
Appendix A

Stokeslet estimates with rigid inclusions

This appendix is dedicated to the proof of several estimates on the behavior of the
fluid velocity generated by a localized force dipole in the presence of a finite number
of rigid inclusions. In other words, it concerns the Stokeslet for the Stokes problem
with rigid inclusions, and we shall prove in particular Lemmas 3.10, 4.7, and 4.8.

A.1 Main results

For convenience, we start by recalling the notation of Section 4.3.2. Given a set Y �

QL of “background” positions with

dist
�
B.y/; B.y0/

�
> 2�; dist

�
B.y/; @QL

�
> �; for all y; y0

2 Y; y ¤ y0; (A.1)

we denote by  YL 2H 1
per.QL/

d the solution of the following periodic corrector prob-
lem, using the shorthand notation �YL WD �. YL CEx;†YL /,8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�4 YL Cr†YL D 0; in QL n
S
y2Y B.y/;

div. YL / D 0; in QL n
S
y2Y B.y/;

D. YL CEx/ D 0; in
S
y2Y B.y/;´

@B.y/
�YL � D 0; 8y 2 Y;´

@B.y/
‚.x � y/ � �YL � D 0; 8‚ 2 Mskew; 8y 2 Y:

Next, we turn to elementary single-particle contributions ¹JzLIYºz;Y : Given a “tagged”
position z 2QL, given .�;P / 2H 1.B1C�.z//

d � L2.B1C�.z/ nB.z// satisfying the
following Stokes equations in a neighborhood of B.z/,8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�4� CrP D 0; in B1C�.z/ n B.z/;

div.�/ D 0; in B1C�.z/ n B.z/;

D.�/ D 0; in B.z/;´
@B.z/

�.�; P /� D 0;´
@B.z/

‚.x � z/ � �.�; P /� D 0; 8‚ 2 Mskew;

(A.2)

and given a finite subset Y � QL of “background” positions satisfying (A.1), we
define JzLIY � 2H

1
per.QL/

d as the solution of the following Stokes problem with force
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dipole localized around z and rigid inclusions around points of Y ,8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�4JzLIY � CrQz
LIY � D �ı@BL.z/�.�; P /�; in QL n

S
y2Y B.y/;

div.JzLIY �/ D 0; in QL n
S
y2Y B.y/;

D.JzLIY �/ D 0; in
S
y2Y nY z B.y/;´

@B.y/
�.JzLIY �;Q

z
LIY �/� D 0; 8y 2 Y n Yz;´

@B.y/
‚.x � y/ � �.JzLIY �;Q

z
LIY �/� D 0; 8‚ 2 Mskew; 8y 2 Y n Yz;

JzLIY � D Vz C‚z.x � z/; in
S
y2Yz

B.y/,

for some Vz 2 Rd ; ‚z 2 Mskew;P
y2Yz

´
@B.y/

�.JzLIY �;Q
z
LIY �/�

D
P
y2Yz

´
B.y/\@BL.z/

�.�; P /�;P
y2Yz

´
@B.y/

‚.x � z/ � �.JzLIY �;Q
z
LIY �/�

D
P
y2Yz

´
B.y/\@BL.z/

‚.x � z/ � �.�; P /�; 8‚ 2 Mskew;

(A.3)
where we recall thatBL.z/D .B.z/CLZd /\QL stands for the periodization of the
ball B.z/ inQL, where we have set Yz WD ¹y 2 Y W B.y/\BL.z/ ¤ ¿º, and where
we have implicitly extended .�; P / periodically to B1C�.z/ C LZd . The solution
JzLIY � is only defined up to a rigid motion in QL, which we fix by further choosing

ˆ
QL

JzLIY � D 0;

ˆ
QL

rJzLIY � 2 Msym
0 :

Note that JzLIY � depends of course on the pair .�; P /, not only on �, but we leave the
pressure field implicit in the notation for convenience. We refer to Section 4.3.2 for
motivation of the above equations (A.3), and we recall that it reduces to the following
simpler equations when ¹zº [ Y satisfies (A.1) (meaning that z neither gets close to
background positions Y nor to the cell boundary @QL),8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�4JzLIY � CrQz
LIY � D �ı@B.z/�.�; P /�; in QL n

S
y2Y B.y/;

div.JzLIY �/ D 0; in QL n
S
y2Y B.y/;

D.JzLIY �/ D 0; in
S
y2Y B.y/;´

@B.y/
�.JzLIY �;Q

z
LIY �/� D 0; 8y 2 Y;´

@B.y/
‚.x � y/ � �.JzLIY �;Q

z
LIY �/� D 0; 8‚ 2 Mskew; 8y 2 Y:

(A.4)

We further define
JzL� WD JzLI¿�;
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for which the Stokes problem (A.3) reduces to

�4JzL� CrQz
L� D �ı@BL.z/�.�; P /�; div.JzL�/ D 0; in QL; (A.5)

and we define JzY �, Jz� as the corresponding operators on whole space, that is, with
BL.z/ and QL replaced by B.z/ and Rd , respectively, in (A.3) and (A.5).

