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Abstract

We give a brief account of some of the most spectacular results established by James May-
nard, for which he has been awarded the Fields Medal.
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James Maynard has established several spectacular results in analytic number the-
ory. While the proofs of these results involve many deep ideas, their statements are remark-
able for their simplicity and elegance. To illustrate, we state two such striking results of
Maynard concerning prime numbers, before setting them in context.

Theorem 1 (Maynard [32]). For each natural number m � 2, there exists a positive integer
C.m/ with the following property: There are infinitely many natural numbers n such that the
interval Œn; nC C.m/� contains at least m prime numbers.

Theorem 2 (Maynard [36]). There are infinitely many prime numbers p whose decimal rep-
resentation does not contain the digit 7.

Background. To place these results in context, recall that the prime number theorem gives
an asymptotic for �.x/, the number of primes below x; namely,

�.x/ � li.x/ D

Z x

0

dt

log t
:

We may think of this asymptotic as roughly saying that the “chance” of a number n being
prime is about 1= logn. One overarching theme in analytic number theory may be formulated
as asking in what ways does the sequence of primes resemble, or differ from, a random
sequence of integers with each integer n � 3 chosen independently to be in the random
sequence with probability 1= log n (this is also known as the Cramér model). One obvious
difference is that all primes larger than 2 must be odd, whereas a random sequence would
surely contain many even numbers. But if we could account for divisibility by small primes
(such as 2 in our example), would a modified random model describe accurately the behavior
of prime numbers?

There are many ways in which we could try to make this theme precise. For instance,
the Riemann hypothesis predicts that j�.x/ � li.x/j is bounded by C."/x 1

2 C" for any " > 0
and some constant C."/. Fluctuations of size about

p
x are indeed what one would expect

if we select random sets of integers with n � 3 included in the set with probability 1= logn.
Thus the Riemann hypothesis is, at a crude level, consistent with a random model of primes,
although if we inspect the error term �.x/� li.x/ in finer detail then the influence of zeros of
�.s/ would be visible, and such features would deviate (in small but significant ways) from
the random model.

At the 1912 ICM, Landau posed four “unattackable” problems on primes: (i) the
Goldbach problem that every even integer larger than 2 is the sum of two primes, (ii) the
twin prime problem that there are infinitely many prime pairs n and n C 2, (iii) there is
always a prime between two consecutive squares, and (iv) there are infinitely many primes
of the form n2 C 1. All four problems remain open today, and all statements are exactly what
one would expect for random sequences. For example, the Cramér model would suggest that
the chance that n and nC 2 are both “prime” is about 1= logn� 1= log.nC 2/, which would
predict about x=.logx/2 twin primes up to x. Of course, some care is needed, since the same
prediction could be made for n and nC 1 being prime, and we will address this soon. Simi-
larly, we may expect that an even number N may have about N=.logN/2 representations as
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a sum of two primes, making the Goldbach conjecture very plausible, and related arguments
suggest the last two Landau problems as well.

For the third Landau problem on the number of primes between n2 and .nC 1/2, the
random model already predicts what we believe to be the right answer – namely, there should
be about .2nC 1/= log.n2/ � n= logn primes in this interval. For the other three problems,
some modification must be made to the Cramér model, to take into account the deterministic
features of these problems with respect to divisibility by small primes. Precise conjectures
for these problems were first made by Hardy and Littlewood motivated by their work on
the circle method. These conjectures are widely believed to be true, and are supported by
extensive heuristic and numerical evidence. For instance, Hardy and Littlewood formulated
the following conjecture for the number of twin primes below x:

#¹n � x W n; nC 2 both primeº � S
�
¹0; 2º

� Z x

2

dt

.log t /2
:

Here
R x

2
dt=.log t /2 is asymptotically x=.log x/2, and corresponds to the prediction of the

Cramér model, while S.¹0; 2º/, known as the singular series, is a correction factor

S.¹0; 2º/ D 2
Y
p�3

�
1 �

2

p

��
1 �

1

p

��2

D 1:32 : : :

