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Abstract

On July 5th, 2022, Maryna Viazovska was awarded a Fields Medal for her solution of the
sphere packing problem in eight dimensions, as well as further contributions to related
extremal problems and interpolation problems in Fourier analysis. This article explains
some of the ideas behind her work to a broad mathematical audience.
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1. Introduction

The sphere packing problem asks how we can fill as large a fraction of space as
possible with congruent balls, if they are not allowed to overlap except tangentially.1 This
problem sits at the interface between many branches of mathematics, and of science more
generally, with connections ranging from materials science to information theory. Sphere
packing is a natural problem in Euclidean geometry, with a simple statement, and one might
expect an equally elementary and self-contained solution. Instead, the topic is dominated by
unexpected connections.

Before Viazovska’s breakthrough work, the optimal sphere packing density was
known only in one, two, and three dimensions. One dimension is trivial, because intervals
can tile the real line with density 1. The two-dimensional case is not trivial, but Thue [26]

showed that arranging six neighbors around each disk is optimal, with density �=
p
12 D

0:9068 : : : . The three-dimensional case was solved by Hales [16] via an ingenious and elab-
orate computer-assisted proof, which has since been formally verified [17]. The unsurprising
answer is shown in Figure 1: optimal two-dimensional layers are nestled together as densely
as possible, to achieve density �=

p
18 D 0:7404 : : : .

Figure 1

An optimal packing of cannonballs.

These prior results paint a misleading picture of what happens in higher dimensions.
Stacking optimal layers from the previous dimension generally produces suboptimal pack-
ings, and nobody has any ideawhat the densest sphere packingsmight be inmost dimensions.
We do not even know whether they should be crystalline or disordered.

1 To state the problem precisely, “as large a fraction as possible” must be made precise. One
way to do so is by taking a limit of the packing problem in a bounded region as its size
grows relative to the sphere radius. The sphere packing problem turns out to be very robust,
in the sense that just about all reasonable formulations are equivalent.
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High-dimensional packings are not merely of pure mathematical interest, but also
important for practical applications, because sphere packings are error-correcting codes for
a continuous communication channel (such as radio). In this model, the packing is in an
abstract signal space, whose dimension is the number of measurements used to characterize
the signal and is generally much larger than three.

There does not seem to be any simple pattern in the optimal packings that persists
across many dimensions, and the best upper and lower bounds known for the packing density
in Rd remain exponentially far apart as d grows. However, a handful of dimensions stand
out as special, most notably 8 and 24 dimensions. These dimensions feature exceptional
packings, namely theE8 root lattice and the Leech latticeƒ24, with remarkable symmetries
and numerous connections to different branches ofmathematics. Thanks to Viazovska’s work
[10,27], we now know that they are truly optimal. The jump from 3 dimensions to 8 and 24 in
the known solutions is remarkable, and it illustrates the exceptional nature of these packings.

TheE8 and Leech lattices had long been viewed as the most compelling candidates
for further solutions of the sphere packing problem. However, a direct geometric proof seems
infeasible: it is natural to try to work with a decomposition of space into cells, but the curse of
dimensionality means we are faced with an unmanageable number of potential cell shapes
and ways they could adjoin each other. Perhaps there exists a proof along these lines, but
nobody has found a workable approach.

Instead, Viazovska proved the optimality of E8 via a dramatic new connection to
the theory of modular forms, following which she and several collaborators extended her
ideas to the case of the Leech lattice:

Theorem 1.1 (Viazovska [27]). The E8 root lattice achieves the optimal sphere packing
density in R8, namely �4=384.

Theorem 1.2 (Cohn, Kumar, Miller, Radchenko, and Viazovska [10]). The Leech latticeƒ24

achieves the optimal sphere packing density in R24, namely �12=12Š.

As Peter Sarnak said at the time [19], her paper [27] is “stunningly simple, as all great
things are.” This simplicity is characteristic of Viazovska’s work: she has a gift for linking
concepts and posing bold conjectures, and these insights lead her to striking arguments. Her
proofs engage directly with the heart of the matter, without any extraneous complications. Of
course, simple is very much not the same thing as easy. What makes her work extraordinary
is how different her ideas are from what came before.

In the remainder of this article, we will examine Viazovska’s proof of the optimality
of E8, as well as its motivation and place in mathematics more broadly. In particular, this
article can serve as an introduction and guide to Viazovska’s techniques, alongside other
expositions [6,20]. For background on sphere packing and lattices, see [12,15,25].

Of course, we should keep in mind that this topic represents only one strand of
Viazovska’s research. For example, [3] is a beautiful and decisive paper on a quite different
topic. What will she be known for in 20 or 30 years? I look forward to finding out.
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2. The past

Before we turn to Viazovska’s proof, we will need some background. In this section,
we will construct theE8 lattice and explain a method for proving upper bounds for the sphere
packing density.

Sphere packings can be constructed in many ways, among which lattice packings
are the simplest possibility. A lattice packing of spheres centers the spheres at the points of a
latticeƒ inRd , i.e., a discrete subgroup ofRd of rank d , or equivalently the integral span of
a basis of Rd . There is no reason why an optimal sphere packing should have this algebraic
structure, and, for example, the best sphere packing known in R10 does not. However, many
of the best sphere packings known in low dimensions are lattice packings.

