a particle
centered at the origin. Here, we observe that in any finite-volume approximation the
linear term [ps E : D(¥3) would be given a vanishing value as the integral of a
gradient. Removing this linear term, we are left with the following summable integral,

2
’

E:B'E = A(?)/d ID(vg) (1.23)
R

which coincides with Einstein’s formula (1.7). In contrast, higher-order renormal-
izations are not obtained by such simple cancellations. In the physics literature, the
difficulty was recognized by Batchelor and Green [7], who managed to provide a
heuristic renormalization for the second-order term B2. The systematic renormaliza-
tion of higher-order terms is more involved and has remained an open problem so
far even on the heuristic level in physics. The present memoir is precisely devoted
to the systematic treatment of this difficulty: we provide suitable renormalizations of
cluster coefficients and in turn justify the expansion (1.21) to all orders. In the end,
we prove essentially the same estimates on the cluster expansion as in the short-range
setting (1.20), up to (sharp) logarithmic corrections that are persisting manifestations
of the long-range nature of interactions, cf. (1.26) below.

1.4 Main results

This section is devoted to a brief, informal account of the main results of this memoir,
with precise references to the relevant chapters. We refer to the conclusion in Chap-
ter 5 for a detailed recap of all our results. We start with the main assumptions on the
ensemble of rigid particles.

1.4.1 Main assumptions

Given an underlying probability space (2, P), let # = {x,}, be a random point
process on R?, consider an associated collection of random shapes {17 }n, where
each I, is a random simply connected open subset of the unit ball B, centered at the
origin in the sense of f e dy = 0, and then define the corresponding inclusions

Lyi=x,+ 1.
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Note that random shapes are not required to be independent of the point process 5.
‘We then consider the random set
I:= U I,
n

which we assume to satisfy the following conditions. Note that the disjointness and p-
regularity conditions below entail that the point process & is hardcore with £(P) = p,
cf. (1.13).

Assumption (H,) — General conditions with parameter p > 0.

* Stationarity and ergodicity: The point process = {x,}n and the associated
random set I are stationary and ergodic.”

* Disjointness: There holds I, N I, = & almost surely for all n # m.

* p-Regularity: Random shapes {1}, almost surely satisfy interior and exterior
ball conditions with radius p.

Next, we define the effective viscosity tensor B associated with the suspension I
as the quadratic form on M given in (1.2). We emphasize that the corrector prob-
lem (1.3) only makes sense provided that all particles {/,}, are well enough sep-
arated. If this separation is uniform, the pressure X lga\ 7 can also be uniquely
constructed as a stationary field with finite second moment and vanishing expecta-
tion, cf. [18, Proposition 2.1]. When particles are not well separated, the corrector
problem should rather be considered via its variational formulation and the effective
viscosity is then defined as the minimum value

E:BE = inf{E[[D() + E[)] : ¥ € L? (2 HL,(RY)?), Vi stationary,

ocC

div(y) =0, (D(¥) + E)|; = 0. E[D(¥)] = 0}. (1.24)

In general, nothing prevents this infimum from being infinite: as explained after (1.3)
above, the issue originates from the possible existence of unbounded chains of touch-
ing particles. This will be excluded by means of further geometric assumptions,
cf. (Hy"™), (HZ%™), or (HY%) below. Even if the infimum is finite, nothing ensures
in general that B defines the effective viscosity in the sense of homogenization the-
ory: we view this as a separate question, which is extensively discussed in different
settings in our previous work [13,18,19,21] and will not be further discussed here.

We are now in the position to describe our main results.

More precisely, stationarity means that the laws of the translated point process x + & and
of the translated random set x + I are independent of the shift x € R¢ . Ergodicity then means
that a measurable function of J or I is almost surely unchanged for & or I replaced by x +
or x + I for any x € R only if it is almost surely constant. Note that shifts x € R? can be
replaced by discrete shifts x € Z<, and periodic point sets can be considered as a particular
case, for which the expectation is replaced by the average over a period.
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1.4.2 First-order expansion: Einstein’s formula

Assuming that particles are uniformly separated by a positive distance, cf. (H;')"i")
below, we prove in the general ergodic stationary setting,

P

B —Id—B'| < A,(P)log (2 + Az(?)();((i/?’)) = 1)d)’ B'| ~ A(P), (1.25)
where B! is given by the renormalized cluster formula (1.7) and takes the explicit
form of Einstein’s formula B! = %
mate is new and optimal, and the stochastic assumption of mere ergodicity is minimal.
In particular, we find that Einstein’s formula provides a leading-order approximation,
in the sense of |B — Id —B!| « |B!|, provided that the condition A,(P) < A(P)
holds, which heuristically amounts to the scarcity of particle clusters and follows for
instance from some local independence of &.

