
Chapter 2

Einstein’s formula: First-order expansion

2.1 Main result

Assumption (H�) first needs to be complemented with suitable geometric assumptions
on the ensemble of particles to ensure that the effective viscosity (1.24) is finite. This
can either be performed by means of conditions on interparticle distances,

�n WD
1

2
min
mWm¤n

dist.In; Im/; (2.1)

or in terms of conditions on the size of clusters of close particles. This has been the
subject of our recent series of articles [13,18,21], where the finiteness of the effective
viscosity and the validity of a homogenization result are obtained under any of the
following three types of assumptions:

— interparticle distances are uniformly bounded below, cf. [18];

— interparticle distances satisfy suitable reciprocal moment bounds, cf. [13, Theo-
rem 1 for d > 2 and Remark 3.4 for d D 2];

— diameters of clusters of close particles satisfy suitable moment bounds in a sub-
critical percolation perspective, cf. [21].

These are formulated more precisely in Assumptions (Hunif
� ), (Hmom

�;� ), and (Hperc
�;� )

below, respectively.

Assumption (Hunif
� ) – Uniform separation with parameter � > 0. Particles are uni-

formly separated with minimal distance �n > �, that is, we have almost surely

.In C �B/ \ .Im C �B/ D ¿ for all n ¤ m:

Assumption (Hmom
�;� ) – Moment condition with parameters � > 0, � > 1.

• �-Uniform non-degeneracy of contact points: Pairs of “�-close” particles can
be “�-locally” included in pairs of disjoint spheres with “�-uniformly” bounded
radius. For “�-close” particles, instead of (2.1), we then define �n as (half of) the
distance between locally covering spheres. For a more precise statement of this geo-
metric condition, we refer to [13, Assumption (H0

ı
)]. Note that this condition is triv-

ially satisfied in case of spherical particles.
• Reciprocal moment bound: There exists K� <1 such that
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in terms of

�.t/ WD

8̂̂<̂
:̂
t�

1
2 .5�d/ if d < 5;

log.2C 1
t
/ if d D 5;

1 if d > 5:

(2.2)

Note that this condition is trivially satisfied for any � > 1 in case d > 5.

Assumption (Hperc
�;� ) – Cluster condition with parameters � > 0, � > 1. Let ¹Kq;�ºq

be the family of connected components of the fattened set 	 C �B , and consider the
corresponding clusters

Jq;� WD
[

In�Kq;�

In:

Given p0 � 1 large enough (related to the existence of correctors in [21, Proposi-
tion 2]), there exists K� <1 such that

lim sup
R"1
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1

]¹q W Jq;� \QR ¤ ¿º

X
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diam.Jq;�/�p0Cd

� 1
�

� K� : (2.3)

Assumptions (Hmom
�;� ) and (Hperc

�;� ) are always weaker than (Hunif
� ). While (Hmom

�;� )
only allows for particle contacts in dimension d > 5 and is in particular incompati-
ble with the 3D steady-state behavior of the two-particle density as computed in [8],
Assumption (Hperc

�;� ) is of a different nature and allows for particle contacts in any
dimension, but implicitly requires some strong mixing condition to ensure the valid-
ity of moment bounds on cluster diameters, cf. [21]. In [13, 18, 21], we show that
these assumptions ensure the finiteness of the effective viscosity (1.24) and the well-
posedness of the corrector problem. In case of (Hmom

�;� ) or (Hperc
�;� ), the validity of the

homogenization result requires further strengthened conditions.
The following theorem states the validity of Einstein’s formula under each of the

above assumptions. The proof is split between Sections 2.2, 2.3, 2.4, and 2.5 below.

Theorem 2.1 (Einstein’s formula). Under Assumption (H�), provided that either
(Hunif
� ), (Hmom

�;� ), or (Hperc
�;� ) holds for some � > 0 and � > 1, we haveˇ̌

xB � .IdCxB1/
ˇ̌

.� �2.P / log
�
2C

�.P /

�2.P /
�
`.P /C 1

�d �

C

8<: 0 in case of (Hunif
� );

K��2.P /
1� 1

� �.P /
1
� in case of (Hmom

�;� ) or (Hperc
�;� );

(2.4)

where xB1 satisfies
jxB1j ' �.P /;
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and is defined for all E 2 Msym
0 by

E W xB1E WD

X
n

E

�
102In

jInj

ˆ
Rd

ˇ̌
D
�
 

¹nº
E

�ˇ̌2�
; (2.5)

where  ¹nº
E is the unique decaying solution of the single-particle problem (1.5). In

particular, the estimate jxB � .IdCxB1/j D o.�.P // holds provided the point process
P satisfies �2.P / D o.�.P //.

As outlined in Section 2.2, our proof is variational and amounts to proving lower
and upper bounds on xB that match with IdCxB1 to the required accuracy. (For the case
of the Clausius–Mossotti conductivity formula, we refer to [14], where we provide a
PDE version of the present variational argument.) This new approach is very robust:
it yields the first optimal error estimate and allows to cover the most general setting
regarding particle separation assumptions. We briefly emphasize these two points:

— Optimality: In case of (Hunif
� ), the error estimate (2.4) for Einstein’s formula is new

and sharp. As will be seen in Theorem 4.4, it indeed coincides with the general
scaling of the next term xB2 in the cluster expansion: the logarithmic correction
is related to the long-range nature of hydrodynamic interactions and cannot be
avoided in general, thus contrasting with the short-range setting (1.20).1 In case
of (Hmom

�;� ) or (Hperc
�;� ), the error estimate (2.4) displays a further algebraic loss,

which is also new and expected to be optimal in general. If for some exponent

 � 1 the moment bounds in (Hmom

�;� ) or (Hperc
�;� ) hold with constant K� . �
 for

all � � 1,2 then the error estimate (2.4) could be upgraded to

�2.P / log1_

�
2C

�.P /

�2.P /

�
after optimizing in �.

