Appendix A

Stokeslet estimates with rigid inclusions

This appendix is dedicated to the proof of several estimates on the behavior of the
fluid velocity generated by a localized force dipole in the presence of a finite number
of rigid inclusions. In other words, it concerns the Stokeslet for the Stokes problem
with rigid inclusions, and we shall prove in particular Lemmas 3.10, 4.7, and 4.8.

A.1 Main results

For convenience, we start by recalling the notation of Section 4.3.2. Given a set Y C
Q1 of “background” positions with

dist (B(y). B(y")) > 2p, dist(B(y),d0L) > p, forall y,y’ € Y, y # ', (A.])

we denote by ZI € leer(Q )¢ the solution of the following periodic corrector prob-
Y

lem, using the shorthand notation o; = U(WZ + Ex, 2{),

—Ay] +VI] =0. in 02\ Uyey BO)
div(y)) =0, in 01\ Uyey B(»).
D(y} + Ex) =0, inUJ,cy B(y).

Jony) ofv =0, VyeY,

JoBy ©x =y)-0fv =0, VO €M™, VyeY.

Next, we turn to elementary single-particle contributions {7 ..} y: Given a “tagged”
position z € Qy,, given (¢, P) € HI(BHp(z))d x L?(B14,(z) \ B(z)) satisfying the
following Stokes equations in a neighborhood of B(z),

—A7+ VP =0, in Bi4,(2) \ B(2),
div(¢) = 0, in Bi4p(2) \ B(2).
D(¢) =0, in B(z), (A.2)

Jo 0 & P)v =0,
faB(z) ®(x — Z) . O'(é', P)U =0, VO e Mskew’

and given a finite subset ¥ C Qp of “background” positions satisfying (A.1), we
define 7., ¢ € leer(Q )% as the solution of the following Stokes problem with force
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dipole localized around z and rigid inclusions around points of Y,

—AdLyS + VAL .yl = —Sspr (0 P)v,
div(g7.y0) = 0,

D(¢i.y) =0,

Japoy 0 (Fix s QfyOv =0,

Sy O = 2) -0 (8. @F y )V = 0.
Tyl =V 4 O.(x—2),

Y over. Jap) 0 (1 .y 8 Qv
=2 yer. JpoynosLz) o Pv.
Lyer. Jap) O —2) - 0(df £, QF v
=Y yer. JBoynapLz) @ —2) - 0L P)v,

in Or. \ Uyey B(¥).

in 01\ Uyey B(¥).
inUyey\rz BOY),
VyeY\Y,,

VO € M*V, Vy € Y \ Y,
inUyey, B(y),

for some V, € R?, @, € Mskew,

VO e Mskew ,
(A.3)

where we recall that BL(z) = (B(z) + LZ%) N Oy stands for the periodization of the

ball B(z) in Qp, where we have set Y, :={y € Y

: B(y) N BE(z) # @}, and where

we have implicitly extended (¢, P) periodically to Bi4,(z) + LZ%. The solution
#1.y ¢ is only defined up to a rigid motion in O, which we fix by further choosing

Ji.v¢ =0, / Vvt € Mg™.
or or

Note that 7 .,,¢ depends of course on the pair (, P), not only on ¢, but we leave the
pressure field implicit in the notation for convenience. We refer to Section 4.3.2 for
motivation of the above equations (A.3), and we recall that it reduces to the following
simpler equations when {z} U Y satisfies (A.1) (meaning that z neither gets close to
background positions Y nor to the cell boundary 0Q7,),

—AFLyE+ VA .y T = 80 (L, P)v,
div(g.y0) = 0,

D(7.y%) =0,

JoB) (v QF DV =0,

Jony O =) -0 (Jfy 8. QL y OV = 0,

We further define

gié = gi;@é"

in Or \ Uyey B(y).

in 01\ U,ey B(»).

inUyey B(»). (A.4)
VyeY,

VO € MV, vy €Y.
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for which the Stokes problem (A.3) reduces to
—AJFL+VQIL = —bygro (. P)v, div(df¢) =0, inQf, (A.5)

and we define ¢3¢, ¢7¢ as the corresponding operators on whole space, that is, with
BL(z) and Q7 replaced by B(z) and R¢, respectively, in (A.3) and (A.5).

