
Chapter 3

Cluster expansion of the effective viscosity

This chapter is devoted to the higher-order cluster expansion of the effective viscos-
ity xB: starting from finite-volume approximations, we establish cluster formulas and
prove uniform estimates in the large-volume limit. These results are mainly inspired
by our previous work [15] on the Clausius–Mossotti conductivity formula, where we
introduced the triad consisting of: (1) finite-volume approximation; (2) cluster expan-
sion; (3) uniform `1 � `2 energy estimates. We further refine the analysis of [15],
in particular improving on error estimates, and properly estimating cluster coeffi-
cients in case of uniform particle separation `.P /� 1. Compared to [15], there are
also some new twists due to the rigidity of the inclusions. Henceforth, in the rest of
this memoir, we shall assume that particles are uniformly separated in the sense of
Assumptions (H�) and (Hunif

� ).

3.1 Finite-volume approximations

In order to make sense of cluster expansions and avoid diverging series, we start by
defining finite-volume approximations of the effective viscosity, obtained by a peri-
odization procedure, which will in turn provide an implicit renormalization of cluster
coefficients in the large-volume limit. More precisely, we define a restriction PL
on QL of the point process P via

PL WD ¹xn W n 2 NLº; NL WD ¹n W xn 2 QL;�º; QL;� WD QL�2.`.P /_.1C�//

and we consider the corresponding random set

	L WD

[
n2NL

In; In D xn C I ın : (3.1)

For convenience, we choose an enumeration PL D ¹xn;Lºn and set In;L D xn;L C

I ın;L. Under Assumptions (H�) and (Hunif
� ), we have the following:

• Regularity and separation: For all L, the periodized random set 	L C LZd sat-
isfies the �-regularity and uniform separation assumptions in (H�) and (Hunif

� ).
Moreover, the periodized point process PL C LZd satisfies

`.PL C LZd / � `.P / & 1:

• Stabilization: For all L, there holds PLjQL;�
D P jQL;�

.
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We then define the following finite-volume approximation of the effective viscosity xB,

E W xBLE WD E

�  
QL

ˇ̌
D. E IL/CE

ˇ̌2�
; (3.2)

where  E IL 2 L2.�IH 1
per.QL/

d / is almost surely the unique solution inH 1
per.QL/

d ,
with vanishing average

´
QL

 E IL D 0, of the periodized version of the corrector
problem (1.3),8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

�4 E IL Cr†E IL D 0; in QL n 	L;

div. E IL/ D 0; in QL n 	L;

D. E IL CEx/ D 0; in 	L;´
@InIL

�E IL� D 0; 8n;´
@InIL

‚.x � xnIL/ � �E IL� D 0; 8n; 8‚ 2 Mskew;

(3.3)

where we use the shorthand notation �E IL WD �. E IL C Ex;†E IL/ for the Cauchy
stress tensor. As a corollary of [18, Theorem 1],1 in view of the above stabilization
property, this finite-volume approximation (3.2) is consistent in the sense of

lim
L"1

xBL D xB: (3.4)

As opposed to xB, we emphasize that the approximation xBL depends only on the finite
number of inclusions ¹In;Lºn. Indeed, by (H�), the number of inclusions in QL has
almost surely a deterministic upper bound CLd . The associated cluster expansion is
therefore well defined.

3.2 Main results

We start with the cluster expansion of the finite-volume approximation xBL, establish-
ing suitable formulas for cluster coefficients and for the remainder. This is analogous
to formulas obtained in our previous work on the conductivity problem [15]. While
the formula (3.9) for the remainder naturally involves the original corrector with the
whole set PL of particles, we emphasize that the bound (3.10) only involves cor-
rectors associated with finite numbers of inclusions (uniformly in L): this is key to
the optimal estimates obtained in the sequel and constitutes the first twist w.r.t. [15].
Indeed, this control is based on the rigidity of the inclusions and is therefore not
available in the generality considered for the conductivity problem in [15]; it was
first observed at second order by Gérard-Varet in [26]. The proof is displayed in Sec-
tion 3.4.

1This requires to replace Dirichlet boundary conditions in [18] by periodic conditions, as is
standard in homogenization theory.
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Theorem 3.1 (Finite-volume cluster expansion). Under Assumptions (H�) and
(Hunif
� ), finite-volume approximations of the effective viscosity can be expanded for

all L and k � 1,

xBL D IdC
kX

jD1

1

j Š
xBjL CRkC1L ; (3.5)

where the coefficients and remainders are defined as follows:
• The coefficients ¹xBjLºj are given by cluster formulas, cf. (1.21),

E W xBjLE WD j Š
X
]FDj

E

� 
QL

ıF
�ˇ̌

D. ¿
E IL/CE

ˇ̌2��
; (3.6)

which can be alternatively expressed as

E W xBjLE

D
1

2
j ŠL�d

X
]FDj

X
n2F

E

�ˆ
@In;L

E.x � xn;L/ � ı
F n¹nº�

¹nº
E IL�

�
(3.7)

D
1

2
j ŠL�d

X
]FDj

X
n2F

E

�ˆ
@In;L

ıF n¹nº
�
 ¿
E IL CE.x � xn;L/

�
� �FE IL�

�
; (3.8)

where, for any H � N,  HE IL stands for the solution of the periodized corrector
problem (3.3) with inclusion set 	L replaced by 	HL WD

S
n2H In;L, where we use

the shorthand notation �HE IL WD �. HE IL C Ex;†HE IL/ for the Cauchy stress tensor,
and where we recall the notation of Section 1.3.1 for cluster difference operators.

• The remainder RkC1L can be represented as

E W RkC1L E D
1

2
L�d

X
]FDkC1

X
n2F

E

�ˆ
@In;L

ıF n¹nº
�
 ¿
E ILCE.x � xn;L/

�
� �E IL�

�
;

(3.9)
and is estimated as follows,

jE W RkC1L Ej . E

�
L�d

X
n

ˆ
In;L

ˇ̌̌ X
]FDk
n…F

D.ıF ¿
E IL/

ˇ̌̌2�

C

kX
jD1

E

�
L�d

X
n

� ˆ
In;L

ˇ̌̌ X
]FDk
n…F

D.ıF ¿
E IL/

ˇ̌̌2� 1
2

�

� ˆ
In;LC�B

ˇ̌̌ X
]FDj�1
n…F

D
�
ıF
�
 

¹nº
E IL CE.x � xn;L/

��ˇ̌̌2� 1
2
�
:

(3.10)
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In view of the short-range setting (1.20), we expect

xBjL D O
�
�j .P /

�
and we aim to prove uniform-in-L estimates that would allow us to pass to the large-
volume limit and to recover a dilute expansion for the original effective viscosity xB.
This is partially achieved in the upcoming theorem, which states fine estimates on
cluster coefficients and on the remainder. However, note that we cannot directly obtain
uniform-in-L estimates with the desired scalingsO.�j .P //. Instead, the result below
is twofold:

— Uniform estimates: In (i), we state uniform-in-L estimates, which further display
the optimal scaling w.r.t. the minimal distance ` D `.P /, but fail to capture the
general expected dependence on multi-point intensities ¹�j .P /ºj .

— Non-uniform estimates: In (ii), we state non-uniform estimates, which display a
logarithmic divergence in the large-volume limit L " 1, but have the merit of
capturing the correct dependence on multi-point intensities.

Uniform estimates in (i) allow to deduce the convergence of cluster coefficients ¹xBjLºj
in the large-volume limit L " 1, cf. (3.13) below: this actually defines infinite-
volume cluster coefficients in a meaningful way, providing an implicit renormaliza-
tion of diverging series and answering the question raised in Section 1.3.4. As they
display the optimal dependence on the minimal distance ` D `.P /, these estimates
already yield the desired infinite-volume cluster expansion in the large-separation
regime `� 1 with �j .P / replaced by .`�d /j , which is optimal in some cases (see
dilation setting in Theorem 5.4 and Remark 5.5). To treat the general model-free
dilute setting, however, uniform estimates need to be further derived with the correct
dependence on multi-point intensities: this requires to overcome logarithmic diver-
gences in non-uniform estimates in (ii), which is the subject of Chapter 4. The proof
of the present result is split between Sections 3.5, 3.6, 3.7, and 3.8.

Theorem 3.2 (Cluster estimates and large-volume limit). Under Assumptions (H�)
and (Hunif

� ), the coefficients and the remainder of the finite-volume cluster expansion
in Theorem 3.1 satisfy the following two classes of estimates.

(i) Uniform estimates: For all L and k; j � 1,

jxBjLj � j Š.C`�d /j ;

jRkC1L j � .C`�d /kC1:
(3.11)

(ii) Non-uniform estimates: For all L and k; j � 1,

jxBjLj .j �j .P / .logL/j�1;

jRkC1L j .k
2kX
lDk

�lC1.P /.logL/l :
(3.12)
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In particular, as a consequence of (i), for all k; j � 1, the following large-volume
limits are well defined,

xBj WD lim
L"1

xBjL; RkC1 WD lim
L"1

RkC1L ; (3.13)

so that the cluster expansion (3.5) becomes, for all k � 1,ˇ̌̌̌
ˇxB �

 
IdC

kX
jD1

1

j Š
xBj
!ˇ̌̌̌
ˇ � jRkC1j � .C`�d /kC1:

3.3 Preliminary lemmas

Henceforth, we fixE with jEj D 1 and we skip the associated subscript for notational
convenience. Before turning to the proof of Theorems 3.1 and 3.2, we state a series of
preliminary lemmas. We start with the following useful reformulation of the corrector
equation (1.3), where the rigidity constraint is viewed as generating a source term
concentrated at particle boundaries in steady Stokes equations.

Lemma 3.3 (Reformulation of the corrector equation). For all H � N we have
in QL,

�4 HL Cr.†HL 1QLn	H
L
/ D �

X
n2H

ı@In;L
�HL �; (3.14)

where ı@In;L
stands for the Hausdorff measure on the boundary of In;L.2

Proof. For any test function
�L 2 C1

per.QL/
d ;

recalling that  HL is divergence-free in QL and that it satisfies D. HL C Ex/ D 0

in 	HL , we find
ˆ
QL

r�L W r HL �

ˆ
QLn	H

L

†HL div.�L/

D 2

ˆ
QL

r�L W D. HL / �
ˆ
QLn	H

L

†HL div.�L/

D 2

ˆ
QL

r�L W D. HL CEx/ �

ˆ
QLn	H

L

†HL div.�L/

D

ˆ
QLn	H

L

r�L W �. HL CEx;†HL /:

2More precisely, we define
´

QL
�L ı@In;L

WD
´

@In;L
�L for any test function �L 2

C1
per .QL/.
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Since the steady Stokes equation for HL reads div.�. HL CEx;†HL //D0 in QLn	HL ,
we deduce by integration by parts,ˆ
QL

r�L W r HL �

ˆ
QLn	H

L

†HL div.�L/ D �

X
n2H

ˆ
@In;L

�L � �. HL CEx;†HL /�:

By the arbitrariness of �L, this proves (3.14) with �HL D �. HL CEx;†HL /.

Next, the following result provides corresponding Stokes equations for corrector
differences, which will be used abundantly in the sequel.