The constant S.¹0; 2º/ has a compelling probabilistic interpretation: it is a product over all
primes p (the first factor 2 corresponds to the prime p D 2), with the factor at p keeping
track of the ratio between the chance that n and nC 2 are not divisible by p, and the chance
that two random numbers are not divisible by p. Thus, for pD 2, the chance that n and nC 2

are both not divisible by 2 is .1 � 1=2/ (n must be odd), while the chance that two random
numbers are both not divisible by 2 is .1� 1=2/2 D 1=4; the ratio of these chances gives the
correction factor 2. For primes p � 3, the chance that n and nC 2 are both not divisible by
p is .1 � 2=p/ whereas the chance that two random numbers are both not divisible by p is
.1 � 1=p/2, and we see the corresponding correction factor in the definition of S.¹0; 2º/.

Similar conjectures can be made for the binary Goldbach problem, or for the number
of primes of the form n2 C 1, modifying and correcting the naive predictions of the Cramér
model. To illustrate, we give a generalization of the conjecture for twin primes for counting
prime k-tuples: given distinct integers h1, h2, : : :, hk , for large x how many integers n � x

are there with nC h1, : : :, nC hk all being prime. Here the Hardy–Littlewood conjecture
predicts that

#¹n � x W nC h1; : : : ; nC hk all primeº � S
�
¹h1; : : : ; hkº

� Z x

2

dt

.log t /k
(1)

where, with H D ¹h1; : : : ; hkº,

S.H / D

Y
p

�
1 �

�.H ; p/

p

��
1 �

1

p

��k

; (2)

and �.H ; p/ denotes the number of distinct residue classes occupied by the set H viewed
mod p. Since �.H ; p/ D k if p is larger than max jhi � hj j, the product defining S.H /
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converges absolutely to a nonnegative real number, and it equals zero only if �.H ; p/ D

p for some prime p. If �.H ; p/ D p, then for any integer n at least one of the numbers
nC h1; : : : ; nC hk would be a multiple of p, and therefore there can be only finitely many
integers n with n C h1, : : :, n C hk all being prime; for example, this is what happens if
we ask for n and nC 1 to be prime, or n, nC 2, nC 4 all to be prime. When there is no
such divisibility obstruction to nC h1, : : :, nC hk all being prime, the Hardy–Littlewood
conjecture predicts a rich supply of such prime k-tuples. This is perhaps the most central
question in prime number theory, and remains open in any situation where S.H / is nonzero.

Sieve theory. We have described quickly some of the main motivating questions in the
theory of primes. One main source of progress towards these questions is sieve theory, and
a large part of Maynard’s work lies broadly in this area. A typical problem in sieve theory is
to bound the size of sets of integers A whose elements are constrained to omit �.p/ given
residue classes mod p for primes p. For instance, the twin prime problem is of this form, as
we seek to find integers n that are neither 0 nor �2 mod p for all primes p �

p
nC 2 (so

that n and nC 2 would both be prime). In great generality sieve methods can produce upper
bounds of the conjectured order of magnitude; for example, one can show that the number
of twin primes up to x is no more that 4 times the conjectured Hardy–Littlewood asymp-
totic. Producing corresponding lower bounds has proved to be a much harder problem, but
sieve methods have led to striking partial results such as Chen’s theorem that there are many
primes p for which p C 2 has at most two prime factors, or Iwaniec’s theorem that there are
many n for which n2 C 1 has at most two prime factors. For a comprehensive treatment of
the subject, see [14].

