
Chapter 5

Conclusion

In this last chapter, we recall, reformulate, and comment our main findings on the
validity of Einstein’s formula and of higher-order cluster expansions for the effective
viscosity, as obtained in Chapters 2, 3, and 4.

5.1 Cluster expansion of the effective viscosity

We start with the validity of Einstein’s formula and the associated error estimates as
proved in Chapter 2, cf. Theorem 2.1. The three important features of this result are
the generality in terms of probabilistic assumptions (mere qualitative ergodicity under
Assumption (Hunif

� )), the sharpness of the error estimate (5.1), and the possibility for
particles to touch (under Assumption (Hmom

�;� ) or (Hperc
�;� )).

Theorem 5.1 (Einstein’s formula). Under Assumption (H�), provided that Assump-
tion (Hunif

� ), (Hmom
�;� ), or (Hperc

�;� ) holds for some � > 0 and � > 1, we haveˇ̌
xB � .IdCxB1/

ˇ̌
.� �2.P / log

�
2C

�.P /

�2.P /
�
`.P /C 1

�d �
C

´
0 in case of (Hunif

� );

K� �2.P /
1� 1

� �.P /
1
� in case of (Hmom

�;� ) or (Hperc
�;� );

(5.1)

where xB1 satisfies
jxB1j ' �.P /;

and is defined for all E 2 Msym
0 by

E W xB1E WD

X
n

E

�
102In

jInj

ˆ
Rd

ˇ̌
D. ¹nº

E /
ˇ̌2�
;

where  ¹nº
E is the unique decaying solution of the single-particle problem (1.5). In

particular, the estimate jxB � .IdCxB1/j D o.�.P // holds provided the point process
P satisfies �2.P / D o.�.P //.

In order to address the optimality of this estimate, one needs to identify the next
term in the expansion. In Chapters 3 and 4, we have further investigated higher-order
expansions of the effective viscosity in form of cluster expansions. The upcoming
result, which summarizes Theorems 4.1 and 4.3 in Chapter 4, gives the optimal
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order of magnitude of the cluster coefficients and of the remainder. The two impor-
tant features of this result are the generality of the point processes (to be compared
with results in Section 5.2 below) and the sharpness of the estimates. The main
achievement is the explicit understanding of the needed renormalizations to all orders,
solving a problem that was still open in the physics community.

Theorem 5.2 (Cluster expansion in general dilute setting). On top of (H�) and (Hunif
� ),

assume that the inclusion process is ˛-mixing in the sense of (Mix) with algebraic
rate !. Then, for all k � 1, the following holds for the effective viscosity,ˇ̌̌̌

ˇxB � Id�
kX

jD1

1

j Š
xBj
ˇ̌̌̌
ˇ .k

2kC1X
lDkC1

�l.P /
ˇ̌
log�.P /

ˇ̌l�1
;

jxBj j .j �j .P /
ˇ̌
log�.P /

ˇ̌j�1
; for all 1 � j � k;

where the cluster coefficients ¹xBj ºj are defined in (3.13) by means of finite-volume
approximations. If in addition the independence assumption (Indep) holds for par-
ticle shapes, renormalized formulas can be given for cluster coefficients in form of
absolutely convergent multiple integrals, cf. Section 4.4, and the following quantita-
tive convergence result holds for finite-volume approximations ¹xBjLºj : in case of an
algebraic ˛-mixing rate !.t/ � Ct�ˇ for some C; ˇ > 0,

jxBjL � xBj j .j
.logL/j�1

Lˇ^1
:

Note that the bound on xB2 in Theorem 5.2 essentially coincides with the estimate
on the remainder in Theorem 5.1, which contrasts with the results of Lemma 1.2 in the
short-range setting by a logarithmic correction. Optimality of the latter is addressed
in Theorem 4.4, which we presently recall.