To form a packing from a lattice ƒ, we must choose the sphere radius r so that
neighboring spheres do not overlap. Specifically, we should take

r D
1

2
min

x2ƒn¹0º
jxj:

The volume of a sphere of radius r inRd is�d=2rn=.d=2/Š, where .d=2/Šmeans�.d=2C 1/

when d is odd, and the density of the overall packing (i.e., the fraction of space covered
by the balls) is the sphere volume times the number of spheres per unit volume in space.
Let vol.Rd=ƒ/ denote the covolume of the lattice, i.e., the volume of the quotient torus,
or equivalently the absolute value of the determinant of a lattice basis. Then the number of
spheres per unit volume in space is 1= vol.Rd=ƒ/, and so the lattice packing density is

�d=2rn

.d=2/Š vol.Rd=ƒ/
:

One of the most remarkable lattices is the E8 root lattice, which originated in Lie
theory but has since become widespread across mathematics. We will see below how to
obtain E8 as a modification of the Dd lattice, the checkerboard lattice in d dimensions,
which is defined by

Dd D
®
.x1; : : : ; xd / 2 Zd

W x1 C � � � C xd is even
¯
:

In other words,Dd simply omits every other point in the cubic lattice Zd . As a special case,
D3 is the face-centered cubic lattice in three dimensions, which Hales showed achieves the
optimal sphere packing density [16], and D4 and D5 are the best packings known in their
dimensions. However,Dd is not optimal beyond five dimensions.

The problem withDd in higher dimensions is that its holes are too large. A hole is
a point in space that is a local maximum for distance from the lattice. There are two types
of holes in Dd , shallow holes at distance 1 from the lattice, such as .1; 0; : : : ; 0/, and deep
holes at distance

p
d=4 from the lattice, such as .1

2
; 1

2
; : : : ; 1

2
/. As d ! 1, so does

p
d=4,

and so the deep holes become large enough to fit enormous numbers of additional spheres.
In particular,Dd cannot be optimal when d is large.

When d D 8, something beautiful happens. The distance
p
8=4 from a deep hole

to the lattice exactly equals the distance
p
2 between lattice points in D8, and that means

the deep holes are just large enough to be filled with additional spheres. If we plug these
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Figure 2

A two-dimensional cross-section of R8 through a Coxeter plane of E8, colored according to the squared distance
to the nearest point in E8 (dark is close) and inspired by [22].

holes with spheres, then the resulting packing is the union of D8 with its translate D8 C

.1
2
; 1

2
; : : : ; 1

2
/. It is not hard to check that this packing is a lattice (it amounts to the fact that

2 � .1
2
; 1

2
; : : : ; 1

2
/ 2 D8), which is called the E8 root lattice.

TheE8 lattice packing has packing radius r D
p
2=2 and covolume vol.R8=E8/D

vol.R8=D8/=2 D 1, and so it has a packing density of �4=384 D 0:2536 : : : It is by no
means obvious that this construction is optimal. In fact, the construction feels a little ad hoc.
However, theE8 lattice turns out to be far more beautiful and symmetric than its construction
indicates. For example, see Figure 2 for a view of E8 with 30-fold symmetry. This is a
common pattern with exceptional structures in mathematics: they are typically obtained by
piecing together several substructures that each have less symmetry individually.

Now that we have the E8 lattice, the next question is how we could try to obtain
a matching upper bound for the sphere packing density in eight dimensions. Obtaining
a matching bound seems completely infeasible in most dimensions, but in a few special
dimensions bounds based on harmonic analysis work remarkably well. This idea, called the
linear programming bound, goes back to a fundamental paper by Delsarte [13] on error-
correcting codes, and the corresponding bound for sphere packings was developed by Cohn
and Elkies [7].

The linear programming bound is formulated in terms of the Fourier transform Of

of an integrable function f W Rd ! C, which we will normalize as

Of .y/ D

Z
Rd

f .x/e�2�ihx;yi dx;
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where h�; �i is the usual inner product on Rd . Recall that the Fourier transform decomposes
f into complex exponentials; in signal processing terms, it amounts to identifying the fre-
quencies that occur in a signal and their relative magnitudes. This decomposition amounts
to the Fourier inversion theorem: if Of is integrable as well, then

f .x/ D

Z
Rd

Of .y/e2�ihx;yi dy:

In other words, the Fourier transform is very nearly its own inverse, with a single sign change
being the only difference. Note that Of is generally complex-valued, even if f is real-valued,
but Of is real-valued if f is real-valued and an even function.

We will also need a few types of well-behaved functions. A function f W Rd ! R

is called rapidly decreasing if f .x/ D O.jxj�c/ as jxj ! 1 for every constant c > 0, and
a Schwartz function is a smooth function such that it and all its iterated partial derivatives
(of every order) are rapidly decreasing. Schwartz functions are arguably the best-behaved
functions in harmonic analysis. Much of what we will discuss can be generalized somewhat
beyond Schwartz functions, but they are all Viazovska needed to solve the sphere packing
problem.

We can now state the linear programming bound for sphere packing:

Theorem 2.1 (Cohn and Elkies [7]). Let f W Rd ! R be an even Schwartz function and r a
positive real number. If

(1) f .x/ � 0 for all x 2 Rd satisfying jxj � r ,

(2) Of .y/ � 0 for all y 2 Rd , and

(3) f .0/ D Of .0/ D 1,

then the optimal sphere packing density in Rd is at most vol.Bd
r=2
/ D �d=2.r=2/d=.d=2/Š.

This theorem produces an upper bound for the packing density from a function f
satisfying certain inequalities, but it says nothing about how to choose f to optimize the
bound. Numerical optimization can produce good choices for f , which yield the bounds
shown in Figure 3. These bounds are rigorous, but it is possible that other functions may
produce even better bounds.

As one can see in Figure 3, the bounds in 8 and 24 dimensions appear sharp. Numer-
ical optimization will not yield an exactly sharp bound, but it seems to come as close as
desired. Based on data of this sort as well as analogies with other problems in coding theory,
Cohn and Elkies conjectured the existence of magic functions f that would solve the sphere
packing problem exactly in R8 and R24, by achieving r D

p
2 and r D 2, respectively. Note

that this is not because the bound dips lower in these dimensions, but rather because the
optimal packings rise up to meet it. No other dimensions greater than 2 seem to have a sharp
linear programming bound, and it seems unlikely that others exist, but no proof is known,
and the bound has been exactly optimized only for d D 1, 8, and 24.

