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Abstract

We take the occasion of this article to review 100 years of the physical and mathematical
study of the Ising model. The model, introduced by Lenz in 1920, has been at the corner-
stone of many major revolutions in statistical mechanics. We wish, through its history, to
outline some of these amazing developments. We restrict our attention to the ferromag-
netic nearest-neighbor model on the hypercubic lattice, and essentially focus on what
happens at or near the so-called critical point.
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1. Short motivation

How to provide an introduction to (part of) statistical physics aimed at a wide audi-
ence of mathematicians? The question is not easy, especially since the domain is positioned
halfway between theoretical physics and mathematics, and that, contrarily to (some) other
fields of mathematics, it is hard to identify a theory that would embrace most of statistical
physics. A partial answer may be to follow the standard approach of teaching by examples,
and to pick what is maybe the most classical model of statistical physics, namely the Ising
model. Through its history, one may trace many of the revolutions, both on the theoretical
physics and mathematical sides, that statistical physics underwent in the last century.

We therefore chose to streamline this history, from the emergence of the model to
explain experimental results, to its modern applications in mathematics, physics, and beyond.
Obviously, the story will be tainted by the expertise of the author since thousands of papers
have been published on the subject, which ranges over many subfields of mathematics and
theoretical physics. A subjective selection of papers has therefore been made, and the atten-
tion has been restricted to the model on the hypercubic lattice, at equilibrium, (for most of
the review) at criticality, and always with nearest neighbor ferromagnetic interactions (we
are well aware that noncritical and dynamical aspects, as well as long-range, random, or
antiferromagnetic interactions, also are of prime importance).

We tried to respect the timing of the appearance of the different notions pertaining
to the model, and avoided as much as possible some tempting anachronisms. As a result,
certain readers may be surprised by some statements, knowing that simpler and more nat-
ural versions exist nowadays. Also, the large number of breakthroughs in the Ising model’s
history—Peierls’ argument, Onsager’s solution on the square lattice and the exact integra-
bility results that followed, Kadanoff’s scaling and universality hypotheses, the Lee–Yang
theorem, correlation inequalities, the Fortuin–Kasteleyn representation, reflection positivity,
Aizenman’s treatment of the random current representation and use of differential inequali-
ties, conformal field theory, rigorous renormalization group, Chelkak–Smirnov’s conformal
invariance, 3D conformal bootstrap, to cite but a few—forced us to be very quick on some
of these developments. References are added for the avid reader. We also refer to [20,85] for
historical introductions, and [48] for a book on statistical physics including a study of the
Ising model.

2. The first 20 years: a laborious start

2.1. Ising model’s prehistory
In 1895, the French physicist Pierre Curie [30] noticed that magnets lose their mag-

netic attraction when they are heated above a certain critical temperature, now called the
Curie temperature (the phenomenon seemed to have been discovered before by the French
physicist Pouillet in 1832, see [69] for precise references and a discussion). While the Curie
temperature varies from slightly over 100 degrees Celsius for certain alloys, to 769.85
degrees Celsius for magnets made of iron, the underlying phenomenon is always the same:
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at a certain temperature, a magnet ceases to be able to keep a spontaneous magnetization
and exhibits magnetization only when an external field is applied to it. This phenomenon is
called a phase transition between a paramagnetic phase above the Curie temperature, and a
ferromagnetic phase below it.

Curie also identified a law, now called Curie’s law, relating the magnetic suscepti-
bility of the system to the temperature and the external magnetic field applied to the magnet.
He noticed the similarity between the ferromagnetic and paramagnetic phases of a magnet
in terms of the temperature and the external magnetic field applied to it, and respectively
the liquid and gas phases of a fluid in terms of the pressure and temperature. Pierre Weiss
[98] tried to produce an efficient physical explanation of this phenomenon by introducing
an assumption, referred to today as the mean-field approximation. This mean-field model,
called the Curie–Weiss model, gave rise to an interesting, yet not fully accurate, description
of the phase transition.

The German physicist Wilhelm Lenz got interested in Curie’s law. Lenz agreed with
one of Weiss’ suggestions that magnets are made of elementary pieces that behave themselves
as small magnets. Yet, he was at the same time in line with his contemporary physicists, think-
ing that one of Weiss’ assumption, namely that elementary magnets can rotate freely within a
solid, was wrong. Taking this into account, he challenged the rotational freeness. Observing
that a crystal selects certain directions corresponding to its symmetries, he made the assump-
tion that elementary magnets also behave in this way. By analogy, he then suggested that a
crystal-like mechanism for magnets should favor that neighboring elementary magnets are
aligned, therefore corresponding to either pointing in the same or opposite directions. At the
end, the reasoning of Lenz led to the assumption that elementary magnets were taking only
two possible directions that are opposite of each other. He formalized this reasoning in [80].

At this stage, Lenz did not propose an explicit form for the interaction between
elementary magnets. Also, the paper approximately explained the typical behavior of a para-
magnet having respectively zero magnetization when no magnetic field is applied, and a
magnetization when such a magnetic field is applied, but Lenz made no mention of what
will later be referred to as the ferromagnetic behavior.

Ernst Ising was a German physicist born in 1900, who was a PhD student of Lenz
in Hamburg. He graduated in 1924 and published a paper [68] on Lenz’s model in 1925. So,
what did Ising actually achieve in his famous paper from 1925?

First of all, he went one step further than Lenz by specifying the interaction between
elementary magnets. He first made the assumption that interactions “decay rapidly with dis-
tance, so that we, in general, to a first approximation, only have to take the influence on
neighboring elements into account.” He also assumed that “of all the possible positions that
the neighboring atoms can assume in relation to each other, the one that requires the mini-
mum energy is when they are both acting in the same direction.” These two assumptions led
to the mathematical model that we will define formally in the next section. In order to treat
this model, Ising made a further assumption: he assumed that the elementary magnets are
positioned on a linear chain.
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From all of this, Ising could deduce Curie’s law in the paramagnetic phase. While
this was a source for optimism, the latter was severely challenged by the observation that the
magnetization was tending to 0 as the magnetic field vanished, irrespective of the tempera-
ture. In other words, no explanation for ferromagnetism was in sight. Even worse, despite a
few attempts at generalizing the model (Ising considered nonnearest neighbor interactions,
more possible directions for the elementary magnets, and a hybrid three-dimensional model
that would correspond to a limit in which only pairs of neighboring elementary magnets in
one direction truly interact), the ferromagnetism did not seem to be explainable. This led
Ising to conjecture that the model was not a good explanation for ferromagnetism (even
when considering higher dimensional base graph for the spins), a thought that he gathered in
a letter to American historian Stephen Brush years later: “I discussed the result of my paper
widely with Professor Lenz and with Dr. Wolfgang Pauli, who at that time was teaching in
Hamburg. There was some disappointment that the linear model did not show the expected
ferromagnetic properties.”

After his PhD, Ising left academia to become a teacher in Germany before being
forced to step down due to his Jewish origins. He fled Nazi Germany and emigrated to the
United States, where he became a Professor in Physics at Bradley University. He never pub-
lished after his first original paper, and only later became aware of how famous the model
had grown into.

2.2. Formal definition
Let us turn to the formal definition of the model for our magnet. Consider a finite

nonoriented subgraph G D .V; E/ of the hypercubic lattice Zd with vertex-set V corre-
sponding to the position of its elementary magnet constituents, and edge-set E modeling the
links between neighboring ones. An edge e 2 E is often written e D ¹x; yº, where x and y

are its endpoints. The elementary magnet at x 2 V will be a quantity �x 2 ¹�1; C1º, where
�1 and C1 correspond to the two opposite directions that it may take. The value �x is called
the spin at x, and the collection .�x W x 2 V / 2 ¹�1; 1ºV of all spins at vertices in V is called
the spin configuration, and should be understood as the state of our magnet.

The energy—or Hamiltonian—of a configuration � on G is given by

HG;h.�/ WD �

X
¹x;yº2E

�x�y � h
X
x2V

�x ; (2.1)

where h 2 R is called the magnetic field. Sometimes, one may want to generalize the model
to accommodate nonnearest neighbor and nonferromagnetic interactions by setting

HG;h;.Jx;y/.�/ WD �

X
x;y2V

Jx;y�x�y � h
X
x2V

�x ; (2.2)

where the .Jx;y W x; y 2 V / are called the coupling constants of the model. Except when
otherwise stated, we focus here on the Hamiltonian HG;h corresponding to what is called
the nearest neighbor ferromagnetic (n.n.f.) Ising model on G.
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Following Boltzmann, one considers the (grand) partition function of the Ising
model on G at inverse-temperature ˇ and magnetic field h defined by

Z.G; ˇ; h/ WD

X
�2¹�1;1ºV

exp
�
�ˇHG;h.�/

�
: (2.3)

The quantity ˇ is interpreted as the inverse of the temperature, as the latter corresponds to
the thermal excitation of elementary magnets, for which it is natural to predict that the larger
their excitation, the less relevant their interaction.