Theorem 5.3. About the optimality of estimates on xB2, the following statements hold.
(i) Isotropic setting: On top of Assumptions (H�), (Hunif

� ), and (Indep), assume that
the 2-point correlation function h2.x; y/ WD f2.x; y/� �.P /

2 satisfies the following
decay assumption, ¨

B.x/�B.y/

jh2j � !
�
jx � yj

�
;

with some rate ! satisfying the Dini condition
´1

1
t�1!.t/ dt <1. If in addition the

point process P is statistically isotropic, which entails that the correlation function
is radial, then the following improved estimate holds,

jxB2j . �2.P /:

(ii) Optimality in the general setting: There exists an inclusion process 	 that sat-
isfies Assumptions (H�), (Hunif

� ), (Indep), and (4.5), as well as the local independence
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condition �2.P / ' �.P /2 � 1, such that we have

jxB2j ' �2.P /
ˇ̌
log�2.P /

ˇ̌
:

Based on the explicit renormalization of higher-order cluster coefficients, it ap-
pears that Theorem 5.3 (ii) readily extends to higher orders, demonstrating the opti-
mality of cluster estimates in Theorem 5.2.

To conclude this section, let us apply and confront Theorems 5.1, 5.2, and 5.3 to
some specific families of inclusion processes displaying multi-point intensities with
different scaling laws. We start with the construction.

• Construction of inclusion processes ¹	ˇ;�ºˇ;�: We define a family of point pro-
cesses ¹Pˇ;�ºˇ;� with parameters 0 � ˇ � 1 and 0 < �� 1 as follows. Consider a
hardcore Poisson process P 0 D ¹x0nºn with radius 6 and with intensity �.P 0/ D �,
see e.g. [17, Section 3.4] using Penrose’s graphical construction [57]. Next, indepen-
dently choose a sequence ¹ynºn of iid random points that are uniformly distributed in
B4 n B3, and, given ˇ 2 Œ0; 1�, also independently choose a sequence ¹bn;ˇ ºn of iid
Bernoulli variables with parameter �ˇ D P Œbn;ˇ D 1�. The desired point processes
and spherical inclusion processes are then defined by

Pˇ;� WD P 0
[
®
x0n C yn W bn;ˇ D 1

¯
; 	ˇ;� WD

[
x2Pˇ;�

B.x/:

• Properties of the processes: 	ˇ;� satisfies (H�) and (Hunif
� ) (with � D 1) as well

as (Indep). In addition, the point process Pˇ;� is statistically isotropic and ˛-mixing
with exponential rate uniformly with respect to ˇ; � (e.g. [16, Proposition 1.4 (iii)]
and [17, Proposition 3.5]), so that Theorem 5.2 applies. A direct computation shows
that the multi-point intensities scale as follows,

�.Pˇ;�/ ' �; �2.Pˇ;�/ ' �1Cˇ ; �3.Pˇ;�/ ' �2Cˇ ;

and more generally �2k.Pˇ;�/ 'k �
k.1Cˇ/ and �2kC1.Pˇ;�/ 'k �

1Ck.1Cˇ/. In par-
ticular the minimal local independence condition �3.Pˇ;�/� �2.Pˇ;�/� �.Pˇ;�/

holds for ˇ > 0.
• Second-order cluster expansion: We denote by xBˇ;� the effective viscosity asso-

ciated with 	ˇ;�. Theorem 5.2 implies thatˇ̌̌̌
xBˇ;� �

�
IdCxB1ˇ;� C

1

2
xB2ˇ;�

�ˇ̌̌̌
. �2Cˇ jlog�j2;

where jxB1
ˇ;�

j ' � and jxB2
ˇ;�

j ' �1Cˇ (cf. (2.6) and Theorem 5.3 (i)). In particular,
discarding xB2

ˇ;�
in the above yields the following (completely new) sharp error esti-

mate for Einstein’s formula in this setting: for all 0 � ˇ � 1 and �� 1,ˇ̌
xBˇ;� � .IdCxB1ˇ;�/

ˇ̌
' �1Cˇ ' jxB1ˇ;�j

1Cˇ :
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In this example, Einstein’s formula is thus accurate whenever ˇ > 0, which illustrates
the full range of the condition �2.Pˇ;�/ D o.�.Pˇ;�// in Theorem 5.1.

5.2 Summability of the cluster expansion

Finally, we consider the following two specific one-parameter dilution procedures, for
which our results can be substantially strengthened using the uniform `1 � `2 energy
estimates of Theorem 3.9: more precisely, logarithmic corrections in cluster estimates
can be removed in that case and the full cluster expansion is absolutely converging.