Lemma 3.4 (Equations for corrector differences). For all disjoint subsets F;H � N
with F finite, we have in QL,

�4ıF HL CrıF
�
†HL 1QLn	H

L

�
D �

X
n2H

ı@In;L
ıF �HL � �

X
n2F

ı@In;L
ıF n¹nº�

H[¹nº
L �: (3.15)

Proof. The starting point is equation (3.14) satisfied by  S[HL ,

�4 S[HL Cr
�
†S[HL 1QLn	S[H

L

�
D �

X
n2S[H

ı@In;L
�S[HL �:

Using the definition (1.10) of the difference operator, we deduce

�4ıF HL CrıF
�
†HL 1QLn	H

L

�
D �

X
S�F

.�1/jF nS j
X

n2S[H

ı@In;L
�S[HL �;

and it remains to reformulate the right-hand side. For that purpose, we decompose

�4ıF HL CrıF
�
†HL 1QLn	H

L

�
D �

X
n2H

ı@In;L

X
S�F

.�1/jF nS j�S[HL � �
X
n2F

ı@In;L

X
S�F

1n2S .�1/
jF nS j�S[HL �:

Changing summation variables and recognizing the definition (1.10) of the difference
operator, the conclusion follows.

We now state and prove trace estimates, which constitute an upgraded version of
Lemma 2.5. We shall repeatedly appeal to these estimates to control force terms at
particle boundaries, which appear in our formulation (3.15) of equations for corrector
differences.

Lemma 3.5 (Trace estimates). Under Assumptions (H�) and (Hunif
� ), for all fami-

lies F of finite subsets of N, for all H � N and n 2 N with n …
S
F 2F F , we have

inf
�2Rd ;‚2Mskew

ˆ
@In;L

ˇ̌̌X
F 2F

ıF HL �
�
�C‚.x � xn;L/

�ˇ̌̌2
.
ˆ
In;L

ˇ̌̌ X
F 2F

D.ıF HL /
ˇ̌̌2
;



Preliminary lemmas 49

and

inf
c2R

ˆ
@In;L

ˇ̌̌ X
F 2F

ıF �HL � c Id
ˇ̌̌2

.
ˆ
In;LC�B

ˇ̌̌ X
F 2F

D
�
ıF . HL CEx/

�ˇ̌̌2
:

Proof. We split the proof into three steps. We set for abbreviation

 
F ;H
L WD

X
F 2F

ıF HL ; †
F ;H
L WD

X
F 2F

ıF†HL ; �
F ;H
L WD

X
F 2F

ıF �HL :

We also use the shorthand notation x HL WD  HL CEx and x 
F ;H
L WD

P
F 2F ı

F x HL .
This last expression is equal to

P
F 2F ı

F HL CEx if ¿ 2 F , and to
P
F 2F ı

F HL
otherwise.

Step 1. Proof of the first estimate on  F ;H
L . We appeal to a trace estimate in form ofˆ

@In;L

ˇ̌
 

F ;H
L �

�
�C‚.x � xn;L/

�ˇ̌2 .
ˆ
In;L

ˇ̌
hri

1
2

�
 

F ;H
L �

�
�C‚.x � xn;L/

��ˇ̌2
;

and the conclusion then follows from Poincaré’s and Korn’s inequalities.

Step 2. Proof of the second estimate on �F ;H
L in the case n … H . As �F ;H

L D

�. x 
F ;H
L ; †

F ;H
L /, a trace estimate yieldsˆ

@In;L

j�
F ;H
L � c Id j2 .

ˆ
.In;LC 1

2�B/nIn;L

ˇ̌
hri

1
2r x 

F ;H
L

ˇ̌2
C
ˇ̌
hri

1
2 .†

F ;H
L � c/

ˇ̌2
:

(3.16)
Given n … H , as the uniform separation assumption in (Hunif

� ) ensures that no other
particle intersects In;L C �B , we note that . x F ;H

L ; †
F ;H
L / satisfies

�4x 
F ;H
L Cr†

F ;H
L D 0; in In;L C �B: (3.17)

By the local regularity theory for steady Stokes equations, e.g. [25, Theorem IV.4.1],
we deduce for all m � 0, for all constants � 2 Rd and c 2 R,

kr x 
F ;H
L kHmC1.In;LC 1

2�B/
C k†

F ;H
L � ckHmC1.In;LC 1

2�B/

. k x 
F ;H
L � �kH1.In;LC�B/ C k†

F ;H
L � ckL2.In;LC�B/:

Choosing c WD
ffl
In;LC�B

†
F ;H
L and using a local pressure estimate for the steady

Stokes equation, e.g. [19, Lemma 3.3], we find

k†
F ;H
L � ckL2.In;LC�B/ . kr x 

F ;H
L kL2.In;LC�B/;

so that the above reduces to

kr x 
F ;H
L kHmC1.In;LC 1

2�B/
C k†

F ;H
L � ckHmC1.In;LC 1

2�B/

. k x 
F ;H
L � �kH1.In;LC�B/:
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Further choosing � WD
ffl
In;LC�B

x 
F ;H
L and applying Poincaré’s inequality, we con-

clude

kr x 
F ;H
L kHmC1.In;LC 1

2�B/
C k†

F ;H
L � ckHmC1.In;LC 1

2�B/

. kr x 
F ;H
L kL2.In;LC�B/:

In particular, combining this with (3.16) and noting that the Cauchy stress tensor
�

F ;H
L is unchanged if we add a rigid motion to x 

F ;H
L , the conclusion follows from

Korn’s inequality.

Step 3. Proof of the second estimate on �F ;H
L in the case n 2 H . The starting point

is again (3.16). Now, given n 2 H , we note that . x F ;H
L ; †

F ;H
L / satisfies, instead

of (3.17),
�4x 

F ;H
L Cr†

F ;H
L D 0; in .In;L C �B/ n In;L;

and x 
F ;H
L is affine in In;L. By the local regularity theory for the steady Stokes equa-

tion near a boundary, e.g. [25, Theorem IV.5.1–5.3], we obtain for all m � 0, for all
constants � 2 Rd and c 2 R,

kr x 
F ;H
L kHmC1..In;LC 1

2�B/nIn;L/
C k†

F ;H
L � ckHmC1..In;LC 1

2�B/nIn;L/

. k x 
F ;H
L jIn;L

� �k
H

mC 3
2 .@In;L/

C kx 
F ;H
L � �kH1..In;LC�B/nIn;L/

C k†
F ;H
L � ckL2..In;LC�B/nIn;L/

:

Choosing c WD
ffl
.In;LC�B/nIn;L

†
F ;H
L and using a local pressure estimate for the

steady Stokes equation, e.g. [19, Lemma 3.3], we find

k†
F ;H
L � ckL2..In;LC�B/nIn;L/

. kr x 
F ;H
L kL2..In;LC�B/nIn;L/

;

so that the above reduces to

kr x 
F ;H
L kHmC1..In;LC 1

2�B/nIn;L/
C k†

F ;H
L � ckHmC1..In;LC 1

2�B/nIn;L/

. k x 
F ;H
L jIn;L

� �k
H

mC 3
2 .@In;L/

C kx 
F ;H
L � �kH1..In;LC�B/nIn;L/

:

As x 
F ;H
L is affine in In;L, we have

k x 
F ;H
L jIn;L

� �k
H

mC 3
2 .@In;L/

. k x 
F ;H
L � �kHmC2.In;L/

D kx 
F ;H
L � �kH1.In;L/

;

and the above then becomes

kr x 
F ;H
L kHmC1..In;LC 1

2�B/nIn;L/
C k†

F ;H
L � ckHmC1..In;LC 1

2�B/nIn;L/

. k x 
F ;H
L � �kH1.In;LC�B/:
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Further choosing � WD
ffl
In;LC�B

x 
F ;H
L and applying Poincaré’s inequality, we deduce

kr x 
F ;H
L kHmC1..In;LC 1

2�B/nIn;L/
C k†

F ;H
L � ckHmC1..In;LC 1

2�B/nIn;L/

. kr x 
F ;H
L kL2.In;LC�B/:

In particular, combined with (3.16), this yields the conclusion as in Step 2.

3.4 Cluster formulas

This section is devoted to the proof of Theorem 3.1. We start by establishing the
validity of the expansion (3.5) with coefficients given by formula (3.8) and with the
explicit remainder (3.9). The proof is similar to its counterpart for the conductivity
problem in our previous work [15].

Lemma 3.6 (Finite-volume cluster expansion). Under Assumptions (H�) and (Hunif
� ),

finite-volume approximations of the effective viscosity can be expanded for all L
and k � 1 as

xBL D IdC
kX

jD1

1

j Š
xBjL CRkC1L ; (3.18)

where the coefficients ¹xBjLºj and the remainder RkC1L are given by formulas (3.8)
and (3.9), respectively.

Proof. Given E 2 Msym
0 with jEj D 1, we recall that we drop the corresponding

subscripts in the notation. We split the proof into three steps.

Step 1. General strategy. The starting point is formula (3.2) for the finite-volume
approximation of the effective viscosity,

E W xBLE D 1C E

�  
QL

ˇ̌
D. L/

ˇ̌2�
:

The energy identity for the corrector equation (3.3) takes the form

2

ˆ
QL

ˇ̌
D. L/

ˇ̌2
D

X
n

ˆ
@In;L

E.x � xn;L/ � �L�; (3.19)

and thus, further decomposing �L D �
¹nº
L C .�L � �

¹nº
L /, we obtain

E

�
2

ˆ
QL

ˇ̌
D. L/

ˇ̌2�
D

X
n

E

�ˆ
@In;L

E.x � xn;L/ � �
¹nº
L �

�
C

X
n

E

� ˆ
@In;L

E.x � xn;L/ � .�L � �
¹nº
L /�

�
:
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In addition, we shall prove below that for all k � 1,X
]FDk

X
n2F

E

� ˆ
@In;L

ıF n¹nº
�
 ¿
L CE.x � xn;L/

�
� .�L � �FL /�

�
D

X
]FDkC1

X
n2F

E

�ˆ
@In;L

ıF n¹nº ¿
L � �L�

�
: (3.20)

We note that (3.19) already proves the claim (3.18) for k D 0. Next, we proceed by
induction: if (3.18) holds for some k � 0, formulas (3.8) and (3.9) for RkC1L , xBkC1L

allow us to decompose

E W RkC1L E D
1

.k C 1/Š
E W xBkC1L E

C
1

2
L�d

X
]FDkC1

X
n2F

E

�ˆ
@In;L

ıF n¹nº
�
 ¿
L CE.x � xn;L/

�
� .�L � �FL /�

�
:

Inserting identity (3.20), noting that for ]F D k C 2 there holds

ıF n¹nº ¿
L D ıF n¹nº

�
 ¿
L CE.x � xn;L/

�
;

and recognizing formula (3.9) for RkC2L , we deduce

RkC1L D
1

.k C 1/Š
xBkC1L CRkC2L ;

hence the claim (3.18) follows with k replaced by k C 1. It remains to prove (3.20),
which we do in the next two steps.