The heart of Viazovska’s breakthrough lies in the construction of the magic func-
tions. What should f look like if we are to obtain a sharp bound? There are some simple
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Figure 3

A plot of the numerically computed linear programming bound [1] and the best sphere packing density currently
known [12].

criteria, which we can obtain from the proof of Theorem 2.1. In this article we will examine
a proof for just the special case of lattices, but the theorem can be proved in full generality
by combining the same technique with a little additional algebra. The argument is based on
the Poisson summation formula, which says that if f W Rd ! C is a Schwartz function,ƒ is
a lattice in Rd , and ƒ� is its dual lattice (i.e., the lattice generated by the dual basis of any
basis of ƒ with respect to the inner product h�; �i), thenX

x2ƒ

f .x/ D
1

vol.Rd=ƒ/

X
y2ƒ�

Of .y/:

Proof of Theorem 2.1 for lattice packings. The sphere packing problem is scaling-invariant,
and so we can use spheres of radius r=2. Let ƒ be any lattice packing with packing radius
r=2, which means jxj � r for x 2ƒ n ¹0º. If f satisfies the hypotheses of Theorem 2.1, then
f .x/ � 0 for x 2 ƒ n ¹0º and Of .y/ � 0 for all y, from which it follows that

1 D f .0/ �

X
x2ƒ

f .x/ D
1

vol.Rd=ƒ/

X
y2ƒ�

Of .y/ �

Of .0/

vol.Rd=ƒ/
D

1

vol.Rd=ƒ/
:

Therefore the packing density vol.Bd
r=2
/= vol.Rd=ƒ/ is bounded above by vol.Bd

r=2
/, as

desired.

A first observation is that we can assume without loss of generality that f is radial,
i.e., f .x/ depends only on jxj. This reason is that we can replace f with the average of its
rotations about the origin, because all the constraints are linear and rotation-invariant. One
might wonder whether nonradial functions could be helpful conceptually even if they are not
needed, but so far the answer appears to be no. Instead, Viazovska’s work turns out to lead to
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a wonderful new theory of interpolation for radial functions. We will henceforth assume f
is radial, and when t 2 Œ0;1/ we will write f .t/ for the common value f .x/ with jxj D t ,
as well as f 0.t/ for the radial derivative.

Now if we examine the central inequality in the proof of Theorem 2.1 for lattices,
we can see when it could be sharp. To obtain a sharp bound, all of the discarded terms
in the inequality must vanish: we must have f .x/ D 0 for x 2 ƒ n ¹0º and Of .y/ D 0 for
y 2ƒ� n ¹0º. In other words, f must vanish on the nonzero distances between lattice points,
and Of must vanish on the nonzero distances between dual lattice points.

One can check directly from the construction of E8 given above that E�
8 D E8 and

that the vector lengths in E8 are all square roots of even integers. Furthermore, it turns out
that each distance

p
2n with n � 0 actually occurs in E8. We should therefore have r D

p
2

in Theorem 2.1, and the magic function f should have a sign change at radius
p
2, followed

by double roots at
p
2n for n� 2, as indicated in Figure 4. In other words, we wish to control

the behavior of f and Of to second order at these points, i.e., control both the values f .
p
2n/

and Of .
p
2n/ and the radial derivatives f 0.

p
2n/ and Of 0.

p
2n/.

f

p
2

p
4

p
6

p
8

Of

p
2

p
4

p
6

p
8

Figure 4

This schematic diagram, which is taken from [6], shows the roots of the magic function f and its Fourier
transform Of in eight dimensions. It is not a plot of the actual function, which decreases very rapidly. See Figure 5
for an actual plot.

Figure 5

Two plots of Viazovska’s magic function in eight dimensions. The first plot is scaled correctly, but it decreases so
rapidly that the roots become invisible. The second plot introduces a rescaling to make them visible, based on the
asymptotic decay rate.

How can one construct such a function f ? The reason this task is difficult is that
it involves controlling both f and Of simultaneously. Either one is of course easy on its
own, but handling both at once introduces profound difficulties. The underlying issue here is
Heisenberg’s uncertainty principle: in loose terms, whenever you try to pin down f , you lose
control over Of , and vice versa. More precisely, we run into Bourgain, Clozel, and Kahane’s
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uncertainty principle for controlling the signs of functions [4, 8]. These seemingly simple
inequalities on f and Of therefore turn out to be far more subtle than they initially appear.

When Elkies and I proposed this method in 1999, Viazovska was still in secondary
school. Without realizing how profoundly difficult the remaining step was, I imagined that
we had almost solved the sphere packing problem in 8 and 24 dimensions, and our inability
to find the magic functions was extremely frustrating. At first, I worried that someone else
would find an easy solution and leave me feeling foolish for not doing it myself. Over time I
became convinced that obtaining these functions was in fact difficult, and others also reached
the same conclusion. For example, Thomas Hales has said that “I felt that it would take a
Ramanujan to find it” [19]. Eventually, instead of worrying that someone else would solve it,
I began to fear that nobody would solve it, and that I would someday die without knowing
the outcome. I am grateful that Viazovska found such a satisfying and beautiful solution, and
that she introduced wonderful new ideas for the mathematical community to explore.

3. Modular forms

Viazovska’s magic function is constructed using modular forms, certain special
functions that play an important role in number theory. The theory of modular forms has
a reputation for being somewhat forbidding, but the basics are not so difficult, and that is all
that is needed for Viazovska’s proof. We will outline the needed theory here. For a down to
earth introduction to the case of SL2.Z/, see Chapter VII in [24], and for more detailed and
general treatments, see [5,14,28].

