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Abstract

June Huh found striking connections between algebraic geometry and combinatorics,
solved central problems in combinatorics that had remained open for decades, and devel-
oped a theory of great importance for both fields. June Huh has been awarded the 2022
Fields Medal “for bringing the ideas of Hodge theory to combinatorics, the proof of the
Dowling–Wilson conjecture for geometric lattices, the proof of the Heron–Rota–Welsh
conjecture for matroids, the development of the theory of Lorentzian polynomials, and
the proof of the strong Mason conjecture.” In this paper I will review some of June Huh’s
contributions.
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June Huh has made groundbreaking contributions in combinatorics and algebraic
geometry and his work established profound connections between these two areas. This paper
describes some of Huh’s main achievements and gives some background, primarily on the
combinatorial aspects of his work.

The Heron–Rota–Welsh unimodality conjecture ([33, 54, 63]) asserts that the coef-
ficients of the characteristic polynomial of a matroid form a log-concave sequence. This
implies that the coefficients are unimodal. A special case of the conjecture is an earlier con-
jecture by Read, asserting that the coefficients of the chromatic polynomial of a graph are
unimodal. In 2009 June Huh used algebraic geometry to prove Read’s unimodality conjecture
[34] for graphs, and the more general Heron–Rota–Welsh conjecture for matroids represented
over a field of characteristic 0. The case of matroids representable over a field of a nonzero
characteristic and the case of general matroids remained open. In 2010 June Huh and Eric
Katz [37] found a different algebraic-geometric approach and proved the case of matroids rep-
resentable over a field of an arbitrary characteristic. Finally, in 2015 the Heron–Rota–Welsh
conjecture was proved in full generality by Karim Adiprasito, June Huh, and Eric Katz [2].
For this purpose, it was necessary to extend theorems from algebraic geometry (primarily the
Hodge–Riemann relations and the hard Lefschetz theorem) to cases well beyond the scope
of algebraic geometry. Huh and his coauthors developed an entirely novel theory of great
interest and importance.

June Huh and Botong Wang [39] used connections with algebraic geometry to prove
the Dowling–Wilson conjecture. Consider a configuration P of n points spanning a d -
dimensional space. Let wi be the number of linear spaces of dimension i spanned by the
points.

Motzkin conjectured in his 1936 PhD thesis, and proved over the reals in 1951 [49],
that w1 � wd�1. The case of d D 3 (in a planar affine formulation) was proved in 1948 by
de Bruijn and Erdős, and their abstract combinatorial proof applies to every characteristic.

The Dowling–Wilson “top heavy” conjecture [22] asserts that

wi � wd�i ; i � Œd=2�: (1)

An extension of the Dowling–Wilson conjecture for arbitrary matroids (of rank d )
was proved by Tom Braden, June Huh, Jacob Matherne, Nicholas Proudfoot, and Botong
Wang [13].

The Mason conjecture (on independence numbers) asserts [44] that the sequence of
numbers of independent sets of size k of general matroids is log-concave and it comes in
several strengths. Following Huh’s first result the conjecture was proved by Mathias Lenz
[42] for representable real matroids and it was proved for general matroids in [2]. The strong
Mason conjecture for arbitrary matroids was proved by June Huh, Benjamin Schröter, and
Botong Wang [38] who relied on [2].

These works have led to further advances by several groups of researchers, and I
would especially like to mention the solution of the Mihail–Vazirani conjecture on the expan-
sion constant and rapid mixing for random walks on matroids, by Anari, Oveis Gharan, and
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Vinzant [4], as well as the works by Brändén and Huh [14] on correlation inequalities for the
Potts model.

The structure of this paper is as follows. In Section 1 we discuss chromatic polyno-
mials and Read’s conjecture. In Section 2 we discuss matroids and the Heron–Rota–Welsh
conjecture. In Section 3 we discuss the Dowling–Wilson conjecture. Section 4 is devoted to
algebraic geometry, Hodge theory, and the Grothendieck standard conjectures. In Section 5
we discuss the Mason conjectures and some recent applications and connections. A recent
review paper aimed for a general audience on Huh’s work and mathematical background was
written by Andrei Okounkov [50].

1. Graphs, chromatic polynomials, and Read’s conjecture

1.1. The four-color conjecture and chromatic polynomials
A proper coloring of a graphG is a coloring of the vertices ofG such that every two

adjacent vertices are colored with different colors. Graph coloring is of central importance
in graph theory and in graph algorithms.