With the above notation, we start by recalling the statement of Lemma 4.7 regard-
ing the optimal decay properties of the Stokeslets ¹JzLIY ºz;Y . Note that Lemma 3.10
is a particular case of this result, using notation (4.15), when ¹zº [ Y satisfies (A.1).
The proof is displayed in Section A.2.

Lemma A.1 (Decay of Stokeslets with rigid inclusions). Let z 2 Rd , let .�; P / sat-
isfy (A.2) at z, and let Y � QL satisfy (A.1). Then, we have for all x 2 QL,�ˆ

BL.x/

ˇ̌
D.JzLIY �/

ˇ̌2� 1
2

.]Y h.x � z/Li
�d

�ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2� 1
2

; (A.6)� ˆ
B.x/

ˇ̌
D.JzY �/

ˇ̌2� 1
2

.]Y hx � zi�d
� ˆ

B1C�.z/

ˇ̌
D.�/

ˇ̌2� 1
2

:

A similar argument leads us to the following version of the mean-value property
for Stokes equations in the presence of a finite number of rigid inclusions. The proof
is displayed in Section A.3.

Lemma A.2 (Mean-value property with rigid inclusions). Let Y � QL satisfy (A.1)
and let w 2 H 1.QL/

d satisfy the following free steady Stokes equations in QL,8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�4w CrP D 0; in QL n
S
y2Y B.y/;

div.w/ D 0; in QL n
S
y2Y B.y/;

D.w/ D 0; in
S
y2Y B.y/;´

@B.y/
�.w;P /� D 0; 8y 2 Y;´

@B.y/
‚.x � y/ � �.w;P /� D 0; 8y 2 Y; 8‚ 2 Mskew:

(A.7)

Then, we have for all B.x/ � QL,
ˆ
BL.x/

ˇ̌
D.w/

ˇ̌2 .]Y
˝
dist.x; @QL/

˛�d ˆ
QL

ˇ̌
D.w/

ˇ̌2
: (A.8)

Finally, we recall the statement of Lemma 4.8 regarding the error JzLIY � JzY
between periodized and whole-space Stokeslets. The proof makes heavy use of the
above mean-value property and is displayed in Section A.4. The stated bounds are not
optimal: finer estimates are given in the proof, but this simplified statement is good
enough for our purposes.
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Lemma A.3 (Periodization error). Let z 2 QL, let .�; P / satisfy (A.2) at z, and
let Y � QL be a finite subset such that ¹zº [ Y satisfies (A.1). Then, we have for
all x 2 QL� ˆ

BL
1C�

.x/

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2� 1
2

.]Y
� ˆ

B1C�.z/

ˇ̌
D.�/

ˇ̌2� 1
2

�
�
1
jx�zj>L

4

˝
.x � z/L

˛�d
C 1

jx�zj�L
4

˝
dist.Y n ¹x; zº; @QL/

˛�d �
; (A.9)

where we recall the notation dist.¿; @QL/D L and BLr .z/D .Br.z/CLZd /\QL.
In addition, � ˆ

BL
1C�

.x/

ˇ̌
D. YL �  Y /

ˇ̌2� 1
2

.]Y
�˝

dist.x; @QL/
˛
C
˝
dist

�
Y n ¹xº; @QL

�˛��d
: (A.10)

In the above three lemmas, the multiplicative constants in the estimates crucially
depend on the finite number of rigid particles: in Lemma A.1, for instance, a quick
inspection of the proof shows that the multiplicative constant can be bounded by
C ]Y .]Y /Š3=2. Although these deterministic results fail in general for an unbounded
number of rigid inclusions, we refer the reader to [19] where corresponding results
are proved to hold in a suitable annealed sense in case of a stationary and ergodic
random ensemble of rigid inclusions.

A.2 Decay of Stokeslets with rigid inclusions

This section is devoted to the proof of Lemma A.1 (hence of Lemmas 3.10 and 4.7).
We argue by comparing JzLIY � to JzLIYz

� (recall Yz D ¹y 2 Y WB.y/\BL.z/¤ ¿º),
which is a variant of the solution JzL� of the corresponding problem without rigid
inclusions. Equation (A.3) for JzLIYz

� reads8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

�4JzLIYz
� CrQz

LIYz
� D �ı@BL.z/�.�; P /�; in QL n

S
y2Yz

B.y/;

div.JzLIYz
�/ D 0; in QL n

S
y2Yz

B.y/;

JzLIYz
� D Vz C‚z.x � z/; in

S
y2Yz

B.y/

for some Vz 2 Rd ; ‚z 2 Mskew;P
y2Yz

´
@B.y/

�.JzLIYz
�;Qz

LIYz
�/�

D
P
y2Yz

´
B.y/\@BL.z/

�.�; P /�;P
y2Yz

´
@B.y/

‚.x � z/ � �.JzLIYz
�;Qz

LIYz
�/�

D
P
y2Yz

´
B.y/\@BL.z/

‚.x � z/ � �.�; P /�; 8‚ 2 Mskew:

(A.11)
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We split the proof into three steps: we first apply elliptic regularity to unravel the
decay properties of JzLIYz

�, and then estimate the difference JzLIY � � JzLIYz
� in the

last two steps. Let z 2 QL, let � satisfy (A.2) at z, and let Y � QL satisfy (A.1).