Chen’s theorem and Iwaniec’s theorem exhibit a limitation of traditional sieve meth-
ods, known as the parity problem, which often prevents us from knowing the parity of
elements left unsieved, and thus from producing prime numbers. But in some special cases,
sieve methods in conjunction with other analytic input have produced prime numbers. For
instance, for large x, Baker, Harman, and Pintz [2] showed that the interval Œx; x C x� � con-
tains at least cx�= log x primes, where c > 0 is a constant and � D 0:525; the Landau
problem of producing primes between consecutive squares corresponds to intervals with
� D

1
2
. Another spectacular example is due to Friedlander and Iwaniec [13] who established

an asymptotic formula for the number of primes up to x that may be written as n2 C m4,
an approximation to the Landau problem of primes of the form n2 C 1. A closely related
result of Heath-Brown and Li [25] produces an asymptotic formula for primes of the form
n2 C p4, where p is prime. Yet another beautiful result due to Heath-Brown [24] estab-
lishes an asymptotic formula for the number of primes below x of the form n3 C 2m3 with
m;n 2 N. Heath-Brown’s result may be viewed as an approximation to the problem of pro-
ducing primes of the form n3 C 2, but before his work it was not even known if there are
infinitely many primes that are the sum of three cubes of natural numbers! A crucial feature
of these results is that they deal with primes represented by specializations of norm forms.
The Friedlander–Iwaniec result is concerned with the norm form x2 C y2 D N.x C iy/

associated to the field Q.i/, and specializing y to be a square; Heath-Brown’s result is con-
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cerned with the norm form N.x C y˛ C z˛2/ taking the norm over the field Q.˛/ with
˛ D 2

1
3 , and specializing z to be 0. The results of Friedlander–Iwaniec and Heath-Brown

gave the first examples of thin sequences (in the sense that the number of integers below X

in the sequence is � X1�ı for some ı > 0) of polynomial values in two or more variables
that represent infinitely many primes; no example is known of a polynomial in 1 variable of
degree more than 1 that represents infinitely many primes.

Maynard’s work [40] gives a substantial generalization of Heath-Brown’s approach,
and produces many further examples of thin sequences of polynomial values in many vari-
ables that represent primes. Consider an algebraic number ! 2 C of degree n, and let K
denote the field Q.!/. We can associate to this the norm form N.

Pn
iD1 xi!

i�1/, which is a
homogeneous polynomial of degree n in the variables x1, : : :, xn. A thin polynomial in many
variables would be obtained by specializing some of the variables in this norm form to be
zero; say, we set xn�kC1, : : :, xn D 0, and the number integers below x represented by such
an incomplete norm form would be about x1�k=n. In the range n � 4k, Maynard establishes
an asymptotic formula for the number of primes represented by such an incomplete norm
form, when the variables x1, : : :, xn�k take integer values in the range Œ1; X�.

The circle method. Apart from sieve theory, another important source of progress towards
problems on primes is the circle method, which as we already mentioned formed the original
motivation for Hardy and Littlewood in formulating their conjectures. To illustrate, consider
the Goldbach problem of representing an even integer N as a sum of two primes. Using
Fourier analysis, the number of such representations of N may be written as

r.N / D

Z 1

0

S.˛/2e�2�iN˛d˛; where S.˛/ D

X
p�N

e2�ip˛: (3)

The idea in the circle method is that generating functions such as S.˛/ above tend to be large
near rational numbers with small denominator (the major arcs) and small away from them
(the minor arcs).

While the circle method has not been able to tackle the binary Goldbach problem or
the problem of twin primes, it has been extremely effective in problems where there is a bit
more freedom. For instance, the ternary Goldbach problem asks to represent odd numbers
as a sum of three primes, and there is one extra variable to play with here. Vinogradov
famously used the circle method to show that all large odd numbers are the sum of three
primes, and Helfgott [26] has extended this to show that all odd numbers larger than 5 may
be so represented. Here we may mention an impressive result of Matomäki, Maynard, and
Shao [30] which shows that large odd numbers n may be expressed as p1 C p2 C p3, where
all three primes pi lie in a short interval Œn=3 � n� ; n=3 C n� � for any � > 11=20. We
mentioned earlier the work of Baker, Harman, and Pintz [2] showing the existence of primes
in short intervals Œx; x C x0:525�, and the work of [30] is remarkable in solving the ternary
Goldbach problem using primes in only slightly longer intervals.