— Particle separation: Most works on the topic [26–29, 33, 54] have focussed so
far on the simplest setting of (Hunif

� ) in case when diluteness further holds in the
strong form of `.P /� 1. The only exception is the recent independent work [28],
where this last condition is relaxed and where the case of (Hmom

�;� ) is also covered.
More generally, our approach allows to further cover essentially any situation for
which the effective viscosity (1.24) can be proved to be finite. Applied to (Hperc

�;� ),
it allows us to treat for the first time a 3D setting where particles are allowed to
touch.

1In some special cases, however, for instance in the statistically isotropic setting, the loga-
rithmic correction can be removed, cf. Theorem 4.4 (i).

2For (Hmom
�;� ), this would amount to having stretched exponential moment bounds. For

(Hperc
�;�), this holds for some point processes such as the random parking measure with 
 large

enough, cf. [21].
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Next, we further simplify formula (2.5) for the first-order cluster coefficient xB1

in the case when particle shapes are independent: we recover the formula obtained
in [33], as well as Einstein’s explicit formula (1.8) in case of spherical particles. The
proof is postponed to Section 2.6.

Proposition 2.2 (First-order coefficient). On top of Assumption (H�), further assume

(Indep) Independent shapes: Random shapes ¹I ın ºn are iid copies of a given ran-
dom subset I ı, independently of the point process P .

Then, the first-order coefficient xB1 defined in (2.5) can be written as

xB1 D �.P /yB1; E W yB1E D E

�ˆ
Rd

ˇ̌
D. ı

E /
ˇ̌2�
; (2.6)

in terms of the unique decaying solution of the single-particle problem8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�4 ı
E Cr†ı

E D 0; in Rd n I ı;

div. ı
E / D 0; in Rd n I ı;

D. ı
E /CE D 0; in I ı;´

@Iı
�ı
E� D 0;´

@Iı
‚x � �ı

E� D 0; 8‚ 2 Mskew:

(2.7)

In case of spherical particles, InDB.xn; rn/, with iid random radii ¹rnºn, this reduces
to Einstein’s celebrated formula

xB1 D
d C 2

2
' Id; (2.8)

where the volume fraction is in this case ' D �.P /EŒjI0j�.

2.2 Variational approach

This section is devoted to setting up our variational approach to prove Theorem 2.1,
which is partly inspired by the theory of optimal bounds in homogenization; see
e.g. [50, Chapters 13 and 23]. The new main ingredients are the use of Voronoi tessel-
lations and of elliptic regularity. Let E 2 Msym

0 be fixed. In the spirit of the heuristic
approximation (1.6) for the corrector, we start by defining single-particle problems in
the neighborhood of each particle. For a random set 	 satisfying (H�), we define the
associated Voronoi tessellation ¹Vnºn as follows,

Vn WD
®
x 2 Rd W dist.x; In/ < dist.x; Im/ 8m ¤ n

¯
:

By definition, these Voronoi cells pave the whole space Rd and each Vn contains
exactly one inclusion In. We then consider the single-particle problems in Vn, with
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either homogeneous Dirichlet or Neumann boundary conditions on @Vn,

En;D WD inf
²ˆ

Vn

ˇ̌
D. /

ˇ̌2
W  2 H 1

0 .Vn/
d ; div. / D 0;

�
D. /CE

�ˇ̌
In

D 0

³
;

(2.9)

En;N WD inf
²ˆ

Vn

ˇ̌
D. /

ˇ̌2
W  2 H 1.Vn/

d ; div. / D 0;
�
D. /CE

�ˇ̌
In

D 0

³
:

(2.10)

Provided that En;D <1 (which is the case as soon as In b Vn), the Dirichlet prob-
lem (2.9) is well posed and we denote by  n;D its unique minimizer. The Neumann
problem (2.10), on the other hand, is always well posed and one has the determin-
istic uniform bound En;N . 1. We denote by  n;N the corresponding minimizer,
which is only defined up to a rigid motion and can be fixed for instance by choosing´
V
 n;N D 0 and

´
V
r n;N 2 Msym

0 . Next, we define the single-particle problem on
the whole space via

En;1 WD inf
²ˆ

Rd

ˇ̌
D. /

ˇ̌2
W  2 H 1.Rd /d ; div. / D 0;

�
D. /CE

�ˇ̌
In

D 0

³
:

(2.11)
Note that the unique minimizer  n;1 of this variational problem coincides with the
solution  ¹nº

E of (1.5). In case of (Hperc
�;� ), as we only control clusters of close particles,

we naturally merge Voronoi cells that intersect the same cluster: more precisely, we
consider the Voronoi cell associated with each cluster Jq;�,

Wq WD
[

nWIn�Jq;�

Vn;

and we then partition the whole space as

Rd D

�[
n2�

Vn

�
[

� [
q2� 0

Wq

�
;

where � WD ¹n W �n� �º is the set of indices of well-separated particles and where � 0 is
the set of indices q such that the cluster Jq;� is made of at least two particles. For n2 �

we shall consider the single-inclusion problems En;D;En;N ;En;1 as above, while for
q 2 � 0 it will suffice to consider the single-cluster problem with Dirichlet conditions,

Fq;D WD inf
²ˆ

Wq

ˇ̌
D. /

ˇ̌2
W  2 H 1

0 .Wq/
d ; div. / D 0;

�
D. /CE

�ˇ̌
Jq;�

D 0

³
:

(2.12)
The upcoming lemma shows that the error in the first-order expansion xB � Id CxB1

can be controlled using single-particle problems (as well as single-cluster problems in
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case of (Hperc
�;� )). This provides a drastic reduction of complexity since xB itself involves

the corrector  E with the full set of particles. The proof is postponed to Section 2.4
below.

Lemma 2.3. Under the assumptions of Theorem 2.1, using the notation (2.9)–(2.12),
we haveˇ̌

E W
�
xB � .IdCxB1/

�
E
ˇ̌

.