Physicists then consider the linear form defined for every function X W ¹�1;1ºV ! R

by the formula

hXiG;ˇ;h WD
1

Z.G; ˇ; h/

X
�2¹�1;1ºV

X.�/ exp
�
�ˇHG;ˇ;h.�/

�
: (2.4)

At this stage, we do not consider h�iG;ˇ;h itself, and instead focus on a thermody-
namical quantity of the system called the free energy. Consider a box ƒn WD Œ�n; n�d \ Zd

and define the free energy of the d -dimensional Ising model by the formula

f .ˇ; h/ WD �
1

ˇ
lim

n!1

1

jƒnj
ln Z.ƒn; ˇ; h/ (2.5)

(the existence of the limit is justified by a subadditivity argument left to the reader).
Originally, Lenz and Ising were interested in a quantity

m.ˇ; h/ WD �
@

@h
f .ˇ; h/; (2.6)

which is interpreted as the magnetization of the system in the presence of a magnetic field of
strength h. One may then define the spontaneous magnetization, which corresponds to the
remaining magnetization when removing the magnet from the ambient magnetic field,

m�.ˇ/ WD lim
h&0

m.ˇ; h/ (2.7)

(to justify the limit, one may prove that m.ˇ; h/ decreases as h decreases). The cases
m�.ˇ/ D 0 and m�.ˇ/ > 0 are respectively called the paramagnetic and ferromagnetic
cases as they correspond to the cases where the magnet respectively loses or keeps its mag-
netization even without external magnetic field.

2.3. What does the Ising model truly model?
The Ising model did not develop quickly after its introduction. The original paper

was cited very sporadically in the ten years that followed. In fact, Ising himself was aware
of one citation to his paper only, and this lack of interest was one of the reasons that pushed
him to abandon academia.

There are several explanations why the paper received little attention. The first is that
the negative result of the paper, stating that the model did not explain ferromagnetism, was
a pretty disappointing one. The second is a timing problem. A few years after Ising’s paper,
Heisenberg introduced another model of ferromagnetism [61] based on quantum mechan-
ics, in which the “classical” spins of the Ising model are replaced by the quantum spins of
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electrons. In other words, Heisenberg’s model tries to explain ferromagnetism via the inter-
action of the spin angular momentum of the electrons in the atoms, while the Ising model was
relying on their magnetic moments. In a certain sense, the Ising model was a semiclassical
version of Heisenberg model, and as such was violating the latest developments of quan-
tum mechanics. The discrepancy between the great predictive successes of the Heisenberg
model, and the impossibility to reconcile the Ising model with the recent advancements in
modern physics almost entirely disqualified the model as a good description of ferromagnetic
materials.

At this point, one may wonder why this model, initially introduced in theoretical
physics to explain ferromagnetism but seemingly unable to do so, did not simply fall into
darkness after this rocky start. An element of answer can be found in the developments of
other fields of physics, which we now review.

In 1919, the Russian–German chemical physicist Gustav Tamman presented an
interesting experiment in which atoms in alloys of copper and gold tend to be surrounded by
atoms of the other kind (to picture this, think of a chessboard coloring of the square lattice).
In Tamman’s experiment, the thermal agitation has a direct impact on how much the atoms
tend to be in the right places. In 1935, Bragg and Williams [19] explained this phenomenon
by a statistical mechanics’s argument involving the energy cost of having an atom in the
wrong place. Hans Bethe simplified the model by assuming that only nearest atoms interact.

In 1936, Ralph Fowler and his team in Cambridge introduced another theoreti-
cal model to understand the adsorption of metal vapor on a glass. Fowler more generally
identified a class of experiments exhibiting similar behaviors, that he named cooperative
phenomena.

The German theoretical physicists Rudolf Peierls later noticed the similarity between
Bethe’s approximation of the Bragg–Williams model, Fowler’s theory of adsorption, and the
Ising model. While the original physical problems are different, the mathematical treatment
is in fact similar. In retrospect, Peierls was perhaps the first person to identify that the Ising
model could treat a number of different phenomena, even though the model was a coarse
caricature for each phenomenon in question.

This observation was maybe what kept the Ising model alive for some years, but it
is mathematics that truly changed the nature of the model and made it what it is today. We
now turn to the first mathematical breakthrough in the model.

2.4. Peierls’ argument
While Peierls agreed with the majority of the physics community that the Ising

model was not a good model for ferromagnetism, he certainly recognized that the model
was of mathematical interest. Furthermore, he totally disagreed with the naive generaliza-
tion, based on the few attempts of Ising, of the absence of a ferromagnetic phase to higher
dimensional lattices. This led him to reconsider the problem of the Ising model in two and
three dimensions. As a result, he produced what is probably one of the most important papers
in the early Ising history [89], in which he developed a technique which is now widely known
in statistical physics as Peierls’ argument.

169 100 years of the Ising model



Figure 1

(Left) A picture of the low-temperature expansion on ƒC
1 . The set ƒC

1 is depicted in dashed gray, and .ƒC
1 /� in

plain black. The edges in the dual configuration are depicted in bold. (Right) The set S.5; 3/ with the bottom and
top sets depicted. In this case � and � are respectively constant equal to �1 and C1.

Roughly speaking, the argument runs as follows. When considering a configura-
tion � of the Ising model on Z2, or a finite subgraph of it, one may associate a subset E.�/

composed of the edges ¹x; yº of the graph with �x ¤ �y . In a planar context, one may draw
these edges e 2 E.�/ by considering the dual edges .e� W e 2 E.�// on the dual graph1;
see Figure 1. These dual edges and their endpoints form an even subgraph of the dual graph
(call Even.G�/ the set of such even subgraphs) which can be interpreted as a collection of
loops on the dual graph. The representation of configurations � in terms of even subgraphs
is called the low-temperature expansion. Using the mapping between � and E.�/, one may
rewrite the partition function as

Z.G; ˇ; 0/ D

X
�2¹�1;1ºV

e�ˇHG;h.�/
D eˇ jE.G/j

X
F 2Even.G�/

e�2ˇ jF j: (2.8)

This formula immediately highlights the fact that a large ˇ renders configurations
F 2 Even.G�/ with large loops unlikely. Building on this observation, Peierls was able
to obtain that m�.ˇ/ > 0 for large values of ˇ, see Frame 1 for more details.

The idea to introduce a model of “domain walls” separating the different phases
(here pure C1 and pure �1) from each other is not restricted to the Ising model: it has been
very fruitful to prove the existence of phase transitions, and Peierls’ argument is now one of
the most famous and robust arguments in statistical physics.

1 The dual graph G� D .V �; E�/ of a planar graph G D .V; E/ is the planar graph with
vertex-set given by the faces of G (including the exterior one) and edge-set E� given by
unordered pairs ¹u; vº, where u and v are two faces that are bordered by the same edge.
When this edge is e, we denote the dual edge ¹u; vº by e�. The map e 7! e� is therefore a
bijection between E and E�. On the square lattice, the dual graph is nothing but the trans-
late by . 1

2 ; 1
2 / of the square lattice itself.
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Frame 1: A quick version of Peierls’ argument
We do not consider the magnetization m�.ˇ/ but rather the correlation

h�0�giƒC
n ;ˇ;0, where ƒC

n is the graph ƒn plus a vertex g, sometimes referred to as Grif-
fiths’ “ghost” vertex, connected to all the vertices on the boundary of ƒn; see Figure 1
on the left. The limit as n tends to infinity can be shown to be m�.ˇ/, so it is sufficient
to prove that the quantity is bounded away from 0 uniformly in n.

If one denotes by C D C.�/ the connected component of 0 in R2 n ¹e� W e 2

E.�/º, one may decompose the magnetization depending on the value of C to get

h�0�giƒC
n ;ˇ;0 D 1 � 2

X
g…C 2Even..ƒC

n /�/

˝
I.C D C /

˛
ƒC

n ;ˇ;0
: (2.9)

Now things become interesting. For every C 63 g, consider the configuration FlipC .�/

obtained from � by flipping the values of the spins inside C . This effectively corre-
sponds to removing the set @eC of edges in E.�/ with exactly one endpoint in C .
Taking into account the cost of this operation leads to˝

I.C D C /
˛
ƒC

n ;ˇ;0
� e�2ˇ j@eC j

for every C 63 g. At this stage, the fact that @eC is a loop and that there are at most
.k C 1/4k possible loops of length k surrounding the origin gives

h�0�giƒC
n ;ˇ;0 � 1 � 2

X
k�1

k4ke�2ˇk > 1 �
8e�2ˇ

.1 � 4e�2ˇ /2
: (2.10)

3. Onsager’s 1944 revolution and the integrability of the

Ising model

3.1. Kramers–Wannier treatment of the Ising model and duality
While Peierls’ result is certainly one of the first key rigorous steps in the under-

standing of the Ising model, the work [78] of Hans Kramers and Gregory Wannier in 1941
propelled the Ising model in another dimension in terms of mathematical interest. Indeed,
the two physicists agreed that the Ising model was not necessarily an accurate description
of ferromagnetism, but they were precursors in strongly believing that having mathemati-
cal models that can be rigorously analyzed was of crucial interest for the understanding of
physical phenomena, even if only approximate.

Kramers and Wannier’s goal was to understand what happens for the Ising model at
arbitrary inverse-temperature. Peierls’ argument shows that the model behaves like a ferro-
magnet when ˇ is large. A fairly simple argument, see Frame 4, shows that it behaves like
a paramagnet when ˇ is small. It is therefore tempting to think that there is an intermedi-
ate inverse-temperature, playing the theoretical role of the inverse of Curie’s temperature,
that separates a paramagnetic phase from a ferromagnetic phase, i.e., a critical inverse-
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temperature ˇc defined by the formula

ˇc D ˇc

�
Zd

�
WD inf

®
ˇ W m�.ˇ/ > 0

¯
: (3.1)

Of course, the notion of critical inverse-temperature immediately leads to the following ques-
tion: Can one compute the value of the critical point ˇc?