A second example of what it might mean to have an extra degree of freedom is the
Green–Tao theorem that the primes contain arbitrarily long arithmetic progressions n; nC
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d; : : : ; n C .k � 1/d . The Hardy–Littlewood conjecture would predict a stronger “one-
dimensional” version of such a result with specified choices for the common difference d ;
for instance, there should be infinitely many k-tuples primes of the form n, nC kŠ, nC 2 � kŠ,
: : :, nC .k � 1/ � kŠ. The work of Green, Tao, and Ziegler [19–21] may be thought of as a far-
reaching generalization of the circle method, obtaining asymptotic formulae for the number
of prime solutions to linear systems with “at least two degrees of freedom.”

Maynard’s beautiful result on primes with missing digits (Theorem 2 stated above) is
a rare occasion where the circle method can be used to solve a binary problem. Let M denote
the set of natural numbers with no 7 in their decimal expansion (naturally one could omit any
other digit instead of 7). The number of integers in M up toN is aboutN log 9= log 10 D N 1�ı

with ı D 0:046 : : :, so that M is a thin set making the problem of finding primes in it a
challenge. Before Maynard’s work, Dartyge and Mauduit [7,8] had used sieve theory to show
that M contains integers with at most two prime factors. To count the number of primes in
M up to N , we use Fourier analysis writing this asX

p�N
p2M

1 D

Z 1

0

S.˛/M.�˛/d˛;

whereS.˛/ is the exponential sum over primes defined in (3), andM.˛/D
P

m�N;m2M e2�i˛

is the corresponding exponential sum over the set M. Usually, such a binary problem is hope-
less to attack via the circle method – the reason being that even most optimistically we may
only expect “square-root cancellation” in the exponential sums S.˛/ andM.�˛/ for generic
˛, and even that would produce an integrand of size N 1

2 � N
1
2 .1�ı/, which is bigger than

the expected main term of size about N 1�ı= logN . A crucial feature in this problem is that
the set M has a very convenient structure which results in the exponential sum M.˛/ often
being unusually small. For instance, Maynard shows that its L1-norm satisfiesZ 1

0

ˇ̌
M.˛/

ˇ̌
d˛ � N 0:32;

with the key point being that the exponent 0:32 is smaller even than .1 � ı/=2, which is the
optimistic square-root cancellation that we mentioned. Such estimates raise the hope of being
able to attack Theorem 2, and the main idea can be seen transparently in Maynard’s expos-
itory article [35], where he proves an easier version of Theorem 2 treating primes missing a
digit in base b with b sufficiently large. The set of integers up to N missing a digit in base b
has size about N log.b�1/= log b , and so the problem becomes easier as the base b gets larger.
Getting the base down to 10 turns out to be a fiendishly difficult problem, and is arguably
more significant psychologically than for any mathematical reason. Maynard [36] tackles
this brilliantly by introducing a number of new ideas, including ideas from the geometry of
numbers, different aspects of sieve theory, and comparisons with a Markov process. We may
expect that even in base 3 there should be infinitely many primes with a given digit missing;
in base 2, the only digit that might be omitted is 0, and we find the problem of whether there
are infinitely many Mersenne primes, which lies beyond reasonable mathematics. We close
this discussion by pointing out two other beautiful results on the digits of prime numbers

71 The work of James Maynard



which have elements in common with Maynard’s work: namely, work of Mauduit and Rivat
[31] which shows (in particular) that the sum of the decimal digits of primes is equally likely
to be odd or even, and work of Bourgain [6] which allows one to specify a small proportion
of the binary digits of primes.

Gaps between primes. We now turn to a discussion of Maynard’s most spectacular result
– the sun amidst small stars – namely, Theorem 1 above on finding many primes in bounded
intervals. To describe the recent history of this problem, let us first discuss how primes are
spaced typically. The prime number theorem tells us that the nth prime pn is about n logn, so
that the average spacing between two consecutive primes, pnC1 � pn, is about logpn. What
is the distribution of the normalized spacings .pnC1 � pn/= log pn? The Cramér random
model for primes would predict that these normalized spacings should behave like a Poisson
process, and that for any fixed interval Œ˛; ˇ� 2 R�0,

lim
N !1

1

N
#
²
n � N W

pnC1 � pn

logpn

2 Œ˛; ˇ�

³
D

Z ˇ

˛

e�tdt D e�˛
� e�ˇ : (4)

Gallagher [16] showed that this prediction is also implied by the more refined Hardy–
Littlewood conjectures, the key point being that the singular series constants S.H / (see (2))
are approximately 1 (matching the naive Cramér model) on average over k-element sets H .

