
Appendix B

Finite-volume approximation of the effective viscosity

This appendix is devoted to the proof of an algebraic convergence rate for the finite-
volume approximation xBL of the effective viscosity xB under an algebraic ˛-mixing
condition, as announced in Remark 4.2.

Proposition B.1 (Convergence rate for xBL). On top of (H�), assume that the alge-
braic mixing condition (Mix) holds. Then there exists  2 .0; ˇ/ (only depending on
d; � and on the mixing exponent ˇ) such that for all L,

jxBL � xBj . L� :

The proof displayed below closely follows the monograph [3] by Armstrong,
Kuusi, and Mourrat (albeit in the more general version [4] for ˛-mixing coefficients),
based on the original argument [5] by Armstrong and Smart. We identify a suitable
subadditive quantity J that satisfies all the requirements of [3,4] in the present Stokes
context: the definition (B.4) and Lemma B.2 below constitute the only new insight
w.r.t. [3], and the conclusion follows from elementary adaptations of the arguments
in [3,4]. Although we could have used the same subadditive quantity as in [3], we have
chosen to use a subadditive quantity J built on the approximations (2.9) and (2.10)
that we used to prove Einstein’s formula, that is, in the form of (B.3) below. This
choice, which is specific to our problem, makes some of the upcoming arguments
technically simpler than in [3], in particular avoiding the use of convex duality.

Let E 2 M0 be fixed with jEj D 1. We say that a bounded domain U � Rd is
suitable if

dist.	 \ U; @U / > �:

Consider the following weakly closed subsets ofH 1.U /d ,

H .U / WD
®
u 2 H 1.U /d W div.�/ D 0; and D.� CEx/ D 0 on 	 \ U

¯
;

Hı.U / WD H 1
0 .U /

d
\ H .U /;

and the following minimization problems (note that  �.U / is only defined up to a
rigid motion),

 �.U / WD arg min
²ˆ

U

ˇ̌
D.�/

ˇ̌2
W � 2 H .U /

³
; (B.1)

 ı.U / WD arg min
²ˆ

U

ˇ̌
D.�/

ˇ̌2
W � 2 H0.U /

³
: (B.2)
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Recalling that the fattened inclusions ¹InC �Bºn are disjoint, we define the modified
cubes

UL.x/ WD
�
QL.x/ n

[
nWxn…QL.x/

.In C �B/
�
[

� [
nWxn2QL.x/

.In C �B/
�
;

which satisfy by definitionQL�2.1C�/ � UL.x/�QLC2.1C�/ and 	 \ @UL.x/D ¿.
The family ¹UL.x/ºx2LZd constitutes a partition of Rd . Setting UL D UL.0/, we
then consider the following alternative finite-volume approximations of the effective
viscosity xB,

E W zBL;�E D 1C E

�  
UL

ˇ̌
D
�
 �.UL/

�ˇ̌2�
;

E W zBL;ıE D 1C E

�  
UL

ˇ̌
D
�
 ı.UL/

�ˇ̌2�
: (B.3)

Since Hı.UL/� H .UL/, we haveE W zBL;�E �E W zBL;ıE. We then define a random
set function J for suitable sets U via

J.U / WD

 
U

ˇ̌
D
�
 ı.U /

�ˇ̌2
�
ˇ̌
D
�
 �.U /

�ˇ̌2
: (B.4)

The following lemma collects elementary properties of J . In particular, item (iii)
states that U 7! jU jJ.U / is subadditive.