We begin with an example of a modular form, namely Eisenstein series. Recall that
the Riemann zeta function is defined by

�.s/ D

1X
nD1

1

ns

when this sum converges, i.e., when Re.s/ > 1. Here we are summing inverse powers of
the arithmetic progression 1; 2; : : : , and Euler obtained an exact formula when s is an even
integer. What if we instead wanted to sum inverse powers of a lattice in the complex plane?
Setting aside the question of why we would want to do this (the result has deeper significance
than one might guess), we could write the result as the Eisenstein series

Ek.z/ D
1

2�.k/

X
.m;n/2Z2n¹.0;0/º

1

.mz C n/k
(3.1)

for Imz > 0, where we are summing over the lattice ¹mzC n Wm;n 2 Zº, with the exception
of the point .0; 0/ at which the summand blows up. Up to scaling by a complex factor, all
two-dimensional lattices are of this form.

The factor of 1=.2�.k// in the definition is merely a convenient normalizing factor,
which plays no essential role in the study of Ek . Unfortunately, the notation Ek conflicts
with our name for the E8 root lattice, but that will not cause any ambiguity in practice.

We will restrict our attention to positive integers k, so that .mz C n/k is single-
valued. The series (3.1) converges absolutely when k � 3, but just conditionally when k D 2.
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Figure 6

A plot of the Eisenstein series E4.z/ for �1 � Re z � 1 and 0 < Im z � 1 (above) and the same plot overlaid with
a tiling of H using fundamental domains for the action of SL2.Z/ (below).

For odd k, the .m; n/ and .�m;�n/ terms cancel and we obtain Ek.z/ D 0, and so only the
even cases are interesting.2 Thus, we will focus on Ek for k even and at least 4.

What does an Eisenstein series look like? Figure 6 is a plot of E4, in which black
is zero, white is infinity, and color indicates complex phase [21], with the sharp transitions
in color occurring at positive real values. The fractal structure visible in this plot can be
explained using two functional equations:

Ek.z C 1/ D Ek.z/ and Ek.�1=z/ D zkEk.z/:

These symmetries follow from rearranging the defining series (3.1) when k > 2, and they
are the central equations in the theory of modular forms.

2 This parity phenomenon is essentially the same as in Euler’s formula for the zeta function at
even integers, which can be viewed as computing

P
n2Zn¹0º n

�k explicitly for all integers
k > 1.
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The mappings z 7! z C 1 and z 7! �1=z that occur in these functional equations
generate a discrete group of linear fractional transforms of the upper half-plane H D ¹z 2

C W Im z > 0º. To put it into a broader context of matrix groups, we can let the matrix . a b
c d
/

act on H via  
a b

c d

!
� z D

az C b

cz C d
:

Then the matrices T D . 1 1
0 1 / and S D . 0 �1

1 0 / satisfy T � z D z C 1 and S � z D �1=z, and
they turn out to generate the group SL2.Z/.

The weight k action of SL2.Z/ on functions f W H ! C is defined by

.f jk
/.z/ D .cz C d/�kf

�
az C b

cz C d

�
for 
 D .a b

c d
/. In this notation, the functional equationsEk.zC 1/DEk.z/ andEk.�1=z/D

zkEk.z/ imply that the Eisenstein series Ek satisfies Ekjk
 D Ek for all 
 2 SL2.Z/ when
k > 2.

A modular form of weight k for SL2.Z/ is a holomorphic function f W H ! C

such that f jk
 D f for all 
 2 SL2.Z/ and one additional condition holds, called being
holomorphic at infinity. To state this condition, note that taking 
 D T shows that f .zC 1/D

f .z/, and thus we can expand f as a Fourier series

f .z/ D

X
n2Z

ane
2�inz :

We say f is meromorphic at infinity if there are only finitely many nonzero coefficients
an with n < 0, and holomorphic at infinity if an D 0 for all n < 0. The name reflects the
fact that this Fourier series governs the behavior of f .z/ as Im z grows, because e2�iz ! 0

as Im z ! 1. The Fourier series of a modular form is often known as its q-series, with
q D e2�iz .

The normalization factor 1=.2�.k// in (3.1) ensures that the q-series of Ek has
rational coefficients, and even integral coefficients when k is small. For example, one can
show that E4.z/ D 1 C 240

P
n�1 �3.n/q

n and E6.z/ D 1 � 504
P

n�1 �5.n/q
n, where

�k.n/ denotes the sum of the kth powers of the divisors of n.
The product of modular forms of weights k and ` is a modular form of weight kC `,

and modular forms therefore form a graded ring. For SL2.Z/, one can show that this ring is
generated by E4 and E6. In other words, the vector space of modular forms of weight k for
SL2.Z/ is spanned by the modular forms Ej

4E
`
6 with 4j C 6` D k.

In addition to using Eisenstein series directly, Viazovska also uses the modular dis-
criminant �, which is given by

�.z/ D
E4.z/

3 �E6.z/
2

1728
D q

1Y
nD1

.1 � qn/24: (3.2)

Its key property is that it vanishes nowhere in the upper half plane, while it vanishes at infinity
(in the sense that its q-series has no constant term).
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Turán said that special functions should instead be called useful functions, and mod-
ular forms are no exception to this principle. The reason we study modular forms is not
that we have a special love for Eisenstein series, but rather that the functional equations
f .z C 1/ D f .z/ and f .�1=z/ D zkf .z/ arise far more often than one might expect. For
example, the E8 lattice has an important modular form associated with it, namely its theta
series

‚E8.z/ D

1X
nD0

Nne
2�inz ;

whereNn D #¹x 2 E8 W jxj2 D 2nº. In other words, the theta series is a generating function
that counts the number of vectors of each length in E8.

This theta series satisfies both functional equations: ‚E8.z C 1/ D ‚E8.z/ fol-
lows from the definition of ‚E8 as a Fourier series, while ‚E8.�1=z/ D z4‚E8 amounts
to Poisson summation over E8 for the complex Gaussian x 7! e�izjxj2 , which has eight-
dimensional Fourier transform y 7! z�4e�i.�1=z/jyj2 . These functional equations tell us that
‚E8 is a modular form for SL2.Z/ of weight 4, and it must therefore be proportional to E4.
In fact,‚E8 D E4, becauseN0 D 1. Thus, we obtain the beautiful formula 240�3.n/ for the
number of vectors in E8 of squared norm 2n.