This conjecture on the normalized spacings between primes is wide open. Indeed,
if we denote by L the set of limit points of .pnC1 � pn/= logpn, then even the qualitative
statement that L D Œ0;1� (which follows at once from (4)) is currently unknown. By cre-
ating long strings of composite numbers, Westzynthius established that L contains 1, but
for a long time no other limit point was known (although Erdős and Ricci had established
that L has positive Lebesgue measure). Dramatic progress was made in the 2005 with the
path-breaking work of Goldston, Pintz, and Yıldırım [17], who showed that for any " > 0

there are infinitely many n with pnC1 � pn � " logpn. Thus there are small gaps between
primes in comparison to the average, and 0 is now known to be in L. Before the work of
Goldston, Pintz, and Yıldırım, it was only known that the difference between consecutive
primes became smaller than about 1

4
of the average spacing, and their work opened the door

to later advances including Maynard’s Theorem 1.
Suppose h1; : : : ; hk are distinct integers with S.¹h1; : : : ; hkº/ > 0; such tuples

are called admissible, and for example ¹kŠ; 2 � kŠ; : : : ; k � kŠº is admissible. The Hardy–
Littlewood conjecture predicts that there are infinitely many n with nC h1; : : : ; nC hk all
being prime. Instead of wanting all k of these numbers to be prime, what if we only ask
for at least two of them to be prime? This would already show that infinitely often there
are bounded gaps between consecutive prime numbers. Suppose we could find nonnegative
weights w.n/ with the property that for large x and each j D 1; : : : ; k,X

x�n�2x
nChj prime

w.n/ >
1

k

X
x�n�2x

w.n/: (5)
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Then summing (5) over all j D 1; : : : ; k, we would obtainX
x�n�2x

#¹1 � j � k W nC hj primeºw.n/ >
X

x�n�2x

w.n/; (6)

from which it would follow that there must be some n with at least 2 primes among nC h1,
: : :, n C hk . Thinking of the weights as giving a probability measure on x � n � 2x, we
may interpret (6) as saying that the expected number of primes among the nC hj is greater
than 1, so that there must be n with at least 2 primes in this k-tuple.

The difficult problem is to construct weights satisfying (5), and natural choices for
such weights are suggested by sieve theory, in particular the theory of the Selberg sieve. The
standard choice of Selberg sieve weights (which are used to give an upper bound for the
number of prime k-tuples nC h1; : : : ; nC hk) takes the shape

w.n/ D

 X
d j.nCh1/���.nChk/

d�R

�.d/

�
logR=d

logR

�k
!2

:

Clearly,w.n/� 0 always. Expanding out the sum, the right-hand side of (5) (the sum over all
n 2 Œx; 2x�) may be evaluated asymptotically so long asR2 � x1�". The left-hand side of (5)
is more involved, and relies on understanding the distribution of primes in arithmetic pro-
gressions with the modulus of the progression going up to R2. The Bombieri–Vinogradov
theorem permits such an understanding (at a level comparable to what the Generalized Rie-
mann Hypothesis would give) so long as R2 � x

1
2 �", so that R is now constrained to be

� x
1
4 �". For this choice of weights, the expected number of primes among the nC hj turns

out to be about .2k=.k C 1// logR= logx, so that with R � x1=4�" one only expects to find
1
2

a prime in the k-tuple.
Although the Selberg sieve weights described above had been optimized for upper

bounds in the prime k-tuple problem, Goldston, Pintz, and Yıldırım made the surprising
discovery that there are better choices of weights for optimizing the ratio of the sums in (5).
They considered weights of the form

w.n/ D

 X
d j.nCh1/���.nChk/

d�R

�.d/

�
logR=d

logR

�kC`
!2

;

for a suitable parameter `, which turns out in the optimal case to be around
p
k. With this

choice of weights, they found that the expected number of primes among n C hj is about
twice as large as previously, being .4CO.1=k

1
2 // logR= logx. WithR D x

1
4 �", this barely

fails to give the desired relation (5), and thus barely falls short of proving bounded gaps
between primes. By considering an additional possible prime value nC h for 1� h� " logx,
Goldston, Pintz, and Yıldırım were able to deduce from this argument that there are infinitely
many n with pnC1 � pn � " logn. For a more detailed discussion of these ideas, see [47].