Step 2. Proof that for all ]F D k � 1 and G � F ,X
n2F nG

ˆ
@In;L

�
 GL CE.x � xn;L/

�
� .�L � �FL /�

D

X
n…F

ˆ
@In;L

. FL �  GL / � �L�: (3.21)

On the one hand, testing equation (3.14) for  GL with the difference  L �  FL , and
using the boundary conditions for  L,  FL ,  GL on @In;L with n 2 G � F , we findˆ

QL

r. L �  FL / W r 
G
L D �

X
n2G

ˆ
@In;L

. L �  FL / � �
G
L � D 0: (3.22)

On the other hand, equations (3.14) for  L and  FL entail

�4. L �  FL /Cr
�
†L1QLn	L

�†FL 1QLn	F
L

�
D �

X
n…F

ı@In;L
�L� �

X
n2F

ı@In;L
.�L � �FL /�;
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and thus, testing with  GL and using the boundary conditions for  L,  FL ,  GL on
@In;L with n 2 G � F ,

ˆ
QL

r GL W r. L �  FL /

D �

X
n…F

ˆ
@In;L

 GL � �L� �
X
n2F

ˆ
@In;L

 GL � .�L � �FL /�

D �

X
n…F

ˆ
@In;L

 GL � �L� �
X

n2F nG

ˆ
@In;L

 GL � .�L � �FL /�

C

X
n2G

ˆ
@In;L

E.x � xn;L/ � .�L � �FL /�:

Combined with (3.22), this entailsX
n2F nG

ˆ
@In;L

 GL � .�L � �FL /�

D

X
n2G

ˆ
@In;L

E.x � xn;L/ � .�L � �FL /� �
X
n…F

ˆ
@In;L

 GL � �L�;

or alternatively,X
n2F nG

ˆ
@In;L

�
 GL CE.x � xn;L/

�
� .�L � �FL /�

D

X
n2F

ˆ
@In;L

E.x � xn;L/ � .�L � �FL /� �
X
n…F

ˆ
@In;L

 GL � �L�: (3.23)

For G D F , the left-hand side vanishes, henceX
n2F

ˆ
@In;L

E.x � xn;L/ � .�L � �FL /� D

X
n…F

ˆ
@In;L

 FL � �L�;

which allows us to reformulate (3.23) into (3.21).

Step 4. Proof of (3.20). Denote by Tk;L the left-hand side of (3.20). By the defini-
tion (1.10) of the difference operator, we have

Tk;LD�

X
]FDk

X
n2F

X
G�F n¹nº

.�1/jF nGjE

�ˆ
@In;L

�
 GL CE.x � xn;L/

�
� .�L � �FL /�

�
;

or alternatively, after changing summation variables,

Tk;L D�

X
]FDk

X
G�F

.�1/jF nGjE

� X
n2F nG

ˆ
@In;L

�
 GL CE.x � xn;L/

�
� .�L � �FL /�

�
:
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We now appeal to (3.21), to the effect of

Tk;L D �

X
]FDk

X
G�F

.�1/jF nGjE

�X
n…F

ˆ
@In;L

. FL �  GL / � �L�

�
:

Using that
P
G�F .�1/

jF nGj D 0 for F ¤ ¿ and recalling the definition (1.10) of the
difference operator, this implies

Tk;L D

X
]FDk

X
G�F

.�1/jF nGjE

�X
n…F

ˆ
@In;L

 GL � �L�

�
D

X
]FDk

E

�X
n…F

ˆ
@In;L

ıF ¿
L � �L�

�
;

and the claim (3.20) follows after changing summation variables.

In the above result, we have naturally come up with the definition (3.8) of cluster
coefficients ¹xBjLºj . We now further establish the alternative formulas (3.6) and (3.7).
Note that (3.6) coincides with the periodized version of the expected cluster for-
mula (1.21).

Lemma 3.7 (Equivalent cluster formulas). Under Assumptions (H�) and (Hunif
� ), for

all L and j � 1, the finite-volume cluster coefficient xBjL defined by formula (3.8) is
equivalently given by (3.6) and (3.7).

Proof. We split the proof into two steps.

Step 1. Equivalence of (3.7) and (3.8). It suffices to prove that for all finite F � N,X
n2F

ˆ
@In;L

ıF n¹nº
�
 ¿
L CE.x � xn;L/

�
� �FL �

D

X
n2F

ˆ
@In;L

E.x � xn;L/ � ı
F n¹nº�

¹nº
L �: (3.24)

Decomposing ıF n¹nº ¿
L D ıF n¹nº 

¹nº
L � ıF ¿

L for n 2 F and using the boundary
conditions, we findX

n2F

ˆ
@In;L

ıF n¹nº
�
 ¿
L CE.x � xn/

�
� �FL � D �

X
n2F

ˆ
@In;L

ıF ¿
L � �FL �:

Testing equation (3.14) for  FL with ıF ¿
L , this becomesX

n2F

ˆ
@In;L

ıF n¹nº
�
 ¿
L CE.x � xn/

�
� �FL � D

ˆ
QL

rıF ¿
L W r FL :
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Now testing equation (3.15) for ıF ¿
L with  FL , and using the boundary conditions,

we deduceX
n2F

ˆ
@In;L

ıF n¹nº
�
 ¿
L CE.x�xn/

�
� �FL � D �

X
n2F

ˆ
@In;L

 FL � ıF n¹nº�
¹nº
L �

D

X
n2F

ˆ
@In;L

E.x � xn;L/ � ı
F n¹nº�

¹nº
L �;

that is, (3.24).

Step 2. Equivalence of (3.6) and (3.7). It suffices to prove for all finite F � N, 
QL

ıF
ˇ̌
D. ¿

L /
ˇ̌2

D
1

2
L�d

X
n2F

ˆ
@In;L

E.x � xn;L/ � ı
F n¹nº�

¹nº
L �: (3.25)

Recalling the definition (1.10) of the difference operator, we can write 
QL

ıF jD. ¿
L /j

2
D

X
G�F

.�1/jF nGj

 
QL

ˇ̌
D. GL /

ˇ̌2
;

which entails, in view of the energy identity for  GL , cf. (3.19),
 
QL

ıF
ˇ̌
D. ¿

L /
ˇ̌2

D
1

2
L�d

X
G�F

X
n2G

.�1/jF nGj

ˆ
@In;L

E.x � xn;L/ � �
G
L �:

After changing summation variables and using again the definition (1.10) of the dif-
ference operator, this yields the claim (3.25).

To conclude the proof of Theorem 3.1, it remains to establish the control (3.10) of
the remainder, which is inspired by a recent work of Gérard-Varet [26] and which we
prove in the slightly refined form of (3.26) below. This extends the argument of [26]
to all k > 2.

Lemma 3.8 (Control of the remainder). Under Assumptions (H�) and (Hunif
� ), for

all L and j � 1, the remainder term defined in (3.9) can be estimated by

jRkC1L j � E

�
L�d

X
n

ˆ
In;L

ˇ̌̌ X
]FDk
n…F

D.ıF ¿
L /
ˇ̌̌2�

C

kX
jD1

ˇ̌̌̌
E

�
L�d

X
n

ˆ
In;L

� X
]FDk
n…F

D.ıF ¿
L /
�
W

� X
]FDj�1
n…F

D.ıF y 
¹nº
n;L/

��ˇ̌̌̌
; (3.26)

where in view of (1.10) we have defined, with a slight abuse of notation,

ıF y 
¹nº
n;L WD

X
G�F

.�1/jF nGj y 
G[¹nº
n;L ;
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where for all H � N and n 2 H we denote by y Hn;L the solution of the following
Neumann boundary value problem in the inclusion In;L (unique up to a rigid motion),8̂̂̂<̂

ˆ̂:
�4y Hn;L Cr y†Hn;L D 0; in In;L;

div
�
y Hn;L

�
D 0; in In;L;

�
�
y Hn;L;

y†Hn;L
�
� D �HL �; on @In;L:

(3.27)

In particular, this yields the bound (3.10).

Proof. We split the proof into two steps, first showing that (3.27) is well posed, and
then proving the bound (3.26).

Step 1. Proof that the Neumann problem (3.27) is well posed for all H � N and
n 2 H , and that the solution satisfiesˆ

In;L

ˇ̌
D. y Hn;L/

ˇ̌2 .
ˆ
In;LC�B

ˇ̌
D. HL /CE

ˇ̌2
: (3.28)

In addition, the proof yields similarlyˆ
In;L

ˇ̌̌ X
]FDj�1
n…F

D.ıF y 
¹nº
n;L/

ˇ̌̌2
.
ˆ
In;LC�B

ˇ̌̌ X
]FDj�1
n…F

D
�
ıF . 

¹nº
L CEx/

�ˇ̌̌2
:

This last estimate entails that the bound (3.10) follows from (3.26).
We turn to the proof of (3.28). The weak formulation of equation (3.27) reads for

all � 2 H 1.In;L/
d with div.�/ D 0,

2

ˆ
In;L

D.�/ W D. y Hn;L/ D
ˆ
@In;L

� � �HL �: (3.29)

Let us analyze the linear functional defining the right-hand side. Using the incom-
pressibility of � in form of

´
@In;L

� � � D 0, we can add any multiple of the identity
matrix to �HL . Further noting that the boundary conditions for  HL on @In;L with
n 2 H allow to subtract a rigid motion from the test function �, we are led toˇ̌̌̌ˆ

@In;L

� � �HL �

ˇ̌̌̌
�

�
inf

�2Rd ;‚2Mskew

ˆ
@In;L

ˇ̌
� �

�
� C‚.x � xn;L/

�ˇ̌2� 1
2

�

�
inf
c2R

ˆ
@In;L

j�HL � c Id j2
� 1

2

:

Appealing to the trace estimates of Lemma 3.5, this becomesˇ̌̌̌ˆ
@In;L

� � �HL �

ˇ̌̌̌
.
�ˆ

In;L

ˇ̌
D.�/

ˇ̌2� 1
2
� ˆ

In;LC�B

ˇ̌
D. HL /CE

ˇ̌2� 1
2

: (3.30)
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This proves that the right-hand side in the weak formulation (3.29) is a continuous
linear functional with respect to D.�/ 2 L2.In;L/d�d . The Lax–Milgram theorem
then ensures that equation (3.27) is well posed in the sense that it admits a unique
solution D. y Hn;L/ 2 L2.In;L/d�d , and the a priori bound (3.28) follows.

Step 2. Proof of (3.26). Inserting the energy identity (3.19) and the formula (3.7)
for the coefficients, the cluster expansion (3.5) yields the following formula for the
remainder,

E W RkC1L E D E W xBLE � 1 �

kX
jD1

1

j Š
E W xBjLE

D
1

2
L�dE

�X
n

ˆ
@In;L

E.x � xn;L/ � �L�

�
�

kX
jD1

1

2
L�d

X
]FDj

X
n2F

E

� ˆ
@In;L

E.x � xn;L/ � ı
F n¹nº�

¹nº
L �

�
;

or equivalently, changing summation variables,

E W RkC1L E

D
1

2
L�dE

"X
n

ˆ
@In;L

E.x � xn;L/ �

 
�L �

kX
jD1

X
]FDj�1
n…F

ıF �
¹nº
L

!
�

#
: (3.31)

Consider the cluster expansion error

‰kL WD  L �

kX
jD1

X
]FDj

ıF ¿
L ; (3.32)

„kL WD †L1QLn	L
�

kX
jD1

X
]FDj

ıF
�
†¿
L1QLn	¿

L

�
;

and note that in view of (3.15) it satisfies the following equation in QL,

�4‰kL Cr„kL D �

X
n

ı@In;L

 
�L �

kX
jD1

X
]FDj�1
n…F

ıF �
¹nº
L

!
�: (3.33)

Testing this equation with  L and using the boundary conditions, the identity (3.31)
for the remainder becomes

E W RkC1L E D E

�  
QL

D. L/ W D.‰kL/
�
:
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Adding and subtracting
Pk
jD1

P
]FDj ı

F ¿
L to  L, we deduce by (3.32),

jE W RkC1L Ej � E

�  
QL

ˇ̌
D.‰kL/

ˇ̌2�
C

kX
jD1

ˇ̌̌̌
E

� 
QL

D.‰kL/ W
X
]FDj

D.ıF ¿
L /

�ˇ̌̌̌
:

The conclusion (3.26) then follows from the estimateˆ
QL

ˇ̌
D.‰kL/

ˇ̌2 .
X
n

ˆ
In;L

ˇ̌̌ X
]FDj�1
n…F

D.ıF ¿
L /
ˇ̌̌2
; (3.34)

and from the identity for all 1 � j � kˆ
QL

D.‰kL/ W
X
]FDj

D.ıF ¿
L /

D

X
n

ˆ
In;L

� X
]FDj�1
n…F

D.ıF ¿
L /
�
W

� X
]FDj�1
n…F

D.ıF y 
¹nº
n;L/

�
; (3.35)

which we prove in the next two substeps, respectively.