(Dilat) Dilution by geometric dilation: Given a point process P D ¹xnºn and ran-
dom inclusions In D xn C I ın satisfying (H�), we consider the dilated pro-
cess Ps D ¹sxnºn and the corresponding inclusions In;s D sxn C I ın . The
latter has minimal distance `.Ps/ D s`.P / ' s, still satisfies (H�), and fur-
ther satisfies (Hunif

� ) with minimal interparticle distance

inf
n¤m

dist.In;s; Im;s/ � inf
n¤m

jsxn � sxmj � 2 � s`.P / � 2 & s;

provided s � 1. Its multi-point intensities take the form

�j .Ps/ D s�jd�j .P / for all j � 1:

(Delet) Dilution by random deletion: Given a point process P D ¹xnºn and ran-
dom inclusions In D xn C I ın satisfying (H�) and (Hunif

� ), the Bernoulli dele-
tion scheme consists in keeping each inclusion only with given probabil-
ity p 2 Œ0; 1�. More precisely, we attach to the inclusions iid Bernoulli vari-
ables ¹b.p/n ºn, independent of P ;	 , with parameter

p D P
�
b.p/n D 1

�
;

and we define the corresponding decimated process

P .p/
WD ¹xnºn2N .p/ ; 	 .p/ WD

[
n2N .p/

In; N .p/
WD ¹n W b.p/n D 1º:

This decimated process still satisfies (H�) and (Hunif
� ), and its multi-point

intensities are given by

�j .P
.p// D pj�j .P / for all j � 1:

In these one-parameter settings, dilute expansions of the effective viscosity amount
to expansions with respect to the dilution parameters s�1 or p. Given a random set
of particles 	 D

S
n In centered at the points of P D ¹xnºn, we shall consider both
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dilution procedures at once, defining the dilated decimated process

P .p/
s WD ¹xn;sºn2N .p/ ; 	 .p/s WD

[
n2N .p/

In;s; xn;s WD sxn; In;s WD xn;s C I ın :

As a consequence of Theorem 3.2, together with (3.78) and (3.79) in Section 3.7, we
obtain the following summability result and estimates for the cluster expansion of the
effective viscosity xB.p/s associated with 	

.p/
s . In particular, it shows that the scaling of

cluster coefficients coincides in this case with that of Lemma 1.2 for the short-range
setting: indeed, we have

jxB.p/;js j D pj jxBjs j .j .ps�d /j ' �j .P
.p/
s /:

We emphasize that no mixing assumption is required here.

Theorem 5.4 (Cluster expansion for one-parameter dilution procedures). Under (H�)
and (Hunif

� ), for the specific dilution models (Dilat) and (Delet) above, with dilation
parameter s and Bernoulli parameter p, the cluster expansion of the effective vis-
cosity is uniformly summable in the following sense: there exists a constant C (only
depending on d; �) such that for all 0 � ps�d < 1

C
the effective viscosity satisfies

xB.p/s D IdC
1X
jD1

pj

j Š
xBjs ; jxBjs j � j Š .C s�d /j for all j � 1; (5.2)

where the cluster coefficients ¹xBjs ºj are defined in (3.13) by means of finite-volume
approximations.

Remarks 5.5. We comment on the analyticity of the effective viscosity with respect
to dilution parameters.

(a) In case of the random deletion model (Delet), the expansion (5.2) yields the
local analyticity of p 7! xB.p/ at p D 0. Local analyticity can, in fact, be established
on the whole interval 0 � p � 1; the reader is referred to [15] for a similar result in
the scalar setting.

(b) In case of the dilation model (Dilat), the expansion (5.2) does not yield the
analyticity of the map s�d 7! xBs since the rescaled coefficients ¹sdj xBjs ºj also depend
on s. By means of multipole expansions, the maps

s�1 7! sdj xBjs

can be checked to be analytic themselves, as well as s�1 7! xBs . For a more direct
approach to expansions in s�1, we refer to the recent work [59] in the scalar setting;
see also [9].

To illustrate Remark 5.5 (b), we display the first term of the monopole expan-
sion for the second-order coefficient xB2s . In particular, as is natural, we note that xB2s
can be expressed to leading order in terms of the single-particle problem only, and
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it coincides with the formula obtained in [27, Proposition 5.6] in case of spherical
inclusions.

