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Abstract

Mark Braverman was awarded the 2022 IMU Abacus medal for his work on Information
Complexity and additional work. Mark is a world leader of the research area of informa-
tion complexity and his works are among the most influential in this research area. Mark
has a broad research interest and key works in several other research areas, that in some
cases solved central long-standing open problems. We describe some of his work, focusing
mainly on contribution to information complexity and related topics at the interface of
computational complexity and information theory.
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1. Communication complexity

Communication complexity, first introduced by Yao [54], is a central model in com-
plexity theory that studies the amount of communication needed to solve a problem, when
the input to the problem is distributed among two or more parties.

In the two-player distributional model, each of two players gets an input, where the
two inputs X; Y are random variables sampled from some joint distribution (known to both
players). The players’ goal is to solve a communication task that depends on both inputs, such
as computing a function f .X; Y /, where f W ¹0; 1ºn � ¹0; 1ºn ! ¹0; 1º is known to both
players and X; Y are inputs of length n bits. The players communicate in rounds, where in
each round one of the players sends a message to the other player. At the end of the protocol,
in the example given above, both players need to know the value of f .X; Y /. The players
are allowed to use both public and private random strings and are allowed to err with some
fixed small probability.

The communication complexity of a protocol is the maximal number of bits com-
municated by the players in the protocol, where the maximum is taken over all possible inputs
(in the support of the input distribution). The communication complexity of a communica-
tion task is the minimal communication complexity of a protocol that solves the task with
high probability (say, probability larger than 2

3
).

2. Information complexity

Information complexity, introduced by [1, 2, 25], studies the amount of information
that two players need to reveal about their inputs in order to solve a communication task.
The model was motivated by fundamental information-theoretical questions of compressing
communication, as well as by fascinating relations to communication complexity, and in
particular to proving lower bounds for communication complexity and to the direct-sum
problem in communication complexity, a problem that has a rich history and has been studied
in many works and various settings.

The paper by Barak, Braverman, Chen, and Rao distinguishes between internal and
external information complexity of a communication protocol [2]. Roughly speaking, the
external information complexity of a protocol, first defined in [25], is the amount of informa-
tion that an external observer, who watches the execution of the protocol, learns about the
players’ inputs, while the internal information complexity of a protocol, implicit in [1] and
explicitly defined in [2], is the amount of information that the players learn about each other’s
input, when running the protocol.

Formally, if M is the transcript of the protocol and R is the public random string,
external and internal information complexity are defined by

Ext D I
�
.X; Y /I M jR

�
;

Int D I.X I M jY; R/ C I.Y I M jX; R/;

where I is the conditional mutual information function. (It is known that the private random
strings of the protocol can be ignored here.)
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The (internal or external) information complexity of a communication task is the
infimum of the (internal or external) information complexity of a protocol that solves the
task with high probability (say, probability larger than 2

3
).

It is not hard to prove that for any protocol (and thus also for any communication
task), the internal information complexity of the protocol is at most its external information
complexity, which, in turn, is at most its communication complexity. This motivated the study
of information complexity as a tool for proving lower bounds for communication complexity.

A beautiful and useful property of internal information complexity, that motivated
its definition, is the additivity property, or direct-sum property. Roughly speaking, the inter-
nal information complexity of performing two communication tasks, on two independent
pairs of inputs, is equal to the sum of the internal information complexities of the two tasks.
Consequently, the internal information complexity of performing k copies of a communica-
tion task, on k independent pairs of inputs, is equal to k times the internal information com-
plexity of the communication task ([1,2,20], using techniques from [43,45]). The direct-sum
property also relates information complexity to the direct-sum problem in communication
complexity.

Finally, we note that in the case where the inputs X;Y for the two players are sampled
independently, the internal and external information complexity of any protocol are equal.

Much of the work on information complexity was consolidated into a theory in
Braverman’s works [2, 6, 7, 20]. Braverman also defined a variant of information complex-
ity that does not depend on the prior distribution of the input, proving that several possible
definitions are essentially equivalent [7].

A priori, it was not clear whether information complexity is computable, in the
sense that there is an algorithm that approximates it, but this was proved by Braverman and
Schneider (for the zero-error case) [23].