Theorem 1 (The four-color theorem (Appel and Haken 1976)). Every planar graph can be
properly colored with 4 colors.

The four-color conjecture was proposed (in a dual form, for planar maps) by Francis
Guthrie in 1852 and proved by Kenneth Appel and Wolfgang Haken [6] in 1976.

For a graph G, let �G.k/ be the number of proper colorings of G with k colors.
�G.k/ is called the chromatic polynomial of the graph G. Chromatic polynomials were
introduced by George Birkhoff [11] for planar maps as a possible tool for the study of the four-
color conjecture. Later Hassler Whitney extended the definition to general graphs. William
Tutte found a far-reaching generalization, now called the Tutte polynomial and also intro-
duced the related Tutte–Grothendieck invariants for graphs, which can be seen as an early
bridge between graph theory and algebraic geometry. A starting point of Tutte’s work is the
deletion–contraction operations. For a graphG and an edge e ofG, letGne denote the graph
obtained by deleting the edge e, and G=e denote the graph obtained by contracting the edge
e, that is, by merging its two vertices to a single vertex adjacent to neighbors of both. A
fundamental relation for chromatic polynomials is

�G.k/C �G=e.k/ D �Gne.k/: (2)

This relation gives an easy inductive proof of the fact that the chromatic polynomial
is indeed a polynomial. A graphH is called a minor of a graph G if it can be obtained from
G by a sequence of deletions and contractions. Richard Stanley proved [58] that �G.�1/

equals the number of acyclic orientations of G.

1.2. Read’s conjecture
In 1968 Ronald Read [53] proposed the following conjecture. Suppose that

�G.x/ D anx
n

� an�1x
n�1

C � � � C .�1/ian�ix
n�i

C � � � I (3)
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then, the sequence a0; a1; : : : ; an is unimodal.
A much more general conjecture was posed a short time later by Andrew Heron,

Gian-Carlo Rota, and Dominic Welsh. They also conjectured a stronger statement, namely,
that the sequence of coefficients is actually log-concave:

a2
k � ak�1akC1; k D 1; 2; : : : ; n � 1: (4)

Theorem 2 (June Huh [34]). The coefficients of the chromatic polynomial �G.x/ of every
graph G are log-concave.

The unimodality and log-concavity of sequences arising in combinatorics and alge-
bra have been studied by many researchers and in this context I would like to refer the reader
to the survey articles [16,17,61]. A stronger property than log-concavity of the coefficients of
real polynomials is that of having only real roots. This is not the case for chromatic polynomi-
als of graphs in general (but the location of the roots is still a fascinating topic). Unimodality
of the numbers of elements according to their heights in general graded posets is also related
to the important “Sperner property” of posets. We note that there are cases where unimodal-
ity was expected but failed, e.g., unimodality of face numbers of polytopes [12], and of Young
lattices [62].

I first heard about Huh’s startling proof of the Read conjecture from a 2011 paper
by Jiří Matoušek [45] who regarded this result, among a few other results, as the beginning
of a new era in discrete geometry and wrote:

“To me, 2010 looks as annus mirabilis, a miraculous year, in several areas of my
mathematical interests. Below I list seven highlights and breakthroughs, mostly
in discrete geometry, hoping to share some of my wonder and pleasure with the
readers.”

Huh’s proof relied on connections of the problem to singularities of local analytic
functions and ultimately to mixed multiplicities of certain ideals. In his proof Huh related
the coefficients of the chromatic polynomial to the Milnor numbers of a complex hyperplane
arrangement associated with the graph G and, as we discuss in the next section, his proof
extends to arbitrary complex hyperplane arrangements. Huh’s connection between chromatic
polynomials of graphs and algebraic geometry was, on the one hand, a complete surprise but,
on the other hand, it tied in with several developments in and around algebraic combinatorics
dating to the mid-1970s. Huh’s subsequent discoveries where he further applied algebraic
geometry and especially Hodge theory to combinatorics, beautifully combined new and old
ideas.
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2. Matroids and the Heron–Rota–Welsh conjecture

2.1. Matroids
Let X D ¹x1; x2; : : : ; xnº be a set of points in some vector space. We can associate

with X :

• The set of linearly independent subsets of X .

• The set of bases of X (a base is a maximal independent set).

• The set of circuits of X (a circuit is a minimal dependent set).

• The set of flats of X (a flat is a subset that is closed under linear combination).