Proposition 5.6 (Leading order of monopole expansion). On top of (H�) and (Hunif
� ),

assume that particles have independent shapes, cf. (Indep), and that the two-point
correlation function h2 D f2 � �.P /

2 satisfies the decay assumption
¨
B.x/�B.y/

jh2j � !
�
jx � yj

�
;

with some rate ! satisfying the Dini condition
´1

1
t�1!.t/ dt < 1. Consider the

dilated process Ps , cf. (Dilat), and the associated second-order cluster coefficient xB2s
defined in Theorem 5.4. Then, we haveˇ̌

xB2s � s
�2d xB2;1

ˇ̌
. s�2d�1;

and the leading-order contribution xB2;1 is given by the following reduced formula,

E W xB2;1E D .2yB1E/ W
�

p: v:
ˆ

Rd

G .z/ h2.0; z/ dz

�
.2yB1E/;

where yB1E is defined in (2.6), where the notation p: v: stands for the principal value,
and where the 4-tensor field G is given by M W G .z/M D MjkMlmr

2
km
Gjl.z/ in

terms of the standard Stokeslet

G.z/ D
jzj2�d

2.d � 2/j@Bj

�
IdC.d � 2/

z ˝ z

jzj2

�
:

In case of spherical particles, In D B.xn/, we thus have

E W xB2;1E D .d C 2/2jBj p: v:
ˆ

Rd

�
d C 2

2

.z �Ez/2

jzjdC4
�

jEzj2

jzjdC2

�
h2.0; z/ dz:

Proof. Starting from the renormalized formula (4.21) in Proposition 4.9, repeating
the proof of (4.80) to decompose the first contribution, and using (4.25) to estimate
the second one, we are led toˇ̌̌̌

E W xB2sE � .2yB1E/lj .2yB1E/ki
�

p: v:
ˆ

Rd

r
2
ijGkl.z/h2.0; z/ dz

�ˇ̌̌̌
.
ˆ

Rd

hzi�d�1
ˇ̌
h2;s.0; z/

ˇ̌
dz C

ˆ
Rd

hzi�2df2;s.0; z/ dz:

Using that the two-point density and the correlation for the dilated process Ps take
the form

f2;s.0; z/ D s�2df2.0; s
�1z/; h2;s.0; z/ D s�2dh2.0; s

�1z/;
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and changing variables, the conclusion follows by scaling. In case of spherical par-
ticles, we appeal to the proof of Proposition 2.2 for the explicit computation of
yB1E.

Finally, we revisit a recent result by Gérard-Varet [26] that displays to second
order similar estimates as for the random deletion procedure, cf. (5.2), but only as-
suming some specific structure of the multi-point densities up to order 5, thus con-
trasting with Theorem 5.4. As a corollary of Proposition 4.11, we establish the follow-
ing result, which constitutes an extension of [26] to higher orders with new, optimal
error bounds. Note indeed that for k D 2 the result (5.3) below yields an error bound
O.p3/, which improves on the bound O.p

5
2 / obtained in [26].

Corollary 5.7. Let P satisfy Assumptions (H�) and (Hunif
� ), and let 	 satisfy the

independence assumption (Indep). Given k � 2, assume that there exists 0 < p � 1

such that the multi-point density functions of P can be written as

fj D pjf ı
j for all 1 � j � 2k C 1;

for some functions .f ı
j /1�j�2kC1. Further, define functions .hıj /1�j�2kC1 through

the correlation/density relation (4.8) starting from .f ı
j /1�j�2kC1 and assume that

they satisfy (Mixn!) to order n D 2k C 1 with algebraic rate !. Then, we haveˇ̌̌̌
ˇxB � Id�

kX
jD1

1

j Š
xBj
ˇ̌̌̌
ˇ .k pkC1; jxBj j .j pj for all 1 � j � k: (5.3)

where the multiplicative constants are independent of p.

Proof. The assumption fj D pjf ı
j entails hj D pjhıj , where hıj is assumed to sat-

isfy (Mixn!). Further, writing .f ı
j /j in terms of .hıj /j by means of (4.7), the assump-

tion (Mixn!) for the latter yields

�ıj WD sup
z1;:::;zj

 
Q.z1/�����Q.zj /

f ı
j .j 1;

where the bound only depends on j , !, and on the constant function f ı
1 . In this

setting, the bounds of Proposition 4.11 (i)–(iii) now take the form

jxBj j . pj x�ıj jlog�ıjj�1;

jRkC1j .
2kC1X
jDk

pjC1x�ıjC1jlog�ıjj . pkC1;

and the conclusion readily follows.