Lemma B.2 (Properties of J ). (i) Recalling the definition (B.3) of finite-volume
approximations zBL;�; zBL;ı of the effective viscosity, there exists C > 0 such that

E W zBL;�E � CL�1
� E W xBE � E W zBL;ıE C CL�1; (B.5)

E W zBL;�E � CL�1
� E W xBLC2.1C�/E � E W zBL;ıE C CL�1: (B.6)

(ii) For all suitable U ,

J.U / D

 
U

ˇ̌
D
�
 ı.U / �  �.U /

�ˇ̌2
: (B.7)

(iii) For all disjoint suitable sets U 1; : : : ; U k , setting U D int.
S
j U

j /,

jU jJ.U / �

kX
jD1

jU j jJ.U j /: (B.8)

In addition, setting ı .U / WD  ı.U / �  �.U /,

kX
jD1

D
�
ı .U / � ı .U j /

�2
L2.U j /

D

kX
jD1

jU j j
�
J.U j / � J.U /

�
: (B.9)
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Proof. We split the proof into three steps.

Step 1. Proof of (i). We start with the proof of (B.6), that is, the comparison of zBL;�,
zBL;ı with the periodic approximation xBLC2.1C�/. First, we extend ı.UL/ by zero on
QLC2.1C�/ n U

�
L , which makes it a QLC2.1C�/-periodic function, and thus, testing

variational problems, 
QLC2.1C�/

ˇ̌
D. LC2.1C�//

ˇ̌2 �

 
QLC2.1C�/

ˇ̌
D
�
 ı.UL/

�ˇ̌2
D

jULj�
LC 2.1C �/

�d  
UL

ˇ̌
D
�
 ı.UL/

�ˇ̌2
;

which yields, in view of jL�d jULj � 1j . L�1, 
QLC2.1C�/

ˇ̌
D. LC2.1C�//

ˇ̌2
� .1C CL�1/

 
UL

ˇ̌
D
�
 ı.UL/

�ˇ̌2
:

Second, as the restriction  LC2.1C�/jUL
belongs to H .UL/ and is thus an admissible

test function in (B.1), we similarly obtain 
UL

ˇ̌
D
�
 �.UL/

�ˇ̌2
�

 
UL

ˇ̌
D. LC2.1C�//

ˇ̌2
�

�
LC 2.1C �/

�d
jULj

 
QLC2.1C�/

ˇ̌
D. LC2.1C�//

ˇ̌2
� .1C CL�1/

 
QLC2.1C�/

ˇ̌
D. LC2.1C�//

ˇ̌2
:

The claim (B.6) follows from the combination of these two estimates with the follow-
ing energy bounds, cf. (3.45),

E

� 
QLC2.1C�/

ˇ̌
D. LC2.1C�//

ˇ̌2�
CE

�  
UL

ˇ̌
D. ı.UL//

ˇ̌2�
CE

�ˇ̌
D. /

ˇ̌2�.�.P /:
(B.10)

We turn to the proof of (B.5). Since the restriction  jUL
belongs to H .UL/ and is

thus an admissible test function in (B.1), we find by stationarity of D. /,

E

� 
UL

ˇ̌
D
�
 �.UL/

�ˇ̌2�
� E

�  
UL

ˇ̌
D. /

ˇ̌2�
� E

�
Ld

jULj

 
QL

ˇ̌
D. /

ˇ̌2�
� .1C CL�1/E

�ˇ̌
D. /

ˇ̌2�
:

For the converse inequality, we appeal to a cut-and-paste argument. The starting point
is the following convergence, cf. [18],

E
�ˇ̌

D. /
ˇ̌2�

D lim
k"1

E

�  
UkL

ˇ̌
D
�
 ı.UkL/

�ˇ̌2�
:
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Since z ı.UkL/ WD
P
j  ı.UL.zj //1UL.zj / belongs to H0.UkL/, where ¹UL.zj /ºj is

a partition of UkL, we obtain for all k, by stationarity of z 7! UL.z/,

E

�  
UkL

ˇ̌
D
�
 ı.UkL/

�ˇ̌2�
�

X
j

E

� ˇ̌
UL.zj /

ˇ̌
jUkLj

 
UL.zj /

ˇ̌
D
�
 ı

�
UL.zj /

��ˇ̌2�
� .1C CL�1/E

�  
UL

ˇ̌
D
�
 ı.UL/

�ˇ̌2�
:

The claim (B.5) follows from the combination of these three properties with the above
energy bounds (B.10).