The work [78] represented an important historical step towards this computation. It
involved a number of ideas that deeply influenced the way mathematicians and physicists
approach the Ising model. The first key observation is that Kramers and Wannier did not
work with the Ising model in the presence of a magnetic field (in other words, they set h to
be 0). Instead, they proposed to look at the specific heat defined by

C.ˇ/ WD �ˇ2 @2

.@ˇ/2
. f̌ /.ˇ; 0/: (3.2)

Kramers and Wannier argued that the critical point of the model on Z2 should correspond
to a value of ˇ at which C.ˇ/ blows up. The next step is maybe the most interesting one. By
assuming that there exists a unique point at which C.ˇ/ blows up, they were able to predict
the value of ˇc . The reason behind this prediction is the following duality relation for the
free energy on Z2:

f̌ .ˇ; 0/ D ˇ�f
�
ˇ�; 0

�
� 2ˇ C ln 2 C 2 ln cosh

�
ˇ�

�
; (3.3)

where ˇ and ˇ� are related via the formula tanh.ˇ�/ D e�2ˇ . The uniqueness implies that
ˇc must be the self-dual point satisfying ˇ� D ˇ, i.e., ˇc must be equal to 1

2
ln.1 C

p
2/.

Of course, this reasoning is not a formal proof as it is not a priori obvious that the singular
point is unique.

The proof of Kramers and Wannier of the duality relation is also of great interest.
Originally, they used so-called transfer matrices to do it; see Frame 2 for details. While
they did not invent those matrices (they already appeared in the work of Montroll [84]),
they probably made the first important use of them. Today, the derivation of this relation
is straightforward and does not rely on transfer matrices. It involves relating the partition
functions Z.G; ˇ; 0/ and Z.G�; ˇ�; 0/ using, for the first one, the expression given by the
low-temperature expansion (2.8), and for the second, an alternative representation called
the high-temperature expansion, obtained by van der Waerden [96] and briefly described
in Frame 4. When observing that the dual of a box in the square lattice is (except on the
boundary) a box of the square lattice, one obtains the identity above by considering larger
and larger boxes.

Frame 2: Transfer matrices of the Ising model
To lighten the presentation, we restrict our attention to the case h D 0. Consider

the slices S.N; M/ WD .Z=N Z/d�1 � J0; M K with no edges between the vertices of
the bottom .Z=N Z/d�1 � ¹0º (we call .Z=N Z/d�1 � ¹M º the top of the slice); see

172 H. Duminil-Copin



Figure 1 on the right. Let �jbottom and �jtop be the restrictions of � to the top and bottom
of S.N; M/, considered as two elements of ¹�1; 1º.Z=N Z/d�1 . Introduce the quantity

Z.N;M;�;�/ WD

X
�2¹�1;1ºS.N;M/

exp
�
�ˇHS.N;M/;h.�/

�
I.�jbottom D �;�jtop D �/; (3.4)

where �; � 2 ¹�1; 1º.Z=N Z/d�1 , as well as the so-called transfer matrix

VN .�; �/ WD Z.N; 1; �; �/ D exp
�
�ˇ

� X
x2.Z=N Z/d�1

�x�x C

X
¹x;yº2E..Z=N Z/d�1/

�x�y

��
:

(3.5)

One immediately finds that Z.N; M; �; �/ D V M
N .�; �/: Other quantities of the model

may be written in terms of transfer matrices, for instance, the partition function of the
model on the d -dimensional torus .Z=N Z/d becomes the trace of V N

N .
One important aspect of those transfer matrices VN is that certain questions

on the behavior of the model are rephrased as spectral questions on the transfer matrix.
For instance, by letting M and then N go to infinity, one observes that the asymptotic
behavior of the partition function on .Z=N Z/d�1 � .Z=M Z/, and therefore the value
of the free energy, are connected to the asymptotic behavior of the leading eigenvalue
of VN as N tends to infinity. This can very well be an intractable problem, but in some
cases it is not.

3.2. Onsager’s result
Kramers and Wannier’s results unraveled the potential mathematical interest of the

Ising model, but the real revolution came only a few years after with one of the most impres-
sive achievements in mathematical physics. Lars Onsager, Nobel prize winner in 1968, was
a Norwegian specialist in theoretical chemistry. He was particularly interested in mathemat-
ical problems and focused his attention on the Ising model for the formidable challenge that
its exact solution represented more than for his physical relevance.2

To everyone’s surprise, Onsager announced at a conference of the New York
Academy of Sciences in 1942 that he obtained the following exact expression for the free
energy (at zero magnetic field) of the Ising model on the square lattice Z2:

� f̌ .ˇ; 0/ D ln 2 C
1

8�2

Z 2�

0

Z 2�

0

ln
�
cosh.2ˇ/2

� sinh.2ˇ/.cos �1 C cos �2/
�

d�1 d�2:

(3.6)

This implies, in physics jargon, that the model is exactly solvable. This solvability is itself
linked to a deep property of the model called integrability. Onsager’s underlying idea was

2 His opinion on this fact seemingly evolved: in his first 1944 paper [86], he presents it as a
poor model of ferromagnetism, but a fairly good model for binary alloys, while in his paper
with Kaufman in 1949 [75] he describes it as a model for ferromagnetism.
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that the transfer matrices of the 2D Ising model are a product of two matrices that generate
(by taking successive brackets) a finite-dimensional Lie algebra. He used this observation
to derive the asymptotic behavior of the leading eigenvalue of these matrices in his famous
1944 paper [86]. In 1949, Bruria Kaufman [75] provided an alternative and simpler derivation.

A few years later, Onsager surprised the world of theoretical physicists again by
claiming an exact expression for the spontaneous magnetization on Z2: for ˇ � ˇc ,

m�.ˇ/ D
�
1 � sinh.2ˇ/�4

�1=8
: (3.7)

While the result was announced by Onsager first, it was a young physicist, that would later
become one of the most influential theoretical physicists of the second half of the twentieth
century, Chen-Ning Yang (from Yang–Baxter’s equation, Yang–Mills’s theory, Lee–Yang’s
theory, etc.), who provided a mathematical proof [102] of this statement by achieving a math-
ematical tour de force involving Toeplitz determinants. The proof relies on a computation,
again using transfer matrices but much more evolved than for the free energy, of the two-point
function h�.0;0/�.n;0/i.Z=N Z/2;ˇ;0, and the observation that

m�.ˇ/2
D lim

n!1
lim

N !1
h�.0;0/�.n;0/i.Z=N Z/2;ˇ;0 (3.8)

(at the time, such an identity was not obviously true, but nowadays this can be proved easily
using, for instance, the FK percolation, see Section 7.2).

In the 1940s and 1950s, these successes were considered by physicists as a math-
ematical curiosity rather than a truly crucial advance. Yet, they had a revolutionary impact
on theoretical physics for multiple reasons: First, the level of sophistication of the mathe-
matical tools used in the proofs is without any common measure with what was previously
used in such kinds of problems, and these techniques created whole new types of mathemat-
ical physics. Second, the behavior of the model did not correspond to previous mean-field
approximations, thus invalidating rigorously the Curie–Weiss or Landau theories and open-
ing a new era in statistical mechanics. Third, the results had many direct applications for
the Ising model itself, for instance, the specific heat C.ˇ/ can easily be shown to blow up
logarithmically as ˇ approaches 1

2
log.1 C

p
2/, thus confirming rigorously that this value

is the critical point of the system (the logarithmic blow-up is one example of non-mean-field
behavior).

Numerous alternatives have been proposed to the approach of Onsager–Kaufman–
Yang, often referred to as the algebraic method. As a joke, Baxter and Enting named their
1978 paper [11], introducing a solution to the 2D Ising model involving the notion of star-
triangle transformation, the “399th solution of the Ising model.” This count is, of course,
overestimated, but one can list a large number of alternative strategies.

The first such strategy is called the combinatorial approach and is referring to an
original argument of Kac and Ward [70] rewriting the partition function of the model in
terms of the square root of the determinants of so-called Kac–Ward’s matrices using a
combinatorial expansion of the partition function generalizing the van der Waerden high-
temperature expansion [96]. The advantage of such an approach is that it does not rely on
transfer matrices, and therefore is applicable to every finite planar graph, even with arbitrary
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nearest-neighbor coupling constants. Unfortunately, the original argument was not entirely
rigorous and one had to wait until 1999 [33] to finally obtain a mathematical derivation of
this approach. Nowadays, the method is very well understood and especially useful in rela-
tion to discrete holomorphicity and higher genus graphs, see [29] and the references therein
for a more complete account.

The (nowadays) most classical method is probably the Pfaffian method. It came
as an attempt to go around the substantial difficulties to make the combinatorial approach
rigorous. Due to Hurst and Green [64], Kasteleyn [74], and Fisher [45], the strategy consists in
writing the Ising partition function on a finite planar graph G in terms of the dimer (a dimer
configuration is a subset of edges which covers every vertex exactly once) partition function
on a related graph K.G/ (the precise definition of the graph depends on the implementation
of the Pfaffian method). It is then possible to relate the partition function to a skew-symmetric
adjacency matrix and express the partition as a Pfaffian, hence the name of the method. This
strategy has been the basis of a number of more refined results about the model, in particular
the computation of the spin–spin correlations of the model at and away from criticality. For
the deepest and most impressive results, we recommend that the reader takes a look at the
two books of McCoy–Wu [82] and Palmer [88].

Another approach of importance was proposed by Schultz–Mattis–Lieb in [93] to
tackle the cases for which a transfer matrix can be used. In this paper, they connected the
transfer matrix with the exponential of a quantum Hamiltonian. This connection to 1D quan-
tum spin chains has been very fruitful and understood in a number of alternative ways since
then. As a byproduct, the authors were able to express the partition function as a Grassmann
“Gaussian” integral. The advantage of this way of writing the partition function is that the
Pfaffians emerge naturally. This approach is at the basis of renormalization schemes in two
dimensions; see Section 8.3.