The theory of modular forms extends to other discrete groups, if one carefully
defines what being holomorphic at infinity means.3 Viazovska’s proof makes use of one
more group, namely

�.2/ D

´

 2 SL2.Z/ W 
 �

 
1 0

0 1

!
.mod 2/

µ
;

which has index 6 in SL2.Z/. If we let

U.z/ D

�X
n2Z

e�in2z

�4

;

W D U j2T , and V D U �W , then U , V , and W are modular forms of weight 2 for �.2/
that satisfy U D V CW and

U j2T D W; V j2T D �V; W j2T D U;

U j2S D �U; V j2S D �W; W j2S D �V:
(3.3)

These identities will play a key role in the construction ofViazovska’smagic function. It turns
out that U andW generate the ring of modular forms for �.2/, and therefore every modular
form of weight 2k for �.2/ is a linear combination of U k ; U k�1W;U k�2W 2; : : : ; W k .

Because modular forms are so closely connected with lattices, it is natural to turn
to modular forms when attempting to construct the magic functions. However, it is entirely
unclear where we should even start, because modular forms are completely different sorts

3 If � is a subgroup of finite index in SL2.Z/, then the condition is that for each 
 2 SL2.Z/,
f jk
 should be holomorphic at infinity. Note that f jk
 need not satisfy .f jk
/.z C 1/ D

.f jk
/.z/, but one can check that it always satisfies .f jk
/.z C n/ D .f jk
/.z/ for some
positive integer n and thus has a Fourier expansion in e2�iz=n D q1=n.
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of objects from radial Schwartz functions. Figure 6 looks nothing whatsoever like Figures 4
or 5, and there is no familiar transformation that makes it look any more similar.

4. Viazovska’s construction for single roots

The first step in Viazovska’s construction of the magic function f is to split f into
eigenfunctions of the Fourier transform. Radial functions satisfy OOf D f , and so we can write
f as f D fC C f�, where fC WD .f C Of /=2 satisfies cfC D fC and f� WD .f � Of /=2

satisfiescf� D �f�. If f is the magic function in eight dimensions, then f and Of both have
roots at

p
2n for integers n � 1, and therefore fC and f� do as well. Thus, we are looking

for radial Fourier eigenfunctions with specified roots. Specifically, each of f˙ should have a
single root at

p
2 and double roots at

p
2n for n � 2. These roots turn out to provide enough

information to determine f˙ up to scaling, and they can then be combined to obtain f .
Before we construct the actual magic function, it is worth examining a simpler vari-

ant as a warm-up exercise. Instead of trying to control the behavior of f to second order at
p
2n, we will instead control the behavior of a function g to first order at

p
n. This construc-

tion has no known applications to sphere packing, but it is nevertheless of intrinsic interest
in Fourier analysis. We will also focus on the �1 eigenfunction (i.e., the case Og D �g) in the
single-root case, for the sake of specificity.

Viazovska found a remarkable integral transform that can construct such functions.
We will write a radial function gW R8 ! C as a continuous linear combination of complex
Gaussians x 7! e�izjxj2 with z 2 H via the contour integral

g.x/ D
1

2

Z 1

�1

 .z/e�izjxj2 dz; (4.1)

where  is a holomorphic function on H and the contour is a semicircle centered at the
origin. Under which conditions on  will g be a Fourier eigenfunction, and how can we
control its values at

p
n?

We can obtain the values g.
p
n/ by imposing periodicity on  as follows. Suppose

 .z C 2/ D  .z/ for all z 2 H , so that  has a Fourier series of the form

 .z/ D

X
n2Z

ane
�inz : (4.2)

Then for integers n � 0,

g.
p
n/ D

1

2

Z 1

�1

 .z/e�inz dz D a�n

by orthogonality, provided that we can interchange the sum and integral. If the Fourier expan-
sion (4.2) has only finitely many negative terms, then g.

p
n/ will vanish for all but finitely

many n.
To compute the Fourier transform of g, we can interchange the contour integral and

Fourier transform, again assuming the integral is sufficiently well behaved. Then

Og.y/ D
1

2

Z 1

�1

 .z/z�4e�i.�1=z/jyj2 dz;

94 H. Cohn



because the d -dimensional Fourier transform of the complex Gaussian x 7! e�izjxj2 with
z 2 H is given by y 7! .i=z/d=2e�i.�1=z/jyj2 , and d D 8 here. Changing variables to u D

�1=z shows that

Og.y/ D �
1

2

Z 1

�1

 .�1=u/u2e�iujyj2 du:

In other words, taking the Fourier transform of g amounts to replacing  with � j�2S , and
we obtain Og D �g if  j�2S D  .

Let � be the subgroup of SL2.Z/ generated by S and T 2, which has index 3 in
SL2.Z/. Then the conditions that  j�2T

2 D  (i.e.,  .z C 2/ D  .z/) and  j�2S D  

mean that  is weakly modular of weight �2 for � . The reason why  is less than a full-
fledged modular form is that it is only meromorphic at infinity (this is unavoidable, since
the weight is negative). We furthermore require  to vanish at ˙1, which will be enough to
justify our integral manipulations and show that g is a Schwartz function. In terms of Fourier
series, this vanishing says that  j�2TS has no negative terms in its q-series, because TS
maps the cusp i1 to 1.

Wewill construct an example of the form D 0=� using the� function from (3.2),
where  0 is a genuine modular form of weight 10 for � . Note that the denominator of �
causes no difficulties in H , since �.z/ ¤ 0 for all z 2 H , and the zero of � at infinity will
lead to a pole of  .