Step 1. Proof that for all x 2 QL,� ˆ
BL.x/

ˇ̌
D.JzLIYz

�/
ˇ̌2� 1

2

.
˝
.x � z/L

˛�d� ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2� 1
2

: (A.12)

The argument is based on elliptic regularity via a duality argument, in a form that
is similar to the proof of Theorem 3.9 in Section 3.5.2. By an energy estimate for
JzLIYz

�, the claim (A.12) is trivial ifˇ̌
.x � z/L

ˇ̌
. 1;

and we shall focus on the case when

r WD
1

2

ˇ̌
.x � z/L

ˇ̌
> 2.1C �/: (A.13)

By definition (A.11), we then note that JzLIYz
� satisfies the free steady Stokes equa-

tion in BLr .x/ D .Br.x/CLZd /\QL, which is the periodization of the ball Br.x/
in QL. Elliptic regularity in form of Lemma 2.6 then yields

ˆ
BL.x/

ˇ̌
D.JzLIYz

�/
ˇ̌2 . r�d

ˆ
BL

r .x/

ˇ̌
D.JzLIYz

�/
ˇ̌2
: (A.14)

Next, by duality, the right-hand side can be written as
ˆ
BL

r .x/

ˇ̌
D.JnLIYz

�/
ˇ̌2

D sup
²�ˆ

QL

h W D.JzLIYz
�/

�2
W h 2 L2.QL/d�dsym ;

khkL2.QL/
D 1; supp h � BLr .x/

³
: (A.15)

Given a test function h 2 L2.QL/d�dsym with supp h � BLr .x/, let wLIh 2 H 1
per.QL/

d

be the solution of the auxiliary Stokes problem8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�4wLIh CrQLIh D div.h/; in QL n
S
y2Yz

B.y/;

div.wLIh/ D 0; in QL n
S
y2Yz

B.y/;

wLIh D Vz C‚z.x � z/; in
S
y2Yz

B.y/;

for some Vz 2 Rd ; ‚z 2 Mskew,P
y2Yz

´
@B.y/

�.wLIh;QLIh/� D 0;P
y2Yz

´
@B.y/

‚.x � z/ � �.wLIh;QLIh/�D0; 8‚ 2 Mskew:

(A.16)
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These equations are indeed well posed since by (A.13) the support BLr .x/ of the
force term h does not intersect the rigid inclusions

S
y2Yz

B.y/. By Lemma 3.3,
wLIh satisfies the following relation in QL,

�4wLIhCr
�
1QLn

S
y2Yz

B.y/QLIh
�
D div.h/�

X
y2Yz

ı@B.y/�.wLIh;QLIh/�: (A.17)

Similarly, the defining equation (A.11) for JzLIYz
� yields in QL,

�4JzLIYz
� Cr

�
1QLn

S
y2Yz

B.y/Q
z
LIYz

�
D �1QLn

S
y2Yz

B.y/ı@BL.z/�.�; P /� �
X
y2Yz

ı@B.y/�.J
z
LIYz

�;Qz
LIYz

�/�: (A.18)

Testing (A.17) with JzLIYz
� and (A.18) with wLIh, we are led to

ˆ
QL

h W D.JzLIYz
�/ D

ˆ
@BL.z/n

S
y2Yz

B.y/

wLIh � �.�; P /�

C

X
y2Yz

ˆ
@B.y/

wLIh � �.J
z
LIYz

�;Qz
LIYz

�/�

C

X
y2Yz

ˆ
@B.y/

JzLIYz
� � �.wLIh;QLIh/�;

and thus, using the boundary conditions in (A.11) and (A.16),ˆ
QL

h W D.JzLIYz
�/ D

ˆ
@BL.z/

wLIh � �.�; P /�:

Recalling that .�; P / satisfies (A.2) and is implicitly extended by QL-periodicity,
using the boundary conditions and the incompressibility constraints to smuggle in
arbitrary constants in the different factors, as in the proof of (3.30), and appealing to
the trace estimates of Lemma 2.5, we find�ˆ

QL

h W D.JzLIYz
�/

�2
.
�ˆ

BL.z/

ˇ̌
D.wLIh/

ˇ̌2��ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2�
: (A.19)

As equation (A.16) entails that wLIh satisfies the free steady Stokes equation in
BLr .z/, elliptic regularity in form of Lemma 2.6 yieldsˆ

BL.z/

ˇ̌
D.wLIh/

ˇ̌2 . r�d
ˆ
QL

ˇ̌
D.wLIh/

ˇ̌2
;

and thus, combining this with an energy estimate for (A.16),ˆ
BL.z/

ˇ̌
D.wLIh/

ˇ̌2 . r�d
ˆ
QL

jhj2:

Combining this with (A.14), (A.15), and (A.19), the claim (A.12) follows.
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Step 2. Proof that for all x 2 QL,ˆ
BL.x/

ˇ̌
D.JzLIY �/

ˇ̌2
.
� X
y2¹xº[.Y nYz/

˝
.y � z/L

˛�2d�ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2
: (A.20)