Yet another approach dealing with the context in which transfer matrices can be
applied is worth mentioning, as it is by far the most generalizable to other models. It is based
on the commutation of the transfer matrices attached to the model with different critical
parameters. Pioneered by Rodney Baxter, this approach consists in using the so-called Yang–
Baxter equation. The advantage is that the same strategy can be applied to a very large variety
of integrable systems, such as the six-vertex model, to cite only one example. We refer to [10]

and references therein for more details.

4. The 1950s and 1960s: The Ising model becomes a

laboratory for understanding critical phenomena

The 1950s and 1960s were probably the decades during which the Ising model
became an “unavoidable” model. The realization that having a tractable model of statisti-
cal physics could be a useful explanatory but also predicting tool became more and more
obvious. The Ising model, with Onsager’s solution, was a prime example of a model with
such qualities.
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The model therefore developed tremendously in the postwar era in theoretical
physics as well as in a rapidly growing field called mathematical physics. The latter gath-
ered more and more physicists that were interested in rigorous aspects of the objects they
studied, and mathematicians willing to study problems that were naturally emerging from
physical modeling. The Ising model offered a wonderful playground for such scientists, and
the number of papers mentioning the model started to be counted in the hundreds.

4.1. Progress in mathematical physics: From perturbative regions of the
phase diagram to the vicinity of the critical point
During this period, the newly developing community of mathematical physicists

recognized that the study of phase transitions, and in particular of the critical phase (when ˇ

is equal to ˇc), was a vast field of its own. While the previous developments mostly concerned
the values of ˇ and h that were far from the critical regime (Peierls’ argument [89] or Baker’s
use of Padé approximant [8], for instance), the situation changed drastically around the 1950s.
The interest in the intermediate values of ˇ became stronger and stronger. Onsager’s solution
offers a precise understanding of the critical behavior of the 2D Ising model, yet it has clear
downsides related to the relative fragility of the integrability of the system. As a consequence,
mathematical physicists started using the Ising model not only as a solvable system, but
more generally as a good mathematical model that one should not reduce to its integrability
aspects. New rigorous techniques emerged during this period to try to understand the vicinity
of the critical point for nonintegrable cases, for instance in higher dimensions.

4.1.1. Correlation inequalities
It is natural to ask which monotonicity properties are satisfied by the system, in par-

ticular by the spin–spin correlations h�AiG;ˇ;h where �A WD
Q

x2A �x ; when the parameters
vary (for instance, G, ˇ, or h).

To tackle such questions, mathematical physicists started proving what we now call
correlation inequalities using combinatorial arguments. Among the first such examples are
Griffiths’ inequalities [56]: for every ˇ; h � 0 and every A; B � V ,

h�AiG;ˇ;h � 0 and h�A�BiG;ˇ;h � h�AiG;ˇ;hh�BiG;ˇ;h: (4.1)

A byproduct of the second inequality, when applied to B D ¹x; yº and summed over all
edges ¹x; yº, is that correlations h�AiG;ˇ;h are increasing in ˇ (and also in G with a little bit
of additional work). One may derive the same for the spontaneous magnetization m�.ˇ/, so
that the definition of ˇc can now be rephrased as

ˇc D inf
®
ˇ � 0 W m�.ˇ/ > 0

¯
D sup

®
ˇ � 0 W m�.ˇ/ D 0

¯
: (4.2)

This implies in particular that there is indeed a unique transition between paramagnetic and
ferromagnetic phases.

Other interesting correlation inequalities were obtained in subsequent years. Let
us contemplate a few examples (we do not write them in full generality, and we drop the
subscript after h�i):
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• GHS’s inequality [58]: for h � 0 and x 2 G,

@2

.@h/2
h�xi � 0: (4.3)

• Simon–Lieb’s inequality [81]: for S 3 0 and x … S , when h�iS refers to the model
in S ,

h�0�xi �

X
y2@S

h�0�yiS h�y�xi: (4.4)

• Messager–Miracle–Solé’s inequality [83]: for x; y 2 Zd
C (below h�i is defined on

Zd )
h�0�xCyi � h�0�xi: (4.5)

• FKG’s inequality [47]: for any increasing functions f; g W ¹�1; 1ºV ! R,

hfgi � hf ihgi: (4.6)

This far from exhaustive list, which we did not discuss in detail, is intended to show the vari-
ety of possible correlation inequalities. Clever use of these inequalities provided the embryo
of what would be considered later as the theory of noncritical statistical physics systems at
equilibrium, as the correlation inequalities and their consequences often generalize in the
same (or slightly altered) form to a wider class of lattice spin models.

4.1.2. The Ising model with a magnetic field: The Lee–Yang theory
While studying the whole phase diagram is a Herculean task that was far beyond the

techniques developed at the time, a beautiful development enabled mathematical physicists
to understand the case h ¤ 0.

The twin papers [79], referred to as the Lee–Yang theory, relate the regularity prop-
erties of the free energy (and therefore the location of singular points corresponding to places
where a phase transition occurs) to the locus of the complex zeroes of the partition function
Z.G; ˇ; h/ when seen as a function of h 2 C. Beyond the result itself, the philosophy con-
sisting in studying the complex zeroes of the partition function had a resounding effect on the
field of mathematical physics. This can be put in parallel with the analysis of zeroes of the
Riemann zeta function: one learns something about prime numbers by studying the zeroes
of a generating-type function associated with them.

The result of Lee and Yang is not restricted to the n.n.f. Ising model on G � Zd ,
but the latter gives an important application of it. In our context, let Z.G; ˇ; h/ 2 C (for
h D .hx W x 2 V / 2 CV ) be the partition function defined as in (2.3) with the difference that
the magnetic field is allowed to vary with the vertex, i.e., that the

P
x2V h�x term of the

Hamiltonian in (2.2) is replaced by
P

x2V hx�x . The result states that for this model, the
zeroes of the function h 7! Z.G; ˇ; h/ are satisfying Re.hx/ D 0 for every x 2 V .

As a consequence of this theorem, the free energy f .ˇ; h/ (which we recall from
(2.5) is expressed in terms of the limit of the logarithm of partition functions) is analytic as
soon as h ¤ 0. Other consequences follow, such as exponential decay of so-called truncated
correlations of the system, as well as analyticity of the other thermodynamical quantities
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when the magnetic field is nonzero. Roughly put, the Lee–Yang theory enables understanding
in full detail the part of the phase diagram corresponding to a nonzero magnetic field.

4.2. Revolutionary progress on the physics front
In parallel to these first successes in mathematical physics, revolutionary progress

was made during this period on the physical understanding of phase transitions. Among
other things, the scaling and universality hypotheses were formulated, and the pillars of the
renormalization group were cast, in both cases using the Ising model as an important source
of inspiration.

4.2.1. Critical exponents and the success of scaling theory
A fundamental notion of physics is the assumption that thermodynamical quantities

of physical systems near criticality tend to take simple forms when expressed in terms of the
parameters of the system. A major advance was achieved in the 1960s by American chemist
Benjamin Widom who proposed in [99] that these quantities are powers in each parameter.
For the Ising model, the parameters are ˇ and h, and this scaling hypothesis translates into the
existence of so-called critical exponents. To give a few examples related to already defined
quantities, one may, for instance, predict that

m�.ˇ/ D .ˇ � ˇc/
ˇCo.1/
C ; m.ˇc ; h/ D h1=ıCo.1/; h�0�xiˇc ;0 D

1

jxjd�2Cı
(4.7)

(notice that ˇ and ˇ have nothing to do with each other), where o.1/ is a quantity tending to
0 as ˇ tends to ˇc , h tends to 0, or jxj tends to infinity, respectively. In fact, the whole family
of such exponents, denoted by ˛;ˇ;;ı;�;� (for the most classical ones), can be defined for
each model. Understanding the phase transition boils down to, among other things, deriving
those exponents.

Dealing with such exponents, one may naturally wonder how many degrees of free-
dom truly exist in statistical physics models. For instance, could some of these critical expo-
nents be connected via direct relations that would transcend the precise definition of each
model? In the 1960s, physicists such as Essam, Fisher, and Widom himself, to cite only
those three (see [42,46,99] for some early works on the subject), started unraveling system-
atic connections between the exponents, thus hinting towards the fact that only two degrees
of freedom exist and that exponents are related by so-called scaling relations

�d D 2 � ˛ D 2ˇ C  D ˇ.ı C 1/ D 
ı C 1

ı � 1
; 2 � � D



�
D d

ı � 1

ı C 1
: (4.8)

The scaling relations apply in a context which is far more general than just the Ising model
(see, for instance, [38] for a proof in the case of a large family of two-dimensional percolation
models). In the course of discovering these different scaling relations, the Ising model in two
and three dimensions played the important role of a sanity check. While other experimental
systems were used as testing grounds, the Ising model was the only example of a theoretical
system which did not exhibit mean-field behavior (and therefore was not too “trivial”) and
for which such exponents were available, either rigorously thanks to the exact solution in
2D, or approximately thanks to Baker’s use of Padé approximant [8] in 3D.
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To conclude this section, let us mention an important quantity, called the corre-
lation length �.ˇ/ of the system, that plays an important role in the scaling hypothesis (it
corresponds to the exponent �). We consider the case ˇ < ˇc but a similar notion can be
introduced for ˇ > ˇc , with analogous interpretations.