The function  0 is modular of weight 10 for � , and thus also for �.2/ because �.2/
is a subgroup of � . In particular,  0 must be a linear combination of U 5; U 4W;U 3W 2; : : : ;

W 5, because U and W generate the ring of modular forms for �.2/. The relations (3.3)
specify the action of S and T , and they imply that the subspace invariant under S is spanned
by

˛ WD U 5
� 6U 3W 2

C 4U 2W 3;

ˇ WD U 4W � 3U 3W 2
C 2U 2W 3; and


 WD �U 3W 2
C 4U 2W 3

� 5UW 4
C 2W 5;

with q-expansions
˛

�
D �q�1

� 40q�1=2
C 752C � � � ;

˛

�
j�2TS D �1024C 90112q C � � � ;

ˇ

�
D �16q�1=2

C 256C � � � ;
ˇ

�
j�2TS D �512 � 20480q C � � � ;




�
D 256 � 10240q1=2

C � � � ;



�
j�2TS D �2q�1

� 32C � � �

in terms of q1=2 D e�iz . Now requiring  to vanish at ˙1 determines it up to scaling as

 D
2ˇ � ˛

�
D q�1

C 8q�1=2
� 240 � 6176q1=2

� � � � ; (4.3)
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which yields a radial Schwartz function gW R8 ! R such that Og D �g and

g.
p
n/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�240 if n D 0,

8 if n D 1,

1 if n D 2, and

0 if n � 3.

Note that we do not havemuch flexibility here: the values g.0/, g.1/, and g.
p
2/ are uniquely

determined by Poisson summation over Z8 and E8, up to scaling.
We can rewrite the definition of f in another useful form as follows. If jxj is large

enough (in fact, jxj2 > 2 will suffice), then

g.x/ D
1

2

Z 1

�1

 .z/e�izjxj2 dz

D
1

2

Z i

�1

 .z/e�izjxj2 dz �
1

2

Z i

1

 .z/e�izjxj2 dz

D
1

2

Z �1Ci1

�1

 .z/e�izjxj2 dz �
1

2

Z 1Ci1

1

 .z/e�izjxj2 dz

D
e��i jxj2 � e�i jxj2

2

Z i1

0

 .uC 1/e�iujxj2 du:

In these manipulations, the second line merely breaks the integral in two, the third line uses
the fact that Z 1CiR

�1CiR

 .z/e�izjxj2 dz ! 0

as R ! 1 (which holds if jxj2 is large enough), and the fourth line uses  .u � 1/ D

 .uC 1/.
In other words, g.x/ is given by sin.�jxj2/ times the Laplace transform of t 7!

 .it C 1/ evaluated at �jxj2:

g.x/ D sin
�
�jxj

2
� Z 1

0

 .it C 1/e��t jxj2 dt: (4.4)

While the original integral (4.1) converges for all x, this integral converges only when jxj2

is large enough for the Gaussian factor e��t jxj2 to counteract the growth of  .it C 1/ as
t ! 1. In particular, (4.3) implies that

 .it C 1/ D e2�t
� 8e�t

� 240C 6176e��t
� � � �

as t ! 1, which means we need jxj2 > 2. We can use this expansion to analytically continue
g by removing the divergent terms:

g.x/ D sin
�
�jxj

2
� Z 1

0

.e2�t
� 8e�t

� 240/e��t jxj2 dt

C sin
�
�jxj

2
� Z 1

0

�
 .it C 1/ � e2�t

C 8e�t
C 240

�
e��t jxj2 dt

D
sin.�jxj2/

�.jxj2 � 2/
�
8 sin.�jxj2/

�.jxj2 � 1/
�
240 sin.�jxj2/

�jxj2

C sin
�
�jxj

2
� Z 1

0

�
 .it C 1/ � e2�t

C 8e�t
C 240

�
e��t jxj2 dt;
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and this last formula holds regardless of jxj, with removable singularities at jxj D 0, 1,
and

p
2.

5. Viazovska’s construction for double roots

We are now in a position to obtain the magic function in eight dimensions. First,
we will obtain the �1 eigenfunction f�. It is not immediately clear how to generalize the
contour integral (4.1) from single to double roots, but the Laplace transform formula (4.4)
generalizes elegantly. To obtain f�, we will look for a special function  such that

f�.x/ D �4i sin
�
�jxj

2=2
�2 Z i1

0

 .z/e�izjxj2 dz

when jxj is large enough. If we write �4 sin.�jxj2=2/2 D e��i jxj2 C e�i jxj2 � 2, we find
that

f�.x/ D

Z �1Ci1

�1

 .z C 1/e�i jxj2z dz C

Z 1Ci1

1

 .z � 1/e�i jxj2z dz

� 2

Z i1

0

 .z/e�i jxj2z dz:

We will construct a function  such that  is holomorphic on H and  .z/ is exponentially
bounded as Im z ! 1. Under these conditions, when jxj is sufficiently large we can shift
the contours and combine the integrals to obtain

f�.x/ D

Z i

�1

 .z C 1/e�i jxj2z dz C

Z i

1

 .z � 1/e�i jxj2z dz

� 2

Z i

0

 .z/e�i jxj2z dz C

Z i1

i

�
 .z C 1/C  .z � 1/ � 2 .z/

�
e�i jxj2z dz;

with the contours shown in Figure 7. This formula will be the analogue of (4.1), and it will
define f�.x/ for all x.

Figure 7

The contours used to obtain f�.x/, labeled with their integrands (omitting e�i jxj2z dz).

Taking the Fourier transform amounts to replacing e�i jxj2z with z�4e�i jyj2.�1=z/ in
the formula defining f�:cf�.y/ D

Z i

�1

 .z C 1/z�4e�i jyj2.�1=z/ dz C

Z i

1

 .z � 1/z�4e�i jyj2.�1=z/ dz
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� 2

Z i

0

 .z/z�4e�i jyj2.�1=z/ dz

C

Z i1

i

�
 .z C 1/C  .z � 1/ � 2 .z/

�
z�4e�i jyj2.�1=z/ dz:

We can now set u D �1=z, which exchanges the four contours in pairs. The simplest way
to obtaincf� D �f� would be if the resulting formula is exactly the negative of the formula
with which we began. That amounts to the functional equations

 j�2TS D � j�2T
�1

and

2 j�2S D 2 �  j�2T �  j�2T
�1:

Note that the structure of these equations reflects the integrands.
Now the question is which sorts of functions  satisfy these functional equations.