Yet, the uniform separation assumption (H;;“if) is not satisfactory from the physi-
cal point of view. At the price of weakening the error estimate (1.25), we may relax
this assumption as we did for the homogenization result in [13,21]: either we assume
moment bounds on the interparticle distance (H;‘,‘,’Cm) (see also [28]), or we consider a
subcritical percolation condition (H ) (in which case particles are allowed to touch
provided they do not cluster). We refer to Theorem 2.1 in Chapter 2 for a detailed

statement.

¢ 1Id in case of spherical particles. This error esti-

1.4.3 Higher-order cluster corrections

For the higher-order analysis, we focus for simplicity on the setting of the uniform
separation assumption (H:j)“if). Under a slight strengthening of ergodicity, the formal
cluster expansion is well defined, up to suitable renormalization of cluster coeffi-
cients (1.21), and it essentially3 satisfies for all k > 1,

k
B-) B
j=0

These estimates coincide remarkably with the corresponding result (1.20) in the short-
range setting, to the exception of logarithmic corrections that are precisely the mani-
festations of the long-range nature of hydrodynamic interactions. The result is new for
any k > 2 and logarithmic corrections are expected to be optimal (optimality is proved
for k = 2, cf. Theorem 4.4). We also believe that the slightly strengthened ergodicity
assumption is necessary for the result to hold. We refer to Theorem 5.2 in Chapter 5

< M1 (P)|log A@)[E,  [B¥| S M(@)|log A(@)|[<T1. (1.26)

3The correct estimate is in general slightly more complicated than what is stated here;
cf. Theorem 5.2 in Chapter 5.
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for a detailed statement. In particular, our analysis justifies the Batchelor—Green for-
mula for the second-order term B2, cf. Proposition 4.9 (see also Corollary 5.6), and
we develop a systematic renormalization scheme for all higher-order cluster coeffi-
cients by means of diagrammatic expansions, cf. Section 4.4.

We emphasize that the above result (1.26) holds without any structural assump-
tion on the dilution process (which we call the “model-free” setting). If we make
the dilution more specific, considering for instance a random deletion procedure (as
in [15]) or dilation, then the full cluster expansion can be further shown to define an
absolutely converging series. We refer to Theorem 5.4 for a precise analyticity state-
ment. All previous results on the second-order expansion [26,27,29] were, in fact,
essentially restricted to such specific settings.

1.5 Roadmap to the main results

The rest of the memoir is divided into four chapters. Chapter 2 is dedicated to the
proof of Einstein’s formula. Chapter 3 studies the cluster expansion of finite-volume
approximations {I_SL } of the effective viscosity B. In Chapter 4, we deal with the
issue of systematic renormalization of cluster coefficients, which leads us to justifying
the cluster expansion of B. Our different results are combined and summarized in
Chapter 5. We briefly describe below our approach for each step.

1.5.1 Einstein’s formula: first-order expansion—Chapter 2

We develop a new, purely variational approach to Einstein’s formula (1.25); a short
self-contained proof is given in Chapter 2. It amounts to constructing competitors for
the variational problem (1.24) and to controlling their energy difference by means of
elliptic regularity. The variational nature of the argument allows us to avoid uniform
particle separation assumptions and to cover in particular the case of colliding parti-
cles under a general non-clustering assumption. It also allows to avoid the need for
fine pressure estimates, which is a crucial point as such estimates would be problem-
atic in case of colliding particles.

1.5.2 Cluster expansion of the effective viscosity—Chapter 3

While coefficients in the formal cluster expansion of the effective viscosity B are
given by infinite series that are not summable due to the long-range nature of hydro-
dynamic interactions, cf. Section 1.3.4, we start by considering finite-volume approx-
imations {By } L>1 obtained by periodization of the variational problem (1.24). Chap-
ter 3 provides a detailed analysis of the cluster expansion of B, for fixed L.
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» First, we give explicit formulas for the coefficients {]_3]{ }; of the cluster expansion,
as well as an explicit estimate for the remainder RE‘H = ]_3L — Z;C:o %1_32, in
terms of correctors associated with finite subsets of particles; see Theorem 3.1.
The argument is essentially combinatorial. Note that the proof of remainder esti-
mates further makes key use of the rigidity of the particles.