In view of Lemma 3.3, the defining equation (A.3) for JzLIY � yields in QL,

�4JzLIY � Cr
�
1QLn

S
y2Y B.y/

Qz
LIY

�
D �1QLn

S
y2Yz

B.y/ı@BL.z/�.�; P /� �
X
y2Y

ı@B.y/�.J
z
LIY �;Q

z
LIY �/�:

Subtracting (A.18) entails in QL

�4.JzLIY � � JzLIYz
�/Cr

�
1QLn

S
y2Y B.y/

Qz
LIY � 1QLn

S
y2Yz

B.y/Q
z
LIYz

�
D �

X
y2Y nYz

ı@B.y/�.J
z
LIY �;Q

z
LIY �/�

�

X
y2Yz

ı@B.y/
�
�.JzLIY �;Q

z
LIY �/� � �.J

z
LIYz

�;Qz
LIYz

�/�
�
: (A.21)

Testing this equation with JzLIY � � JzLIYz
� itself, and using the boundary conditions

in (A.3) and (A.11), we obtain the energy identity

2

ˆ
QL

ˇ̌
D.JzLIY � � JzLIYz

�/
ˇ̌2

D

X
y2Y nYz

ˆ
@B.y/

JzLIYz
� � �.JzLIY �;Q

z
LIY �/�:

Further, using the boundary conditions and the incompressibility constraints to smug-
gle in arbitrary constants in the different factors, as in the proof of (3.30), and appeal-
ing to the trace estimates of Lemma 2.5, we deduceˆ

QL

ˇ̌
D.JzLIY � � JzLIYz

�/
ˇ̌2

.
X

y2Y nYz

�ˆ
B.y/

ˇ̌
D.JzLIYz

�/
ˇ̌2� 1

2
�ˆ

B1C�.y/

ˇ̌
D.JzLIY �/

ˇ̌2� 1
2

:

Decomposing JzLIY � D .JzLIY � � JzLIYz
�/C JzLIYz

� in the last factor, using the tri-
angle inequality and Young’s inequality, we are led toˆ

QL

ˇ̌
D.JzLIY � � JzLIYz

�/
ˇ̌2 .

X
y2Y nYz

ˆ
B1C�.y/

ˇ̌
D.JzLIYz

�/
ˇ̌2
:
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The triangle inequality then yields for all x 2 QL,ˆ
BL.x/

ˇ̌
D.JzLIY �/

ˇ̌2 .
ˆ
BL.x/

ˇ̌
D.JzLIYz

�/
ˇ̌2

C

ˆ
QL

ˇ̌
D.JzLIY � � JzLIYz

�/
ˇ̌2

.
ˆ
BL.x/

ˇ̌
D.JzLIYz

�/
ˇ̌2

C

X
y2Y nYz

ˆ
B1C�.y/

ˇ̌
D.JzLIYz

�/
ˇ̌2
;

which yields the claim (A.20) in combination with (A.12).

Step 3. Conclusion. We argue by induction on the cardinality of Y n Yz for (A.6). If
].Y n Yz/ D 0, that is, if Y D Yz , the conclusion (A.6) already follows from (A.12).
Given n � 1, we assume that (A.6) holds whenever ].Y n Yz/ < n, and we shall show
that it also holds when ].Y n Yz/D n. Let Y �QL be fixed with ].Y n Yz/D n. For
any S � Y n Yz , the same argument as for (A.21) yields in QL n

S
y2S B.y/

�4.JzLIY � � JzLIYz[S
�/Cr

�
1QLn

S
y2Y B.y/

Qz
LIY � 1QLn

S
y2Yz[S B.y/

Qz
LIYz[S

�
D �

X
y2Y n.Yz[S/

ı@B.y/�.J
z
LIY �;Q

z
LIY �/�

�

X
y2Yz

ı@B.y/�
�
JzLIY � � JzLIYz[S

�;Qz
LIY � � Qz

LIYz[S
�
�
�:

As JzLIY � � JzLIYz[S
� is further rigid in

S
y2S B.y/, this implies, by definition of

¹J
y
LISºy ,

JzLIY � � JzLIYz[S
� D

X
y2Y n.Yz[S/

J
y
LISJzLIY � C

X
y2Yz

J
y
LIS .J

z
LIY � � JzLIYz[S

�/;

which we may further decompose as

JzLIY � � JzLIYz[S
� D

X
y2Y n.Yz[S/

J
y
LIS .J

z
LIY � � JzLIYz[S[¹yº�/

C

X
y2Y n.Yz[S/

J
y
LISJzLIYz[S[¹yº�C

X
y2Yz

J
y
LIS .J

z
LIY ��JzLIYz[S

�/:

Iterating this identity, we find

JzLIY � � JzLIYz
�

D

nX
lD1

¤X
y1;:::;yl2Y nYz

J
y1

L J
y2

LI¹y1º
� � �J

yl

LI¹y1;:::;yl�1º
JzLIYz[¹y1;:::;yl º

�

C

nX
lD1

¤X
y1;:::;yl�12Y nYz

X
y2Yz

J
y1

L J
y2

LI¹y1º
� � �J

yl�1

LI¹y1;:::;yl�2º
J
y

LI¹y1;:::;yl�1º

�
�
JzLIY � � JzLIYz[¹y1;:::;yl�1º

�
�
:
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We now appeal to the induction hypothesis in form of (A.6) for the terms J
y