With the above notation, we start by recalling the statement of Lemma 4.7 regard-
ing the optimal decay properties of the Stokeslets { #1.ytz,y- Note that Lemma 3.10
is a particular case of this result, using notation (4.15), when {z} U Y satisfies (A.1).
The proof is displayed in Section A.2.

Lemma A.1 (Decay of Stokeslets with rigid inclusions). Let z € R?, let (¢, P) sat-
isfy (A2)at z, and let Y C Q. satisfy (A.1). Then, we have for all x € Qp,

( / |D<gz;yz>|2)zsﬁy <(x—z)L>—“'( / |D(z)|2)2, (A6)
BL(x) Biio(2)

( /B(x) |D<;Z§§>¢z)5 - _Z>_d( /B e |D<z>}2)5.

A similar argument leads us to the following version of the mean-value property
for Stokes equations in the presence of a finite number of rigid inclusions. The proof
is displayed in Section A.3.

A

Lemma A.2 (Mean-value property with rigid inclusions). Let Y C Qg satisfy (A.1)
and let w € H'(Qp)? satisfy the following free steady Stokes equations in Qy,,

—Aw+ VP =0, in O\ Uyey B(y),

div(w) = 0, in O\ Uyey B(y),

D(w) = 0, inUyey BOY), (A7)
faB(y)a(w, P)y =0, Vy ey,

faB(y) O(x—y)-o(w,P)y =0, VyeY, VO e MV,

Then, we have for all B(x) C Qp,
/ IDw)|* Spy (dist(x, QL)) / ID(w)[. (A8)
BL(x) oL

Finally, we recall the statement of Lemma 4.8 regarding the error ¢7., — 45
between periodized and whole-space Stokeslets. The proof makes heavy use of the
above mean-value property and is displayed in Section A.4. The stated bounds are not
optimal: finer estimates are given in the proof, but this simplified statement is good
enough for our purposes.
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Lemma A.3 (Periodization error). Let z € Qp, let (¢, P) satisfy (A.2) at z, and
let Y C Qr be a finite subset such that {z} UY satisfies (A.1). Then, we have for
allx € QO

(f

iy~ 50F) = ([ poP)
140() B )
X (Lo (O = 20+ 0y a (dist(Y \ {x,21,000)) ™), (A9)

by

1+p(z

where we recall the notation dist(@,9Q1) = L and B (z) = (B, (z) + LZNQ;.

In addition,
%
2
(/ Dy —yh))| )
BE (%)

1+p
Ssr ((dist(x, 9Q 1)) + (dist(Y \ {x},001)) ™. (A.10)

In the above three lemmas, the multiplicative constants in the estimates crucially
depend on the finite number of rigid particles: in Lemma A.1, for instance, a quick
inspection of the proof shows that the multiplicative constant can be bounded by
C* (#Y)13/2, Although these deterministic results fail in general for an unbounded
number of rigid inclusions, we refer the reader to [19] where corresponding results
are proved to hold in a suitable annealed sense in case of a stationary and ergodic
random ensemble of rigid inclusions.

A.2 Decay of Stokeslets with rigid inclusions

This section is devoted to the proof of Lemma A.l (hence of Lemmas 3.10 and 4.7).
We argue by comparing #7 .y { to §7.y ¢ (recall Y; ={y €Y : B(y) N BL(z) # o)),
which is a variant of the solution 32@ of the corresponding problem without rigid
inclusions. Equation (A.3) for §7 .y ¢ reads