Substep 2:1. Proof of (3.34). In view of (3.33), the cluster expansion error ‰kL satis-
fies

�4‰kL Cr„kL D 0; div.‰kL/ D 0; in QL n 	L;

which entailsˆ
QL

ˇ̌
D.‰kL/

ˇ̌2
D

X
n

ˆ
In;L

ˇ̌
D.‰kL/

ˇ̌2
C

ˆ
QLn	L

ˇ̌
D.‰kL/

ˇ̌2
D

X
n

ˆ
In;L

ˇ̌
D.‰kL/

ˇ̌2
�
1

2

X
n

ˆ
@In;L

‰kL � �.‰kL; „
k
L/�:

Hence, using the boundary conditions and the incompressibility constraint to smuggle
in arbitrary constants in the different factors, as in the proof of (3.30), and appealing
to the trace estimates of Lemma 2.5, we find
ˆ
QL

ˇ̌
D.‰kL/

ˇ̌2.
X
n

ˆ
In;L

ˇ̌
D.‰kL/

ˇ̌2
C

X
n

�ˆ
In;L

ˇ̌
D.‰kL/

ˇ̌2� 1
2
�ˆ

I
C

n;L

ˇ̌
D.‰kL/

ˇ̌2� 1
2

;

from which we deduce by Young’s inequality,3ˆ
QL

ˇ̌
D.‰kL/

ˇ̌2 .
X
n

ˆ
In;L

ˇ̌
D.‰kL/

ˇ̌2
: (3.36)

3As argued in [26], this estimate (3.36) can alternatively be deduced from minimizing prop-
erties of Stokes equations for ‰k

L
in QL n 	L with prescribed symmetric gradient in 	L. We

rather give a PDE argument that is more in line with the other arguments of this memoir.
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Next, the definition of ‰kL and the rigidity constraint for  L in In;L yield

D.‰kL/ D �E �

kX
jD1

X
]FDj

D.ıF ¿
L / in In;L: (3.37)

Distinguishing between the cases n 2 F and n … F , and noting that for n 2 F we can
decompose

ıF ¿
L D ıF n¹nº 

¹nº
L � ıF n¹nº ¿

L ;

we findX
]FDj

D.ıF ¿
L / D

X
]FDj
n…F

D.ıF ¿
L /C

X
]FDj�1
n…F

D.ıF ¹nº
L / �

X
]FDj�1
n…F

D.ıF ¿
L /;

and thus, in view of the rigidity constraint for ıF ¹nº
L in In;L,X

]FDj

D.ıF ¿
L / D �E1jD1 C

X
]FDj
n…F

D.ıF ¿
L / �

X
]FDj�1
n…F

D.ıF ¿
L / in In;L:

Inserting this into (3.37) and recognizing a telescoping sum, we deduce for all n,

D.‰kL/ D �

X
]FDj�1
n…F

D.ıF ¿
L / in In;L: (3.38)

Combined with (3.36), this yields the claim (3.34).

Substep 2:2. Proof of (3.35). Testing equation (3.15) for ıF ¿
L with ‰kL, and chang-

ing summation variables, we find

2

ˆ
QL

D.‰kL/ W
X
]FDj

D.ıF ¿
L / D �

X
]FDj

X
n2F

ˆ
@In;L

‰kL � ıF n¹nº�
¹nº
L �

D �

X
n

ˆ
@In;L

‰kL �

X
]FDj�1
n…F

ıF �
¹nº
L �:

In view of equation (3.29) for D.ıF y 
¹nº
n;L/, this can be rewritten as

ˆ
QL

D.‰kL/ W
X
]FDj

D.ıF ¿
L / D �

X
n

ˆ
In;L

D.‰kL/ W
X

]FDj�1
n…F

D.ıF y 
¹nº
n;L/:

Combined with (3.38), this yields the claim (3.35).
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3.5 Uniform `1 � `2 energy estimates

In order to prove uniform cluster estimates, cf. Theorem 3.2 (i), our main analytical
achievement is the following hierarchy of interpolating `1 � `2 energy estimates for
corrector differences, inspired by our previous work [15] on the conductivity problem
(which also considers the case of “overlapping particles”; see [20,30] for refinements
in that direction). More precisely, we consider the following quantities, for allH �N,
all L, and k; j � 0,

SHL .k; j / WD
X
]GDk

 
QL

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2
;

THL .k; j / WD L�d
X
]GDk

X
n…G[H

ˆ
In;LC�B

ˇ̌̌ X
]FDj

F\.G[¹nº/D¿

D.ıF[G HL /
ˇ̌̌2
;

and we prove the following result. The novelty with respect to [15] is that we further
identify here the optimal dependence on the minimal distance

` D `.P / & 1;

which appears to be surprisingly challenging and relies on a fine use of elliptic regu-
larity via a duality argument.

Theorem 3.9 (Uniform `1 � `2 energy estimates). Under Assumptions (H�) and
(Hunif
� ), we have for all H � N, all L, and k; j � 0,

SHL .k; j / .

´
`�d if k D j D 0;

.C`�d /2.kCj /�1 if k; j � 0; k C j � 1;

THL .k; j / .

´
`�2d if k D j D 0;

.C`�d /2.kCj /C1 if k; j � 0; k C j � 1:

The proof is split into two parts in the following two subsections: to simplify the
presentation, we first give a short proof in the spirit of [15] without keeping track of
the `-dependence, and then we establish the estimates in their stated optimal form.

3.5.1 Proof of Theorem 3.9 without `-dependence

This section is devoted to the proof that for all H � N, all L, and k; j � 0,

SHL .k; j /C THL .k; j / . C kCj : (3.39)

For notational convenience, we set SHL .k; j / D THL .k; j / D 0 for j < 0 or k < 0.
We split the proof into three steps.
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Step 1. Reduction to SHL : for all H � N and L, k, j ,

THL .k; j / . SHL .k; j /C SHL .k; j � 1/; (3.40)

which entails in particular that it suffices to prove the bound (3.39) for SHL .
First note that for all maps f and all n … G we haveX
]FDj
F\GD¿

f .F [G/ D
X
]FDj

F\.G[¹nº/D¿

f .F [G/C
X

]FDj�1
F\.G[¹nº/D¿

f
�
F [G [ ¹nº

�
:

(3.41)
Using this identity to decompose THL .j; k/ and changing summation variables, we
find

THL .k; j / . L�d
X
]GDk

X
n…G[H

ˆ
In;LC�B

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2

C L�d
X

]GDkC1

X
n2GnH

ˆ
In;LC�B

ˇ̌̌ X
]FDj�1
F\GD¿

D.ıF[G HL /
ˇ̌̌2
;

and thus, using the disjointness of the fattened inclusions ¹In;L C �Bºn and recog-
nizing the definition of SHL , the claim (3.40) follows.

Step 2. Energy estimate for correctors: for all H � N,

SHL .0; 0/ . 1: (3.42)

As in (3.19), the energy identity for the corrector equation (3.14) for  HL takes the
form

2

ˆ
QL

ˇ̌
D. HL /

ˇ̌2
D

X
n2H

ˆ
@In;L

E.x � xn;L/ � �
H
L �: (3.43)

Using the incompressibility constraint tr.E/ D 0 to add an arbitrary constant to the
pressure in �HL , as in the proof of (3.30), and then appealing to the trace estimates of
Lemma 2.5 (ii), we obtain

ˆ
QL

ˇ̌
D. HL /

ˇ̌2 .
X
n2H

�ˆ
In;LC�B

ˇ̌
D. HL /CE

ˇ̌2� 1
2

:

Since the fattened inclusions ¹In;L C �Bºn are disjoint, the Cauchy–Schwarz in-
equality then yields, recalling the choice of the periodization (3.1),

ˆ
QL

ˇ̌
D. HL /

ˇ̌2 . ]¹n 2 H W xn 2 QLº: (3.44)



Cluster expansion of the effective viscosity 62

As the right-hand side is bounded by CLd , the claim (3.42) follows. For future refer-
ence, we also note that this bound entails, when taking the expectation,

E

�  
QL

ˇ̌
D. L/

ˇ̌2� . �.P /: (3.45)

Step 3. Key recurrence relation: for all H � N and k; j � 0,

SHL .k; j / . 1kCj�1 C SHL .k C 1; j � 1/C SHL .k; j � 1/

C SHL .k � 1; j /C SHL .k; j � 2/C SHL .k � 1; j � 1/; (3.46)

which then leads to the conclusion (3.39) by a direct double induction argument.
Let a finite subset G � N be momentarily fixed. In view of (3.15), the following

equation holds in QL, for any F � N with F \G D ¿,

�4ıF[G HL CrıF[G
�
†HL 1QLn	H

L

�
D �

X
n2H

ı@In;L
ıF[G�HL �

�

X
n2F nH

ı@In;L
ı.F n¹nº/[G�

H[¹nº
L �

�

X
n2GnH

ı@In;L
ıF[.Gn¹nº/�

H[¹nº
L �:

Hence, after summing over F and changing summation variables,

�4

� X
]FDj
F\GD¿

ıF[G HL

�
Cr

� X
]FDj
F\GD¿

ıF[G.†HL 1QLn	H
L
/
�

D �

X
n2H

ı@In;L

� X
]FDj
F\GD¿

ıF[G�HL �
�
�

X
n…G[H

ı@In;L

� X
]FDj�1

F\.G[¹nº/D¿

ıF[G�
H[¹nº
L �

�
�

X
n2GnH

ı@In;L

� X
]FDj
F\GD¿

ıF[.Gn¹nº/�
H[¹nº
L �

�
:

Testing this equation with the solution
P
]FDj WF\GD¿ ı

F[G HL itself, we obtain
the energy identity

2

ˆ
QL

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2

D A1L.G; j /C A2L.G; j /C A3L.G; j /; (3.47)

in terms of

A1L.G; j / WD �

X
n2H

ˆ
@In;L

� X
]FDj
F\GD¿

ıF[G HL

�
�

� X
]FDj
F\GD¿

ıF[G�HL �
�
; (3.48)
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A2L.G; j / WD �

X
n…G[H

ˆ
@In;L

� X
]FDj
F\GD¿

ıF[G HL

�
�

� X
]FDj�1

F\.G[¹nº/D¿

ıF[G�
H[¹nº
L �

�
;

A3L.G; j / WD �

X
n2GnH

ˆ
@In;L

� X
]FDj
F\GD¿

ıF[G HL

�
�

� X
]FDj
F\GD¿

ıF[.Gn¹nº/�
H[¹nº
L �

�
:

We analyze these three contributions separately and we start with the first one. In
view of the boundary conditions for ıF[G HL on @In;L with n 2 H , we can rewrite

A1L.G; j / D
X
n2H

ˆ
@In;L

� X
]FDj
F\GD¿

ıF[G
�
E.x � xn;L/

��
�

� X
]FDj
F\GD¿

ıF[G�HL �
�

D 1GD¿;jD0

X
n2H

ˆ
@In;L

E.x � xn;L/ � �
H
L �:

Summing over G � N with ]G D k, and using the energy identity (3.43), we deduce

L�d
X
]GDk

A1L.G; j / D 1kDjD0 S
H
L .0; 0/: (3.49)

We turn to the second term A2L in (3.47). Using the boundary conditions and the
incompressibility constraints to smuggle in arbitrary constants in the different factors,
as in the proof of (3.30), and then appealing to the trace estimates of Lemma 3.5, we
find

ˇ̌
A2L.G; j /

ˇ̌
.