* Second, we prove that the cluster coefficients {ﬁi }; and the remainder Rﬁ‘“ are
bounded uniformly in L. The idea of the proof is as follows: if infinite-volume
cluster formulas are given by infinite series that are not summable, they can in
fact be viewed as complicated (non-explicit) combinations of Calderén—Zygmund
kernels. As the effective viscosity is an L2-based quantity, we may expect to esti-
mate cluster formulas by means of suitable energy estimates, carefully avoiding
taking absolute values of any Calderén—Zygmund kernel. Taking inspiration from
our previous work [15], this is achieved by means of a hierarchy of so-called
interpolating £! — £2 energy estimates (also crucially used in [20,30]). As a corol-
lary, uniform estimates allow us to define infinite-volume cluster coefficients in
the limit {B/} j o= limmoo{l_ii} 7. Yet, being based on energy arguments, these
estimates do not display the desired dependence (1.26) on multi-point intensi-
ties {A;};.

* Third, we prove corresponding cluster estimates that have the same dependence
on multi-point intensities as in the short-range setting, but display a logarithmic
divergence in the large-volume limit. This is obtained by proceeding as for the
short-range setting of Lemma 1.2, and the logarithmic divergence follows from
estimating hydrodynamic interactions too roughly.

It remains to show that the dependence on multi-point intensities is actually kept in
the large-volume limit (at the price of logarithmic corrections).

1.5.3 Renormalization of cluster formulas—Chapter 4

In order to prove the relevant infinite-volume cluster estimates (1.26), we need a bet-
ter understanding of cluster formulas and of the underlying compensations that make
them well defined in the large-volume limit. A first route proceeds by assuming an
algebraic convergence rate for the finite-volume approximations {By }7. of the effec-
tive viscosity: this is known to hold under quantitative «-mixing condition whose
rate is then transmitted (suboptimally) to cluster coefficients {1_31{ }j» which allows in
turn to keep the desired dependence on multi-point intensities in the cluster estimates
while removing the logarithmic divergence. This implicit renormalization argument
is particularly robust (see also [15]), but it does not provide any understanding of
underlying cancellations and leaves several questions open.

Next, further assuming for simplicity that particle shapes are independent of par-
ticle positions, we show that an explicit renormalization of cluster formulas can be
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developed: taking advantage of several explicit cancellations, cluster formulas can be
transformed into summable integral formulas. This renormalization is trivial for B!,
cf. (1.23), and the required cancellations are already more involved for B2, as for-
mally understood by Batchelor and Green [8]. At higher orders, renormalizations
rely on a suitable diagrammatic decomposition of cluster formulas to make cancella-
tions manifest. Finally, the direct analysis of renormalized formulas allows to recover
the desired cluster estimates (1.26) and to show that logarithmic corrections in those
bounds are actually optimal in general.

Notation

*  For vector fields u, u” and matrix fields 7', T’, we set (Vu);; = Vju;, div(T); =
ViTij, T : T' = Tj; T};, (u @ u')ij = uju;, where we systematically use Ein-
stein’s summation convention on repeated indices. We also denote by (D(u));; =
%(VJ- u; + Viu;) the symmetrized gradient. For a velocity field u and associated

pressure field P, we define the associated Cauchy stress tensor, cf. (1.4),
o(u, P):=2D(u)— PId.

*  We denote by Mf)ym C R4*4 the subset of symmetric trace-free matrices, and by
MY the subset of skew-symmetric matrices.

*  We use the notation < (resp. ) for < C x (resp. > éx) with a constant C that
depends only on the dimension d and on the parameters appearing in the different
assumptions when applicable. Note that the value of the constant C is allowed to
change from one line to another. We add subscripts to C, <, or 2 to indicate the
dependence on other parameters. We write a >~ b when both a < b and a = b hold.
In addition, we write < (resp. >>) for < éx (resp. > C x) for some sufficiently

large constant C.

* The ball centered at x of radius r in R¢ is denoted by B, (x), and we set B(x) =
By (x), By = B;(0), and B = B;(0). We denote by Q,(x) = x + [-3, %)d the
cube of sidelength r centered at x, and we set Q(x) = Q1(x), O, = 0,(0), and
Q = 01(0).

« For x € R4, we denote by |x| its Euclidean norm and by |x|s its supremum
norm. We also set (x) = (1 + |x|?)1/2, and similarly (V) = (1 — A)"/2,

*  We use the shorthand notation Zflnj for sums over j-tuples (ny,...,n;) of
distinct indices. We also use the notation ) yr_ ; for the sum over all subsets F
of j distinct indices.