3. Interactive compression

The classical works of Shannon, Fano, and Huffman show that if a player wants to
send a message X to another player, it is sufficient for her to send dH.X/e bits, in expec-
tation, where H denotes Shannon’s entropy function [29, 35, 50]. That is, the length of the
message can be compressed to roughly H.X/, the information content of the message. Are
there analogous results in the interactive setting, where two players engage in an interactive
communication protocol?

Barak, Braverman, Chen, and Rao initiated a study of the interactive compression
problem [2]. Given a communication protocol with small information complexity, can the
protocol be compressed so that the total number of bits communicated by the protocol is also
small? More formally, given a communication protocol … with communication complexity
C and (internal or external) information complexity I � C , is there always an equivalent
protocol …0 (possibly with slightly higher error probability), with communication complex-
ity significantly smaller than C (and arbitrary information complexity)?
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Barak, Braverman, Chen, and Rao gave two different compression protocols, one
for internal and one for external information complexity. For internal information complex-
ity, they proved that any communication protocol … with communication complexity C and
internal information complexity I can be compressed to an equivalent protocol …0, with
communication complexity O.

p
C � I � log C /. For external information complexity, they

proved that any communication protocol … with communication complexity C and external
information complexity I can be compressed to an equivalent protocol …0, with commu-
nication complexity O.I � log C / [2]. Recall that internal information complexity is always
smaller or equal to external information complexity, and hence compressing the communica-
tion complexity to an expression close to the external information complexity of the original
protocol is easier.

These results were followed by many additional works that further studied the
interactive compression problem. Braverman and Rao proved that any one-round (or small
number of rounds) communication protocol with internal information complexity I can be
compressed to an equivalent protocol, with communication complexity O.I / [20]. Braver-
man proved that any communication protocol with internal information complexity I can
be compressed to an equivalent protocol, with communication complexity 2O.I/ [7].

Kol’s breakthrough work proved that in the important special case where the two
inputs X;Y are independent, any communication protocol with internal/external information
complexity I can be compressed to an equivalent protocol, with communication complexity
O.I 2 � polylog.I // [37]. This was culminated by Sherstov who improved the last communi-
cation complexity to O.I � polylog.I // [51]. Note that this last expression does not depend
on the communication complexity of the original protocol at all and almost matches the
lower bound of �.n/. Recall that in the case where X; Y are independent, the internal and
external communication complexity are equal. Building on these works, Braverman and Kol
proved that any communication protocol with communication complexity C and external
information complexity I can be compressed to an equivalent protocol, with communica-
tion complexity poly.I / � loglog.C / [15].

As for lower bounds, Braverman suggested a candidate for a communication task
with communication complexity exponentially larger than (internal or external) informa-
tion complexity [5]. This task and other communication tasks were analyzed in subsequent
works, establishing exponential gaps between communication complexity and information
complexity [30–32, 42], namely, examples for communication tasks with (internal or exter-
nal) information complexity I and communication complexity 2�.I/. In particular, these
works show that Braverman’s compression of the communication complexity of a proto-
col to 2O.I/ [7] is the best possible, and one cannot hope for compression to poly.I / in the
general case (as obtained by Kol and Shesrtov for the special case of independent inputs
X; Y [37,51]). Building on this line of works, Braverman and Minzer established exponential
gaps between internal and external information complexity [17]. An important open problem
asks whether compression to poly.I / � polylog.C /, where I is the internal information com-
plexity, is possible in the general case [11]. (As described above, the best known today are
compressions to O.

p
C � I � log C / [2] and 2O.I/ [7].)
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In each of the above mentioned compression protocols, the two players manage to
sample together, with low communication, a transcript of the original protocol, such that the
transcript is sampled (approximately) from the correct distribution on transcripts and both
players agree on the same transcript with high probability. One of the challenges is that none
of the players knows the correct distribution of transcripts.