LI¹y1;:::;yj º

and Jz
LIYz[¹y1;:::;yj º

for all 1 � j < n and y 2 Y , to the suboptimal decay estimate
(A.20) for Jz

LIYz[¹y1;:::;ynº
(which only appears in the first right-hand sum when

l D n). Recalling that ˇ̌
.y � z/L

ˇ̌
� 2 for all y 2 Yz;

this yields for all x 2 QL, after straightforward simplifications,� ˆ
BL.x/

ˇ̌
D.JzLIY � � JzLIYz

�/
ˇ̌2� 1

2

.n
� ˆ

B1C�.z/

ˇ̌
D.�/

ˇ̌2� 1
2

�

nX
lD0

¤X
y1;:::;yl2Y nYz

˝
.x � y1/L

˛�d ˝
.y1 � y2/L

˛�d
� � �
˝
.yl � z/L

˛�d
:

The conclusion (A.6) now follows from the bound˝
.a � b/L

˛�d ˝
.b � c/L

˛�d .
˝
.a � c/L

˛�d
for all a; b; c 2 QL.

A.3 Mean-value property with rigid inclusions

This section is devoted to the proof of Lemma A.2. We split the proof into two steps.
Let Y �QL satisfy (A.1) and let .w;P / 2H 1.QL/

d � L2.QL/ satisfy (A.7) inQL.

Step 1. Proof that for all x 2 QL,ˆ
BL.x/

ˇ̌
D.w/

ˇ̌2 .]Y
� X
y2¹xº[Y

˝
dist.y; @QL/

˛�d�ˆ
QL

ˇ̌
D.w/

ˇ̌2
: (A.22)

For that purpose, we shall compare w to the solution

Qw 2 w CH 1
per.QL/

d

of the free steady Stokes equations without rigid particles in QL,

�4 Qw Cr zP D 0; div. Qw/ D 0; in QL: (A.23)

In view of Lemma 3.3, the equations (A.7) for w yield the following relation in QL,

�4w Cr.1QLn
S

y2Y B.y/
P / D �

X
y2Y

ı@B.y/�.w;P /�:
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Subtracting (A.23), we deduce that the difference w � Qw 2 H 1
per.QL/ satisfies

�4.w � Qw/Cr
�
1QLn

S
y2Y B.y/

P � zP
�
D �

X
y2Y

ı@B.y/�.w;P /�: (A.24)

Testing this equation with w � Qw and using the boundary conditions in (A.7), we
obtain the energy identity

2

ˆ
QL

ˇ̌
D.w � Qw/

ˇ̌2
D

X
y2Y

ˆ
@B.y/

Qw � �.w;Q/�:

Further, using the boundary conditions and the incompressibility constraints to smug-
gle in arbitrary constants in the different factors, as in the proof of (3.30), and appeal-
ing to the trace estimates of Lemma 2.5, we get

ˆ
QL

ˇ̌
D.w � Qw/

ˇ̌2 .
X
y2Y

�ˆ
B.y/

ˇ̌
D. Qw/

ˇ̌2� 1
2
� ˆ

B1C�.y/

ˇ̌
D.w/

ˇ̌2� 1
2

: (A.25)

Decomposing
w D .w � Qw/C Qw

in the last factor, using the triangle inequality and Young’s inequality, we are led toˆ
QL

ˇ̌
D.w � Qw/

ˇ̌2 .
X
y2Y

ˆ
B1C�.y/

ˇ̌
D. Qw/

ˇ̌2
:

and thus, by the triangle inequality, for all x 2 QL,ˆ
BL.x/

ˇ̌
D.w/

ˇ̌2 .
ˆ
BL.x/

ˇ̌
D. Qw/

ˇ̌2
C

X
y2Y

ˆ
B1C�.y/

ˇ̌
D. Qw/

ˇ̌2
: (A.26)

Rather decomposing Qw D w � .w � Qw/, we note that (A.25) also yields the energy
estimate ˆ

QL

ˇ̌
D. Qw/

ˇ̌2 .
ˆ
QL

ˇ̌
D.w/

ˇ̌2
: (A.27)

As Qw satisfies the free steady Stokes equations in QL, cf. (A.23), the mean-value
property of Lemma 2.6 yields for all x 2 QL,ˆ

BL.x/

ˇ̌
D. Qw/

ˇ̌2 .
˝
dist.x; @QL/

˛�d ˆ
QL

ˇ̌
D. Qw/

ˇ̌2
;

and thus, combined with (A.27),ˆ
BL.x/

ˇ̌
D. Qw/

ˇ̌2 .
˝
dist.x; @QL/

˛�d ˆ
QL

ˇ̌
D.w/

ˇ̌2
: (A.28)

Inserting this into (A.26), the claim (A.22) follows.
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Step 2. Conclusion. Given S � Y , we denote by

wS 2 w CH 1
per.QL/

d

the solution of the free steady Stokes problem with rigid inclusions at points of S
only, 8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�4wS CrPS D 0; in QL n
S
y2S B.y/;

div.wS / D 0; in QL n
S
y2S B.y/;