When considering, say, spin–spin correlations at criticality, one expects an algebraic
decay as mentioned in (4.7). Yet, when ˇ < ˇc , the scaling hypothesis cannot hold uniformly
in jxj and such a decay does not occur. In fact, it was found in many systems that spin–spin
correlations decay exponentially fast (see Section 7.1 for more details) and the inverse-rate of
decay is the correlation length �.ˇ/. This correlation length has an interesting interpretation:
it is the smallest scale at which the system with ˇ < ˇc is off-critical, meaning that when
looking at a system with a size which is much smaller than �.ˇ/, the difference between the
system and a critical system will be invisible to the physicist’s eye, while on the contrary when
the size is much larger than �.ˇ/, the model looks similar to the case of ˇ � ˇc . In other
words, when approaching the critical point, a system becomes more and more “critical.” By
how much this is true depends on the size of the system, and the correlation length separates
between the sizes at which the system looks critical, and the sizes at which it looks clearly
non critical.

4.2.2. Kadanoff’s block-spin renormalization and universality
While Widom’s scaling hypothesis provides compelling evidence that critical expo-

nents exist, the underlying justification of the hypothesis itself remained slightly superficial
until Russian physicist Leo Kadanoff provided an illuminating argument for it. In his famous
1966 paper [71], Kadanoff suggested that the block-spin renormalisation transformation—
i.e., replacing a block of neighboring sites by one site having a spin equal to the dominant
spin in the block—corresponds to appropriately changing the scale and the parameters ˇ and
h of the model. Assuming that iterating this procedure somehow converges suggests that the
asymptotic properties of the system are described by a fixed point of a renormalization map.
As a result, one ends up with the scale invariance of the model. This argument, inspired
by the study of the Ising model, turned out to be the basis of the monumental theory of the
renormalization group (RG) that was put in a general framework a few years later by Kenneth
Wilson [101].

The block-spin argument of Kadanoff achieved much more than a physical justifica-
tion of the scaling hypothesis. Assuming uniqueness of the fixed point also implies that the
renormalization of Ising models defined on different d -dimensional lattices should converge
to the same fixed point, and therefore share the same critical exponents. This was already
partially realized in 2D by observing the Ising model on the square, hexagonal, and trian-
gular lattices (they are all exactly solvable), as well as in 3D by approximations using series
expansions [34], but the renormalization argument suggests that the few examples of equali-
ties between exponents are, in fact, the illustration of a much more general phenomenon.

What is now known as the universality hypothesis was explicitly formulated in par-
allel by Robert B. Griffiths and Kadanoff in 1971 [57,72]. Roughly speaking, it states that the
critical properties of a physical system only depend on
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• the lattice dimension d ;

• the symmetry of the space of possible spins (Z=2Z symmetry for Ising);

• the speed of decay of coupling constants (this is only relevant when the Jx;y are
allowed to decay polynomially with kx � yk, which is not the case in this text).

This realization of universality is fundamental to the relevance of statistical physics as a
whole. To borrow from Kadanoff’s wording: “Why study a simplified model like the Ising
model? The strategy of studying physical questions by using highly simplified models is made
rewarding by a characteristic of physical systems called “universality,” in that many systems
may show the very same qualitative features, and sometimes even the same quantitative ones.
To study a given qualitative feature, it often pays to look for the simplest possible example.”

To summarize Section 4, by the end of the 1960s it became clear to mathemati-
cal physicists and theoretical physicists that the Ising model was one of the most striking
examples of a simple physical system which was rich enough to grasp a large variety of
phenomena falling in the range of statistical physics. Results on the Ising model started to
play a role similar to experimental results in the sense that they could corroborate or, on the
contrary, invalidate the embryo of a theory. It is fair to say that the importance of the model
was never argued upon later on and that it was finally recognized as one of the centerpieces
of modern statistical physics.

5. The 1960s and 1970s: Emergence of the probabilistic

interpretation

Physicists and mathematical physicists think of the quantity h�iG;ˇ;h as a form
attributing to each function X W ¹�1; 1ºV ! R (resp. C) a value in R (resp. C). In the
late 1960s and 1970s, the rise of probabilistic methods led to an alternative interpretation
of the Ising model in which h�iG;ˇ;h is now understood as (dual to) a probability measure
�G;ˇ;h. As a consequence of this reinterpretation, it becomes natural to ask what the prop-
erties of a randomly chosen spin configuration are, and what the possible measures on the
infinite lattice that can be obtained as limits of measures in finite volume are.

5.1. The random geometry of the spin configuration
As mentioned above, h�iG;ˇ;h is the linear form associated with the probability mea-

sure �G;ˇ;h on ¹�1; 1ºV defined for every configuration � by the formula

�G;ˇ;h

�
¹�º

�
WD

1

Z.G; ˇ; h/
exp

�
�ˇHG;h.�/

�
: (5.1)

Then, quantities like h�AiG;ˇ;h can be interpreted as the correlations between the random
variables �x with x 2 A. Note that in this interpretation the partition function is a normalizing
factor making the measure at hand a probability measure.

Let us assume for a moment that h D 0 and interpret the phase transition in terms of
probability. The structure of the probability measure is such that configurations have greater
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probability if they have more pairs of neighbors with a similar spin. In this interpretation, the
larger ˇ is the more important it is that neighbors have the same spins. In particular, in the
limit as ˇ tends to infinity, one ends up with one of the two configurations where all spins
are the same. It becomes then natural to expect that for ˇ large, typical configurations have
an excess of one spin compared to the other. On the other hand, when ˇ is very small, how
much the measure takes the agreements into account is fairly limited, and one may expect
that spins behave roughly independently, at least at large distance of each other.

The interpretation in terms of random variables opens new uncharted territories:
one can interpret probabilistically natural thermodynamical quantities such as magnetization
(which corresponds to the expectation of the spin at a vertex) or surface tension. It also
opens a way to new problems, such as dynamics on the space of spin configurations or large
deviations (for instance, for an Ising model at an inverse-temperature ˇ, but with an excess
of C1 spins in a region and of �1 spins in another); see Frame 3.

Frame 3: Sampling the Ising model—Glauber dynamics
The probabilistic interpretation naturally raises the question of sampling

random configurations according to �G;ˇ;0 (set h D 0 for simplicity). A classical
method consists in expressing the measure as the invariant measure of a Markovian
dynamics .�.t/ W t � 0/ 2 .¹�1; 1ºV /RC , called the Glauber dynamics and defined as
follows: attach an exponential clock to each vertex of G. Each time a clock rings, say at
time t at x 2 V ,

• If �x.t/
P

yW¹x;yº2E �y.t/ < 0, switch the value of the spin at x,

• Otherwise, switch the value of the spin at x with a probability equal to
expŒ�2ˇ

P
yW¹x;yº2E �y.t/�, and do not switch otherwise.

Since �G;ˇ;0 is the only invariant measure for this dynamics, the limit as t tends to
infinity, irrespectively of the initial value �.0/, is sampled according to �G;ˇ;h.

This dynamics was named after the American physicist Roy J. Glauber. Alter-
native choices of dynamics are obtained by changing the jump probabilities. In Figure 2,
three simulations of the Ising model are shown respectively below (on the left), at (in
the middle) and above (on the right) ˇc .

5.2. Boundary conditions and the Gibbs formalism
An important output of the probabilistic interpretation of the model is that it becomes

natural to condition on spins in a subset of V . More precisely, let W � V and let H be the
graph with vertex-set W and edge-set induced by the edges of the graph G. Let � 2 ¹�1; 1ºV

be a spin configuration on G. One may ask what is the law of the spins in W when condi-
tioning � outside W to be equal to � , i.e., what is �G;ˇ;hŒ � j�x D �x ; 8x … W �?
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Figure 2

(Left) Simulations at three different temperatures (ˇ < ˇc , ˇ D ˇc , and ˇ > ˇc ) of the Ising model with plus
boundary conditions on the top and minus boundary conditions on the bottom. Pluses are in gray and minuses in
black. Credit: S. Smirnov. (Right) An example of a bubble of minuses in an environment of pluses at ˇ > ˇc .
Credit: Y. Velenik.

The answer to this question is best cast when introducing the notion of boundary
conditions. For a subgraph G of Zd and a configuration � 2 ¹�1;1ºZd , introduce the measure
��

G;ˇ;h
with � boundary conditions defined like �G;ˇ;h except that HG;h is replaced by

H �
G;h.�/ WD HG;h.�/ �

X
¹x;yº2E.Zd /Wx2V;y…V

�x�y : (5.2)

Note that the only values of � that matter are on the exterior boundary of G, i.e., on the
vertices that are connected by an edge of Zd to a vertex in V .

With this definition, we obtain the following important property of the Ising model,
called the spatial Markov property: for every finite subgraph G of Zd , every W � V , and
every configuration � 2 ¹�1; 1ºZd , if H denotes the graph induced by the set W ,

�G;ˇ;hŒ � j�x D �x ; 8x … W � D ��
H;ˇ;hŒ � �: (5.3)

In words, when conditioning the Ising model on G to coincide with a given configuration
outside W , one gets the measure in H with the corresponding boundary condition.

This property offers a natural consistency relation between measures ��
G;ˇ;h

for
varying � and G. As a byproduct, one is naturally led to postulate that any reasonable infinite-
volume version of Ising measures should satisfy the same consistency relation. One therefore
ends up with the following notion: a measure � on .¹�1; 1ºZd

; FZd / is called a Gibbs mea-
sure of the Ising model with parameters ˇ and h if it satisfies the Dobrushin–Lanford–Ruelle
(DLR) property: for every finite V � Zd and � 2 ¹�1; 1ºZd ,

�Œ � jFZd nV � D ��
G;ˇ;hŒ � � on E� �-almost surely; (5.4)

where

• G is the graph induced by the vertex-set V ;
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• E� is the event that � and � agree on the exterior boundary of G;

• FZd nV is the � -algebra generated by the random variables .�x W x … V /.