As an illustration of the flavor of techniques used in these results, we state a brilliant
theorem from the work of Braverman and Rao [20]:

Theorem. Assume that player 1 knows a distribution P and player 2 knows a distribu-
tion Q over the same finite set U . For every " > 0, there is a public coin communication
protocol that uses an expected number of D.P kQ/ C 2 log.1="/ C O.

p
D.P kQ/ C 1/ bits

of communication (where D.P kQ/ D
P

x P.x/ log.P.x/=Q.x// is the Kullback–Leibler
informational divergence), such that at the end of the protocol Player 1 outputs an element
a distributed according to P and Player 2 outputs an element b such that for every x 2 U ,
PrŒb D xja D x� > 1 � ".

4. Direct sum

One of the first motivations for studying information complexity came from rela-
tions to the direct-sum problem in communication complexity. The direct-sum problem asks
what are the relations between the communication complexity of a communication task and
the communication complexity of performing k copies of the same task on k independently
chosen inputs.

Let T be a communication task. For every k, let T k be the task of performing k

copies of the task T , on k inputs that are independently chosen according to the input dis-
tribution of T , and allowing to err on each copy with the same probability of error that is
allowed for the task T . The amortized communication complexity of a task T is defined by

lim
k!1

CC.T k/

k

where CC denotes communication complexity.
Braverman and Rao proved that the amortized communication complexity of any

task T exactly equals to its internal information complexity [20] (see also [41]). This sur-
prising result relates the direct-sum problem in communication complexity to the interactive
compression problem.

A priori, one could think that the amortized communication complexity of a task
should always be close to its communication complexity. However, using Braverman and
Rao’s equivalence between amortized communication complexity and internal informa-
tion complexity, the above mentioned exponential gaps between communication complexity
and internal information complexity also imply exponential gaps between communication
complexity and amortized communication complexity, showing that there are communica-
tion tasks with communication complexity C and amortized communication complexity
O.log C / [30,31,42]. This shows that a strong direct-sum property does not hold for commu-
nication complexity.
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Conversely, each of the above mentioned compression protocols, in terms of inter-
nal information complexity, implies a lower bound on amortized communication complexity.
For example, the compression protocols of Kol and Sherstov [37,51] imply that for the special
case of independent X; Y , communication complexity and amortized communication com-
plexity are essentially equal (up to polylogarithmic factors), and the compression protocol
of Braverman [7] implies that amortized communication complexity is at least logarithmic
in the communication complexity.

Additional works by Braverman, Rao, Weinstein and Yehudayof [22] and Braverman
and Weinstein [24] show that if a protocol tries to solve T k with communication complexity
significantly smaller than k times the amortized communication complexity of T , then the
success probability of the protocol is exponentially small.

5. Communication complexity of Set-Intersection

Set-Intersection, or Set-Disjointness, is a central problem in communication com-
plexity. In this problem, each of two (or more) players gets a vector in ¹0; 1ºn and their goal
is to determine whether there exists a coordinate i 2 Œn� where they both (or all) have 1. This
simple problem inspired a lot of progress in both communication complexity and information
complexity.

It has been known since 1987 that the probabilistic communication complexity of
Set-Intersection is at least �.n/ [36,45]. The main result of the paper by Bar-Yossef, Jayram,
Kumar, and Sivakumar, one of the papers that started the research area of information com-
plexity, was a new proof for the lower bound of �.n/ for Set-Intersection, using information
complexity [1]. This proof was one of their main motivations for studying information com-
plexity.

Braverman used information complexity to study many additional aspects of the
communication complexity of Set-Intersection.

While it was known that the probabilistic communication complexity of Set-Inter-
section is ‚.n/ [1,36,45], Braverman, Garg, Pankratov, and Weinstein studied the information
complexity of the Boolean AND function and from that analysis they figured out the exact
constant in the ‚.n/ expression, that is, they computed the probabilistic communication
complexity of Set-Intersection exactly, up to second-order terms [14].

Braverman and Moitra studied communication protocols for Set-Intersection that
get advantage of at least " over a random guess. They proved a tight lower bound of �."n/

for the communication complexity of any such protocol [18], while previous proofs only
implied a lower bound of �."2n/. From their improved lower bound, they obtained as an
application lower bounds for the size of linear programs.