If one could takeR to be x 1
4 Cı for any ı > 0, then the argument of Goldston, Pintz,

and Yıldırım would give bounded gaps between primes. To take such a value for R, one
would need to understand the distribution of primes up to x in arithmetic progressions,
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when the modulus of the progression is as large as x 1
2 C2ı . The Elliott–Halberstam con-

jectures predict that such results should hold (on average) when the modulus is as large as
x1�". Partial progress towards such extensions of the Bombieri–Vinogradov theorem was
made by Fouvry and Iwaniec [12], and Bombieri, Friedlander, and Iwaniec [5], but these
results did not apply immediately to the problem of showing bounded gaps between primes.
In April 2013, Yitang Zhang [49] made a spectacular breakthrough by establishing a ver-
sion of the Bombieri–Vinogradov theorem in an extended range which was sufficient for
the method of Goldston, Pintz, and Yıldırım. Zhang established that if k > 3:5 � 106 then
for any admissible k-tuple h1; : : : ; hk there are infinitely many n with at least two of the
nC hj being prime. This implied that infinitely often the gaps between consecutive primes
is less than 70 million. Refinements of Zhang’s work on the equidistribution of primes in
arithmetic progressions were made by the Polymath project [46], and still further qualitative
and quantitative refinements of such results may be found in the recent papers of Maynard
[37–39].

Zhang’s work established the casemD 2 of Theorem 1. However, even if one could
take the largest possible range for R, namely R D x

1
2 �" (which would be permitted by the

Elliott–Halberstam conjecture), the Goldston–Pintz–Yıldırım weights would only yield that
the expected number of primes in an admissible k-tuple is � 2 � ". In other words, even
under the Elliott–Halberstam conjecture, one would fall short of establishing the existence
of three primes in bounded intervals.

The proof of Theorem 1 is based on a different choice of the weights w.n/, discov-
ered just months after Zhang’s work by Maynard (who announced the results in a memorable
talk at Oberwolfach in October 2013) and independently by Tao (in unpublished work). The
Maynard–Tao weights are a multidimensional extension of the weights considered earlier,
and take (roughly speaking) the shape

w.n/ D

 X
d1;:::;dk
di jnChiQ

di �R

kY
iD1

�.di /F

�
log d1

logR
; : : : ;

log dk

logR

�!2

;

for suitable smooth functionsF W Œ0;1�k ! R. Astonishingly, it turns out that for an appropri-
ate choice for F , the expected number of primes in the tuple nC h1; : : : ; nC hk (recall (6)
above) is � c log k log R

log x
, for a positive constant c; in fact c may be taken close to 1 if k

is large enough. The key point is that this expected number of primes in k-tuples tends to
infinity with k, and in fact we only need R to grow like any power of x for the method to
succeed, so that Bombieri–Vinogradov which permits R D x

1
4 �" is already sufficient! Thus

the following more precise version of Theorem 1 holds, which may be viewed as a partial
result towards the Hardy–Littlewood prime k-tuples conjecture.