The notion of Gibbs measure is not restricted to the Ising model (see [51] for a book on the
subject), but the classification of such Gibbs measures has been the object of intense study
in the specific case of the Ising model, with a very successful outcome.

The first question that one may ask is the existence of Gibbs measures. At least three
such measures can be defined in a fairly straightforward way. By taking limits as G tends to
Zd of the measures �G;ˇ;h, �C

G;ˇ;h
, and ��

G;ˇ;h
(where C and � refer, with a slight abuse

of notation, to � equal to all C1 or all �1), one ends up with three (possibly equal) Gibbs
measures �ˇ;h, �C

ˇ;h
, and ��

ˇ;h
. More generally, one may construct measures by taking all

possible subsequential limits of measures of the form ��
G;ˇ;h

, where one may even consider
� as a random variable.

In general, the set of possible Gibbs measures on Zd is a nonempty simplex whose
extremal measures are called extremal states. One can therefore try to classify such extremal
Gibbs measures.

Some cases are quite simple to treat: for h ¤ 0 or h D 0 and ˇ < ˇc , the simplex is
reduced to a singleton, i.e., there exists a unique Gibbs measure. When h D 0 and ˇ D ˇc ,
it was recently proved that this is also the case [5]. On the contrary, when h D 0 and ˇ > ˇc ,
things are more interesting. It was realized very early on that there may be more extremal
states than the two obvious �C

ˇ;0
and ��

ˇ;0
, but examples that were found did not exhibit

translation invariance. The most important such specimen was provided by Russian mathe-
matical physicist Roland Dobrushin [31], who explained that in three dimensions the measure
�dobr

ˇ;0
obtained by taking the limit of measures ��

Œ�n;n�3;ˇ;0
, where � is all plus on the upper

half-space, and all minus on the lower half-space, was not translation invariant in the vertical
direction at high values of ˇ. The existence of these Dobrushin states is related to a very deep
and still mysterious (at least on a mathematical level) phenomenon in 3D statistical physics
often referred to as the roughening phase transition.

Leaving non-translation invariant measures aside, many efforts were made to prove
that every translation invariant Gibbs state is a convex combination of �C

ˇ;0
and ��

ˇ;0
. The

first result in this direction proved a stronger statement that draws a direct link with the
previous paragraph. In two dimensions, Aizenman [1] and Higuchi [62] proved in the 1980s
that every Gibbs state, not only translation invariant ones, is a mixture of �C

ˇ;0
and ��

ˇ;0
. In

particular, �ˇ;0 D
1
2
�C

ˇ;0
C

1
2
��

ˇ;0
. In higher dimensions, it took 20 more years to obtain

the result for every translation invariant Gibbs measure. We refer to the historical proof of
Bodineau [17] and to the recent generalization of Raoufi [91].

5.3. Phase coexistence and Wulff shape
The classification of Gibbs states naturally raises the question of the coexistence

of different so-called phases. When h D 0 and ˇ > ˇc , �C

ˇ;0
and ��

ˇ;0
are not equal: they

correspond to two extremal states, sometimes referred to as the plus and minus phases. Now,
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what happens when one tries to “mix” the two states? For instance, how does it look if one
asks that part of the space is in one state, and the other part is in the other?

In 2D, an interface is created between the two phases (see Figure 2 for simulations
at different temperatures). While it is not obvious to define such an object in general, let us
consider the simple example of the Ising model on a finite box Œ�n; n�2 of the triangular
lattice with plus spins on the part of the boundary above the x-axis, and minus spins on
the rest of the boundary. In this case, one can draw a unique interface going from .�n; 0/

to .n; 0/ winding between pluses and minuses. It was understood heuristically early on that
above criticality this interface should have the same fluctuations as Brownian motions, but it
took decades to turn this intuition into a rigorous proof, first in the large ˇ regime and then
in the whole ˇ > ˇc regime; see [55] and references therein. The techniques involved also
enabled mathematicians to understand precise asymptotics of spin–spin correlations in the
noncritical regimes. The theory, known under the coined name of Ornstein–Zernike theory,
is now an area of intense research and spans over a large variety of statistical physics models.
We refer to [23] for details on the Ising case.

When conditioning on the neighborhood of the origin to be in a plus phase inside
a minus phase, one ends up with a “bubble” (see Figure 2 on the right) converging when
taking larger and larger volume to the so-called Wulff shape. In 2D, this bubble was analyzed
in detail, see the book [32] and the article [65]. In 3D, the story is even more complex. The
boundary between the plus and minus phases is a kind of two-dimensional surface. The study
of this object is quite intricate, and the fluctuations of the surface are still widely open. We
refer to [16,18,24] and references therein.

6. The 1970s and 1980s: the Ising model and field theory

6.1. Constructive quantum field theory
Quantum field theories with local interaction are central in most subfields of theo-

retical physics, from high energy to condensed matter physics. The mathematical challenge
of the proper formulation of this concept led to the program of constructive quantum field
theory (CQFT). A path towards that goal was charted through the proposal to define quan-
tum fields satisfying Wightman axioms [100] using the Osterwalder–Schrader theorem [87],
in which case the construction boils down to producing relevant random distributions defined
over the corresponding Euclidean space that meet a number of conditions such as suitable
analyticity, permutation symmetry, Euclidean covariance, and reflection-positivity.

Finding these Euclidean fields boils down to constructing probability averages over
random distributions ˆ.x/ of the form˝

F.ˆ/
˛
�

1

norm

Z
F.ˆ/ exp

�
�H.ˆ/

� Y
x2Rd

dˆ.x/; (6.1)

where

• F.ˆ/ is a smeared average of the form Tf .ˆ/ WD
R

Rd f .x/ˆ.x/ dx associated
with continuous functions of compact support f .
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• H.ˆ/ is a Hamiltonian H.ˆ/ W� .ˆ; Aˆ/ C
R

Rd P.ˆ.x// dx with .ˆ; Aˆ/

a positive definite and reflection-positive (see Section 6.2) quadratic form, and
P.ˆ.x// an even polynomial whose terms of order ˆ.x/2k are interpreted heuris-
tically as representing k-particle interactions.

By linearity, the expectation values of products of such variables can be rewritten as*
nY

j D1

Tfj
.ˆ/

+
WD

Z
.Rd /n

Sn.x1; : : : ; xn/

nY
j D1

f .xj / dx1 � � � dxn; (6.2)

where the Sn.x1; : : : ; xn/ are the Schwinger functions of the corresponding Euclidean field
theory which can be interpreted heuristically as pointwise correlations h

Qn
j D1 ˆ.xj /i: Inter-

preting (6.1) raises a number of problems of varying difficulty.
The simplest example of Euclidean fields are the reflection-positive (see Section 6.2

again) Gaussian fields, for which H.ˆ/ contains only quadratic terms. Gaussian fields are
alternatively characterized by 2n-point Schwinger functions satisfying Wick’s law:

S2n.x1; : : : ; x2n/ D

X
� pairings

nY
j D1

S2.x�.2j �1/; x�.2j //: (6.3)

The field theoretical interpretation of (6.3) is the absence of interaction. Due to that and to
their algebraically simple structure, such fields are referred to as trivial.

The next level of difficulty is to add the next lowest order even term, i.e., �ˆ4 for
� > 0. Note that, if it exists at all, the corresponding field is a random distribution so making
sense of this fourth power is not straightforward. The heuristic RG approach to the problem by
Wilson [101] indicates that in low enough dimensions, the problem could be tackled through
a renormalization procedure. The CQFT program has successfully yielded nontrivial scalar
field theories over R2 [54] and R3 [44,53], and is still a lively field of mathematical physics.

A natural example aimed at constructing a ˆ4
d

functional integral is to regularize it
with a pair of cutoffs: at a short distance (ultraviolet) scale and a large distance (infrared)
scale. A lattice version of that is the restriction of ˆ.�/ to the vertices of a finite graph
ƒ

.a/
R WD .aZ/d \ Œ�R; R�d , where a and R play respectively the roles of the ultraviolet

and infrared cutoffs. For the corresponding finite collection of variables .�x W x 2 ƒ
.a/
R /,

the Hamiltonian is then interpreted in terms of a Riemann-sum style discrete analog of the
integral expressions, leading to the following statistical-mechanics Gibbs equilibrium state
average ˝

F.�/
˛
D

1

norm

Z
Rƒ

.a/
R

F.�/ exp
�
�H.�/

� Y
x2ƒ

.a/
R

d�.�x/; (6.4)

with a Hamiltonian H.�/ and an a-priori measure � of the form

H.�/ D �

X
¹x;yº�E.ƒ

.a/
R /

�x�y ; d�.�x/ D e���4
x�b�2

x d�x ; (6.5)

where d�x is the Lebesgue measure on R. This is called the �4 lattice model.

185 100 years of the Ising model



The cutoffs are removed through the limit R % 1 followed by a & 0. Parameters
may be added to adjust in the process the spin-spin correlations h�x1 : : : �xni in such a way
that they stabilize to the Schwinger functions Sn.x1; : : : ; xn/ in the continuum limit scale.