8̂̂̂̂
<̂̂
ˆ̂̂̂:

E
hP

n
102In

jInj
.En;D � En;N /

i
in case of (Hunif

� ) or (Hmom
�;� );

E
hP

n2�
102In

jInj
.En;D � En;N /

i
CE

hP
q2� 0

102Jq;�

jJq;�j
Fq;D

i
in case of (Hperc

�;� );

(2.13)

where xB1 is defined in (2.5).

It remains to control the right-hand side in the above preliminary error estimate
(2.13), which amounts to comparing the single-particle problems with Dirichlet or
Neumann boundary conditions on Voronoi cells. The proof is postponed to Section
2.5 below.

Lemma 2.4. For all n, we have almost surely

0 � En;D � En;N . �.�n/1�n<1 C ��dn 1�n�1; (2.14)

where we recall that �n stands for (half of) the interparticle distance, cf. (2.1), and
that the weight � is defined in (2.2). In addition, there is p0 <1 such that for all q
we have almost surely

Fq;D . diam.Jq;�/p0 : (2.15)

With these two lemmas at hand, combining the estimates, we may now quickly
conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. Combining Lemmas 2.3 and 2.4, we getˇ̌
xB � .IdCxB1/

ˇ̌

.

8̂̂̂̂
<̂̂
ˆ̂̂̂:

E
hP

n
102In

jInj

�
�.�n/1�n<1C�

�d
n 1�n�1

�i
in case of (Hunif

� ) or (Hmom
�;� );

E
hP

n
102In

jInj
��dn 1�n��

i
CE

hP
q2� 0

102Jq;�

jJq;�j
diam.Jq;�/p0

i
in case of (Hperc

�;� ),

(2.16)

and it remains to estimate these expectations. We split the proof into two steps.
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Step 1. Proof that, if g 2 L1.RC/ is non-increasing with g.r/ # 0 as r " 1, then

E

�X
n

102In

jInj
g.�n/

�
. �2.P /kgkL1.RC/

C

ˆ 1

. 1
2 `�1/C

ˇ̌
g0.r/

ˇ̌��
�2.P /hri

d
�
^ �.P /

�
dr: (2.17)

To start with, we rewrite the left-hand side as

E

�X
n

102In

jInj
g.�n/

�
D

ˆ 1

0

g.r/ dƒ.r/; (2.18)

where the positive measure ƒ on RC is defined by its distribution function

ƒ
�
Œ0; r�

�
WD E

�X
n

102In

jInj
1�n�r

�
D E

�X
n

102In

jInj
1
9m¤nW 1

2 dist.Im;In/�r

�
: (2.19)

As In � B.xn/ for all n, we can estimate the latter as

ƒ
�
Œ0; r�

�
� E

hX
n

1jxnj�119m¤nWjxm�xnj�2.rC1/

i
:

Recalling that ` D `.P / is the minimal distance (1.13), we deduce thatƒ.Œ0; r�/ D 0

for all r � 1
2
` � 1. Moreover, we can bound, on the one hand,

ƒ
�
Œ0; r�

�
� E

hX
n

1jxnj�1

i
D �.P /jBj;

and on the other hand, in terms of the two-point density and intensity, for r � 1
2
`� 1,

ƒ
�
Œ0; r�

�
� E

h X
n¤m

1jxnj�11jxm�xnj�2.rC1/

i
D

¨
B�B2.rC1/

f2.x; x C y/ dxdy

D
�
2.r C 1/

��d ¨
B2.rC1/�B2.rC1/

f2.x; x C y/ dxdy

. �2.P /hri
d :

Combining these estimates yields

ƒ
�
Œ0; r�

�
.
�
�2.P /hri

d
�
^ �.P /: (2.20)

Under our assumptions on g, an integration by parts yieldsˆ 1

0

g.r/ dƒ.r/ D �g.0/ƒ
�
¹0º
�
C

ˆ 1

0

ˇ̌
g0.r/

ˇ̌
ƒ
�
Œ0; r�

�
dr;

and the conclusion follows in combination with (2.18) and (2.20).
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Step 2. Conclusion. In case of (Hunif
� ), as we have �n � � for all n, the contributions

of �n < � can be removed in (2.16). Applying (2.17) with g.r/ D hri�d , we are then
led toˇ̌
xB � .IdCxB1/

ˇ̌
. E

�X
n

102In

jInj
h�ni

�d

�
. �2.P /C

ˆ 1

. 1
2 `�1/C

hri�d�1
��
�2.P /hri

d
�
^ �.P /

�
dr;

and the conclusion (2.4) follows after estimating this integral.
Next, in case of (Hmom

�;� ), repeating the same computation as above for the contri-
butions of �n � 1 in (2.16), and separating the contributions of �n � 1, we findˇ̌

xB � .IdCxB1/
ˇ̌

. �2.P / log
�
2C

�.P /

�2.P /
�
`.P /C 1

�d �C E

�X
n

102In

jInj
�.�n/1�n<1

�
;

and it remains to estimate the last term. By Hölder’s inequality, we can write for
any � � 1,

E

�X
n

102In

jInj
�.�n/1�n<1

�
� E

�X
n

102In

jInj
1�n<1

�1� 1
�

E

�X
n

102In

jInj
�.�n/

�

� 1
�

:

On the one hand, (2.20) yields

E

�X
n

102In

jInj
1�n<1

�
D ƒ

�
Œ0; 1�

�
. �2.P /:

On the other hand, by the ergodic theorem, using (1.12) and the reciprocal moment
condition in (Hmom