X
n…G[H

�ˆ
In;L

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2� 1

2

�

�ˆ
In;LC�B

ˇ̌̌ X
]FDj�1

F\.G[¹nº/D¿

D
�
ıF[G. 

H[¹nº
L CEx/

�ˇ̌̌2� 1
2

: (3.50)

Decomposing the second factor via the following identity, for all n … F [ G [ H

and F \G D ¿,

ıF[G. 
H[¹nº
L CEx/ D 1GDFD¿Ex C ıF[G HL C ıF[G[¹nº HL ;

summing overG � N with ]G D k, using the Cauchy–Schwarz inequality, and using
the disjointness of the fattened inclusions ¹In;L C �Bºn, we get

L�d
X
]GDk

ˇ̌
A2L.G; j /

ˇ̌
.
�
SHL .k; j /

� 1
2
�
1kD0;jD1 C THL .k; j � 1/C SHL .k C 1; j � 1/

� 1
2 : (3.51)
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We turn to the third contribution A3L in (3.47). For n 2 G n H and F \ G D ¿,
decomposing

ıF[G HL D ıF[.Gn¹nº/ 
H[¹nº
L � ıF[.Gn¹nº/ HL ;

and using the boundary conditions, we can rewrite

A3L;`.G; j / D 1]GD1;jD0

X
n2GnH

ˆ
@In;L

E.x � xn;L/ � �
H[¹nº
L �

C

X
n2GnH

ˆ
@In;L

� X
]FDj
F\GD¿

ıF[.Gn¹nº/ HL

�
�

� X
]FDj
F\GD¿

ıF[.Gn¹nº/�
H[¹nº
L �

�
:

Using the boundary conditions and the incompressibility constraints to smuggle in
arbitrary constants in the different factors, as in the proof of (3.30), and then appealing
to the trace estimates of Lemma 3.5, we find

ˇ̌
A3L.G; j /

ˇ̌
. 1]GD1;jD0

X
n2GnH

�ˆ
In;LC�B

ˇ̌
D. H[¹nº

L /CE
ˇ̌2� 1

2

C

X
n2GnH

�ˆ
In;L

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[.Gn¹nº/ HL /
ˇ̌̌2� 1

2

�

� ˆ
In;LC�B

ˇ̌̌ X
]FDj
F\GD¿

D
�
ıF[.Gn¹nº/. 

H[¹nº
L CEx/

�ˇ̌̌2� 1
2

: (3.52)

Decomposing the first right-hand side term and the last factor of the second term via
the following identities, for all n 2 G nH and F \G D ¿,

 
H[¹nº
L D  HL C ı¹nº HL ;

ıF[.Gn¹nº/. 
H[¹nº
L CEx/ D 1]GD1;]FD0Ex C ıF[.Gn¹nº/ HL

C ıF[.Gn¹nº/ı¹nº HL ; (3.53)

summing over G � N with ]G D k, and using the Cauchy–Schwarz inequality and
the disjointness of the fattened inclusions ¹In;L C �Bºn, this becomes

L�d
X
]GDk

ˇ̌
A3L.G; j /

ˇ̌
. 1kD1;jD0

�
1C SHL .0; 0/C SHL .1; 0/

� 1
2

C
�
THL .k � 1; j /

� 1
2
�
1kD1;jD0 C THL .k � 1; j /C SHL .k; j /

� 1
2 : (3.54)
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Inserting this into (3.47), together with (3.49) and (3.51), we obtain

SHL .k; j / . 1kD0;jD0 S
H
L .0; 0/C 1kD1;jD0

�
1C SHL .0; 0/C SHL .1; 0/

� 1
2

C
�
SHL .k; j /

� 1
2
�
1kD0;jD1 C THL .k; j � 1/C SHL .k C 1; j � 1/

� 1
2

C
�
THL .k � 1; j /

� 1
2
�
1kD1;jD0 C THL .k � 1; j /C SHL .k; j /

� 1
2 :

Using Young’s inequality to absorb the occurrences of SHL .k; j / in the right-hand
side into the left-hand side, we are led to

SHL .k; j / . 1kD0;jD0 S
H
L .0; 0/C 1kD0;jD1 C 1kD1;jD0

�
1C SHL .0; 0/

� 1
2

C SHL .k C 1; j � 1/C THL .k; j � 1/C THL .k � 1; j /;

and the claim (3.46) now follows in combination with (3.40) and (3.42).

3.5.2 Proof of Theorem 3.9 with optimal `-dependence

It remains to refine the proof of the previous section to capture the optimal depen-
dence on the minimal distance

` D `.P / & 1:

The proof involves a new intricate induction argument that combines both SHL and
THL , and the optimal scaling is then captured by a suitable application of elliptic
regularity via a duality argument. By the result of the previous section, we may
assume `� 1, in which case the uniform separation assumption in (Hunif

� ) holds in
the stronger form of

1

2
inf
n¤m

dist.In;L; Im;L/ �
1

2
` � 1 �

1

4
` � �; (3.55)

and the definition (3.1) of the periodization further ensures

inf
n

dist.In;L; @QL/ � ` � 1 �
1

2
` � �:

We split the proof into four steps.

Step 1. Energy estimate for correctors: for all H � N,

SHL .0; 0/ D

 
QL

ˇ̌
D. HL /

ˇ̌2 . `�d ; (3.56)

THL .0; 0/ D L�d
X
n…H

ˆ
In;LC�B

ˇ̌
D. HL /

ˇ̌2 . `�2d : (3.57)
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By the `-separation property (3.55), the number of points of the process PL in QL is
bounded by C.L=`/d , so that the first estimate (3.56) follows from (3.44). It remains
to prove (3.57). For that purpose, first note that for n … H the `-separation prop-
erty (3.55) entails that the following free steady Stokes equations hold in In;L C
1
4
`B � QL n 	HL ,

�4 HL Cr†HL D 0; div. HL / D 0; in In;L C
1

4
`B:

Elliptic regularity in form of Lemma 2.6 then yields
ˆ
In;LC�B

ˇ̌
D. HL /

ˇ̌2 . `�d
ˆ
In;LC 1

4 `B

ˇ̌
D. HL /

ˇ̌2
:

Summing this over n … H and using the `-separation property (3.55) in form of the
disjointness of the fattened inclusions ¹In;L C

1
4
`Bºn, we deduceX

n…H

ˆ
In;LC�B

ˇ̌
D. HL /

ˇ̌2 . `�d
ˆ
QL

ˇ̌
D. HL /

ˇ̌2
;

and the claim (3.57) now follows from (3.56).

Step 2. Recurrence relation for SHL : for all H � N and k; j � 0,

SHL .k; j / . 1kCj�1`
�d

C SHL .k C 1; j � 1/

C THL .k; j /C THL .k; j � 1/

C THL .k � 1; j /: (3.58)

This provides a refined version of the recurrence relation (3.46), which can indeed be
recovered by appealing to (3.40) to bound THL in terms of SHL . The present refined
version will be combined with a recurrence relation for THL in the next step.

Let G � N be momentarily fixed. As in the proof of (3.46), the starting point is
identity (3.47), that is,

2

ˆ
QL

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2

D A1L.G; j /C A2L.G; j /C A3L.G; j /; (3.59)

where we recall that A1L; A
2
L; A

3
L are defined in (3.48). We analyze these contribu-

tions separately. The first one satisfies (3.49), and thus, combined with the energy
estimate (3.56),

L�d
X
]GDk

A1L.G; j / D 1kDjD0 S
H
L .0; 0/ . 1kDjD0`

�d : (3.60)
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It remains to prove refined versions of (3.51) and (3.54) for A2L and A3L, and we start
with the contribution of A2L. The starting point is the trace estimate (3.50) used in the
proof of (3.51), that is,

ˇ̌
A2L.G; j /

ˇ̌
.

X
n…G[H

� ˆ
In;L

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2� 1

2

�

� ˆ
In;LC�B

ˇ̌̌ X
]FDj�1

F\.G[¹nº/D¿

D
�
ıF[G. 

H[¹nº
L CEx/

�ˇ̌̌2� 1
2

;

which we shall now analyze more carefully. Using identity (3.41) to decompose the
first factor, and decomposing the second factor via the following identity, for all n …

F [G [H and F \G D ¿,

ıF[G. 
H[¹nº
L CEx/ D 1GDFD¿Ex C ıF[G HL C ıF[G[¹nº HL ;

we find

jA2L.G; j /j .
X

n…G[H

� ˆ
In;L

ˇ̌̌ X
]FDj

F\.G[¹nº/D¿

D.ıF[G HL /
ˇ̌̌2

„ ƒ‚ …
|

C

ˇ̌̌ X
]FDj�1

F\.G[¹nº/D¿

D.ıF[G[¹nº HL /
ˇ̌̌2

„ ƒ‚ …
}

� 1
2

�

�
1]GD0;jD1 C

ˆ
In;LC�B

ˇ̌̌ X
]FDj�1

F\.G[¹nº/D¿

D.ıF[G HL /
ˇ̌̌2

„ ƒ‚ …
�

C

ˇ̌̌ X
]FDj�1

F\.G[¹nº/D¿

D.ıF[G[¹nº HL /
ˇ̌̌2

„ ƒ‚ …
}

� 1
2

:

Summing over G � N with ]G D k, using Young’s inequality, using the separation
property in form of the disjointness of the fattened inclusions ¹In;L C �Bºn, using
that the number of points of the process PL in QL is bounded by C.L=`/d , and
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reorganizing the terms, we conclude

L�d
X
]GDk

ˇ̌
A2L.G; j /

ˇ̌
. `�d1kD0;jD1 C SHL .k C 1; j � 1/

C THL .k; j /C THL .k; j � 1/; (3.61)

where the last three right-hand side terms come from }, |, �, respectively.
We turn to the contribution of A3L. The starting point is the trace estimate (3.52)

used in the proof of (3.54). Further, using the decomposition (3.53), this estimate
becomesˇ̌
A3L.G; j /

ˇ̌
. 1]GD1;jD0

X
n2GnH

�
1C

ˆ
In;LC�B

ˇ̌
D. HL /

ˇ̌2
C
ˇ̌
D.ı¹nº HL /

ˇ̌2� 1
2

C

X
n2GnH

� ˆ
In;L

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[.Gn¹nº/ HL /
ˇ̌̌2� 1

2

�

� ˆ
In;LC�B

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[.Gn¹nº/ HL /
ˇ̌̌2

C

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2� 1

2

:

(3.62)

Summing the first right-hand side term over G � N with ]G D 1, using the Cauchy–
Schwarz inequality, recalling that the number of points of the process PL in QL is
bounded by C.L=`/d , and appealing to the energy estimate (3.57), we find

X
n…H

�
1C

ˆ
In;LC�B

ˇ̌
D. HL /

ˇ̌2
C
ˇ̌
D.ı¹nº HL /

ˇ̌2� 1
2

. L
d
2 `�

d
2

�
Ld`�d C

X
n…H

ˆ
In;LC�B

ˇ̌
D. HL /

ˇ̌2
C

X
n…H

ˆ
QL

ˇ̌
D.ı¹nº HL /

ˇ̌2� 1
2

. Ld
�
`�2d C `�dSHL .1; 0/

� 1
2 :

Now summing (3.62) over G � N with ]G D k, inserting the above estimate for the
first right-hand side term, and using the Cauchy–Schwarz inequality, we find

L�d
X
]GDk

ˇ̌
A3L.G; j /

ˇ̌
. 1kD1;jD0

�
`�2d C `�dSHL .1; 0/

� 1
2

C
�
THL .k � 1; j /

� 1
2
�
THL .k � 1; j /C SHL .k; j /

� 1
2 :
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Inserting this into (3.59), together with (3.60) and (3.61), we conclude

SHL .k; j / . 1kD0;j�1`
�d

C 1kD1;jD0
�
`�2d C `�dSHL .1; 0/

� 1
2

C SHL .k C 1; j � 1/C THL .k; j /C THL .k; j � 1/

C
�
THL .k � 1; j /

� 1
2
�
THL .k � 1; j /C SHL .k; j /

� 1
2 :

Using Young’s inequality to absorb the occurrence of SHL .k; j / in the right-hand side
into the left-hand side, the claim (3.58) follows.