The simplest possibility would be some sort of modular form. The functional equations are
not consistent with invariance under S and T , and so  cannot be modular for the full group
SL2.Z/. Let us suppose instead that  is weakly modular of weight �2 for �.2/ (i.e., invari-
ant under �.2/ but only meromorphic at infinity). Then  j�2T D  j�2T

�1, because T 2 2

�.2/, and our functional equations become j�2TS D � j�2T and D j�2T C j�2S .
Furthermore, the second equation implies the first, because S2 D I . We will therefore obtain
the eigenfunction equationcf� D �f� as long as is weakly modular of weight�2 for �.2/
and satisfies  D  j�2T C  j�2S .

As in the single-root case, it is natural to multiply  by � to try to eliminate a
pole at infinity. Then  � will be a genuine modular form of weight 10 for �.2/, and thus a
linear combination of U 5; U 4W;U 3W 2; : : : ; W 5. One can check that the solutions of the
remaining functional equation form a two-dimensional subspace, spanned by

˛ WD 2U 4W � 4U 3W 2
C U 2W 3

C UW 4 and

ˇ WD 5U 4W � 10U 3W 2
C 5U 2W 3

CW 5;

with
˛

�
D �16q�1=2

C 768C � � � and
ˇ

�
D q�1

� 40q�1=2
C 2064C � � � :

We will take
 D

�5˛ C 2ˇ

�
D 2q�1

C 288C � � � ;

so that we eliminate the q�1=2 term in the q-series. The motivation for eliminating that term
is that it prevents f� from having a pole at radius 1. To see why, let us analytically continue

f�.x/ D 4 sin
�
�jxj

2=2
�2 Z 1

0

 .it/e��t jxj2 dt

as in the single-root case. If  .it/ D a2e
2�t C a1e

�t C a0 C � � � as t ! 1, then

f�.x/ D
4a2 sin.�jxj2=2/2

�.jxj2 � 2/
�
4a1 sin.�jxj2=2/2

�.jxj2 � 1/
�
4a0 sin.�jxj2=2/2

�jxj2

C 4 sin
�
�jxj

2=2
�2 Z 1

0

�
 .it/ � a2e

2�t
� a1e

�t
� a0

�
e��t jxj2 dt:
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Here the a1 term has a pole unless a1 D 0. For our choice of  , .a2; a1; a0/ D .2; 0; 288/,
and thus f� has a single root at

p
2 and double roots at

p
2n for n � 2. One can also check

that  .it/ vanishes as t ! 0C (equivalently,  j�2S vanishes at infinity), which is enough
for f� to be a Schwartz function and to justify all our integral manipulations.

We have therefore obtained a magic eigenfunction f� as

f�.x/ D 4 sin
�
�jxj

2=2
�2 Z 1

0

 .it/e��t jxj2 dt

for jxj2 > 2, where

 D
W 3.5U 2 � 5UW C 2W 2/

�
: (5.1)

Our scaling here does not yet match the magic function for sphere packing, but aside from
that we have exactly what we need.

Equation (5.1) implies that  .it/ > 0 for all t 2 .0;1/. (Specifically, �.it/ > 0
thanks to its product formula, W.it/ > 0 since it is the fourth power of a real quantity, and
5U.it/2 � 5U.it/W.it/ C 2W.it/2 > 0 since it is a positive-definite quadratic form.) It
follows that f� never changes sign beyond radius

p
2, in accordance with our expectations.

However, note that our eigenfunction is positive beyond radius
p
2, and so we will have to

correct its sign later to match the magic function.
All that remains is to construct a magic eigenfunction fC and take a suitable linear

combination of fC and f� to obtain f . Constructing fC is very much like constructing f�.
If we define fC for jxj sufficiently large by

fC.x/ D �4i sin
�
�jxj

2=2
�2 Z i1

0

�.z/e�izjxj2 dz

for some holomorphic function �W H ! C, then the eigenfunction equation cfC D fC will
follow from the functional equations

�j�2TS D �j�2T
�1

and

2�j�2S D �2� C �j�2T C �j�2T
�1:

These are the same functional equations as we required for  , except for a factor of �1.
A little manipulation using .ST /3 D I shows that the first functional equation

is equivalent to �j�2ST D �j�2S . Thus, if we set � WD �j�2S , then � must be invariant
under T . However, the second functional equation is more subtle. A short calculation shows
that if �j0S D � (equivalently, .�j�2S/.z/ D z2�.z/), then the second functional equation
holds. In other words, it is enough for � to be weakly modular of weight 0 for SL2.Z/.
However, such functions turn out not to be sufficient to obtain fC. If one tries to solve for
undetermined coefficients to construct fC, as in the f� case, one finds that there is no solu-
tion with the needed properties.

Instead, we can use quasimodular forms, not just modular forms. Recall that the
Eisenstein series E2 was not a modular form of weight 2, because conditional convergence
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interfered with the series manipulations needed to prove modularity. If we let

E2.z/ D 1 � 24
X
n�1

�1.n/q
n;

then E2 turns out to satisfy

z�2E2.�1=z/ D E2.z/ �
6i

�z
;

with the 6i=.�z/ term amounting to the deviation from modularity. A quasimodular form
of weight k and depth ` for SL2.Z/ is a sum fk C fk�2E2 C � � � C fk�`E

`
2, where each fj

is a modular form of weight k � 2j .
Instead of just a weakly modular form of weight 0, one can check that the function �

can be aweakly quasimodular form of weight 0 and depth 2 for SL2.Z/. Nowwe have enough
flexibility to construct fC, and calculations much like those in the f� case lead to

� D
.E2E4 �E6/

2

�
;

up to scaling. See Figure 8 for plots of the quasimodular forms that yield f� and fC.