�;� ), we find

E

�X
n

102In

jInj
�.�n/

�

�
D lim
R"1

R�d
X
n

jIn \QRj

jInj
�.�n/

�

� lim sup
R"1

]¹n W In \QR ¤ ¿º

Rd
1

]¹n W In \QR ¤ ¿º

X
nWIn\QR¤¿

�.�n/
�

� �.P /.K�/
� ;

and the conclusion (2.4) follows.
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Finally, in case of (Hperc
�;� ), repeating again the same computation for the contribu-

tions of �n � � in (2.16), we findˇ̌
xB � .IdCxB1/

ˇ̌
. �2.P / log

�
2C

�.P /

�2.P /
�
`.P /C 1

�d �C E

�X
q2� 0

102Jq;�

jJq;�j
diam.Jq;�/p0

�
;

and it remains to estimate the last term. By Hölder’s inequality, we can write for
any � � 1,

E

�X
q2� 0

102Jq;�

jJq;�j
diam.Jq;�/p0

�

� E

�X
q2� 0

102Jq;�

jJq;�j

�1� 1
�

E

�X
q

102Jq;�

jJq;�j
diam.Jq;�/�p0

� 1
�

:

On the one hand, by definition of � 0 and by definition (2.19) ofƒ, we get from (2.20),

E

�X
q2� 0

102Jq;�

jJq;�j

�
� E

�X
n

102In

jInj
1�n��

�
D ƒ

�
Œ0; ��

�
. �2.P /:

On the other hand, by the ergodic theorem, using (1.12), the condition (2.3) in (Hperc
�;� ),

and the fact that there are less clusters than particles, we find

E

�X
q

102Jq;�

jJq;�j
diam.Jq;�/�p0

�
D lim
R"1

R�d
X
q

jJq;� \QRj

jJq;�j
diam.Jq;�/�p0

� lim sup
R"1

]¹q WJq;�\QR ¤ ¿º

Rd
1

]¹q WJq;�\QR ¤ ¿º

X
qWJq;�\QR¤¿

diam.Jq;�/�p0

� lim sup
R"1

]¹n W In \QR ¤ ¿º

Rd
1

]¹q W Jq;� \QR ¤ ¿º

X
qWJq;�\QR¤¿

diam.Jq;�/�p0

� �.P /.K�/
� ;

and the conclusion (2.4) follows.

2.3 Preliminary lemmas

Before turning to the proof of Lemmas 2.3 and 2.4, which are key to Theorem 2.1 as
explained above, we start with a few preliminary PDE and probabilistic lemmas. We
first prove the following trace estimates at particle boundaries.
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Lemma 2.5 (Trace estimates). For all n, we have the following estimates.
(i) For any  2 H 1.In/, we have

inf
�2Rd ;‚2Mskew

ˆ
@In

ˇ̌
 �

�
� C‚.x � xn/

�ˇ̌2 .
ˆ
In

ˇ̌
D. /

ˇ̌2
:

(ii) For any  2 H 1.In C �B/ satisfying the following relations, and for some
E 2 Msym

0 , 8̂̂<̂
:̂
�4 Cr† D 0; in .In C �B/ n In;

div. / D 0; in .In C �B/ n In;

D. /CE D 0; in In;

we have
inf
c2R

ˆ
@In

ˇ̌
�. ;†/ � c Id

ˇ̌2 .
ˆ
InC�B

ˇ̌
D. /

ˇ̌2
;

where we recall that multiplicative constants may implicitly depend on �.

Proof. We split the proof into two steps.

Step 1. Proof of (i). We appeal to a trace estimate in form ofˆ
@In

ˇ̌
 �

�
� C‚.x � xn/

�ˇ̌2 .
ˆ
In

ˇ̌
hri

1
2

�
 �

�
� C‚.x � xn/

��ˇ̌2
;

and the conclusion then follows from Poincaré’s and Korn’s inequalities.

Step 2. Proof of (ii). By definition of the Cauchy stress tensor, a trace estimate yieldsˆ
@In

ˇ̌
�. ;†/ � c Id

ˇ̌2 .
ˆ
.InC

1
2�B/nIn

ˇ̌
hri

1
2r 

ˇ̌2
C
ˇ̌
hri

1
2 .† � c/

ˇ̌2
: (2.21)

By the local regularity theory for the steady Stokes equation near a boundary, e.g. [25,
Theorems IV.5.1–IV.5.3], we have for all m � 0, for all constants � 2 Rd and c 2 R,

kr kHmC1..InC
1
2�B/nIn/

C k† � c IdkHmC1..InC
1
2�B/nIn/

. k jIn
� �k

H
mC 3

2 .@In/
C k � �kH1..InC�B/nIn/

C k† � c IdkL2..InC�B/nIn/
:

Choosing c WD
ffl
.InC�B/nIn

† and using a local pressure estimate for the steady Stokes
equation, e.g. [19, Lemma 3.3], we find

k† � c IdkL2..InC�B/nIn/
. kr kL2..InC�B/nIn/

;

so that the above reduces to

kr kHmC1..InC
1
2�B/nIn/

C k† � c IdkHmC1..InC
1
2�B/nIn/

. k jIn
� �k

H
mC 3

2 .@In/
C k � �kH1..InC�B/nIn/

:
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As  is affine in In, we have

k jIn
� �k

H
mC 3

2 .@In/
. k � �kHmC2.In/

D k � �kH1.In/
;

and the above then becomes

kr kHmC1..InC
1
2�B/nIn/

C k† � c IdkHmC1..InC
1
2�B/nIn/

. k � �kH1.InC�B/
:

Further, choosing � WD
ffl
InC�B

 and applying Poincaré’s inequality, we deduce

kr kHmC1..InC
1
2�B/nIn/

C k† � c IdkHmC1..InC
1
2�B/nIn/

. kr kL2.InC�B/
:

In particular, combined with (2.21), this leads us to

inf
c2R

ˆ
@In

ˇ̌
�. ;†/ � c Id

ˇ̌2 .
ˆ
InC�B

jr j2:

Noting that �. ; †/ and the equations satisfied by . ; †/ are unchanged if a rigid
motion is added to  , the conclusion now follows from Korn’s inequality.

Next, we recall the following standard elliptic regularity estimate for solutions of
the free steady Stokes equation.