Theorem 3 (Maynard [32]). Let m � 2 be a natural number. Let k be sufficiently large in
terms of m, and let H D ¹h1; : : : ; hkº be any set of k integers with S.H / > 0. Then there
exist infinitely many n such that the k-tuple nC h1; : : : ; nC hk contains at least m primes.
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Maynard showed that k may be taken smaller than Cm2e4m for a suitable con-
stant C , and further refinements of this (incorporating also the work of Zhang) have been
made in the work of Baker and Irving [3] who showed that k may be taken as Ce3:815m. Of
special interest is the casemD 2where the Polymath project [45] optimized these arguments
to establish that any admissible 50-tuple contains 2 primes infinitely often. In particular, they
showed that pnC1 � pn � 246 infinitely often, and conditional on the Elliott–Halberstam
conjecture that infinitely often there are at least two primes in the triple n, n C 2, n C 6.
Let us mention one other uniform variant of these results: Maynard [33] shows, for instance,
that there are at least cX exp.�

p
logX/ values of x 2 ŒX; 2X� such that the interval Œx; x C

logX� contains at least c log logX primes (here c is a positive constant). For detailed expo-
sitions on these results of Zhang, Maynard, and Tao, see [18,29].

The Maynard–Tao weights offer a flexible new method to study many problems on
primes and related sequences, and have found a number of applications. We describe two
other results using these weights, both still concerned with spacings between consecutive
primes. We referred earlier to the result of Westzynthius on large gaps between consecutive
primes, which showed that 1 lies in the set L of limit points of the normalized spacings
.pnC1 � pn/= log pn. This was quantified in the 1930s by Erdős and Rankin who showed
that, for a positive constant C ,

max
pn�X

.pnC1 � pn/ � C logX
.log logX/ log log log logX

.log log logX/2
: (7)

The random model would suggest that the maximal gap between primes up to X should
be about .logX/2. This is known as Cramér’s conjecture, and while this is very delicate, it
is widely believed that the maximal gap is no more than .logX/2C", although even this is
far beyond Landau’s unattackable problem of the existence of a prime between consecutive
squares. Erdős drew attention to the problem of finding larger gaps between consecutive
primes, offering $10 000 for a bound that would replace C in (7) with a function tending
to 1 with X . For more than 75 years, this problem resisted attack, with only improvements
of the constant C being known. Then, by a remarkable coincidence, in 2014 two different
techniques emerged, both establishing (7) with C replaced by a function tending to infinity
withX . One approach, by Ford, Green, Konyagin, and Tao [11], built upon the work of Green–
Tao on arithmetic progressions in the primes, while the other approach, by Maynard [34],
found a way to adapt the Maynard–Tao sieve weights. The second approach was better suited
for quantifying the large gaps that are produced, and, joining forces, Ford, Green, Konyagin,
Maynard, and Tao [10] established that for some constant C > 0,

max
pn�X

.pnC1 � pn/ � C logX
.log logX/ log log log logX

log log logX
; (8)

improving the bound in (7) by a factor of log log logX .
The results on small gaps and large gaps between consecutive primes show that 0

and 1 lie in the set L of limit points of the normalized prime spacings. No other explicit
numbers are known to lie in L, although we expect L to include all nonnegative real numbers.
Following Zhang’s breakthrough, Pintz [42] showed that L contains an interval Œ0; c� for
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some c > 0, which, however, is ineffective and cannot be computed explicitly. Using the
Maynard–Tao sieve weights, Banks, Freiberg, and Maynard [4] established the following
beautiful result: If ˇ1 � ˇ2 � � � � � ˇ9 are any nine real numbers, then at least one of their
differences ǰ � ˇi (with i < j ) must be an element of L. Their result has been refined by
Pintz [43], and Merikoski [41], and Merikoski shows that the same result holds if we start
with just four real numbers ˇ1 � ˇ2 � ˇ3 � ˇ4. Moreover, Merikoski has also shown that
for any T > 0, the set L \ Œ0; T � has measure at least T=3.

The Duffin–Schaeffer conjecture. So far we have focussed entirely on Maynard’s work
concerned with prime numbers. In a very different direction, Maynard in joint work with
Koukoulopoulos [28], resolved one of the central problems in the metric theory of Diophan-
tine approximation, known as the Duffin–Schaeffer conjecture.