The Ising model can be thought of as a limiting case of a �4 lattice model as it
is obtained by letting � D b=2 tend to infinity (the limit of the measures � then forces the
spins �x to take the values ˙1). Actually, the discrete approximations of the �4 functional
integral and the Gibbs states of an Ising model are always connected. This relation is based
on a construction which was initiated by Griffiths to obtain the Lee–Yang theorem for the �4

lattice models, and was advanced further by Griffiths and Simon [59]. A probability measure
on �.d�/ on R is said to belong to the Griffiths–Simon class if the expectation values with
respect to � can be represented as an Ising model on the complete graph with well-chosen
coupling constants, or as a limit of such models (satisfying some mild tail conditions). The
�4 lattice model belongs to the Griffiths–Simon class. For this reason, most techniques that
are at our disposal for the Ising model apply to the Griffiths–Simon class. This makes the
Ising model an object of major interest when working on CQFT. The developments of the
model have therefore been deeply connected to CQFT in the 1980s, and we now discuss
some examples of such interactions.

6.2. Reflection positivity
The notion of reflection positivity was introduced in Quantum Field Theory in the

work of Osterwalder-0Schrader [87], and we refer to [15] for a review. While reflection posi-
tivity did not emerge initially as a property of the Ising model, the model remains one of the
most natural instances of a reflection-positive model, and some of the most striking applica-
tions of reflection positivity are indeed dealing with the Ising model.

Consider the Ising model on a d -dimensional torus TL WD .Z=LZ/d with L even
and split equally the torus into two pieces T C

L and T �
L using hyperplanes (the two pieces

are isomorphic to Œ0; L=2� � .Z=LZ/d�1) and consider a reflection # with respect to one
of these hyperplanes mapping T C

L to T �
L . We say that h�i is reflection positive if for all

f; g W T C

L ! R,
hf #gi D hg#f i and hf #f i � 0; (6.6)

or, in other words, that f;g 7! hf #gi is a positive semidefinite symmetric bilinear form. The
archetypical examples of reflection positive measures are the Ising n.n.f. measures h�iTL;ˇ;0,
but many other examples exist, including some Ising models with long-range interactions.

Reflection positivity has two important implications, namely Gaussian domination
leading to the infrared bound, and the chessboard estimate. Due to lack of space, and since
most of the applications of reflection positivity to the specific example of the Ising model
rely on the infrared bound, let us focus on it and Gaussian domination.

Gaussian domination is a statement linking the partition function of the Ising model
with magnetic field to the partition function of the model without it. Formally, it states that
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for every function h W V ! R, ZL.h/ � ZL.0/, where

ZL.h/ WD

X
�2¹�1;1ºV

exp
�
�ˇ

X
¹x;yº2E.TL/

.�x � �y C hx � hy/2

�
: (6.7)

Gaussian domination can be proved via reflection positivity through the two hyperplanes
mentioned above to show that, for each h, a symmetric version of h with respect to a hyper-
plane has a larger value of ZL.�/. Gaussian domination immediately implies a Fourier version
of the infrared bound by using a second-order expansion of ZL.h/ near 0: for d > 2 and every
.ax/ 2 CTL summing to zero,X

x;y2TL

axayh�x�yiTL;ˇ;0 �
2

ˇ

X
x;y2TL

axayG.x; y/; (6.8)

where G.x; y/ is the Green function of the simple random walk on Zd .
In the specific case of the Ising model, the Messager–Miracle–Solé inequality

enables to turn this Fourier estimate into a pointwise estimate on the two-point function:
there exist C; C 0 > 0 such that for every ˇ > 0 and every x; y 2 Zd ,

h�x�yiˇ;0 � m�.ˇ/2
�

C

ˇ
G.x; y/ �

C 0

kx � ykd�2
2

: (6.9)

This is particularly interesting when ˇ approaches ˇc from below, as it implies that the
spin–spin correlations decay algebraically fast at ˇc , with an exponent at least d � 2.

6.3. The random current revolution
The context of CQFT was also at the origin of one of the most important revolutions

in our understanding of the Ising model that we will describe in Section 6.4. The technique,
called the random current, was introduced by Griffiths and greatly developed by Aizenman
who realized that it provides a graphical representation of the Ising model. It became one of
the most powerful and robust tools available to mathematicians to study the Ising model. We
describe it now (see [35] for a review).

The whole story starts with the observation that the component expŒˇ�x�y � of the
Hamiltonian term attached to each edge can be rewritten using Taylor’s expansion to get

Z.G; ˇ; 0/ D

X
�2¹�1;1ºV

Y
¹x;yº2E

1X
n¹x;yºD0

.ˇ�x�y/n¹x;yº

n¹x;yºŠ
D

X
n2ZE

C

wˇ .n/
X

�2¹�1;1ºV

Y
x2V

��x.n/
x ;

(6.10)

where
wˇ .n/ WD

Y
¹x;yº2E

ˇn¹x;yº

n¹x;yºŠ
and �x.n/ WD

X
y2V W¹x;yº2E

n¹x;yº: (6.11)

Now, the involutions on spin configurations switching the spins at a vertex immediately imply
that the sum on � on the right-hand side is either equal to 2jV j if �x.n/ is even for all x 2 V ,
or 0 otherwise (this seems like a very elementary observation, but it bears at the heart of it
the C=� symmetry of the space of possible spins).
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Call a function from E to ZC a current. A source of the current will be a vertex x

with �x.n/ odd. The set of sources will be denoted by @n. The previous discussion and the
notation lead to the identity

Z.G; ˇ; 0/ D 2jV j
X

@nD;

wˇ .n/; (6.12)

where from now on we omit to specify that we consider currents when using the notation n.
A current n with @n D A can be interpreted as the occupation time of a collection of

paths pairing vertices of A and loops or, equivalently, the number of times the collection of
paths and loops goes through an edge. The decomposition into loops and paths is not unique;
nonetheless, it remains interesting to interpret currents in terms of them.

Proceeding in a similar fashion with the numerator of the spin–spin correlations, we
get that

h�AiG;ˇ;0 D

P
@nDA wˇ .n/P
@nD; wˇ .n/

: (6.13)

In words, one may write spin–spin correlations in terms of weighted sums of currents with
specific source constraints @n D A and @n D ;. Note that the source constraint is not the
same for the numerator and denominator.

Frame 4: The high-temperature expansion and ˇc > 0

The high-temperature expansion of the Ising model, due to van der Waerden
[96], can be neatly defined here as the set of edges with an odd current (it can also be
obtained by a direct expansion using that expŒˇ�x�y � D cosh.ˇ/ C sinh.ˇ/�x�y). One
ends up with another expression of the partition function in terms of even subgraphs

Z.G; ˇ; 0/ D cosh.ˇ/jE j
X

F 2Even.G/

tanh.ˇ/jF j; (6.14)

which resembles the low-temperature expansion, except that it is on G instead of G� and
that it is valid for arbitrary graphs and not only planar ones. In particular, one may easily
deduce the Kramers–Wannier duality between the low and high temperature expansions
at temperatures ˇ and ˇ� satisfying tanh.ˇ/ D e�2ˇ� in the case of the square lattice.

One application of currents (or alternatively high-temperature expansion) is
obtained by considering a mapping from currents with @n D ¹x; yº to currents with
@n D ; setting the current on a path from x to y of odd current (such a path necessarily
exists) to 0. This many-to-one mapping (one has to keep track of the path and the value
of the current on it to reconstruct the preimage) increases drastically the weight of the
current as soon as ˇ � 1, which shows that the spin-spin correlations h�x�yiG;ˇ;0 are
decaying exponentially fast in this regime. This implies in particular that ˇc > 0.

A key observation of Aizenman is that the so-called switching lemma, see Frame 5,
pertaining to combinatorial properties of the random current model, could be used to rein-
terpret spin–spin correlations as well as many other properties in terms of probabilities
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involving multiple independent currents. This lemma completely changed the point of view
on currents, as it transforms them from a combinatorial type object into a probabilistic one.
In particular, intuitions coming from probabilistic models such as random walks and per-
colation was later used to prove new theorems on the Ising model; see Sections 6.4, 6.6,
and 7.1.

Frame 5: The switching lemma for random currents
Write n 2 FA if there exists k � n with @k D A. Note that if A D ¹x; yº, this is

equivalent to the existence of a path from x to y which is made of edges with a positive
current. Recall that A�B denotes the symmetric difference of the sets A and B . With
this notation, the switching lemma [58] states that for every F W ZE

C ! R and every two
sets of vertices A; B � V ,X
@n1DA
@n2DB

w.n1/w.n2/F.n1 C n2/ D

X
@n1DA�B

@n2D;

w.n1/w.n2/F.n1 C n2/I.n1 C n2 2 FB/:

(6.15)

The name of the lemma is fairly self-explanatory, as it consists, when considering sums
of two currents, of a recipe to switch the sources from the second to the first. The proof
is a very entertaining combinatorial problem that is left to the reader.

A direct application (to illustrate the strength of the lemma) is the case A D B ,
which gives immediately that

h�Ai
2
G;ˇ;0 D P ;

G ˝ P ;
G Œn1 C n2 2 FA�; (6.16)

where P B
G is the measure on currents n on G with @n D B attributing to each such

n a probability that is proportional to w.n/, and ˝ denotes the product for probability
measures. In words, one may interpret the square of spin–spin correlations h�AiG;ˇ;0 as
the probability, for the sum of two independent random currents, of pairing the elements
of A by paths of positive current. One may also try as an exercise to recover Griffiths’
inequalities from the switching lemma.