Step 3. Recurrence relation for THL : for all H � N and k; j � 0,

THL .k; j / . 1kDjD0`
�2d

C 1kCjD1`
�3d

C `�2d
�
THL .k � 1; j /C THL .k; j � 1/C THL .k C 1; j � 2/

C SHL .k; j /C SHL .k C 1; j � 1/C SHL .k C 2; j � 2/
�
: (3.63)

Let k;j � 0 be fixed with kC j � 1 (the case kD j D 0 already follows from (3.57)).
ForG � N and n …G, the `-separation property (3.55) implies that the following free
steady Stokes equations hold in In;L C

1
4
`B ,

�4

� X
]FDj

F\.G[¹nº/D¿

ıF[G HL

�
Cr

� X
]FDj

F\.G[¹nº/D¿

ıF[G.†HL 1QLn	H
L
/
�
D 0;

div
� X

]FDj
F\.G[¹nº/D¿

ıF[G HL

�
D 0; in In;L C

1

4
`B;

so that elliptic regularity in form of Lemma 2.6 yields

THL .k; j / . L�d`�d
X
]GDk

X
n…G[H

ˆ
In;LC 1

4 `B

ˇ̌̌ X
]FDj

F\.G[¹nº/D¿

D.ıF[G HL /
ˇ̌̌2
: (3.64)

In order to analyze the right-hand side, we shall appeal to elliptic regularity a sec-
ond time, now via a duality argument. For that purpose, we use the following dual
representationX

]GDk

X
n…G[H

ˆ
In;LC 1

4 `B

ˇ̌̌ X
]FDj

F\.G[¹nº/D¿

D.ıF[G HL /
ˇ̌̌2

D sup
˛;h

²
I.˛; h/2 W

X
]GDk

X
n…G[H

j˛n;G j
2
D 1;

ˆ
QL

jhn;G j
2
D 1; supp hn;G � In;L C

1

4
`B; 8n;G

³
; (3.65)
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where for any ˛ D ¹˛n;Gºn;G � R and hD ¹hn;Gºn;G � L2.QL/d�dsym we have set for
abbreviation

I.˛; h/ WD
X
]GDk

X
n…G[H

˛n;G

ˆ
QL

hn;G W

� X
]FDj

F\.G[¹nº/D¿

D.ıF[G HL /
�
: (3.66)

Let ˛ D ¹˛n;Gºn;G � R and h D ¹hn;Gºn;G � L2.QL/d�dsym be momentarily fixed,
satisfying the constraints in (3.65),X
]GDk

X
n…G[H

j˛n;G j
2
D 1;

ˆ
QL

jhn;G j
2
D 1; supphn;G � In;LC

1

4
`B; 8n;G:

(3.67)
For n … G [ H , consider the periodic solution wh;n;G of the following auxiliary
steady Stokes problem,8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�4wh;n;G CrPh;n;G D div.hn;G/; in QL n 	HL ;

div.wh;n;G/ D 0; in QL n 	HL ;

D.wh;n;G/ D 0; in 	HL ;´
@Im;L

�.wh;n;G ; Ph;n;G/� D 0; 8m 2 H;´
@Im;L

‚.x�xm;L/ � �.wh;n;G ; Ph;n;G/�D0; 8‚2Mskew; 8m 2 H:

(3.68)

Note that this problem is well posed since hn;G is supported in

In;L C
1

4
`B � QL n 	HL :

The same argument as for (3.14) shows that wh;n;G satisfies in QL,

�4wh;n;G Cr
�
Ph;n;G1QLn	H

L

�
D div.hn;G/ �

X
m2H

ı@Im;L
�.wh;n;G ; Ph;n;G/�;

and, appealing to (3.15) and changing summation variables, we also find in QL,

�4

� X
]FDj

F\.G[¹nº/D¿

ıF[G HL

�
Cr

� X
]FDj

F\.G[¹nº/D¿

ıF[G.†HL 1QLn	H
L
/
�

D �

X
m2H

ı@Im;L

� X
]FDj

F\.G[¹nº/D¿

ıF[G�HL �
�

�

X
m2GnH

ı@Im;L

� X
]FDj

F\.G[¹nº/D¿

ıF[.Gn¹mº/�
H[¹mº

L �
�

�

X
m…G[H[¹nº

ı@Im;L

� X
]FDj�1

F\.G[¹n;mº/D¿

ıF[G�
H[¹mº

L �
�
:
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Testing the second of these two equations with the solution of the first one, and vice
versa, and using the boundary conditions, we can reformulate I.˛; h/ in (3.66) as
follows, provided k C j � 1,

I.˛; h/ D �

X
]GDk

X
n…G[H

2˛n;G

ˆ
QL

D.wh;n;G/ W
� X

]FDj
F\.G[¹nº/D¿

D.ıF[G HL /
�

D I1.˛; h/C I2.˛; h/; (3.69)

where we have set

I1.˛; h/

WD

X
]GDk

X
n…G[H

˛n;G
X

m2GnH

ˆ
@Im;L

wh;n;G �

� X
]FDj

F\.G[¹nº/D¿

ıF[.Gn¹mº/�
H[¹mº

L �
�
;

I2.˛; h/

WD

X
]GDk

X
n…G[H

˛n;G
X

m…G[H[¹nº

ˆ
@Im;L

wh;n;G �

� X
]FDj�1

F\.G[¹n;mº/D¿

ıF[G�
H[¹mº

L �
�
:

We only treat I1.˛; h/ in detail since the argument for I2.˛; h/ is similar. Appealing
to identity (3.41), we can rewrite

I1.˛; h/

D

X
]GDk

X
m2GnH

ˆ
@Im;L

� X
n…G[H

˛n;Gwh;n;G

�
�

� X
]FDj
F\GD¿

ıF[.Gn¹mº/�
H[¹mº

L �
�

�

X
]GDk

X
n…G[H

˛n;G
X

m2GnH

ˆ
@Im;L

wh;n;G �

� X
]FDj�1

F\.G[¹nº/D¿

ıF[.Gn¹mº/[¹nº�
H[¹mº

L �
�
;

or equivalently, after further changing summation variables in the second term,

I1.˛; h/ D
X
]GDk

X
m2GnH

ˆ
@Im;L

� X
n…G[H

˛n;Gwh;n;G

�
�

� X
]FDj
F\GD¿

ıF[.Gn¹mº/�
H[¹mº

L �
�

�

X
]GDkC1

X
m2GnH

ˆ
@Im;L

� X
n2Gn.H[¹mº/

˛n;Gn¹nºwh;n;Gn¹nº

�
�

� X
]FDj�1
F\GD¿

ıF[.Gn¹mº/�
H[¹mº

L �
�
:
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Now using the boundary conditions and the incompressibility constraints to add arbi-
trary constants to the different factors, as in the proof of (3.30), and appealing to the
trace estimates of Lemma 3.5, we are led toˇ̌

I1.˛; h/
ˇ̌

. I1;1.˛; h/C I1;2.˛; h/; (3.70)

where we have set

I1;1.˛; h/ WD
X
]GDk

X
m2GnH

�ˆ
Im;L

ˇ̌̌ X
n…G[H

˛n;GD.wh;n;G/
ˇ̌̌2� 1

2

�

�ˆ
Im;LC�B

ˇ̌̌ X
]FDj
F\GD¿

D
�
ıF[.Gn¹mº/. 

H[¹mº

L CEx/
�ˇ̌̌2� 1

2

;

I1;2.˛; h/ WD
X

]GDkC1

X
m2GnH

�ˆ
Im;L

ˇ̌̌ X
n2Gn.H[¹mº/

˛n;Gn¹nºD.wh;n;Gn¹nº/
ˇ̌̌2� 1

2

�

�ˆ
Im;LC�B

ˇ̌̌ X
]FDj�1
F\GD¿

D
�
ıF[.Gn¹mº/. 

H[¹mº

L CEx/
�ˇ̌̌2� 1

2

:

We start by estimating I1;1.˛; h/. Decomposing the second factor via the following
identity, for all m 2 G nH and F \G D ¿,

ıF[.Gn¹mº/. 
H[¹mº

L CEx/ D 1]GD1;]FD0Ex C ıF[.Gn¹mº/ HL C ıF[G HL ;

noting that the `-separation property (3.55) entails that
P
n…G[H ˛n;Gwh;n;G satisfies

the free steady Stokes equations in Im;L C
1
4
`B for all m … H , and appealing to

elliptic regularity in form of Lemma 2.6, we find

I1;1.˛; h/ .
X
]GDk

X
m2GnH

�
`�d

ˆ
Im;LC 1

4 `B

ˇ̌̌ X
n…G[H

˛n;GD.wh;n;G/
ˇ̌̌2� 1

2

�

�
1kD1;jD0 C

ˆ
Im;LC�B

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[.Gn¹mº/ HL /
ˇ̌̌2

C

ˆ
Im;LC�B

ˇ̌̌ X
]FDj
F\GD¿

D.ıF[G HL /
ˇ̌̌2� 1

2

: (3.71)

Next, the energy estimate for (3.68) yieldsX
]GDk

ˆ
QL

ˇ̌̌ X
n…G[H

˛n;GD.wh;n;G/
ˇ̌̌2

.
X
]GDk

ˆ
QL

ˇ̌̌ X
n…G[H

˛n;Ghn;G

ˇ̌̌2
;
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and thus, using the constraints (3.67) on ˛; h, and noting that the `-separation prop-
erty (3.55) entails that the hn;G’s have disjoint supports for different n’s,X

]GDk

ˆ
QL

ˇ̌̌ X
n…G[H

˛n;GD.wh;n;G/
ˇ̌̌2

.
X
]GDk

X
n…G[H

j˛n;G j
2

ˆ
QL

jhn;G j
2
D 1:

Inserting this into (3.71), using the Cauchy–Schwarz inequality, the `-separation
property (3.55) in form of the disjointness of the fattened inclusions ¹Im;LC

1
4
`Bºm,

using that the number of points of the process PL in QL is bounded by C.L=`/d ,
and changing summation variables, we deduce

L�dI1;1.˛; h/
2 . 1kD1;jD0`

�2d
C `�d

�
THL .k � 1; j /C SHL .k; j /

�
: (3.72)

We turn to a corresponding estimation for I1;2.˛; h/. For that purpose, we first note
that the disjointness of fattened inclusions ¹Im;L C