Ay C V@ L = Sy o (@ Py, in 0\ Uyey. BO).
div(47.y.$) =0, in 01\ Uyey. BOY),
gi;yzg‘ = VZ + ®Z(x - Z)? in UerZ B(y)
for some V, € R4, @, € Mkew,
Y yer: Jopo) 0(#7.y. 8 QF .y OV
= yev. fB(y)ﬂ?)BL(z)O(é" P)v,
2yey, faB(y) O(x —2)-0(JL.y.5 QLy. OV
= ZyEYZ fB(y)ﬂaBL(z) ®(X—Z)'O'(§,P)V, V@ € Mskew'

(A.11)
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We split the proof into three steps: we first apply elliptic regularity to unravel the
decay properties of §7 . ¢, and then estimate the difference ¢7.,,{ — 7.y ¢ in the
last two steps. Let z € Qp, let ¢ satisfy (A.2) at z, and let Y C Qp satisfy (A.1).

Step 1. Proof that for all x € Qp,

( / \D(;tz;yzz)f)zs((x—z>L)“"( / |D(c)|2)2. (A12)
BL(x) Bi4,(2)

The argument is based on elliptic regularity via a duality argument, in a form that
is similar to the proof of Theorem 3.9 in Section 3.5.2. By an energy estimate for
#1.y. ¢, the claim (A.12) is trivial if

|(x—2)L| S 1.
and we shall focus on the case when
roi= %|(x—z)L| > 2(1 + p). (A.13)
By definition (A.11), we then note that g7 ., { satisfies the free steady Stokes equa-

tionin B (x) = (B,(x) + LZ%) N Oy, which is the periodization of the ball B, (x)
in Qp . Elliptic regularity in form of Lemma 2.6 then yields

2 _ 2

[, ool < [ ol (A14)

BL(x) BF(x)

Next, by duality, the right-hand side can be written as

2
2
L, oz of =sef( [ nip@ivo) cheroog
BF(x) oL

[All20,y =1, supph C BrL(x)}. (A.15)

Given a test function & € L2(Q1)4*¢ with supph C B (x), let wy.j, € leer(QL)d

sym
be the solution of the auxiliary Stokes problem

—Awpp + VOrp = div(h), in 01\ Uyey. B(),
diV(wL;h) = 07 in QL \ Uerz B(y)v
wr.p =V, +0z(x —2), in U,ey, B(Y),

for some V, € R%, 0, e Mskev,
ZyEYZ faB(y) O'(wL;h7 QL;h)V =0,
Zerz faB(y) ®(x - Z) : G(wL;ha QL;h)v =0, VOe Mskew'

(A.16)
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These equations are indeed well posed since by (A.13) the support BrL (x) of the
force term h does not intersect the rigid inclusions UerZ B(y). By Lemma 3.3,
wy.., satisfies the following relation in Qy,,

~ 8w+ V(Lo \Uyey. B) Qi) = div(h) =) $380)0 (Wesn. Qrn)v. (A7)
y€Yz

Similarly, the defining equation (A.11) for 7., ¢ yieldsin O,
- AgZ;YZ§ + V(]IQL\UerZ B(y)@z;Yz)

= —19,\Uyey. B»)0BL(2)0(C. P)v — Z 8380 ($1.7.¢. Qf.y.Ov. (A1)
y€Y;

Testing (A.17) with gi.yzg and (A.18) with wy,.;, we are led to

/ b D(gE.y.0) = / Wi - o€ P
or 3BL(z)\Uyey, B(»)

+ /33 wrsh - 0(FLy. 8 QLy. OV

yey, (6]
+ Z/ FL.v.§ oL, OLn)v,
7 Jaso

and thus, using the boundary conditions in (A.11) and (A.16),
| @it = [ wngeot P
oL dBL(z)

Recalling that (¢, P) satisfies (A.2) and is implicitly extended by Qp-periodicity,
using the boundary conditions and the incompressibility constraints to smuggle in
arbitrary constants in the different factors, as in the proof of (3.30), and appealing to
the trace estimates of Lemma 2.5, we find

2 2 2
( QLh:D(gzL;Yzz)) s( / ., IpwL) )( / LG ) (A19)

As equation (A.16) entails that wy ., satisfies the free steady Stokes equation in
BE (), elliptic regularity in form of Lemma 2.6 yields

/ |D(wL;h)|2 < rd / \D(wL;h)
BL(2) oL

and thus, combining this with an energy estimate for (A.16),

2 _
/ D) < / IR
BL(2) or

Combining this with (A.14), (A.15), and (A.19), the claim (A.12) follows.