Diophantine approximation is concerned with finding rational approximations a=q
to a given irrational number ˛, with an emphasis on making j˛ � a=qj small in terms of q.
The most basic result is Dirichlet’s theorem that for every irrational number ˛, there are
infinitely many rational approximations a=q, with a 2 Z, q 2 N and .a; q/ D 1 (so that
the fraction is in reduced form) such that j˛ � a=qj � 1=q2. For quadratic irrationals (like
p
2 or the golden ratio), Dirichlet’s theorem is essentially the best possible, and for every

such ˛ there exists a positive constant C.˛/ such that j˛ � a=qj � C.˛/=q2 for any rational
approximation a=q. A celebrated result of Roth establishes that for any algebraic irrational
˛ and any " > 0 one has j˛ � a=qj � C.˛; "/=q2C", for a suitable positive constant C.˛; "/.
For particular interesting transcendental numbers, such as � , it remains an outstanding open
problem to determine how well they can be approximated by rational numbers.

Metric Diophantine approximation is concerned with such approximation problems
that hold for almost all irrational numbers ˛, with almost all interpreted in the sense of
Lebesgue measure. Since the problem of approximating ˛ by rationals is identical to that of
approximating ˛ C 1, we may restrict attention to irrational numbers ˛ 2 Œ0; 1/. The most
basic problem is the following: suppose  W N ! R�0 is a given function, what can be said
about the measure of ˛ 2 Œ0; 1/ for which there exist infinitely many rational numbers a=q in
reduced form (that is, .a; q/ D 1) with j˛ � a=qj �  .q/. For instance, Dirichlet’s theorem
tells us that if  .q/D 1=q2, then all irrational ˛ 2 Œ0; 1/ admit infinitely many such rational
approximations.

Let Aq D Aq. / denote the set of ˛ 2 Œ0; 1/ for which there exists some reduced
fraction a=q with j˛ � a=qj �  .q/, and let A denote the set of ˛ 2 Œ0; 1/ lying in infinitely
many of the sets Aq . Thus

A D

1\
QD1

QA.Q/; with QA.Q/ D

1[
qDQ

Aq :

Now the measure of Aq is � 2�.q/ .q/, since there are �.q/ possible choices for the
numerator a, and if  .q/ � 1=.2q/ so that the intervals for different a do not overlap then
equality holds here. If

P1

qD1 �.q/ .q/ converges, then the measure of QA.Q/ is bounded by
2
P1

qDQ �.q/ .q/, which is the tail of a convergent series and thus tends to 0 asQ ! 1. It
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follows that A has measure 0. This argument is identical to the easy part of the Borel–Cantelli
Lemma.

In 1941, Duffin and Schaeffer made the remarkable conjecture that in the com-
plementary case when

P1

qD1 �.q/ .q/ diverges, the measure of A is 1. Since then the
Duffin–Schaeffer conjecture has remained one of the central motivating questions in the
theory of metric Diophantine approximations. A number of partial results towards this con-
jecture were established: for example, a beautiful result of Gallagher [15] showed that the
measure of the set A. / is always either 0 or 1, work of Erdős [9] and Vaaler [48] estab-
lished the conjecture when  .q/ is O.1=q2/ for all q, higher dimensional analogues of the
conjecture were proved by Pollington and Vaughan [44], and weaker versions of the con-
jecture with extra divergence conditions were established in [1, 22, 23]. But the full problem
resisted until the recent work of Koukoulopoulos and Maynard [28]:

Theorem 4 (Koukoulopoulos and Maynard [28]). Let  W N ! R�0 be such thatP1

qD1 �.q/ .q/ diverges. Then the set of ˛ 2 Œ0; 1/ that have infinitely many rational
approximations j˛ � a=qj �  .q/ with .a; q/ D 1 has Lebesgue measure 1. In other words,
the Duffin–Schaeffer conjecture holds.

We refer to Koukoulopoulos’s talk at this ICM [27] for a more detailed exposition of
this result, and the ideas behind its proof.

We have given an overview of some of Maynard’s most spectacular achievements
in analytic number theory. Maynard’s work is characterized by ingenious but simple ideas,
which are carried very far with his powerful technical ability. As impressive as his work so
far has been, it may only mark a beginning.
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