Lemma 2.6 (Mean-value property). Given r > 0, if . ;†/ is a weak solution of the
free Stokes equation in Br ,

�4 Cr† D 0; div. / D 0; in Br ;

then it satisfies ˇ̌
D. /.0/

ˇ̌2 .
 
Br

ˇ̌
D. /

ˇ̌2
:

Proof. By scaling, it suffices to consider r D 1. For m > d
2

, the Sobolev embedding
yields ˇ̌

D. /.0/
ˇ̌

.


D. /




Hm. 1

2B/
; (2.22)

and it remains to estimate this Sobolev norm. By the local regularity theory for the
steady Stokes equation, e.g. [25, Theorem IV.4.1], we find for all � 2 Rd and c 2 R,

kr kHm. 1
2B/

C k† � ckHm. 1
2B/

. k � �kH1.B/ C k† � ckL2.B/:

Choosing cD
ffl
B
† and using a local pressure estimate for the steady Stokes equation,

e.g. [19, Lemma 3.3], we find

k† � ckL2.B/ . kr kL2.B/:
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Inserting this into the above and applying Poincaré’s inequality for the choice � Dffl
B
 , we deduce

kr kHm. 1
2B/

. kr kL2.B/:

For any ‚ 2 Mskew, this entails

D. /



Hm. 1

2B/
�


r. �‚x/




Hm. 1

2B/
.


r. �‚x/




L2.B/

;

hence, by Korn’s inequality,

D. /



Hm. 1

2B/
.


D. /




L2.B/

:

Inserting this into (2.22), the conclusion follows.

Finally, the following lemma provides a useful property of Voronoi tessellations.
Although it could be obtained as a direct consequence of Palm theory, we include a
more elementary proof by means of an approximation argument.

Lemma 2.7 (Property of Voronoi tessellations). Under Assumption (H�), for all sta-
tionary random fields � with EŒj�j� <1, we have

EŒ�� D E

�X
n

102In

jInj

ˆ
Vn

�

�
: (2.23)

In case of (Hperc
�;� ), we can alternatively decompose

EŒ�� D E

�X
n2�

102In

jInj

ˆ
Vn

� C
X
q2� 0

102Jq;�

jJq;�j

ˆ
Wq

�

�
: (2.24)

Remark 2.8. In [14], we refer to Lemma 2.7 above3 in the following slightly differ-
ent form: given a general stationary ergodic point process zP D ¹ Qxnºn, considering
spherical inclusions zIn D B. Qxn/, denoting by ¹z�nºn the associated interparticle dis-
tances, by ¹ zVnºn the associated Voronoi cells, and defining

z� WD ¹n W z�n � 1º

(which can possibly be empty), we have for all stationary random fields � with
EŒj�j� <1,

EŒ�� D E

�X
n2z�

102B. Qxn/

jBj

ˆ
zVn

�

�
C E

�
�1Rdn

S
n2z�

zVn

�
: (2.25)

Indeed, given that the restricted inclusion process ¹B. Qxn/ W n 2 z�º satisfies (H�),

3Though with the erroneous reference “Lemma 2.5”.
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denoting the associated Voronoi cells by ¹ zV 0
n W n 2 z�º, we can apply (2.23) in the

form

EŒ�� D E
�
�1S

m2z�
zVm

�
C E

�
�1Rdn

S
m2z�

zVm

�
D E

�X
n2z�

102B. Qxn/

jBj

ˆ
zV 0

n

�1S
m2z�

zVm

�
C E

�
�1Rdn

S
m2z�

zVm

�
;

and identity (2.25) immediately follows since the trivial inclusion

¹ Qxn W n 2 z�º � zP

implies zVn � zV 0
n for all n.

Proof. By the monotone convergence theorem, it is enough to prove the result for any
bounded nonnegative random field 0 � � � M with any fixed M > 0. Let such a �
be fixed. We split the proof into two steps.

Step 1. Proof of (2.23) and (2.24) under the additional assumption that almost surely

sup
n

diam.Vn/ <1: (2.26)

In that case, let K � 1 be such that diam.Vn/ � K almost surely for all n. We con-
sider (2.23) and (2.24) separately, and split the proof into two further substeps.

Substep 1:1. Proof of (2.23) under assumption (2.26). By the ergodic theorem, we
have almost surely

E

�X
n

102In

jInj

ˆ
Vn

�

�
D lim
R"1

R�d
X
n

jIn \QRj

jInj

ˆ
Vn

�:

As � � 0 and as assumption (2.26) entails Vn � BK.xn/ for all n, we easily get the
two-sided estimateˆ

QR�CK

� �
X
n

jIn \QRj

jInj

ˆ
Vn

� �

ˆ
QRCCK

�;

and the claim (2.23) then follows from the ergodic theorem.

Substep 1:2. Proof of (2.24) under assumption (2.26). By the ergodic theorem, we
have almost surely

E

�X
n2�

102In

jInj

ˆ
Vn

� C
X
q2� 0

102Jq;�

jJq;�j

ˆ
Wq

�

�
D lim
R"1

R�d

�X
n2�

jIn \QRj

jInj

ˆ
Vn

� C
X
q2� 0

jJq;� \QRj

jJq;�j

ˆ
Wq

�

�
:

As 0 � � � M and as assumption (2.26) entails Vn � BK.xn/ for all n, we get the
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two-sided estimateˆ
QR�CK

� �M
X

qWJq;�\.QRC1nQR/¤¿

jWqj

�

X
n2�

jIn \QRj

jInj

ˆ
Vn

� C
X
q2� 0

jJq;� \QRj

jJq;�j

ˆ
Wq

�

�

ˆ
QRCCK

� CM
X

qWJq;�\.QRC1nQR/¤¿

jWqj:

By the ergodic theorem, in order to prove (2.24), it thus remains to show almost surely

lim
R"1

R�d
X

qWJq;�\.QRC1nQR/¤¿

jWqj D 0;

which would follow provided that we show almost surely

lim sup
R"1

R�d
X

qWJq;�\QR¤¿

jWqj <1: (2.27)

As jWqj . .diam.Jq;�/CK/d , we can estimate

R�d
X

qWJq;�\QR¤¿

jWqj . Kd
�
R�d ]¹q W Jq;� \QR ¤ ¿º

�
�

�
1

]¹q W Jq;� \QR ¤ ¿º

X
qWJq;�\QR¤¿

diam.Jq;�/d
�
:

To bound the first factor, we simply note that

R�d ]¹q W Jq;� \QR ¤ ¿º � R�d ]¹n W In \QR ¤ ¿º

� R�d ]¹n W xn 2 QRC1º
R"1
���! �.P /:

Appealing to the condition (2.3) in (Hperc
�;� ) to estimate the second factor, the claim

(2.27) follows.