• The rank function that associates to a subset Y of X the dimension of the vector
space spanned by Y .

Matroids were introduced by Hassler Whitney [65] as a generalization of configu-
rations of points in linear spaces or as an abstraction of the notion of linear dependence.
Matroid theory is an example of both a highly successful abstraction and a source of very
useful and explicit examples. Matroid theory has various connections to the theory of algo-
rithms and mathematical optimization, and also to mathematical logic.

Each of the five notions we mentioned above, independent sets, bases, circuits, flats,
and rank functions, give rise to an axiomatic definition of matroids (and all these axiomatic
definitions are equivalent). The definition of matroids based on independent sets is given by
the following properties:

(1) Subsets of independent sets are themselves independent.

(2) For every subset Y of X , all maximal independent subsets of Y have the same
cardinality.

The first property means that the set of independent sets is an abstract simplicial complex
while the second property asserts that for every subset Y of the ground set X , the induced
complex on Y is pure.

For an abstract simplicial complexK on a ground setX , we can define its dual (also
called its blocker) by

K�
D ¹S � X W XnS 6� M º:

If M is a matroid, we can define its dual as the matroid whose independent set complex is
the dual of the independent set complex of M .

2.2. From graphs to matroids
Let G be a (connected) graph on n vertices ¹v1; v2; : : : ; vnº, and suppose that

e1; e2; : : : ; en is the standard basis in an n-dimensional vector space over a field F . We
associate to every edge e D ¹vi ; vj º, i < j the vector ei � ej . Remarkably, we get the same
matroid for every field we start with. This matroid is called the graphic matroid associated
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Figure 1

Important classes of matroids. (Right) Matroids also provide an abstraction of the notion of algebraic dependence.
The large and mysterious class of algebraic matroids consists of matroids that can be represented by algebraic
dependence relations over some field. (Left) Tutte characterized graphic matroids in terms of forbidden minors.
Regular matroids are those matroids that can be represented over every field, and Paul Seymour [56] developed a
structure theory for this class. Jim Geelen, Bert Gerards, and Geoff Whittle (see [28]) have recently proved that
matroids represented over every field are characterized by a finite list of forbidden minors.

with G. It is easy to see that in this case, bases correspond to spanning trees, circuits cor-
respond to simple cycles, independent sets correspond to spanning forests, and the rank
function for subgraph H that corresponds to a set of edges is n minus the number of the
connected components of H .

IfM is a graphic matroid, the dual matroid need not be graphic. However, for planar
graphs the dual matroid is the matroid associated to the dual graph. The notion of deletion
and contraction extend from graph theory to matroid theory. (Indeed, these two operations
are dual under matroid duality.)

2.3. Rank functions, characteristic polynomials, and the Heron–Rota–Welsh
conjecture
The rank function of a matroid associates a nonnegative integer r.Y / to every subset

Y � X , with the following properties:

(i) r.;/ D 0,

(ii) r.A [ B/ � r.A/C r.B/ � r.A \ B/,

(iii) r.A/ � r.A [ ¹bº/ � r.A/C 1.

The characteristic function of a matroidM with ground setX is defined as follows:

�M .�/ WD

X
S�E

.�1/jS j�r.M/�r.S/: (5)
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IfM is a graphic matroid for the graphG, then �M .�/ is the chromatic polynomial
of G.

Theorem 3 (Adiprasito, Huh, and Katz [2]). The coefficients of the characteristic polynomial
of a matroid M are log-concave.

June Huh [34] proved the results for matroids (regarded as hyperplane arrangements)
representable over a field of characteristic 0 and, as we mentioned above, the proof uses
the Milnor numbers of the arrangement. The proof by Huh and Katz [37] for the case of
an arbitrary characteristic relied on the intersection theory of “wonderful compactification”
defined by Corrado De Concini and Claudio Procesi [21] for complements of hyperplane
arrangements combined with an inequality of Askold Khovanskii and Bernard Teissier.

Adiprasito, Huh, and Katz [2] proved the full result. This requires far-reaching exten-
sions of results from algebraic geometry to cohomology rings of algebraic varieties that do
not exist. Here is the description of one of the early steps in the argument: the original defi-
nition of De Concini and Procesi of the “wonderful compactification” applied to realizable
matroids, but Feichtner and Yuzvinsky defined in 2004 [25] a commutative ring associated to
an arbitrary matroid that specializes to the cohomology ring of a wonderful compactification
in the realizable case.