Figure 8

Plots of  .z/�.z/ (above) and .�j�2S/.z/�.z/ (below) for �1 � Re z � 1 and 0 < Im z � 1.
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Now that we have obtained both magic eigenfunctions, we can construct the magic
function f as a linear combination of them. First, we rescale � so that fC.0/ D 1, and then
we rescale  so that f 0

�.
p
2/ D f 0

C.
p
2/, to obtain a double root at

p
2 for Of . Using these

scalings, the eight-dimensional magic function is given by

f .x/ D 4 sin
�
�jxj

2=2
�2 Z 1

0

�
�.it/C  .it/

�
e��t jxj2 dt

for jxj2 > 2, and the eigenfunction property implies that

Of .y/ D 4 sin
�
�jyj

2=2
�2 Z 1

0

�
�.it/ �  .it/

�
e��t jyj2 dt

for all y ¤ 0 (this integral turns out to converge whenever jyj > 0, because the exponential
growth in �.it/ and  .it/ as t ! 1 cancels).

The final step in the proof of Theorem 1.1 is to check the inequalities that are needed
for Theorem 2.1, namely f .x/ � 0 for jxj � 2 and Of .y/ � 0 for all y, to make sure there are
no unexpected sign changes between the roots

p
2n. In principle, that might seem difficult,

because integral transforms of quasimodular forms could be complicated. However, these
inequalities hold for the simplest reason one could hope for:

�.it/C  .it/ < 0 and �.it/ �  .it/ > 0

for all t > 0. In other words, the desired inequalities hold directly at the level of the quasimod-
ular forms themselves. This can be checked rigorously in any of several ways. For example,
one can use asymptotics to check the inequalities as t ! 0 or t ! 1, and then use interval
arithmetic to verify them on the remaining bounded interval.

Overall, this proof feels like a miracle. Everything falls beautifully into place, with
Viazovska’s constructions having just enough flexibility to complete the proof in a unique
way. What I find most impressive is the number of ingenious ideas required for the full proof.
The single-root construction is itself remarkable, generalizing it to f� is even more so, and
still more ideas are required for fC. Viazovska is a master of special functions, whose work
would surely have excited Jacobi and Ramanujan.

6. Interpolation and consequences

Along the way to proving the optimality ofE8, Viazovska made the bold conjecture
that the magic function is uniquely determined by its required roots, and that more generally
a radial Schwartz function on R8 is uniquely determined by its values and radial derivatives
at the radii

p
2n and those of its Fourier transform. It is far from obvious that it is possible

in principle to reconstruct a radial Schwartz function from discrete data of this sort.
Radchenko and Viazovska took a major step in this direction by proving a one-

dimensional analogue for first-order interpolation, and the second-order theorem was proved
by Cohn, Kumar, Miller, Radchenko, and Viazovska.
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Theorem 6.1 (Radchenko and Viazovska [23]). There exist even Schwartz functions
anW R ! R for integers n � 0 such that for every even Schwartz function f W R ! R and
x 2 R,

f .x/ D

X
n�0

f .
p
n/an.x/C

X
n�0

Of .
p
n/ Oan.x/:

Theorem 6.2 (Cohn, Kumar, Miller, Radchenko, and Viazovska [11]). Let .d; n0/ be .8; 1/
or .24; 2/. Then every radial Schwartz function f W Rd ! R is uniquely determined by the
values f .

p
2n/, f 0.

p
2n/, Of .

p
2n/, and Of 0.

p
2n/ for integers n � n0. Specifically, there

exists an interpolation basis an; bn for n � n0 such that for every radial Schwartz function
f and x 2 Rd ,

f .x/ D

1X
nDn0

f .
p
2n/an.x/C

1X
nDn0

f 0.
p
2n/bn.x/

C

1X
nDn0

Of .
p
2n/ Oan.x/C

1X
nDn0

Of 0.
p
2n/ Obn.x/:

The proofs construct the interpolation bases explicitly, by combining Viazovska’s
integral transform techniques with broader classes of special functions.

One consequence of radial Fourier interpolation is a stronger optimality theorem
for E8 and the Leech lattice. Instead of just taking into account local interactions between
particles, as in the sphere packing problem, one can study optimization problems with long-
range interactions. For example, one could ask for the ground state of particles interacting
via an inverse power law. Cohn and Kumar [9] formulated a broad notion of optimality, called
universal optimality, and radial Fourier interpolation yields corresponding magic functions:

Theorem 6.3 (Cohn, Kumar, Miller, Radchenko, and Viazovska [11]). The E8 root lattice
and the Leech lattice are universally optimal in R8 and R24, respectively.

7. The future
Although Viazovska’s work has settled several major questions, much remains to be

understood. For example, the theory of interpolation for radial Schwartz functions is rapidly
developing, with noteworthy connections to uniqueness theory for the Klein–Gordon equa-
tion [2].

One puzzling issue is two dimensions. While the two-dimensional sphere packing
problem can be settled by elementary geometry, universal optimality remains a tantalizing
conjecture. There seems to be a magic function for d D 2 in Theorem 2.1, with r D .4=3/1=4;
no proof is known, but numerical computations agree with the optimal packing density in
R2 to over 1000 decimal places. Furthermore, analogous magic functions seem to exist for
universal optimality in R2. However, it is unclear what sort of function space might allow a
suitable interpolation theory (see Section 7 in [11]).

There are also remarkable connections with conformal field theory and quantum
gravity [18]. When d is even, the linear programming bound for the sphere packing density
in Rd turns out to be equivalent to the spinless modular bootstrap bound for the spectral
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gap in a theory of d=2 free bosons, and the conformal bootstrap program generalizes it to a
family of related bounds. How these more general bounds might relate to discrete geometry
remains a mystery.
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