D.wS / D 0; in
S
y2S B.y/;´

@B.y/
�.wS ; PS /� D 0; 8y 2 S;´

@B.y/
‚.x � y/ � �.wS ; PS /� D 0; 8y 2 S; 8‚ 2 Mskew:

In particular, we recoverwY Dw andw¿ D Qw as defined in (A.23). The result (A.22)
of Step 1 yields in this case, for all x 2 QL,

ˆ
BL.x/

ˇ̌
D.wS /

ˇ̌2 .]S
� X
y2¹xº[S

˝
dist.y; @QL/

˛�d�ˆ
QL

ˇ̌
D.wS /

ˇ̌2
:

Noting that a similar argument to the case of (A.27) further yields the energy estimate
ˆ
QL

ˇ̌
D.wS /

ˇ̌2 .
ˆ
QL

ˇ̌
D.w/

ˇ̌2
;

we deduce for all x 2 QL,
ˆ
BL.x/

ˇ̌
D.wS /

ˇ̌2 .]S
� X
y2¹xº[S

˝
dist.y; @QL/

˛�d�ˆ
QL

ˇ̌
D.w/

ˇ̌2
: (A.29)

We shall now decompose w in terms of this sequence .wS /S�Y . Arguing as for
(A.24), we note that for any S � Y the following relation holds inQL n

S
y2S B.y/,

�4.w � wS /Cr.P � PS / D �

X
y2Y nS

ı@B.y/�.w;P /�:

As w � wS is rigid in
S
y2S B.y/, this allows us to decompose

w � wS D

X
y2Y nS

J
y
LISw;

and thus, iterating this identity and starting with w¿ D Qw,

w D Qw C

]YX
lD1

¤X
y1;:::;yl2Y

J
y1

L J
y2

LI¹y1º
� � �J

yl

LI¹y1;:::;yl�1º
w¹y1;:::;yl º

:
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Appealing to the decay estimates for ¹JyLISºy;S in Lemma A.1, and to (A.28) and
(A.29), we get after straightforward simplifications, for all x 2 QL,
ˆ
BL.x/

ˇ̌
D.w/

ˇ̌2 .]Y
ˆ
QL

ˇ̌
D.w/

ˇ̌2
�

]YX
lD0

¤X
y1;:::;yl2Y

˝
.x�y1/L

˛�2d ˝
.y1�y2/L

˛�2d
� � �
˝
.yl�1�yl/L

˛�2d ˝dist.yl ; @QL/
˛�d
:

Using that h.a� b/Li�d h.b � c/Li�d . h.a� c/Li
�d for all a;b; c 2QL, and noting

that the infimum over c 2 @QL further yields˝
.a � b/L

˛�d ˝dist.b; @QL/
˛�d .

˝
dist.a; @QL/

˛�d
;

the conclusion (A.8) follows.

A.4 Periodization errors

This section is devoted to the proof of Lemma A.3. We split the proof into three
steps. Let z 2 QL, let � satisfy (A.2) at z, and let Y � QL be such that ¹zº [ Y
satisfies (A.1).

Step 1. Proof that for all x 2 QL,
ˆ
BL

1C�
.x/

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2 .]Y
ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2
� min

®˝
.x � z/L

˛�2d
^
�˝

dist
�
x; @QL.a/

�˛�d ˝dist
�
z; @QL.a/

�˛�d �
W

a 2 Rd ; x; z 2 QL.a/; Y � QL.a/
¯
: (A.30)

It suffices to prove this estimate for a D 0, that is,
ˆ
BL

1C�
.x/

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2 .]Y
ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2
�
�˝
.x � z/L

˛�2d
^
�˝

dist.x; @QL/
˛�d ˝dist.z; @QL/

˛�d ��
;

as the claim (A.30) then follows by translating the underlying cell QL, which does
indeed not change the equations provided that the translated cell still contains the
relevant points x; z; Y . Further, noting that Lemma A.1 together with the triangle
inequality yields

ˆ
BL

1C�
.x/

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2 .]Y
˝
.x � z/L

˛�2d ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2
;
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it only remains to prove for all x 2 QL,
ˆ
BL

1C�
.x/

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2
.]Y

˝
dist.x; @QL/

˛�d ˝dist.z; @QL/
˛�d ˆ

B1C�.z/

ˇ̌
D.�/

ˇ̌2
: (A.31)

As ¹zº [ Y satisfies (A.1), we recall that JzLIY � satisfies the simpler Stokes prob-
lem (A.4) (and likewise for JzY �). The difference JzLIY � � JzY � then satisfies the free
steady Stokes equations (A.7). Applying the mean-value property of Lemma A.2 to
this equation, we get for all x 2 QL,

ˆ
BL

1C�
.x/

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2
.]Y

˝
dist.x; @QL/

˛�d ˆ
QL

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2
: (A.32)

In order to estimate the last integral, taking some inspiration from the proof of (2.33),
we note that it is convenient to further compare JzLIY � and JzY � to the solution of the
corresponding Neumann problem in QL: we define

JzN IY � 2 H
1.QL/

d

as the solution of8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�4JzN IY � CrQz
N IY � D �ı@BL.z/�.�; P /�; in QL n

S
y2Y B.y/;

div.JzN IY �/ D 0; in QL n
S
y2Y B.y/;