2
’
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Step 2. Proof that for all x € Qp,

[, Ip@isof
BL(x)
(X (o= /B ID@)|*. (A.20)

ye{x}U¥\Yz) 140(2)

In view of Lemma 3.3, the defining equation (A.3) for g7 ., ¢ yields in Oy,

—Adi v+ V(Lo \Uyey B)@Liy)

= —19,\U, ey, B0»88L:) 0 PV = > 89850 ($7.y L. QF y Ov.
yeyYy

Subtracting (A.18) entails in Qp,

- A(ng”Yé‘ - gIZJ,ng) + v(]lQL\LJyEY B(y)@i,y - ]lQL\UyGYZ B(y)@'z;Yz)
= - Z SBB(y)U(éli;Yé" (QIZJ;Y;)V

YEY\Yz

= 8apn(0($:x 8. QFy OV — 0(9].y.8. QFy. V). (A2D)
yeYs

Testing this equation with g7 ., { — &7 .y itself, and using the boundary conditions
in (A.3) and (A.11), we obtain the energy identity
2
2 [ Dt~ 0.0
or
= > [ it oWiat @iyt
yeY\Y- 0B(»)

Further, using the boundary conditions and the incompressibility constraints to smug-
gle in arbitrary constants in the different factors, as in the proof of (3.30), and appeal-
ing to the trace estimates of Lemma 2.5, we deduce

/Q D@t — Fiy. O

. e\ R
s > (/B(y) ID(#7:7.0)| ) (/BHM ID(45.50)] ) .

yeEY\Y:

Decomposing ¢y ¢ = ($7.y ¢ — #1.y.0) + $[.y.¢ in the last factor, using the tri-
angle inequality and Young’s inequality, we are led to

Z /Bl+ » |D(&’i;yzf)|2.

YEY\Y:

/Q ID(JZ.4¢— 9230 <
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The triangle inequality then yields for all x € Oy,
2 2 2
[, g0l < [ P 0f + [ Dt g
BL(x) BL(x) or

3 /B ID(2..0)

yEY\Y-~ 1+p(Y)

2
El

2 2
< [, PFErOf +

which yields the claim (A.20) in combination with (A.12).

Step 3. Conclusion. We argue by induction on the cardinality of Y \ Y; for (A.6). If
#(Y \ Y;) =0, thatis, if Y = Y., the conclusion (A.6) already follows from (A.12).
Given n > 1, we assume that (A.6) holds whenever §(Y \ Y,) < n, and we shall show
that it also holds when (Y \ Y;) = n.Let Y C Qp be fixed with (Y \ Y,;) = n. For
any S C Y \ Y;, the same argument as for (A.21) yields in O \ U,es B(Y)

_ A(é’]ﬁ;YE - gi;YzUSC) + V(]IQL\UyGY B(y)@i;y — ]lQL\UerZus B(J’)(’QE;YZUS)
=— Y S»o(Fiyl QO

YEY\(YzUS)
- Z SBB(y)U(fr’f;Yf —JLv.ust Qryt — @i;yzusf)‘)-

yeYz
As §7.y8 — 1 .y.us$ is further rigid in Uyes B(y), this implies, by definition of
{gZ;S}y’
gi;Yé' - gi;YZUSé- = Z 2{;5%;% + Z gZ;S(gi;YZ - gi;qusé‘)’
YeY\(Y:US) yeY

which we may further decompose as

ng,;Yé‘ - ng,;YZUSé‘ = Z gz;s(éli;ﬁ - gi;YZUSU{y}z)

yeY\(Y;US)
+ Y HsFivusumnlt D $.s(FEy i y.us0).
yeY\(Y;US) yeY;