Step 2. Relaxing assumption (2.26). It remains to consider the case when

sup
n

diam.Vn/ D 1;

and we proceed by approximation. Consider a point process

P 0
D ¹x0nºn
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independent of P and of 	 such that almost surely

min
n¤m

jx0n � x
0
mj �

1

2
; min

mWm¤n
jx0n � x

0
mj � 1 for all n:

For instance, P 0 can be chosen as the random parking process of parameter 1
4

, cf. [57].
Now, for any integer ˛ � 1, we define the “enriched” point process P˛ as follows,

P˛ WD P [
®
22˛x0n W dist.22˛x0n;P / � 22˛C3

¯
;

as well as the corresponding random set

	˛ WD 	 [

[
nWdist.22˛x0n;P /�2

2˛C3

B.22˛x0n/:

Denote by V˛.xn/ the Voronoi cell associated with In in 	˛ , and by V˛.x0n/ the
Voronoi cell associated with B.22˛x0n/. By construction, it can be checked that for
all n,

Vn \ B22˛C2.xn/ � V˛.xn/ � Vn \ B22˛C4.xn/;

which entails that V˛.xn/ " Vn increasingly as ˛ " 1 (over integers). In addition,
P˛; 	˛ satisfy (H�), as well as (2.26) with Voronoi diameters bounded by O.22˛/.
They further satisfy (Hunif

� ), (Hmom
�;� ), or (Hperc

�;� ) provided that P ; 	 satisfy the cor-
responding assumption. We focus on the case of (Hunif

� ) or (Hmom
�;� ), while the case

of (Hperc
�;� ) is analogous. Applying the result (2.23) of Step 1, by definition of P˛ , we

get

EŒ�� D E

�X
n

102In

jInj

ˆ
V˛.xn/

�

�
C E

�X
n

1dist.22˛x0n;P /�2
2˛C3

102B.22˛x0n/

jBj

ˆ
V˛.x

0
n/

�

�
:

As 0 � � �M , as Voronoi diameters are bounded by C22˛ almost surely, and using
stationarity and the independence of P ;	 and P 0;	 0, the second right-hand side term
satisfies

0 � E

�X
n

1dist.22˛x0n;P /�2
2˛C3

102B.22˛x0n/

jBj

ˆ
V˛.x

0
n/

�

�
. M22˛dE

�X
n

1dist.22˛x0n;P /�2
2˛C3

102B.22˛x0n/

jBj

�
DM22˛dE

�X
n

102B.22˛x0n/

jBj

�
P
�

dist.0;P / � 22˛C3
�

DM�.P 0/P
�

dist.0;P / � 22˛C3
�
:
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Inserting this into the above, we deduce

E

�X
n

102In

jInj

ˆ
V˛.xn/

�

�
� EŒ�� � E

�X
n

102In

jInj

ˆ
V˛.xn/

�

�
C CM�.P 0/P

�
dist.0;P / � 22˛C3

�
:

and the conclusion (2.23) follows from the monotone convergence theorem.

2.4 Proof of Lemma 2.3

Without loss of generality, we can assume that En;D <1 almost surely as otherwise
the claimed estimate (2.13) would be trivial. The variational definition of the effective
viscosity (1.24) can be written as

E W xBE

D jEj
2
C inf

®
E
�ˇ̌

D. /
ˇ̌2�

W  2 L2
�
�IH 1

loc.R
d /d

�
; r stationary;

div. / D 0;
�
D. /CE

�ˇ̌
	
D 0; E

�
D. /

�
D 0

¯
; (2.28)

and the definition (2.5) of xB1 as

E W xB1E D E

�X
n

102In

jInj
En;1

�
: (2.29)

Note that an energy estimate for (2.11) using Bogovskii’s construction yields the
uniform bound En;1 . jEj2. In order to prove (2.13), it remains to compare (2.28) to
a superposition of the single-particle problems ¹En;1ºn and to recognize (2.29). We
split the proof into three steps.

Step 1. Upper bound: proof that we have in case of (Hunif
� ) or (Hmom

�;� ),

E W xBE � jEj
2
C E

�X
n

102In

jInj
En;D

�
; (2.30)

and in case of (Hperc
�;� ),

E W xBE � jEj
2
C E

�X
n2�

102In

jInj
En;D C

X
q2� 0

102Jq;�

jJq;�j
Fq;D

�
: (2.31)

We focus on (2.31), the proof of (2.30) being identical. We define almost surely

 D WD

X
n2�

 n;D C

X
q2� 0

 q;D 2 H 1
loc.R

d /d ;
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where the summands n;D 2H 1
0 .Vn/

d and q;D 2H 1
0 .Wq/

d are implicitly extended
by zero outside Vn and Wq , respectively. Properties of Dirichlet minimizers ¹ n;Dºn
and ¹ q;Dºq ensure that r D is stationary and that it satisfies div. D/ D 0 and
.D. D/C E/j	 D 0. Assume that D. D/ 2 L2.�/d�d (for otherwise the claim is
trivial by (2.24)). Then, appealing to (2.24), we find EŒD. D/�D 0. We may then use
 D as a test function in the variational problem (2.28), to the effect of

E W xBE � jEj
2
C E

�ˇ̌
D. D/

ˇ̌2�
;

and the claim (2.31) now follows from (2.24).