�.JzN IY �;Q
z
N IY �/� D 0; on @QL;

D.JzN IY �/ D 0; in
S
y2Y B.y/;´

@B.y/
�.JzN IY �;Q

z
N IY �/� D 0; 8y 2 Y;´

@B.y/
‚.x � y/ � �.JzN IY �;Q

z
N IY �/� D 0; 8y 2 Y; 8‚ 2 Mskew:

(A.33)

In these terms, we start by estimating
ˆ
QL

ˇ̌
D.JzLIY � � JzY �/

ˇ̌2
� 2

ˆ
QL

ˇ̌
D.H1/

ˇ̌2
C 2

ˆ
QL

ˇ̌
D.H2/

ˇ̌2
; (A.34)

where we have set for abbreviation

H1 WD JzLIY � � JzN IY �;

H2 WD JzY � � JzN IY �:
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We denote by P1; P2 the corresponding pressure differences. In view of (A.4) and
(A.33), .H1; P1/ satisfies8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�4H1 CrP1 D 0; in QL n
S
y2Y B.y/;

div.H1/ D 0; in QL n
S
y2Y B.y/;

�.H1; P1/� D �.JzLIY �;Q
z
LIY �/�; on @QL;

D.H1/ D 0; in
S
y2Y B.y/;´

@B.y/
�.H1; P1/� D 0; 8y 2 Y;´

@B.y/
‚.x � y/ � �.H1; P1/� D 0; 8y 2 Y; 8‚ 2 Mskew;

(A.35)

for which the energy identity takes the form

2

ˆ
QL

ˇ̌
D.H1/

ˇ̌2
D

ˆ
@QL

H1 � �.J
z
LIY �;Q

z
LIY �/�;

hence, recalling H1 D JzLIY � � JzN IY � and the periodicity of JzLIY �,

2

ˆ
QL

ˇ̌
D.H1/

ˇ̌2
D �

ˆ
@QL

JzN IY � � �.J
z
LIY �;Q

z
LIY �/�: (A.36)

By Lemma 3.3 and (A.11), JzLIY � satisfies in QL

�4JzLIY � Cr
�
1Rdn

S
y2Y B.y/

Qz
LIY

�
D �ı@B.z/ �.�; P /� �

X
y2Y

ı@B.y/�.J
z
LIY �;Q

z
LIY �/�;

whereas, by (A.33), JzN IY � satisfies

�4JzN IY � Cr
�
1Rdn

S
y2Y B.y/

Qz
N IY

�
D �ı@B.z/�.�; P /� �

X
y2Y

ı@B.y/�.J
z
N IY �;Q

z
N IY �/�:

Testing the first relation with JzN IY �, testing the second one with JzLIY �, and using
boundary conditions, we find

ˆ
@QL

JzN IY � � �.J
z
LIY �;Q

z
LIY �/�

D 2

ˆ
D.JzN IY �/ W D.JzLIY �/C

ˆ
@B.z/

JzN IY � � �.�; P /�

D

ˆ
@B.z/

.JzN IY � � JzLIY �/ � �.�; P /�;
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so that identity (A.36) becomes

2

ˆ
QL

ˇ̌
D.H1/

ˇ̌2
D

ˆ
@B.z/

H1 � �.�; P /�: (A.37)

Using the boundary conditions and the incompressibility constraint to smuggle in
arbitrary constants in the different factors, as in the proof of (3.30), and appealing to
the trace estimates of Lemma 2.5, we find

ˆ
QL

ˇ̌
D.H1/

ˇ̌2 .
�ˆ

B.z/

ˇ̌
D.H1/

ˇ̌2� 1
2
�ˆ

B1C�.z/

ˇ̌
D.�/

ˇ̌2� 1
2

:

Applying the mean-value property of Lemma A.2 to equation (A.35) for H1, and
using Young’s inequality, we deduce

ˆ
QL

ˇ̌
D.H1/

ˇ̌2 .
˝
dist.z; @QL/

˛�d ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2
: (A.38)

Likewise, repeating the argument in favor of (A.37), this time for H2, we obtain

2

ˆ
QL

ˇ̌
D.H2/

ˇ̌2
D

ˆ
@B.z/

H2 � �.�; P /� C

ˆ
@QL

JzY � � �.J
z
Y �;Q

z
Y �/�;

or equivalently, using the free steady Stokes equations for JzY � in Rd nQL and inte-
grating by parts to reformulate the second right-hand side term,

2

ˆ
QL

ˇ̌
D.H2/

ˇ̌2
D

ˆ
@B.z/

H2 � �.�; P /� � 2

ˆ
RdnQL

ˇ̌
D.JzY �/

ˇ̌2
�

ˆ
@B.z/

H2 � �.�; P /�:

Arguing as for H1, we may then deduce
ˆ
QL

ˇ̌
D.H2/

ˇ̌2 .
˝
dist.z; @QL/

˛�d ˆ
B1C�.z/

ˇ̌
D.�/

ˇ̌2
:

Combined with (A.32), (A.34), and (A.38), this yields the claim (A.31).