Iterating this identity, we find

gi;Yg - 32;@5

n #
— Y1 gr2 .o ql z
=D > ' on T Fm 001t

I=1y1,...,y;€Y\Y2

n #
Yigy2 Yi—i y
+ Z Z Z IL gL;{y1}”’gL;{y1,.--,yz—z}gL;{m,m,y/—]}

I=1y1,...,y1—1€Y\Yz y€Y2
zZ zZ
X (FL:v S = FLv.01 w18
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We now appeal to the induction hypothesis in form of (A.6) for the terms g Z; O1ry)
and gggyzu{yl,_“,yj} foralll < j <nand y €7, to the suboptimal decay estimate
(A.20) for 3’2;qu{y1,...,yn} (which only appears in the first right-hand sum when
[ = n). Recalling that

|(y —z)L| <2 forally €Yz,

this yields for all x € Q. after straightforward simplifications,

( / D¢ — zi;yzof)z
BL(x)

<n D 2)2
(fypo 0

n #
2 D SN (G 90 ) W (6 TUE 9 V%) RO (6 /) V5

1=0y1,....,y;€Y\Y2
The conclusion (A.6) now follows from the bound
—d —d —d
{((@=b)r) “{b—c)L) " ${@=o)r)

foralla,b,c € Qr. ]

A.3 Mean-value property with rigid inclusions

This section is devoted to the proof of Lemma A.2. We split the proof into two steps.
LetY C Qy satisfy (A.1)and let (w, P) € H'(Qr)%¢ x L?(Qy) satisfy (A.7)in Q.

Step 1. Proof that for all x € Oy,

/ D@ v (Y {dist(y,900)] ) / Dw)|’.  (A22)
Bl (x) ye{x}UY or
For that purpose, we shall compare w to the solution
W€ w+ Hp(Qr)?
of the free steady Stokes equations without rigid particles in Qy,
—AW+VP =0, div(w)=0, inQr. (A.23)

In view of Lemma 3.3, the equations (A.7) for w yield the following relation in Oy,

—Aw + V(Lo \Uyey Bo)P) = = Y 83800 (w. P)v.
yeyY
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Subtracting (A.23), we deduce that the difference w — 1w € H} (Qp) satisfies

per

—Aw =) + V(Lo \U,ey By P = P) ==Y Sappyo(w. P)v.  (A24)
yeyY

Testing this equation with w — W and using the boundary conditions in (A.7), we
obtain the energy identity

/\D(w b)|* = Z/ W - o(w, @)v.

yeY dB(y)

Further, using the boundary conditions and the incompressibility constraints to smug-
gle in arbitrary constants in the different factors, as in the proof of (3.30), and appeal-
ing to the trace estimates of Lemma 2.5, we get

D(w — w)|* < ( D(i 2)2( D 2)2. A25
/QL| G w)| ; /B(y){ (w)| /BH»D(Y){ (w)| ( )

Decomposing
w=(w-—w)+ 0

in the last factor, using the triangle inequality and Young’s inequality, we are led to

/ IDw — B[ < 2/ D).

yey /Bi+p()

and thus, by the triangle inequality, for all x € Qp,

/BL<x) PG 5 / DG + Z/ ID@)|*. (A.26)

yey / Bi+p()

Rather decomposing W = w — (w — W), we note that (A.25) also yields the energy

estimate
/ ]D(w)yzg/ ID(w)|*. (A27)
or or

As w satisfies the free steady Stokes equations in Qp, cf. (A.23), the mean-value
property of Lemma 2.6 yields for all x € Oy,

/ \D(w)} (dlst(x 8QL)) /
BL(x) oL
and thus, combined with (A.27),

/ ID@@)[* < (dist(x, 801))” / ID(w)[*. (A.28)
BL(x) or

Inserting this into (A.26), the claim (A.22) follows.
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Step 2. Conclusion. Given S C Y, we denote by
1 d
ws €W + Hper(QL)

the solution of the free steady Stokes problem with rigid inclusions at points of S
only,

—Aws + VPs =0, in 01 \U,es BOY),
div(ws) = 0, in 01 \U,es BOY),
D(ws) =0, in{Uyes B(y),
Jos(yy o (ws, Ps)v =0, Vy €S,

Joyy @(x —¥)-0(ws, Ps)v =0, Vy e S, VO € M™Y.