Step 2. Lower bound: proof that

E W xBE � jEj
2
C E

�X
n

102In

jInj
En;N

�
: (2.32)

By (2.23), we can write

E W xBE D jEj
2
C E

�ˇ̌
D. E /

ˇ̌2�
D jEj

2
C E

�X
n

102In

jInj

ˆ
Vn

ˇ̌
D. E /

ˇ̌2�
:

Using the corrector  E as a test function for the Neumann single-particle prob-
lem (2.10), we find En;N �

´
Vn

jD. E /j2 and the claim (2.32) follows.

Step 3. Conclusion. In view of (2.30) and (2.32), it remains to compare En;D and
En;N to En;1. On the one hand, since  n;D is an admissible test function for En;1,
we have

En;1 �

ˆ
Rd

ˇ̌
D. n;D/

ˇ̌2
D

ˆ
Vn

ˇ̌
D. n;D/

ˇ̌2
D En;D:

On the other hand, since the restriction  n;1jVn
is an admissible test function for

En;N , we have

En;N �

ˆ
Vn

ˇ̌
D. n;1/

ˇ̌2
� En;1:

This yields
En;N � En;1 � En;D;

or alternatively,

jEn;N � En;1j C jEn;D � En;1j D En;D � En;N :

Further, note that the minimality of Neumann problems entailsX
nWIn�Jq;�

En;N � Fq;D;
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and thus

E

�X
n…�

102In

jInj
En;N

�
D E

�X
q2� 0

102Jq;�

jJq;�j

X
nWIn�Jq;�

En;N

�
� E

�X
q2� 0

102Jq;�

jJq;�j
Fq;D

�
:

Combining these observations with (2.30) and (2.32), the conclusion (2.13) follows.

2.5 Proof of Lemma 2.4

The bound (2.15) on Fq;D follows from Bogovskii’s construction in form of [21,
Lemma 4.2]. We turn to the proof of (2.14). By [13, Section 4.1], there exists wn 2

W
1;1
0 .Vn/

d that is an admissible test function for the Dirichlet problem En;D such
that

En;D �

ˆ
Vn

ˇ̌
D.wn/

ˇ̌2 . �.�n/;

which entails
0 � En;D � En;N � En;D . �.�n/:

To prove (2.14), it remains to show that in the case �n � 1 we have

En;D � En;N . ��dn : (2.33)

This amounts to investigating the role of the different boundary conditions on @Vn.
We assume from now on that �n � 1 and, without loss of generality, xn D 0. We
drop the index n to simplify notation and we set r D �n (to avoid confusion with the
constant � in Assumption (H�) and elsewhere). We split the argument into three steps.

Step 1. Proof that

ED � EN D

ˆ
V

ˇ̌
D. D �  N /

ˇ̌2
: (2.34)

By the Euler–Lagrange equation for  N in form ofˆ
V

D. N / W D. D �  N / D 0;

we find ˆ
V

ˇ̌
D. D/

ˇ̌2
�

ˆ
V

ˇ̌
D. N /

ˇ̌2
D

ˆ
V

D. D C  N / W D. D �  N /

D

ˆ
V

ˇ̌
D. D �  N /

ˇ̌2
;

that is, (2.34).
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Step 2. Proof that

ED � EN .
� ˆ

IC 1
2B

jD. D �  N /j
2

� 1
2

: (2.35)

As in (1.5), the Euler–Lagrange equation for  D takes the following form, in terms
of the associated pressure field †D ,8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�4 D Cr†D D 0; in V n I ;

div. D/ D 0; in D n I ;

 D D 0; on @V ;

D. D CEx/ D 0; in I ;´
@I
�. D CEx;†D/� D 0;´

@I
‚x � �. D CEx;†D/� D 0; 8‚ 2 Mskew;

(2.36)

and similarly the equation for  N is as follows, in terms of the associated pres-
sure †N , 8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�4 N Cr†N D 0; in V n I ;

div. N / D 0; in V n I ;

�. N ; †N /� D 0; on @V ;

D. N CEx/ D 0; in I ;´
@I
�. N CEx;†N /� D 0;´

@I
‚x � �. N CEx;†N /� D 0; 8‚ 2 Mskew:

(2.37)

Testing the above equations for  D and  N , and using boundary conditions, we find
the following energy identities,

2

ˆ
V nI

ˇ̌
D. D/

ˇ̌2
D

ˆ
V nI

div
�
�. D; †D/ D

�
D �

ˆ
@I

 D � �. D; †D/�;

2

ˆ
V nI

ˇ̌
D. N /

ˇ̌2
D

ˆ
V nI

div
�
�. N ; †N / N

�
D �

ˆ
@I

 N � �. N ; †N /�;

and thus, using boundary conditions for  D;  N on @I ,

2

ˆ
V nI

ˇ̌
D. D/

ˇ̌2
D

ˆ
@I

Ex � �. D; †D/�;

2

ˆ
V nI

ˇ̌
D. N /

ˇ̌2
D

ˆ
@I

Ex � �. N ; †N /�:

Taking the difference and noticing jD. D/j2 � jD. N /j2 D 0 in I , we get

ED � EN D
1

2

ˆ
@I

Ex � �. D �  N ; †D �†N /�:
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Noting that the trace-free condition for E yields
´
@I
Ex � � D 0, we can add any

constant to the pressure field †D � †N in the right-hand side, and the claim (2.35)
then follows from the trace estimate in Lemma 2.5 (ii).