Braverman, Ellen, Oshman, Pitassi, and Vaikuntanathan [10] and Braverman and
Oshman [19] used information complexity to prove tight lower bounds for the communication
complexity of Set-Intersection with more than two players. Braverman, Garg, Kun-Ko, Mao,
and Touchette used a quantum variant of information complexity to prove lower bounds
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for the quantum communication complexity of Set-Intersection with bounded number of
rounds [13].

6. Parallel repetition of two-prover games

Information complexity is closely related to the study of parallel repetition of two-
prover games. Both areas make substantial use of information theory, but the connection is
deeper; the two areas use many similar ideas, intuitions, definitions, tools, and techniques
(such as, subadditivity of entropy, correlation-breaking events, and correlated sampling).

In a two-prover (two-player) game, a referee samples questions .x; y/ from some
(publicly known) distribution, and sends x to the first player and y to the second player. The
first player responds by a D a.x/ and the second by b D b.y/ (without communicating with
each other). The players jointly win if a (publicly known) predicate V.x; y; a; b/ is satisfied.
The value of the game is the maximal probability of success that the players can achieve,
where the maximum is taken over all protocols a D a.x/, b D b.y/.

Roughly speaking, a parallel repetition of a two-prover game is a game where the
players try to win n copies of the original game simultaneously. More precisely, the ref-
eree generates questions x D .x1; : : : ; xn/, y D .y1; : : : ; yn/, where each pair .xi ; yi / is
chosen independently according to the original distribution. The players respond by a D

.a1; : : : ; an/ D a.x/ and b D .b1; : : : ; bn/ D b.y/. The players win if they win simultane-
ously on all the coordinates, that is, if for every i , V.xi ; yi ; ai ; bi / holds.

The parallel repetition theorem states that for any two-prover game, with value
smaller than 1, the value of the game repeated in parallel n times decreases exponentially
fast in n [43]. The parallel repetition theorem, and other results about parallel repetition of
two-prover games, have many applications in computational complexity and other research
areas.

While it was known for a long time that parallel repetition reduces the value of two-
prover games exponentially fast, the exact rate of exponential decrease was not known when
the value of the game was already small, to begin with. (A tight analysis for games with small
value was only known for the special case of projection games [27]).

Braverman and Garg solved this problem. They proved that if the value of the game
is v < 1=2 and the length of answers is s then the value of the game repeated in parallel n

times is at most v�.n log.1=v/=s/ [12]. Only a bound of 2��.n=s/ was previously known [43].

7. Interactive coding theory

Shannon’s celebrated 1948 paper, “A Mathematical Theory of Communication,”
initiated (among many other famous contributions) the field of error correcting codes. Sup-
pose that a player wants to send a message of length n bits to another player, but the only
available channel is noisy and changes every bit that is sent with some constant probability
(smaller than 1=2). Shannon proved that the player can send a message of length O.n/ bits,
over the noisy channel, such that from that message the original message can be retrieved
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with high probability and with no errors [50]. Are there analogous results in the interactive
setting, where two players engage in an interactive communication protocol?

This question was first asked and answered by Schulman in 1992. Schulman showed
how to translate any interactive communication protocol to an equivalent noise-resilient pro-
tocol that runs over a noisy channel, with only a constant overhead in the communication
complexity (even when the noise is adversarially chosen) [47–49]. These results initiated
interactive coding theory, the study of how to perform an interactive communication proto-
col reliably in the presence of noise.

In 2011, Braverman and Rao initiated a study of the question of what is the maximal
fraction of errors that can be recovered in an interactive protocol. While Schulman’s work
only recovered a fraction of errors that is bounded by 1=240, Braverman and Rao showed
how to recover 1=4 � " fraction of errors, when the encoding alphabet size is some constant,
and 1=8 � " fraction of errors, when the encoding alphabet size is just 2. The result holds
even in the adversarial case, and at a cost of increasing the communication complexity of
the protocol by only a constant factor [21]. (The fraction of errors of 1=8 � " for an encoding
alphabet of size 2 was recently improved to an optimal fraction of 1=6 � " [28,34].)

This work by Braverman and Rao initiated a renewed interest in interactive coding
theory and inspired many follow-up works. Braverman studied additional aspects of inter-
active coding theory in many subsequent works. For example, Braverman and Efremenko
studied list decoding for interactive communication [8], and Braverman, Efremenko, Gelles,
and Haeupler proved that constant-rate coding for multiparty interactive communication is
impossible [9].