In particular, we recover wy = w and wg = W as defined in (A.23). The result (A.22)
of Step 1 yields in this case, for all x € Oy,

/BL(X) D) g5 (2 {dist(r, 000))™) /QL DGs)

ye{x}uS

Noting that a similar argument to the case of (A.27) further yields the energy estimate

/Q [pws)* < /Q [pw)

we deduce for all x € Oy,

2
’

/BL(X) ID@ws)|* sgs (D0 (dist(r.001)) ) /QL D). (A29)

ye{x}usS

We shall now decompose w in terms of this sequence (ws)scy. Arguing as for
(A.24), we note that for any S C Y the following relation holds in O, \ Uy es B(»),

—A(w—ws)+ V(P — Ps) =— Z Sap(yyo (w, P)v.
yeY\S

As w — wg is rigid in UyES B(y), this allows us to decompose

Ww—ws = Z Fi.s-

yeY\S

and thus, iterating this identity and starting with wg = w,

o £
— 7 Yigy: ... gV
W=+ Y I P ) OO
I=1y1,..., v €Y
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Appealing to the decay estimates for {3{; s)y,s in Lemma A.1, and to (A.28) and
(A.29), we get after straightforward simplifications, for all x € Oy,

/ o )\D(w>\2 <or [ PP

XZ Z (=)L) 1=y > (o —yoL) > (dist(yr. 001))

[=0Yy1,...y1€Y

Using that (@ —b)1) "4 ((b—c)1) ™% < ((a —c)) ™% foralla,b,c € Qr, and noting
that the infimum over ¢ € dQy, further yields

(@ — b)) (dist(h, 0Q1)) ¢ < (dist(a, Q1)) ",

the conclusion (A.8) follows. ]

A.4 Periodization errors

This section is devoted to the proof of Lemma A.3. We split the proof into three
steps. Let z € Qp, let ¢ satisfy (A.2) at z, and let ¥ C Qp be such that {z} UY
satisfies (A.1).

Step 1. Proof that for all x € Qp,

/ , \D(znz F3 0| <ur / ID@)|?
B

4o(x Bi+p(2)
x min {((x —2)2) % A ((dist(x, 001 (@)~ (dist(z, 001 (a))) ) :
aeRY x,z€Qr(a), Y CQL(@)}. (A30)

It suffices to prove this estimate for a = 0, that is,

[, pGi-giof s [ pof
B

1+0 Bi4,(2)
« (((x — o) A ((distCr, 80.)) " (dist(z,00.)) 7)),

as the claim (A.30) then follows by translating the underlying cell Qr, which does
indeed not change the equations provided that the translated cell still contains the
relevant points x, z, Y. Further, noting that Lemma A.l together with the triangle
inequality yields

i

1+o¥

D@t~ 470 S (e ) /B el



Periodization errors 167

it only remains to prove for all x € Qp,

[, pEiat- g0
B )

1+o¥

Spr (dist(x, Q1)) (dist(z, Q1)) /

Bl+0(z

) D). (A.31)

As {z} U'Y satisfies (A.1), we recall that §7 ., { satisfies the simpler Stokes prob-
lem (A.4) (and likewise for 3 ¢). The difference 7., ¢ — &3¢ then satisfies the free
steady Stokes equations (A.7). Applying the mean-value property of Lemma A.2 to
this equation, we get forall x € Qp,

|, D@yt gi0f
B )

1+o*

<oy (dist(x.90,))™ /Q Dyt — 92002 (A32)

In order to estimate the last integral, taking some inspiration from the proof of (2.33),
we note that it is convenient to further compare &7 ., ¢ and 3 ¢ to the solution of the
corresponding Neumann problem in Oy : we define