Let me quote from [2]: “After the completion of [37], it was gradually realized that
the validity of the Hodge–Riemann relations for the Chow ring of M is a vital ingredient
for the proof of the log-concavity conjectures. While the Chow ring of M could be defined
for arbitrary [matroid] M , it was unclear how to formulate and prove the Hodge–Riemann
relations. From the point of view of [25], the ring A�.M/R is the Chow ring of a smooth,
but noncompact toric variety X.†M /, and there is no obvious way to reduce to the classical
case of projective varieties.”

We will discuss some of the algebraic geometry aspects in Section 4. We note that
the algebraic results of [2] actually apply to more general geometric objects well beyond
matroids. For more on matroid theory see [7,32,43,51,64].

3. The Dowling–Wilson conjecture

3.1. Background: Theorems by de Bruijn–Erdős, Motzkin, Greene, and
Ryser’s linear algebraic proof

Theorem 4. A set of n points in the plane not all on the same line determines at least n lines.

Here we say that a configuration of points determines a line ` if the line contains
two (distinct) points from the configuration.

Proof. The Gallai–Sylvester theorem asserts that there exists a line that contains precisely
two points of the configuration. The theorem now follows by induction when you delete one
of these two points from the configuration.
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Figure 2

Important examples of matroids. From left to right: The Fano matroid, the Vámos matroid, and the non-Pappus
matroid. The points of the Fano plane violate the Gallai–Sylvester theorem, hence it is not representable over the
reals. As a matter of fact, the Fano matroid is representable over a field F if and only the characteristic of F is 2.
The Vámos matroid is not algebraic. Pappus ancient theorem implies that the non-Pappus matroid is not
representable over any field. Bernt Lindström proved that it is algebraic. Picture credit: Wikipedia and the
“matroid union” blog.

The assertion of the Gallai–Sylvester theorem does not apply over characteristic two
as seen by the Fano plane, nor does it apply for the complex plane. By contrast, the proof
by Nicolaas de Bruijn and Paul Erdős uses an abstract combinatorial reasoning that is based
only on the very first axiom of Euclid: “Every two points span a unique line.” An algebraic
proof of the theorem was given by Herbert Ryser [55].

Proof. Ryser’s proof Consider the 0–1 incidence matrix with rows corresponding to points in
the configuration and columns to lines determined by these points. Suppose that the columns
of the incidence matrix are c1; c2; : : : ; cm. Note that the inner product of every two distinct
rows is one. Write bi D hci ; ci i for the number of points on the i th line (bi > 1). Suppose thatX

˛ici D 0:

We write
0 D

˝ X
˛ici ;

X
˛ici

˛
D

X
˛2

i .bi � 1/C
�X

˛i

�2
:

It follows that the rows are linearly independent and therefore we must have m � n.

Ryser’s proof was a starting point for many algebraic proofs in combinatorics. We
leave it as an exercise to show that it implies that there is bijection  .p/ from points to lines
such that p 2  .p/.

Theodore Motzkin considered the theorem in higher dimensions. He conjectured
(already in his 1936 thesis) that n points in a d -dimensional space that affinely span the
space span at least n hyperplanes. Motzkin himself proved the result, as well as an extension
of the Gallai–Sylvester theorem for configurations in higher-dimensional real vector spaces
[49]. Curtis Greene [30] proved a stronger theorem: there is a one-to-one map  from every
point p to a hyperplane containing p.
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Let us now move to matroids of rank d . (Note that affine dependence of points in
a d -dimensional vector space describe a matroid of rank d C 1.) In 1974 Thomas Dowling
and Richard Wilson conjectured that

wi � wd�i ; whenever i < d � i: (6)

This conjecture is referred to as the top-heavy conjecture.

3.2. The proof of the Dowling–Wilson conjecture
Theorem 5 (Braden, Huh, Matherne, Proudfoot, and Wang 2020 [13]). LetM be a matroid,
and let Lk.M/ denote the set of k-flats of M ; then, for any k; j , k � j � rank.M/ � k:

(1) The cardinality of Lk.M/ is at most the cardinality of Lj .M/.

(2) There is an injective map  from Lk.M/ to Lj .M/, satisfying F �  .F /.

An additional result from the same paper asserts that if � is any group acting onM ,
then

(3) There is an injective map  from QLk.M/ to Lj .M/, of permutation repre-
sentation of � .

The case of representable matroids was proved earlier by Huh and Wang 2017 [39].
The paper [13] also gives consequences for Kazhdan–Lusztig polynomials of matroids (intro-
duced by Elias and Proudfoot).