1
4
`Bºm allows us to decomposeX

]GDkC1

X
m2GnH

ˆ
Im;LC 1

4 `B

ˇ̌̌ X
n2Gn.H[¹mº/

˛n;Gn¹nºD.wh;n;Gn¹nº/
ˇ̌̌2

.
X

]GDkC1

ˆ
QL

ˇ̌̌ X
n2GnH

˛n;Gn¹nºD.wh;n;Gn¹nº/
ˇ̌̌2

C

X
]GDkC1

X
m2GnH

j˛m;Gn¹mºj
2

ˆ
QL

ˇ̌
D.wh;m;Gn¹mº/

ˇ̌2
;

and the energy estimate for (3.68) then yieldsX
]GDkC1

X
m2GnH

ˆ
Im;LC 1

4 `B

ˇ̌̌ X
n2Gn.H[¹mº/

˛n;Gn¹nºD.wh;n;Gn¹nº/
ˇ̌̌2

.
X

]GDkC1

ˆ
QL

ˇ̌̌ X
n2GnH

˛n;Gn¹nºhn;Gn¹nº

ˇ̌̌2
C

X
]GDkC1

X
m2GnH

j˛m;Gn¹mºj
2

ˆ
QL

jhm;Gn¹mºj
2;

from which we deduce, using the constraints (3.67) on ˛, h and recalling that the
hn;G’s have disjoint supports for different n’s,X

]GDkC1

X
m2GnH

ˆ
Im;LC 1

4 `B

ˇ̌̌ X
n2Gn.H[¹mº/

˛n;Gn¹nºD.wh;n;Gn¹nº/
ˇ̌̌2

.
X

]GDkC1

X
n2GnH

j˛n;Gn¹nºj
2
D

X
]GDk

X
n…G[H

j˛n;G j
2
D 1:
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With this estimate at hand, we may now repeat the same argument as for (3.72) and
we obtain

L�dI1;2.˛; h/
2 . 1kD0;jD1`

�2d

C `�d
�
THL .k; j � 1/C SHL .k C 1; j � 1/

�
: (3.73)

Likewise, the second term I2.˛; h/ in (3.69) is easily estimated as follows,

L�dI2.˛; h/
2 . 1kD0;jD1`

�2d
C `�d

�
THL .k; j � 1/C THL .k C 1; j � 2/

C SHL .k C 1; j � 1/C SHL .k C 2; j � 2/
�
: (3.74)

Combining these different estimates, that is, (3.70), (3.72), (3.73), and (3.74), insert-
ing them into (3.65), and recalling (3.64), the claim (3.63) follows.

Step 4. Conclusion. By a direct double induction argument, starting with (3.57), the
recurrence relation (3.63) entails, for all H � N and k; j � 0,

THL .k; j / . 1kDjD0`
�2d

C 1kCj�1.C`
�d /2.kCj /C1

C

kCj�1X
lD0

.C`�d /2.lC1/
2.lC1/X
iD0

SHL .k C i � l; j � i/: (3.75)

Combined with the other recurrence relation (3.58), this yields

SHL .k; j / . 1kDjD0`
�d

C 1kCj�1.C`
�d /2.kCj /�1 C SHL .k C 1; j � 1/

C

kCj�1X
lD0

.C`�d /2.lC1/
2lC2X
iD0

SHL .k C i � l; j � i/

C

kCj�2X
lD0

.C`�d /2.lC1/
2lC3X
iD0

SHL .k C i � l � 1; j � i/:

For `� 1, occurrences of SHL .k; j / in the right-hand side can be absorbed into the
left-hand side, and we are then left with

SHL .k; j / . 1kDjD0`
�d

C 1kCj�1.C`
�d /2.kCj /�1 C SHL .k C 1; j � 1/

C SHL .k C 2; j � 2/C

kCj�1X
lD1

.C`�d /2.lC1/
2lC2X
iD0

SHL .k C i � l; j � i/

C

kCj�2X
lD0

.C`�d /2.lC1/
2lC3X
iD0

SHL .k C i � l � 1; j � i/:

By a double induction argument, this relation leads to the conclusion

SHL .k; j / .

´
`�d if k D j D 0;

.C`�d /2.kCj /�1 if k; j � 0; k C j � 1:
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Combining this with (3.75) further yields

THL .k; j / .

´
`�2d if k D j D 0;

.C`�d /2.kCj /C1 if k; j � 0; k C j � 1:

Recalling that the case `' 1 was already covered in (3.39), this finally concludes the
proof of Theorem 3.9.

3.6 Uniform cluster estimates

This section is devoted to the proof of Theorem 3.2 (i), based on the interpolating
`1 � `2 energy estimates of Theorem 3.9. We focus on the bound (3.11) on the
remainderRkC1L , while the corresponding bounds on cluster coefficients follow along
the same lines. For k � 1, after changing summation variables, the definition (3.9) of
the remainder can be written as

E W RkC1L E D
1

2
L�d

X
n

E

�ˆ
@In;L

� X
]FDj�1
n…F

ıF ¿
L

�
� �L�

�
:

Using the boundary conditions and the incompressibility constraint to smuggle in
arbitrary constants in the different factors, as in the proof of (3.30), using the Cauchy–
Schwarz inequality, and then appealing to the trace estimates of Lemma 3.5, we find

jE W RkC1L Ej

. L�dE

�X
n

ˆ
In;L

ˇ̌̌ X
]FDj�1
n…F

D.ıF ¿
L /
ˇ̌̌2� 1

2

E

�X
n

ˆ
In;LC�B

ˇ̌
D. L/CE

ˇ̌2� 1
2

:

Recalling the disjointness of the fattened inclusions ¹In;L C �Bºn, recognizing the
definition of SL and T¿

L , and using that in case `� 1 the `-separation property (3.55)
entails that the number of points of the process PL in QL is bounded by C.L=`/d ,
we are led to

jRkC1L j . E
�
T¿
L .0; k/

� 1
2
�
`�d C E

�
SL.0; 0/

�� 1
2 ;

and the conclusion (3.11) then follows from Theorem 3.9.

3.7 Convergence of finite-volume approximations

This section is devoted to the proof of the convergence result (3.13) in Theorem 3.2.
The idea is as follows: if ¹xBjLºj could be viewed as derivatives of xBL in some sense,
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then the convergence of xBL as L " 1 and the uniform bounds on derivatives ¹xBjLºj
would ensure the convergence of the latter. We split the proof into two steps, first
appealing to a probabilistic argument to view ¹xBjLºj as true derivatives, and then
concluding by means of standard real analysis.

Step 1. Dilution by random deletion. Taking inspiration from [53], given p 2 Œ0; 1�,
we consider a sequence ¹b

.p/
n ºn of iid Bernoulli variables, independent of P ;	 , with

parameter
p D P

�
b.p/n D 1

�
;

and we define the corresponding decimated process

P .p/
WD ¹xnºn2N .p/ ; 	 .p/ WD

[
n2N .p/

In; N .p/
WD ¹n W b.p/n D 1º: (3.76)

Similarly, in the periodized setting (3.1), we set

P
.p/
L WD ¹xn;Lºn2N .p/ ; 	

.p/
L WD

[
n2N .p/

In;L:

By definition, the decimated processes P .p/; 	 .p/ satisfy (H�) and (Hunif
� ) whenever

P , 	 do, and their periodized versions P
.p/
L , 	

.p/
L satisfy the same separation and

stabilization properties as PL, 	L in Section 3.1. We use the notation xB.p/, xB.p/L ,
¹xB.p/;jL ºj , ¹R.p/;kC1L ºk for the effective viscosity, its periodized approximation, clus-
ter coefficients, and cluster remainders associated with decimated processes 	 .p/,
	
.p/
L . As a corollary of [18, Theorem 1], as in (3.4), we have for all p 2 Œ0; 1�,

lim
L"1

xB.p/L D xB.p/: (3.77)

In the next two substeps, we shall further prove for all k; j � 1,

xB.p/;jL D pj xBjL; (3.78)

jR
.p/;kC1
L j � .Cp`�d /kC1: (3.79)

Combined with the cluster expansion (3.5), this yields for all L and k � 1,ˇ̌̌̌
ˇxB.p/L �

 
IdC

kX
jD1

pj

j Š
xBjL

!ˇ̌̌̌
ˇ � .Cp`�d /kC1; (3.80)

which entails that xBjL can be seen as the j th derivative of the map p 7! xB.p/L at
p D 0. (Note that this estimate further shows that this map is real-analytic; we shall
later come back to this observation as part of Theorem 5.4.)
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Substep 1:1. Proof of (3.78). By definition of decimated processes, the cluster for-
mula (3.6) for xB.p/;jL can be written as

E W xB.p/;jL E D j Š
X
]FDj

E

�
1F�N .p/

 
QL

ıF
�ˇ̌

D. ¿
L /CE

ˇ̌2��
:

As N .p/ is independent of 	 and as

P
�
F � N .p/

�
D P

�
b.p/n D 1; 8n 2 F

�
D p]F ;

we get

E W xB.p/;jL E D j Špj
X
]FDj

E

� 
QL

ıF
�ˇ̌

D. ¿
L /CE

ˇ̌2��
D pjE W xBjLE;

that is, (3.78).

Substep 1:2. Proof of (3.79). Let k � 1. By definition of decimated processes, the
remainder formula (3.9) for R.p/;kC1L can be written as

E W R
.p/;kC1
L E D

1

2
L�d

X
]FDkC1

X
n2F

E

�
1F�N .p/

ˆ
@In;L

ıF n¹nº ¿
L � �

.p/
L �

�
;

or equivalently, using the constraint F � N .p/ to replace � .p/L D �N
.p/

L by �N
.p/[F

L ,

E W R
.p/;kC1
L E

D
1

2
L�d

X
]FDkC1

X
n2F

E

�
1F�N .p/

ˆ
@In;L

ıF n¹nº ¿
L � �N

.p/[F
L �

�
:

In this expression, the integral
ˆ
@In;L

ıF n¹nº ¿
L � �N

.p/[F
L �

does not depend on the value of ¹b.p/n ºn2F and is thus independent of

1F�N .p/ D

Y
n2F

1
b

.p/
n D1

;

hence we are led to

E W R
.p/;kC1
L E

D
1

2
pkC1L�d

X
]FDkC1

X
n2F

E

� ˆ
@In;L

ıF n¹nº ¿
L � �N

.p/[F
L �

�
: (3.81)
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It remains to estimate the right-hand side and deduce (3.79), which is easily done by
adapting the proof of Theorem 3.2 (i) in Section 3.6. For that purpose, we first note
that, for all F � N, using that

P
H 0�H .�1/

jH 0j D 0 if H ¤ ¿, we haveX
G�F

ıG�
.p/
L D

X
G�F

X
G0�G

.�1/jGnG0j�N
.p/[G0

L

D

X
G0�F

� X
G00�F nG0

.�1/jG
00j
�
�N

.p/[G0

L

D �N
.p/[F

L ;

so that formula (3.81) can be decomposed as follows, after changing summation vari-
ables,

E W R
.p/;kC1
L E D

1

2
pkC1L�d

X
]FDk

X
n…F

X
G�F[¹nº

E

�ˆ
@In;L

ıF ¿
L � ıG�

.p/
L �

�
:

Using the following identity, for all maps f and all n … F ,X
G�F[¹nº

f .G/ D
X
G�F

f .G/C
X
G�F

f
�
G [ ¹nº

�
;

we deduce

E W R
.p/;kC1
L E

D
1

2
pkC1L�d

X
]FDk

X
G�F

X
n…F

E

� ˆ
@In;L

ıF ¿
L �

�
ıG�

.p/
L C ıG[¹nº�

.p/
L

�
�

�
;

or equivalently, further changing summation variables,

E W R
.p/;kC1
L E

D
1

2
pkC1L�d

kX
jD0

X
]GDj

X
n…G

E

� ˆ
@In;L

� X
]FDk�j

F\.G[¹nº/D¿

ıF[G ¿
L

�

�

�
ıG�

.p/
L C ıG[¹nº�

.p/
L

�
�

�
:

Using the boundary conditions for

ıG�
.p/
L C ıG[¹nº�

.p/
L D ıG�

N .p/[¹nº
L

and using the incompressibility constraint to smuggle in arbitrary constants in the
different factors, as in the proof of (3.30), and then appealing to the trace estimates of
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Lemma 3.5, we find

jE W R
.p/;kC1
L Ej

. pkC1L�d

kX
jD0

X
]GDj

X
n…G

E

�ˆ
In;L

ˇ̌̌ X
]FDk�j

F\.G[¹nº/D¿

D.ıF[G ¿
L /
ˇ̌̌2� 1

2

� E

�
1jD0 C

ˆ
In;LC�B

ˇ̌
D.ıG .p/L /

ˇ̌2
C
ˇ̌
D.ıG[¹nº 

.p/
L /

ˇ̌2� 1
2

:

Recalling the disjointness of fattened inclusions ¹In;L C �Bºn, recognizing the defi-
nition of S .p/L and T¿

L , and using that in case `� 1 the `-separation property (3.55)
entails that the number of points of the process PL in QL is bounded by C.L=`/d ,
we deduce

jE W R
.p/;kC1
L Ej

. pkC1
kX

jD0

E
�
T¿
L .j; k � j /

� 1
2
�
1jD0`

�d
CE

�
S
.p/
L .j; 0/

�
CE

�
S
.p/
L .j C 1; 0/

�� 1
2 :

Now appealing to Theorem 3.9, the claim (3.79) follows.

Step 2. Conclusion. While the uniform estimates of Theorem 3.2 (i) ensure that the
sequence ¹xBjLºL�1 converges as L " 1 up to extraction of a subsequence, we shall
use their interpretation as derivatives of the map p 7! xB.p/L at p D 0, together with
some real analysis, to deduce the convergence of the full sequence. We argue by
induction: given k � 0, we assume that the limits xBj D limL"1 xBjL exist for all 1 �
j � k, and we shall then prove that the limit

xBkC1 D lim
L"1

xBkC1L

also exists. As xBkC1L is bounded uniformly inL by Theorem 3.2 (i), it has a limit xCkC1

as L " 1 up to extraction of a subsequence. Passing to the limit along this sub-
sequence in (3.80), with k replaced by k C 1, and using (3.77) and the induction
assumptions, we get for all p,ˇ̌̌̌

ˇxB.p/ �
 

IdC
kX

jD1

pj

j Š
xBj C

pkC1

.k C 1/Š
xCkC1

!ˇ̌̌̌
ˇ � .Cp/kC2;

which proves that xCkC1 satisfies

xCkC1 D lim
p#0

.k C 1/Š

pkC1

 
xB.p/ �

 
IdC

kX
jD1

pj

j Š
xBj
!!
;
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where in particular the limit exists. Since the right-hand side does not depend on
the choice of the extracted subsequence, we deduce that the limit xCkC1 is uniquely
defined, hence the limit xBkC1 WD xCkC1D limL"1 xBkC1L actually exists. By induction,
this concludes the proof of the convergence result (3.13) in Theorem 3.2.

3.8 Non-uniform cluster estimates

This section is devoted to the proof of Theorem 3.2 (ii). Taking inspiration from [12,
Section 5.A], we proceed by a direct analysis of Green’s representation formulas
for corrector differences. More precisely, we introduce operators ¹JnLIH ºn;H that
describe the fluid velocity generated by localized force dipoles in the presence of a
finite number of rigid inclusions: these are viewed as Stokeslets for the problem with
rigid inclusions and lead to a useful decomposition of corrector differences, cf. (3.82)
below. The following lemma defines such operators and states their optimal decay
properties, which are shown to coincide with the decay for the explicit Stokeslet asso-
ciated with the problem in free space without rigid particles. This result is a particular
case of Lemma A.1, the proof of which is postponed to Appendix A.

Lemma 3.10 (Decay of Stokeslets with rigid inclusions). Let Assumptions (H�) and
(Hunif
� ) hold, letH � N be finite and n …H , and let .�;P / satisfy the following Stokes

problem in a neighborhood of In;L,8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�4� CrP D 0; in .In;L C �B/ n In;L;

div.�/ D 0; in .In;L C �B/ n In;L;

D.�/ D 0; in In;L;´
@In;L

�.�; P /� D 0;´
@In;L

‚.x � xn;L/ � �.�; P /� D 0; 8‚ 2 Mskew:

Denote by JnLIH � 2 H
1
per.QL/

d the solution of the following Stokes problem,8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�4JnLIH � CrQn
LIH � D �ı@In;L

�.�; P /�; in QL n 	HL ;

div.JnLIH �/ D 0; in QL n 	HL ;

D.JnLIH �/ D 0; in 	HL ;´
@Im;L

�.JnLIH �;Q
n
LIH �/� D 0; 8m 2 H;´

@Im;L
‚.x � xm;L/ � �.J

n
LIH �;Q

n
LIH �/� D 0; 8m 2 H; 8‚ 2 Mskew:

Then, we have for all z 2 QL,�ˆ
B.z/

ˇ̌
D.JnLIH �/

ˇ̌2� 1
2

.]H
˝
.z � xn;L/L

˛�d�ˆ
In;LC�B

ˇ̌
D.�/

ˇ̌2� 1
2

:
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The above definition of operators ¹JnLIH ºn;H is motivated by the following obser-
vation: for all F;H � N with F finite and nonempty, equations (3.15) for corrector
differences entail, in these terms,

ıF HL D

X
n2F nH

JnLIH ı
F n¹nº. 

H[¹nº
L CEx/: (3.82)

Iterating this identity allows us to write ıF HL as a combination of iterations of
JnLIH ’s, which are viewed as elementary single-particle contributions. With the above
result at hand, we may now conclude with the proof of Theorem 3.2 (ii).

Proof of Theorem 3.2 (ii). We focus on the bound (3.12) on the remainder RkC1L ,
while the corresponding bound on cluster coefficients follows along the same lines.
We split the proof into two steps.

Step 1. Estimation of corrector differences. For all finiteF;H �N withF nonempty,
and for all n2N, recalling the decomposition (3.82) for corrector differences, Lemma
3.10 yields� ˆ

In;LC�B

ˇ̌
D.ıF HL /

ˇ̌2� 1
2

.]H
X

m2F nH

˝
.xn;L � xm;L/L

˛�d� ˆ
Im;LC�B

ˇ̌
D
�
ıF n¹mº. 

H[¹mº

L CEx/
�ˇ̌2� 1

2

:

Iterating this bound, and recalling that the energy estimate (3.44) gives for all finite
G � N, ˆ

QL

ˇ̌
D. GL /

ˇ̌2 . ]G;

we deduce for all n, setting k WD ]F � 1,�ˆ
In;LC�B

ˇ̌
D.ıF ¿

L /
ˇ̌2

C
ˇ̌
D.ıF ¹nº

L /
ˇ̌2� 1

2

.k
¤X

n1;:::;nk2F

˝
.xn;L�xn1;L/L

˛�d ˝
.xn1;L � xn2;L/L

˛�d
� � �
˝
.xnk�1;L � xnk ;L/L

˛�d
:

(3.83)

Step 2. Conclusion. The starting point is the estimate (3.10) in Theorem 3.1 for the
cluster remainder,

jE W RkC1L Ej . Aı
k C

kX
jD1

Aj;k; (3.84)
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in terms of

Aı
k WD E

�
L�d

X
n

ˆ
In;L

ˇ̌̌ X
]FDj�1
n…F

D.ıF ¿
L /
ˇ̌̌2�
;

Aj;k WD E

�
L�d

X
n

� ˆ
In;L

ˇ̌̌ X
]FDj�1
n…F

D.ıF ¿
L /
ˇ̌̌2� 1

2

�

�ˆ
In;LC�B

ˇ̌̌ X
]FDj�1
n…F

D
�
ıF . 

¹nº
L CEx/

�ˇ̌̌2� 1
2
�
:

(3.85)

We shall prove for all 1 � j � k,

Aı
k .k

kX
lD0

�kClC1.P /.logL/2l ; (3.86)

Aj;k .k
j�1X
lD0

�kClC1.P /.logL/2lCk�jC1: (3.87)

Inserting this into (3.84), the conclusion (3.12) follows. We split the proof into two
further substeps, separately proving (3.86) and (3.87).

Substep 2:1. Proof of (3.86). Let k � 1. The deterministic bound (3.83) yieldsX
]FDk

�ˆ
In;L

ˇ̌
D.ıF ¿

L /
ˇ̌2

C
ˇ̌
D.ıF ¹nº

L /
ˇ̌2� 1

2

.k
¤X

n1;:::;nk

DL.xn;L; xn1;L; : : : ; xnk ;L/; (3.88)

where we have set

DL.y0; y1; : : : ; yk/ WD

k�1Y
jD0

˝
.yj � yjC1/L

˛�d
:

Inserting this in the definition (3.85) of Aı
k

, expanding the square, separating the
different intersection patterns, and reformulating in terms of multi-points densities,
cf. (1.15), we are led to

Aı
k .k

kX
lD0

L�d

ˆ
.QL/

kClC1
DL.x; x1; : : : ; xk/DL.x; x1; : : : ; xk�l ; y1; : : : ; yl/

� fkClC1.x; x1; : : : ; xk; y1; : : : ; yl/ dx dx1 � � � dxk dy1 � � � dyl ;
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hence, in terms of multi-point intensities, appealing to Lemma 1.1 (iii),

Aı
k .k

kX
lD0

�kClC1.P / L
�d

ˆ
.QL/

kClC1
DL.x; x1; : : : ; xk/

�DL.x; x1; : : : ; xk�l ; y1; : : : ; yl/ dx dx1 � � � dxk dy1 � � � dyl :

First evaluating integrals over xk�lC1; : : : ; xk; y1; : : : ; yl , and noting that
ˆ
QL

˝
.x � y/L

˛�d
dy . logL;

we find

Aı
k .k

kX
lD0

�kClC1.P /.logL/2lL�d

�

ˆ
.QL/

k�lC1
DL.x; x1; : : : ; xk�l/

2 dx dx1 � � � dxk�l :

Now evaluating the remaining integrals, noting that the square yields an integrable
decay, the claim (3.86) follows.

Substep 2:2. Proof of (3.87). Let k � j � 1. Inserting (3.88) into the definition (3.85)
of Aj;k , expanding the square, and separating the different intersection patterns, we
now find

Aj;k .k
j�1X
lD0

L�d

ˆ
.QL/

kClC1
DL.x; x1; : : : ; xk/DL.x; x1; : : : ; xj�l�1; y1; : : : ; yl/

� fkClC1.x; x1; : : : ; xk; y1; : : : ; yl/ dx dx1 � � � dxk dy1 � � � dyl ;

where for notational convenience we define DL.x/ WD 1. This integral can be evalu-
ated exactly as in the proof of (3.86), and the claim (3.87) follows.