Step 2. Proof of (ii). By definition,

J.U / D

 
U

D
�
 ı.U / �  �.U /

�
W D
�
 ı.U /C  �.U /

�
:

Since  ı.U /; �.U / 2 H .U /, the difference  ı.U /� �.U / is a suitable test func-
tion for the Euler–Lagrange equation of the minimization problem (B.1) defining
 �.U /, which yields

ˆ
U

D
�
 ı.U / �  �.U /

�
W D
�
 �.U /

�
D 0;

and the claim (B.7) follows.

Step 3. Proof of (iii). We start with the proof of (B.8). Since the minimization prob-
lem (B.2) defines a subadditive set function due to the gluing property of H0.U /,
and since the minimization problem (B.1) defines a superadditive function due to the
restriction property of H .U /, the function J is subadditive as the difference of a
subadditive and of a superadditive function.

We turn to the proof of (B.9). The starting point is (B.7) for U j , which yields

jU j jJ.U j / �

ˆ
U j

ˇ̌
D
�
ı .U /

�ˇ̌2
D

ˆ
U j

D
�
ı .U j / � ı .U /

�
W D
�
ı .U j /C ı .U /

�
D

ˆ
U j

ˇ̌
D
�
ı .U j / � ı .U /

�ˇ̌2
C 2

ˆ
U j

D
�
ı .U j / � ı .U /

�
W D
�
ı .U /

�
: (B.11)

We decompose the second right-hand side term into 2
P4
kD1 Ik;j , in terms of

I1;j D

ˆ
U j

D
�
 ı.U

j / �  ı.U /
�
W D
�
 ı.U /

�
;
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I2;j D �

ˆ
U j

D
�
 ı.U

j / �  ı.U /
�
W D
�
 �.U /

�
;

I3;j D

ˆ
U j

D
�
 �.U /

�
W D
�
 ı.U / �  �.U /

�
;

I4;j D �

ˆ
U j

D
�
 �.U

j /
�
W D
�
 ı.U / �  �.U /

�
:

Since  ı.U /jU j ;  �.U /jU j 2 H .U j /, the difference . ı.U / �  �.U //jU j is a
suitable test function for the Euler–Lagrange equation for  �.U

j /, which yields
I4;j D 0. Likewise, since  ı.U /;

P
j  ı.U

j /1U j 2 H0.U / � H .U /, we find bothP
j I1;j D 0 and

P
j I2;j D 0. In addition, since  ı.U /;  �.U / 2 H .U /, we findP

j I3;j D 0. This entailsX
j

ˆ
U j

D
�
ı .U j / � ı .U /

�
W D
�
ı .U /

�
D 0:

Summing (B.11) over j , inserting the above, and recalling the identity (B.7), the
claim (B.9) follows.

For all n � 0, we set U n WD U3n and define the discrepancy

�n WD E
�
J.U n/

�
� E

�
J.U nC1/

�
:

In contrast with [3], the set U n is now random, so that subadditivity does not directly
imply �n � 0. This is however true up to an errorO.3�n/, as we briefly argue. Choose
a partition ¹U nj WDU3n.zj /ºj of the setU nC1. Taking the expectation of (B.9) applied
to this decomposition of U nC1, we find

0 � E
hX
j

D
�
ı .U nC1/ � ı .U nj /

�2
L2.Un

j
/

i
D

X
j

E
�
jU nj j

�
J.U nj / � J.U

nC1/
��
; (B.12)

whereas by the deterministic bounds j3d jU nj � jU nC1jj . 3n.d�1/ and J.U nj / . 1

we have for some constant C ' 1,X
j

E
�
jU nj j

�
J.U nj / � J.U

nC1/
��

. 3nd
�
E
�
J.U n/

�
� E

�
J.U nC1/

�
C C3�n

�
: (B.13)

The combination of (B.12) and (B.13) yields the claim in form of

x�n WD �n C C3�n � 0: (B.14)
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The crux of the approach is the following control of the variance of averages of
D.ı .U // in terms of �n. In view of Lemma B.2, the proof is identical to that of
[3, Lemma 2.13] (albeit in the ˛-mixing version of [4], further arguing as in (B.14)
and absorbing the additional error term).