We note that it is still an outstanding open question (even for representable matroids)
that the sequence w1; w2; : : : ; wn is log-concave. It is not even known for rank-3 matroids
that

w2
2 � w1w3; (7)

and this is referred to as the “point–lines–planes” conjecture. A stronger form of this con-
jecture (due to Mason) asserts that

w2
2 �

3

2

w1 � 1

w1 � 2
w1w3:

In 1982 Paul Seymour [57] proved this conjecture for matroids having no five points on a
line.

4. The connection with Hodge theory and algebraic

geometry

4.1. Three fundamental ideas and other ingredients from the proof of the
Heron–Rota–Welsh conjecture
“I like the solution even more than the problem.”

June Huh at a lecture at ICERM, 2015.
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In his 2015 lecture at ICERM (see also [36]), June Huh explained three fundamental
ideas that were used in the proof of the general Heron–Rota–Welsh conjecture:

(1) The idea of Bernd Sturmfels that a matroid can be viewed as a tropical linear
space.

Indeed, tropical geometry provided both a necessary framework and insights into the solu-
tion. Briefly, tropical mathematics replaces traditional addition with the operation of “taking
the minimum,” and multiplication with ordinary addition. This idea arose in several areas of
mathematics and in physics and it played an important role in enumerative algebraic geom-
etry. (For more details, see [36] and Section 5.4 and appendix C of [50].)

(2) The idea of Richard Stanley [60] that a polarized Hodge structure on the coho-
mology of projective toric varieties produces important combinatorial inequal-
ities.

Here the main example was the g-theorem for convex polytopes ([10,46,59]) where Stanley
used the hard Lefschetz theorem for the cohomology ring. Another notable example was
Stanley’s proof of the Erdős–Moser conjecture.

(3) The idea of Peter McMullen [47,48] that the g-conjecture can be proved entirely
within the realm of convex polytope theory using the “flip connectivity” of sim-
plicial polytopes of a given dimension.

Any two simplicial polytopes are connected by a sequence of “flips” (also known
as “Pachner moves”) and McMullen proved that the validity of the hard Lefschetz theorem
and the Hodge–Riemann relations are preserved under flips.

In the same lecture, June Huh mentioned quite a few more ideas by many people
working in algebraic combinatorics and in algebraic geometry that play a role in the proof.
We already mentioned Tessier, Khovanskii, De Concini and Procesi, and Fleischer and
Yuzvinsky, and Huh mentioned also Federico Ardila and Caroline Klivans [8], Angela
Gibney and Diane Maclagan [29], Kalle Karu [40], and William Fulton and Robert MacPher-
son [26, 27]. Of course, the proof involved a large number of additional original (at times
crazy) ideas by Adiprasito, Huh, and Katz themselves.

4.2. Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann
relations
Hodge theory gives rise to three conjectures (PD), (HL), and (HR), referred to as

the standard conjectures, for certain algebras associated with geometric and combinatorial
objects:

(PD) stands for the Poincaré duality, and it asserts that certain vector spacesAi and
Ad�i are dual (and thus have the same dimension).
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(HD) stands for hard Lefschetz theorem and it asserts that certain linear maps �k

fromAk toAk C 1 have the property that their composition fromAi all the way
to Ad�i is an injection.

(HR) stands for the Hodge–Riemann relations. (PD) and (HD) imply that a certain
bilinear form is nondegenerate and (HR) is a stronger statement that this form
is definite.

For the case of smooth projective algebraic variety M , we can consider its coho-
mology ring Ai D H 2i .M/. (For the case of singular algebraic varieties, that come into
play in the strongest versions of the Dowling–Wilson conjecture, we need to use intersection
cohomology.)

In [35] June Huh considered five examples (we are somewhat imprecise here): the
cohomology of a compact Kähler manifold, the ring of algebraic cycles modulo homo-
logical equivalence on a smooth projective variety, McMullen’s algebra generated by the
Minkowski summands of a simple convex polytope, the combinatorial intersection coho-
mology of a convex polytope, the reduced Soergel bimodule of a Coxeter group element,
and the Chow ring of a matroid. The only case among these examples where the standard
conjectures are not known is in their original appearance in Grothendieck’s work [31] toward
the Weil conjectures. The example of Soergel bimodules is related to the celebrated 2014
solution of the Kazhdan–Lusztig conjecture for general Coxeter groups by Ben Elias and
Geordie Williamson [23]. While it may be premature to expect it, it is not premature to hope
that some connections will be found between the combinatorial appearances of the standard
conjectures and their appearances in representation theory and number theory.