I5vs € H'(QL)*

as the solution of

—AFN .yl + VAL .yl = —8ipr 0L P)v, in Qr\U,ey BV,
div(95.0) = 0. in 02\ U, ey BOY),
o(¢4%.,¢ Q% . Ov =0, on 00y,
(ﬂN,Yé‘ N,YZ) ' QL (A.33)
D(g]ZV,YC) = O’ n UyEY B(y)v
faB(y) Cf(glzv;y{, Qf\];yé‘)‘) =0, Vy ey,
Joy @(x =) - 045y QR.yOv =0, Vy ey, VO € M¥v.
In these terms, we start by estimating
/ ID(g7.y¢ — 970 < 2/ ID(H)|* + 2/ D", (A34)
or oL oL

where we have set for abbreviation

Hi =3[yl — Nyl
Hy = ¢3¢0 — Fx.x ¢
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We denote by P;, P, the corresponding pressure differences. In view of (A.4) and
(A.33), (Hy, Py) satisfies

—AH, +VP =0, in 01\ Uyey B,

div(H,) = 0, in 0\ U,ey B(»),

o(Hy, P1)v =0(4.y8 QL.y5)v, ondQp, (A35)
D(H,) =0, in Uer B(y),

Jap(yy o (Hi, P1)v =0, Vy ey,

Jopy ©(x =) -0 (Hi, P)v =0, VyeY VOe Miskew,

for which the energy identity takes the form

2/QL D" = /aQL Hy 0358y OV,

hence, recalling Hy = 47 .,,{ — § .y ¢ and the periodicity of g7 ., ¢,

2
2 [ == | fratoiat @iytn a36
oL 0L
By Lemma 3.3 and (A.11), g7 .y  satisfies in Qr,

— AJ7y ¢+ V(Ira\y, oy Bo)QLiy)

= —898() 0 (L. P)v = > 838500 (F1.y L. QF .y Ov.
yeyY

whereas, by (A.33), 43,y ¢ satisfies

— AJRy S+ V(lravy, oy o) @hiy)
= 8980 (. P)v = Y 8300 ($3.y L. Qi y OV

yeyY

Testing the first relation with %5 ¢, testing the second one with 7., ¢, and using
boundary conditions, we find

~/3Q 3’]2\];}1{ : 0(%;1/?’ @z;YZ)V
=2 / D(¢.y ) : D(Fi.y ) + /a o, 0@ Py

_ / (Fioy & — F5.70) -0, PV,
0B(z)
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so that identity (A.36) becomes
2
2/ |D(Hy)| =/ Hy-o(, P)v. (A.37)
oL 0B(z)

Using the boundary conditions and the incompressibility constraint to smuggle in
arbitrary constants in the different factors, as in the proof of (3.30), and appealing to
the trace estimates of Lemma 2.5, we find

2 2 % 2 %
/QL ID(H))| s(/B(Z) \D(Ho\) (/Blw) }D(¢)|) .

Applying the mean-value property of Lemma A.2 to equation (A.35) for Hy, and
using Young’s inequality, we deduce

. —d
/ ID(HY)|” < (dist(z,001)) / D). (A.38)
or B1+o(2)
Likewise, repeating the argument in favor of (A.37), this time for H,, we obtain

2 . Z 5, z z
2 /Q [pa)f” = /BB(Z) Hy - 0(5, P)v + /a ,, Fit-ogit aiom

or equivalently, using the free steady Stokes equations for {3 ¢ in R4\ Qy and inte-
grating by parts to reformulate the second right-hand side term,

2 _ . . z 2
2/QL ID(H>)| _/ag(z) Hs-0(C, P)v 2/Rd\QL ID(F50)|

< Hy-o(C, P)v.
0B(z)

Arguing as for H;, we may then deduce

/ ID(H) [ < (dist(z.90,))™ / D).
or Biyp(2)

Combined with (A.32), (A.34), and (A.38), this yields the claim (A.31).