Lemma B.3. There exist C; " > 0 (only depending on d; �; ˇ) such that for all n,

Var
� 

Un

D
�
ı .U n/

��
� C3�"n C C

nX
mD0

3�".n�m/x�m:

Recall the following version of Korn’s inequality: for any bounded domain D �

Rd , for all divergence-free fields v 2 L2.D/, we have

inf
�2Rd

‚2Mskew

ˆ
D

ˇ̌
v.x/ � � �‚x

ˇ̌2
dx .D

D.v/
2
H�1.D/

;

where the multiplicative constant only depends on the regularity of D. In contrast
with Poincaré’s inequality, the infimum over ‚ 2 Mskew allows to have the sym-
metrized gradient in the right-hand side instead of the full gradient. By the so-called
multiscale Poincaré inequality in [3, Proposition 1.12], using the above Korn inequal-
ity instead of [3, Lemma 1.13], Lemma B.3 yields the following estimate as in [3,
Lemma 2.15]. This is simpler than the statement in [3] since there is no convex dual-
ity involved.

Lemma B.4. There exist C; " > 0 (only depending on d; �; ˇ) such that for all n,

E

�
inf
�2Rd

‚2Mskew

 
UnC1̌̌

ı .U nC1/.x/���‚x
ˇ̌2
dx

�
�C32n

�
3�"nC

nX
mD0

3�".n�m/x�m

�
:

Next, we deduce the following estimate on J as in [3, Lemma 2.16] by means
of the Caccioppoli inequality. As the latter inequality in the present Stokes context
involves the pressure, the proof slightly differs from [3] and is included below.

Lemma B.5. There exist C; " > 0 (only depending on d , �, ˇ) such that for all n,

E
�
J.U n/

�
� C3�"n C C

nX
mD0

3�".n�m/x�m:

Proof. Caccioppoli’s inequality in form of e.g. [19, Section 4.4, Step 1] yields for all
K � 1, for any constants c 2 R, � 2 Rd , and ‚ 2 Mskew, 

Un

ˇ̌
D
�
ı .U nC1/

�ˇ̌2 . K23�2n
 
UnC1

ˇ̌
ı .U nC1/.x/ � � �‚x

ˇ̌2
dx

CK�2

 
UnC1

ˇ̌
ı†.U nC1/ � c

ˇ̌2
1Rdn	; (B.15)
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where ı†.U nC1/ is the difference of the pressures associated with  ı.U
nC1/ and

 �.U
nC1/. Appealing to a local pressure estimate in form of e.g. [19, Lemma 3.3],

and recalling Lemma B.2 (ii), we find

inf
c2R

 
UnC1

ˇ̌
ı†.U nC1/� c

ˇ̌2
1Rdn	 .

 
UnC1

ˇ̌
D
�
ı .U nC1/

�ˇ̌2
D J.U nC1/: (B.16)

Taking the infimum over c, �, ‚ in (B.15), taking the expectation, inserting (B.16),
and using Lemma B.4, we obtain

E

�  
Un

ˇ̌
D
�
ı .U nC1/

�ˇ̌2� . K2

 
3�"n C

nX
mD0

3�".n�m/x�m

!
CK�2E

�
J.U nC1/

�
;

and thus, in view of (B.14),

E

�  
Un

ˇ̌
D
�
ı .U nC1/

�ˇ̌2�
. K2

 
3�"n C

nX
mD0

3�".n�m/x�m

!
CK�2

�
E
�
J.U n/

�
C 3�n

�
: (B.17)