Step 2. Proof of (A.9). We claim that the conclusion (A.9) is a simple post-processing
of (A.30). As (A.9) trivially follows from (A.30) if jx � zj> L

4
, it remains to consider

the case when jx � zj � L
4

. In that case, we can choose q 2
L
4

Zd with jqj1 �
L
4

such that x; z 2 Q 1
2L
.q/. We then construct a translation vector a componentwise:

First, for all directions 1 � i � d with qi D 0, we set ai WD 0. Second, for all i with
qi D

L
4

, we set ai WD dist.Y n ¹x; zº; P
i;�
L /, where P i;�L is the cubic facet ¹v 2 @QL W

vi D �
L
2
º. Third, for all i with qi D �

L
4

, we set ai WD � dist.Y n ¹x; zº; P
i;C
L /,

where P i;CL is the facet ¹v 2 @QL W vi D
L
2
º. With this construction of a, we find
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that Y n ¹x; zº is included in the translated cube QL.a/ (and actually intersects its
boundary). Moreover, we find

dist
�
x; @QL.a/

�
� dist.x; @QL/C inf

i
jai j

� dist.x; @QL/C dist
�
Y n ¹x; zº; @QL

�
;

and similarly

dist
�
z; @QL.a/

�
� dist.z; @QL/C dist

�
Y n ¹x; zº; @QL

�
:

In particular, we get˝
dist

�
x; @QL.a/

�˛�d ˝dist
�
z; @QL.a/

�˛�d
�
˝
dist

�
Y n ¹x; zº; @QL

�˛�2d
;

so that the conclusion (A.9) indeed follows from (A.30).

Step 3. Proof of (A.10). We shall prove the following refined version of (A.10): for
all x 2 QL,

ˆ
BL

1C�
.x/

ˇ̌
D. YL �  Y /

ˇ̌2
. min

®˝
dist

�
x; @QL.a/

�˛�d ˝dist
�
Y; @QL.a/

�˛�d
W

a 2 Rd ; x 2 QL.a/; Y � QL.a/
¯
: (A.39)

Arguing similarly to Step 2, it is easily seen that the translation a can be suitably
chosen so that this estimate yields the conclusion (A.10). In order to prove (A.39), it
suffices, in fact, to prove it for a D 0, that is,

ˆ
BL

1C�
.x/

ˇ̌
D. YL �  Y /

ˇ̌2 .
˝
dist.x; @QL/

˛�d ˝dist.Y; @QL/
˛�d
; (A.40)

as the claim (A.39) then follows by translating the underlying cell QL, which does
indeed not change the equations provided that the translated cell still contains x; Y .

We turn to the proof of (A.40). As the difference

 YL �  Y

satisfies a free steady Stokes problem of the form (A.7), we may apply the mean-value
property of Lemma A.2 to the effect that for all x 2 QL,

ˆ
BL

1C�
.x/

ˇ̌
D. YL �  Y /

ˇ̌2 .
˝
dist.x; @QL/

˛�d ˆ
QL

ˇ̌
D. YL �  Y /

ˇ̌2
: (A.41)

In order to estimate the last integral, we argue similarly to Step 1 by further comparing
 YL ;  

Y to the solution of the corresponding Neumann problem in QL: we define
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 YN 2 H 1.QL/
d as the solution of8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�4 YN Cr†YN D 0; in QL n
S
y2Y B.y/;

div. YN / D 0; in QL n
S
y2Y B.y/;

�. YN ; †
Y
N /� D 0; on @QL;

D. YN CEx/ D 0; in
S
y2Y B.y/;´

@B.y/
�. YN ; †

Y
N /� D 0; 8y 2 Y;´

@B.y/
‚.x � y/ � �. YN ; †

Y
N /� D 0; 8y 2 Y; 8‚ 2 Mskew:

In these terms, we start by estimating
ˆ
QL

ˇ̌
D. YL �  Y /

ˇ̌2
� 2

ˆ
QL

ˇ̌
D.G1/

ˇ̌2
C 2

ˆ
QL

ˇ̌
D.G2/

ˇ̌2
; (A.42)

where we have set for abbreviation

G1 WD  YL �  YN ; G2 WD  Y �  YN :

We denote by R1; R2 the corresponding pressure differences. Similarly, as in Step 1,
energy identities take the form

2

ˆ
QL

ˇ̌
D.G1/

ˇ̌2
D

X
y2Y

ˆ
@B.y/

E.x � y/ � �.G1; R1/�;

2

ˆ
QL

ˇ̌
D.G2/

ˇ̌2
D

X
y2Y

ˆ
@B.y/

E.x � y/ � �.G2; R2/� � 2

ˆ
RdnQL

ˇ̌
D. Y /

ˇ̌2
;

and we deduce by means of trace estimates, for both i D 1; 2,

ˆ
QL

ˇ̌
D.Gi /

ˇ̌2 .
X
y2Y

�ˆ
B1C�.y/

ˇ̌
D.Gi /

ˇ̌2� 1
2

:

Hence, applying the mean-value property of Lemma A.2 to G1, G2, together with
Young’s inequality,

ˆ
QL

ˇ̌
D.Gi /

ˇ̌2 .]Y
X
y2Y

˝
dist.y; @QL/

˛�d
:

Combined with (A.41) and (A.42), this yields the claim (A.40), and concludes the
proof.