Step 2. Proof of (A.9). We claim that the conclusion (A.9) is a simple post-processing

of (A.30). As (A.9) trivially follows from (A.30) if |x — z| > %, it remains to consider

the case when |x — z| < %. In that case, we can choose g € %Zd with |¢|eo < %

such that x,z € Q ! 1.(q). We then construct a translation vector a componentwise:

First, for all directions 1 <i < d with g; = 0, we set a; := 0. Second, for all i with

qi = %, we set a; ;= dist(Y \ {x, z}, Pi’_), where Pz’_ is the cubic facet {v € 90 :

v; = —L}. Third, for all i with ¢; = —%, we set a; 1= —dist(Y \ {x, z}, P;'"),
L

where P£’+ is the facet {v € QL : v; = 5 }. With this construction of a, we find
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that ¥ \ {x, z} is included in the translated cube Qy (a) (and actually intersects its
boundary). Moreover, we find

dist (x. 001 (a)) = dist(x, 8Q1) + inf|a;|
> dist(x,dQ7) + dist (Y \ {x,z},90L),
and similarly
dist (z,0Q (a)) = dist(z,dQr) + dist (Y \ {x,z},00¢).

In particular, we get

(dist(x, 0Q 1 (a))) " (dist(z, 00 L (@))) ¢ < (dist(¥ \ {x,z}.90L)) 7,
so that the conclusion (A.9) indeed follows from (A.30).

Step 3. Proof of (A.10). We shall prove the following refined version of (A.10): for
allx € Qp,

/ Dy} — ")
BlLer x)

< min {(dist(x, BQL(a)))_d(dist(Y, BQL(a)))_d :
aeRY xeQr), Y C Q@) (A.39)
Arguing similarly to Step 2, it is easily seen that the translation a can be suitably

chosen so that this estimate yields the conclusion (A.10). In order to prove (A.39), it
suffices, in fact, to prove it for a = 0, that is,

/ DY —y")|? < (dist(x, 00.))“(dist(Y, 00.)) 7, (A.40)
BlL+p x)

as the claim (A.39) then follows by translating the underlying cell Qy , which does
indeed not change the equations provided that the translated cell still contains x, Y.
We turn to the proof of (A.40). As the difference

vl —yr

satisfies a free steady Stokes problem of the form (A.7), we may apply the mean-value
property of Lemma A.2 to the effect that for all x € Oy,

/ DY — ") < (dist(x,00.)) / D —yNHP. (A4D
Bl () oL

In order to estimate the last integral, we argue similarly to Step 1 by further comparing
w{ . %Y to the solution of the corresponding Neumann problem in Q7 : we define
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Y € H'(Qr)? as the solution of

—AyY +VEL =0, in 01\ Uyey BO).
div(yy) = 0, in 02\ Uyey BOY.
oy, v =0, on 901

DY) + Ex) =0, in U, oy BO).

sy oWy ZR)v =0. Vy €Y,

faB(y) O(x —y) ol ZX)w =0, VyeYt, VO e Mkv,

In these terms, we start by estimating

Y . ¥y|2 2
/QL DY — g7 sz/QL ID(G)| +2/QL ID(G2)

2
’

(A.42)

where we have set for abbreviation
. Y Y . Y Y
Gii=vp —Vn. G2:=V" —yy.

We denote by R, R, the corresponding pressure differences. Similarly, as in Step 1,
energy identities take the form

2 = f— .
Z/QL PG| = Z/aB(y) E(x —y)-0(Gy. Ry)v.

yeyYy
G 2 _ _ . G ’ _ Y 2’
2| o) yezyfm) Etx=)-0@a k=2 [ oY)

and we deduce by means of trace estimates, for bothi = 1, 2,

DG < ( D(G: 2)2.
/QL| ( )| Z /Bl+p(y)| ( )|

yeyYy

Hence, applying the mean-value property of Lemma A.2 to G, G, together with
Young’s inequality,

| IDGoF <o 3 fais(r. 0000) .
or yeyYy

Combined with (A.41) and (A.42), this yields the claim (A.40), and concludes the
proof. ]