Next, we argue that

E
�
J.U n/

�
. E

�  
Un

ˇ̌
D
�
ı .U nC1/

�ˇ̌2�
C x�n: (B.18)

For that purpose, we first note that the definition of J yields

E
�
J.U n/

�
� E

�  
Un

ˇ̌
D
�
ı .U nC1/

�ˇ̌2�
D E

�  
Un

D
�
ı .U n/ � ı .U nC1/

�
W D
�
ı .U n/C ı .U nC1/

��
. E

� 
Un

ˇ̌
D
�
ı .U n/ � ı .U nC1/

�ˇ̌2� 1
2 �

E
�
J.U n/

�
C E

�
J.U nC1/

�� 1
2 :

In order to control the first factor, we appeal to (B.12) and (B.13) in form of

E

�X
j

D
�
ı .U nj / � ı .U

nC1/
�2

L2.Un
j
/

�
. 3ndx�n:

Further, using the definition (B.14) of x�n to reformulate the second factor, we deduce

E
�
J.U n/

�
� E

�  
Un

ˇ̌
D
�
ı .U nC1/

�ˇ̌2� . .x�n/
1
2

�
E
�
J.U n/

�
C x�n

� 1
2 ;

and the claim (B.18) follows.
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Choosing K ' 1 large enough, (B.17) and (B.18) combine to

E
�
J.U n/

�
. E

� 
Un

ˇ̌
D
�
ı .U nC1/

�ˇ̌2�
C x�n . 3�."^1/n C

nX
mD0

3�ˇ.n�m/x�m;

and the conclusion follows.

We may now proceed to the proof of Proposition B.1, which follows from Lemma
B.5 by iteration.

Proof of Proposition B.1. Set Fn WD 3�
1
2 "n

Pn
mD0 3

1
2 "mE

�
J.Um/

�
. In terms of �n,

recognizing a telescoping sum, we find

Fn � FnC1 D 3�
1
2 "n

nX
mD0

3
1
2 "mE

�
J.Um/

�
� 3�

1
2 ".nC1/

nC1X
mD0

3
1
2 "mE

�
J.Um/

�
D 3�

1
2 "n

nX
mD0

3
1
2 "m�m � 3�

1
2 ".nC1/E

�
J.U 0/

�
;

and thus, using (B.14) and E
�
J.U 0/

�
. 1,

Fn � FnC1 � 3�
1
2 "n

nX
mD0

3
1
2 "mx�m � C3�

1
2 "n: (B.19)

Similarly, we find

FnC1 � 3�
1
2 ".nC1/

nC1X
mD1

3
1
2 "mE

�
J.Um/

�
C C3�

1
2 ".nC1/

� 3�
1
2 ".nC1/

nC1X
mD1

3
1
2 "m

�
E
�
J.Um�1/

�
C C3�.m�1/

�
C C3�

1
2 ".nC1/

� Fn C C3�
1
2 "n;

which, by Lemma B.5, turns into

FnC1 � C3�
1
2 "n

nX
mD0

3
1
2 "m

 
3�"m C

mX
kD0

3�".m�k/
x�k

!
C C3�

1
2 "n

� C3�
1
2 "n C C3�

1
2 "n

nX
mD0

C3
1
2 "mx�m:

Combining this with (B.19), we obtain

FnC1 � C.Fn � FnC1/C C3�
1
2 "n;
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and thus
FnC1 �

C

C C 1
.Fn C 3�

1
2 "n/:

By iteration, this yields Fn � C3�n for some  > 0, and thus EŒJ.U n/� � C3�n

and �n � C3�n. Since EŒJ.U n/� D E W .zB3n;ı �
zB3n;�/E, this implies

0 � E W .zBL;ı � zBL;�/E � L� :

Combined with Lemma B.2 (i), this yields the conclusion.