Step 3. Mean-value property with rigid inclusion:ˆ
IC 1

2B

ˇ̌
D. D �  N /

ˇ̌2 . r�d
ˆ
V

ˇ̌
D. D �  N /

ˇ̌2
: (2.38)

If the difference WD D � N satisfied the free steady Stokes equation in the whole
domain V , then Lemma 2.6 would already yieldˆ

IC 1
2B

ˇ̌
D. /

ˇ̌2 . r�d
ˆ
V

ˇ̌
D. /

ˇ̌2
;

that is indeed the claim (2.38). However,  is rigid in I and does not satisfy the
free steady Stokes equation in the whole domain.4 To overcome this issue, we shall
compare  to a suitable proxy: we consider the solution . z ; z†/ of the following
auxiliary Dirichlet problem in V ,8̂̂<̂

:̂
�4z Cr z† D 0; in V ;

div. z / D 0; in V ;
z D  ; on @V :

Testing this latter equation with z or with  , we find

2

ˆ
V

jD. z /j2 D
ˆ
@V

z � z�� D

ˆ
@V

 � z�� D 2

ˆ
V

D. / W D. z /;

and thus, by the Cauchy–Schwarz inequality,ˆ
V

ˇ̌
D. z /

ˇ̌2
�

ˆ
V

ˇ̌
D. /

ˇ̌2
: (2.39)

Next, for the approximation error, we similarly compute

2

ˆ
V

ˇ̌
D. z �  /

ˇ̌2
D �2

ˆ
V

D. z �  / W D. /;

and thus, testing the equations (2.36) and (2.37) for  D  D � N with z , and using
boundary conditions,

2

ˆ
V

ˇ̌
D. z �  /

ˇ̌2
D

ˆ
@I

. z �  / � �. ;†/� D

ˆ
@I

z � �. ;†/�:

4As shown in Lemma A.2 in Appendix A, the mean-value property can actually be extended
in presence of rigid particles. Rather than appealing to this general result here, we provide a
self-contained and more elementary approach in the present single-particle setting.
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As the boundary conditions for  allow to add any rigid motion to z in the right-
hand side, and as the incompressibility of z in form of

´
@I

z � � D 0 allows to add
any constant to the pressure field †, the trace estimates in Lemma 2.5 lead us to

ˆ
V

ˇ̌
D. z �  /

ˇ̌2 .
�ˆ

I

ˇ̌
D. z /

ˇ̌2� 1
2
� ˆ

IC 1
2B

ˇ̌
D. /

ˇ̌2� 1
2

;

and thus, decomposing  D z � . z �  / in the last factor,ˆ
V

ˇ̌
D. z �  /

ˇ̌2 .
ˆ
IC 1

2B

ˇ̌
D. z /

ˇ̌2
:

We then deduceˆ
IC 1

2B

ˇ̌
D. /

ˇ̌2 .
ˆ
IC 1

2B

ˇ̌
D. z /

ˇ̌2
C

ˆ
V

ˇ̌
D. z �  /

ˇ̌2 .
ˆ
IC 1

2B

ˇ̌
D. z /

ˇ̌2
:

As z satisfies the free steady Stokes equation in V and as we have jI C
1
2
Bj . 1 and

dist.I C
1
2
B; @V / � r

2
, we may now appeal to Lemma 2.6, to the effect of
ˆ
IC 1

2B

ˇ̌
D. z /

ˇ̌2 . r�d
ˆ
V

ˇ̌
D. z /

ˇ̌2
:

The above then becomesˆ
IC 1

2B

ˇ̌
D. /

ˇ̌2 . r�d
ˆ
V

ˇ̌
D. z /

ˇ̌2
;

and the claim (2.38) for  D  D �  N follows in combination with (2.39).

Step 4. Conclusion. Combining (2.35) and (2.38), we get

ED � EN . r�
d
2

�ˆ
V

ˇ̌
D. D �  N /

ˇ̌2� 1
2

;

and thus, by (2.34),
ED � EN . r�

d
2 .ED � EN /

1
2 ;

which precisely proves the conclusion (2.33).

2.6 Explicit form of Einstein’s formula

This section is devoted to the proof of Proposition 2.2. Under Assumption (Indep),
the definition (2.5) of xB1 becomes

E W xB1E D �.P /E

�ˆ
Rd

ˇ̌
D. ı

E /
ˇ̌2�
;
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that is (2.6), in terms of the unique decaying solution  ı
E of the single-particle prob-

lem (2.7). It remains to prove Einstein’s formula (2.8) for spherical particles, In D

B.xn; rn/, with iid random radii ¹rnºn. By scaling, the above becomes

E W xB1E D �.P /E
�
.rn/

d
�ˆ

Rd

ˇ̌
D. z ı

E /
ˇ̌2
;

in terms of the unique decaying solution z ı
E of the rescaled problem8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�4z ı
E Cr z†ı

E D 0; in Rd n B;

div. z ı
E / D 0; in Rd n B;

D. z ı
E CEx/ D 0; in B;´

@B
�. z ı

E CEx; z†ı
E /� D 0;´

@B
‚x � �. z ı

E CEx; z†ı
E /� D 0; 8‚ 2 Mskew:

Alternatively, using the energy identity for this equation,

E W xB1E D
1

2
�.P /E

�
.rn/

d
�ˆ
@B

Ex � �. z ı
E CEx; z†ı

E /�: (2.40)

As is well known, e.g. [31, Section 2.1.3], z ı
E coincides with the unique solution of8̂̂<̂

:̂
�4z ı

E Cr z†ı
E D 0; in Rd n B;

div. z ı
E / D 0; in Rd n B;

z ı
E D �Ex; on @B;

and is explicitly given by the following formulas for jxj � 1,

z ı
E .x/ WD �

d C 2

2

.x �Ex/x

jxjdC2
�
1

2

�
2
Ex

jxjdC2
� .d C 2/

.x �Ex/x

jxjdC4

�
;

z†ı
E .x/ WD �.d C 2/

x �Ex

jxjdC2
:

Inserting this into (2.40), a direct computation yields

E W xB1E D
d C 2

2
�.P /E

�
.rn/

d
�
jBjjEj

2;

that is, Einstein’s formula (2.8).