Remarks. (1) The proof of the Heron–Rota–Welsh conjecture by June Huh and his col-
laborators largely exploits “positivity,” namely the Hodge–Riemann relations. For another
central problem in algebraic combinatorics, the “g-conjecture for spheres,” positivity is no
longer available, and remarkable techniques to replace it and thus prove the conjecture were
recently developed first by Adiprasito [1] (the “Hall–Laman property”), subsequently by
Stavros Argyrios Papadakis and Vasiliki Petrotou [52] (the “anisotropy property”), and ulti-
mately by Adiprasito, Papadakis, and Petrotou [3]. (See also Kalle and Elizabeth Xiao [41]

for a simplified proof.)
(2) The work of Karu ([40]) on a hard Lefshetz theorem for general polytopes (see

also [9,18]), of Elias and Williamson [23] on the Kazhdan–Lusztig conjecture, and of Braden,
Huh, Matherne, Proudfoot, and Wang [13] on the Dowling–Wilson conjecture rely on (HL)
and (HR), not for (combinatorial extensions of) the ordinary homology but for (combinatorial
extensions of) Goresky and MacPherson’s intersection homology.
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5. The strong Mason conjecture (on independence

numbers), and related developments and applications

5.1. Mason conjecture, regular strength, strong, and ultra-strong
Let M be an n-element matroid and let ik.M/ denote the number of independent

sets of M of size k. The Mason conjecture [44] comes in several strengths.

The Mason conjecture:

i2k .M/ � ik�1.M/ikC1.M/:

The strong Mason conjecture:

i2k .M/ �

�
1C

1

k

�
ik�1.M/ikC1.M/:

The ultra-strong Mason conjecture:

i2k .M/ �

�
1C

1

k

��
1C

1

n � k

�
ik�1.M/ikC1.M/:

Mathias Lenz showed [42] how to derive the Mason conjecture for representable
matroids, based on the work of Huh and Katz. Adiprasito, Huh, and Katz showed how to
derive the Mason conjecture from their Hodge theory techniques and Huh, Schröter, and
Wang extended these techniques to prove the strong Mason conjecture. The ultra-strong con-
jecture was proved in parallel by direct combinatorial reasoning by Nima Anari, Kuikui Liu,
Shayan Oveis Gharan, and Cynthia Vinzant [5] and based on Hodge theory by Brändén and
Huh [14,15].

June Huh’s results of the past decade have led to much further research on the uni-
modality and log-concavity of various sequences arising in combinatorics. In some cases
new combinatorial proofs were found. Let me refer the reader to recent papers by Swee
Hong Chan and Igor Pak [19,20].

5.2. The Mihail–Vazirani conjecture
For a matroid M on a ground set X , consider a graph whose vertices are all bases

of the matroids and two bases are adjacent if their symmetric difference has two elements.
Milena Mihail and Umesh Vazirani conjectured that for every set Y of vertices in this graph,
the number of edges between Y to its complement NY is at least min.jY jj; NY j/.

If M consists of the elements of the standard basis in Rd and their negatives, then
the graph we obtain is the graph of the discrete n-dimensional discrete cube and the assertion
of the Mihail–Vazirani conjecture is a well-known isoperimetric inequality of the discrete
cube.

In a pioneering 1992 paper, Tomás Feder and Milena Mihail [24] proved the conjec-
ture for balanced matroids. In 2018 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant
[4] proved the Mihail–Vazirani conjecture. Their proof relied on the Adiprasito–Huh–Katz
paper, although gradually they were able to find elementary proofs not depending on Hodge
theory of crucial inequalities they needed. Their result leads to a polynomial-time algorithm
to approximate the number of bases in a matroid.
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Conclusion

June Huh found striking connections between algebraic geometry and combina-
torics, solved central problems in combinatorics that had remained open for decades, and
developed a theory of great importance for both fields. In my review, I naturally concen-
trated on the combinatorial side of the story. I did not describe in this review the connection
with tropical geometry, a major area both in algebraic combinatorics and algebraic geom-
etry. The reader is also referred to Huh’s papers to learn about the theory of Lorentzian
polynomials developed by June Huh and his coauthors.

It is a great pleasure to congratulate June Huh for his spectacular achievements.
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