8. Lower bounds for bounded-depth circuits

Bounded-depth Boolean circuits are among the most important subclasses of
Boolean circuits and have been extensively studied in numerous works. They are central
in many subareas of complexity theory, as well as in analysis of Boolean functions. Roughly
speaking, a Boolean circuit computes a Boolean function of n binary input variables using
AND, OR, and NOT gates, where the fan-in of the AND and OR gates is unbounded. The
size of the circuit is the number of wires in it and the depth of the circuit is the length of the
longest directed path from an input variable to the output (not counting NOT gates).

In 1990, Linial and Nisan conjectured that circuits of size m and depth d cannot
distinguish between the uniform distribution over the inputs and any k-wise independent
distribution over the inputs, with k � .logm/d�1 [40]. The conjecture means that a bounded-
depth circuit cannot recognize global structure, as long as it does not come with some local
structure. This was an important conjecture but there was very little progress for many years
and the conjecture was only proved for DNFs (that is, for circuits of depth 2) [3,46].

In 2009, Braverman proved that circuits of size m and depth d cannot distinguish
between the uniform distribution over the inputs and any k-wise independent distribution
over the inputs, with k � .log m/O.d2/ [4]. This result qualitatively proves the conjecture,
with somewhat weaker parameters.
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To prove this result, Braverman brilliantly combines two different types of approx-
imation of bounded-depth circuits by low-degree polynomials. The first, by Razborov and
Smolensky [44, 52], gives a polynomial that is equal to the function computed by the cir-
cuit almost everywhere but may be very different from it on a small fraction of inputs.
Braverman observes that the difference between the function computed by the circuit and
the approximating polynomial can itself be computed by a bounded-depth circuit. He then
approximates that difference by a low-degree polynomial using a different type of approx-
imation, the approximation given by Linial, Mansour, and Nisan [39], that approximates a
bounded-depth circuit by a low-degree polynomial that is close to the function computed
by the circuit on average. The final result is a low-degree polynomial that approximates the
original circuit so well that the trivial proof that low-degree polynomials cannot distinguish
between the uniform distribution and k-wise independent distributions (with k larger or equal
to the degree of the polynomial) works [4].

Since Braverman published his work, it was improved and became more important
in two ways. First, Tal’s breakthrough work [53] improved the approximation given by Linial,
Mansour, and Nisan [39] and by plugging in the new parameters into Braverman’s proof he
obtained an improved result: Circuits of size m and depth d cannot distinguish between the
uniform distribution over the inputs and any k-wise independent distribution over the inputs,
with k � .log m/O.d/ [53]. This comes even closer to proving the original conjecture. Addi-
tionally, Chattopadhyay and Zuckerman used these results in their breakthrough construction
of explicit two-source extractors [26].

9. Grothendieck’s constant vs. Krivine’s bound

In 1953, Grothendieck proved that there is a positive constant K 2 R, such that, for
any m � n real matrix .aij /i2Œm�;j 2Œn�,

max
¹Xi º;¹Yj º

X
i;j

aij hXi ; Yj i � K � max
¹xi º;¹yj º

X
i;j

aij xi yj ;

where Xi , Yj (on the left-hand side) are unit vectors in RmCn and xi , yj (on the right-
hand side) are in ¹�1; 1º [33]. The smallest value of K that satisfies this inequality is called
Grothendieck’s constant.

This is an important theorem, with applications in several areas. In computer sci-
ence, Grothendieck’s constant can be viewed as the integrality gap between a maximum
obtained over values in ¹�1; 1º, on the right-hand side, that is many times desirable but is
often hard to compute, and the maximum obtained over unit vectors, on the left-hand side,
that can be computed in polynomial time.

The exact value of Grothendieck’s constant is still not known. In 1979, Krivine
proved that Grothendieck’s constant is at most �

2 ln .1C
p

2/
and conjectured that this is an

equality [38]. The conjecture was disproved by Braverman, Makarychev, Makarychev, and
Naor [16].
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