6.4. Triviality in dimension d > 4

In 1982, Michael Aizenman and Juerg Fröhlich [2,49] independently proved that the
scaling limit of the Ising model is trivial in dimension five and more in the following sense.
Consider discrete smeared averages defined by

Tf;L.�/ WD
1

p
†L

X
x2Zd

f .x=L/�x ; (6.17)

where f ranges over compactly supported continuous functions, and †L WD h.
P

x2ƒL
�x/2i

denotes the variance of the sum of spins over the box of size L. The theorem states that when
d > 4, these smeared averages Tf;L.�/ are approximately Gaussian of variance hTf;L.�/2iˇ
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in the sense that there exists an explicit constant Cf > 0 such that for every ˇ � ˇc , every
L � �.ˇ/, and every z > 0,ˇ̌̌̌�

exp
�
zTf;L.�/ �

z2

2

˝
Tf;L.�/2

˛
ˇ

��
ˇ

� 1

ˇ̌̌̌
�

Cf z4

Ld�4
: (6.18)

In words, the previous statement claims that the characteristic function of Tf;L.�/ is close
to the one of a Gaussian random variables.

As a direct consequence of this result, one obtains that any well-defined scaling limit
of the Ising model, and in fact more generally of the �4 lattice model, is inevitably Gaussian.
The result marked a brutal stop in the CQFT program outlined in Section 6.1 as the proofs
suggested, while not proving, that the model should also be trivial in four dimensions.

As mentioned above, one of the most striking applications of the random current
representation is related to CQFT. Indeed, Aizenman’s proof of this theorem relies on a
beautiful parallel between random walks and the paths joining sources in currents. We do
not resist discussing this link below. But before doing so, let us mention that the approach
of Fröhlich in [49], based on the Brydges–Fröhlich–Spencer (BFS) walk representation of
spin–spin correlations [21], is deeply connected to the random current as well. The walks in
the BFS representation play the roles of the paths between sources in the random current.
The advantage of this alternative approach is that it works for more general models, at the
cost of losing the switching lemma and its benefits.

Let us focus on the four-point function and define the corresponding Ursell function
given, for x1; : : : ; x4 2 Zd , by

U
ˇ
4 .x1; : : : ; x4/ WD h�x1 � � � �x4iˇ �

X
� pairing

2Y
iD1

h�x�.2i�1/
�x�.2i/

iˇ : (6.19)

A simple exercise involving the switching lemma shows that

U
ˇ
4 .x1; : : : ; x4/ D � 2h�x1�x2ih�x3�x4i

P ¹x1;x2º
˝ P ¹x3;x4ºŒx1; : : : ; x4 all connected in n1 C n2�; (6.20)

where connected in n1 C n2 means being connected by a path of edges with n1 C n2 not
equal to zero. If one remembers that one can think of a current with sources x1 and x2

as a path connecting the two vertices together with a collection of loops, one can reinter-
pret the right-hand side of the previous identity at the light of so-called random walks (a
random walker traces his way through the vertices of a graph by picking its next steps at
random among neighbors of where it currently stands—this Markov process is one of the
most fundamental objects of probability theory). It is a classical result that two random walks
connecting two pairs of points that are at a mutual distance of order L intersect with a prob-
ability bounded away from 0 as L tends to infinity in dimensions d < 4, and tending to zero
in dimension d � 4.

At this stage, it is totally unclear why the paths linking the points x1 and x2 in n1,
and x3 and x4 in n2, would behave as random walks. It is also unclear what would be the
impact of the additional loops. Still, it is tempting to think that if an analogy with random
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walks was valid, then it would single out dimensions d � 4 as being dimensions for which
U

ˇ
4 becomes much smaller than products of two-point correlations or, in other words, for

which Wick’s law would become asymptotically valid, thus hinting at triviality.
When the dimension is strictly larger than 4, the story for random walks becomes

even simpler, as the expected number of intersections is also tending to zero with L. Using
the infrared bound to estimate the spin–spin correlations of the Ising model, one may go
around the difficulty of proving a random walk type behavior for currents to show that the
intersection probability is tending to 0.

Making the argument work for currents in dimension 4 is more subtle because, con-
trarily to larger dimensions, the expected number of intersections does not tend to 0 when
L tends to infinity. Hence, in order to prove that the intersection probability goes to 0, one
inevitably has to go deeper in the understanding of the analogy between currents and random
walks.

6.5. Rigorous renormalization group in 4D Ising
The triviality of the Ising model in dimension d > 4 naturally raises the question

of its triviality in dimension d D 4, which is not only the pertinent physical dimension for
CQFT, but also for the so-called 4 � " expansions providing information on dimension 3.
In the 1980s, Wilson’s renormalization group method was already in every physicists’ tool-
box, yet the challenges to overcome to cast the general theory in a mathematical framework
seemed out of reach. Interestingly, a very relevant case became an important exception.

Consider the lattice version of the �4 model discussed in Section 6.1. The case
b D � D 0 corresponds to a Gaussian field known under the name of discrete Gaussian
Free Field (GFF), which enjoys a number of striking features. One of them is that the model
converges, when rescaling the lattice, to the continuum GFF. In a series of impressive papers
[43, 50, 60], mathematical physicists proved in the 1980s that, when starting from a weakly
coupled �4 lattice model (meaning that � is small), one may apply a multiscale analysis to
prove convergence of the model to the continuum GFF.

Several methods were used at the time, but let us mention that the method of Gawed-
ski and Kupiainen [50] can be thought of as a rigorous version of Kadanoff block-spin renor-
malization procedure. It consists of writing the model in terms of averages of spins over
large blocks of size Lk , and to average them out scale by scale. At leading order, each step
of the procedure boils down to modifying the parameters of the model. Of course, the real-
ity is much more complicated than the first-order analysis suggests, and the renormalization
scheme is quite complex.

An alternative to this block-spin renormalization was later developed by Bauer-
schmidt, Brydges, and Slade [9] in order to obtain refined results, as well as to treat more
general models. In these alternative approaches, the block-spin analysis is replaced by the fol-
lowing strategy: one thinks of quantities in the �4 lattice model as being expressed in terms
of the discrete GFF itself. In order to control the asymptotic behavior of such quantities,
one decomposes the covariance of the discrete GFF into a sum of finite-range covariances
that one integrates out one by one. At each step a change of the parameters of the system
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is required to keep things converging towards a limit. Doing so enables the authors to focus
their attention on how the parameters evolve under this procedure. This evolution can be
thought of as the renormalization map in the renormalization group.

The level of sophistication of these techniques is quite astonishing, and the precision
of the results outstanding. As one may guess, this comes at a price. At the bottom of both
strategies lies the fact that the original �4 lattice model is in the “vicinity of a model,” the
Gaussian Free Field, that enjoys a number of nice properties. As a result, the technique is
(as for today) perturbative in nature, which is somehow its main limitation. We will see
another instance of such a renormalization scheme, this time near another fixed point, when
discussing the 2D Ising model.

6.6. Forty years later: The random current strikes back
While renormalization techniques provided impressive rigorous results in dimen-

sion 4, they remained as we mentioned perturbative, meaning that they required that the
lattice �4 model one starts from has a small �4 term. Yet, if one would like to construct a
nontrivial 4D quantum field theory, one would definitely try to start with a strongly coupled
�4 lattice model (meaning with a �4 terms which is not a priori small), for instance, working
with the Ising model which in some sense can be thought of as the model with the strongest
possible coupling, thus excluding existing renormalization group techniques.

This asks for another approach, and this is probably why one had to wait for 40 years
to finally obtain a proof of the triviality of the 4D Ising and �4 lattice models, which states
[4] that there exists c > 0 such that for the n.n.f. �4 lattice model on Z4 with parameters b;�,
and a compactly supported continuous function f , there exists Cf > 0 such that for every
ˇ � ˇc D ˇc.b; �/, every L � �.ˇ/, and every z > 0,ˇ̌̌̌�

exp
�
zTf;L.'/ �

z2

2

˝
Tf;L.'/2

˛
ˇ

��
ˇ

� 1

ˇ̌̌̌
�

Cf z4

.log L/c
: (6.21)

The strategy of the proof uses a more delicate probabilistic perspective on the
random current than in [2], still keeping in mind the interpretation in terms of random walks
of the paths joining the sources of the current. Indeed, it can be proved that two random walk-
ers in four dimensions going from points to points that are all at a mutual distance of order L

intersect with probability of order .log L/�c for some universal constant c > 0. The reason
is that while the expected number of intersections is of order 1, the number of intersec-
tions, when such intersections exist, is with high probability quite large in L (and is growing
with L). The core of the paper is to apply a similar argument to the paths in the random cur-
rent. Of course, challenges emerge when trying to handle the highly non-Markovian paths
obtained by considering the paths joining the sources in currents. Nevertheless, guided by
the random walk intuition, one can build a multiscale analysis to prove that conditioned on
intersecting, random currents intersect a large number of times, and ultimately deduce from
this the triviality result.
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7. The last 50 years: Ising model and percolation

Percolation theory gathers under its umbrella a variety of random graph systems.
A configuration on G D .V;E/ is an element ! D .!e W e 2 E/ 2 ¹0;1ºE which is interpreted
as a subgraph with vertex-set V and edge-set ¹e 2 E W !e D 1º. Then, different percolation
models can be defined by considering different measures on ¹0;1ºE . Historically, the original
model, called Bernoulli percolation, is defined in such a way that the !e are independent
Bernoulli random variables. It was introduced to understand the behavior of liquid in a porous
medium. Nevertheless, the theory of non-Bernoulli models has been found to be related to
a variety of other models of statistical physics explaining various physical phenomena.

As often, the Ising model has played an essential role in the development of percola-
tion theory, and conversely certain advances in percolation theory have been fundamental to
our understanding of the Ising model. Sometimes, the link between the two models is simply
an analogy between their behaviors, but sometimes the connection is much more direct. For
instance, spin–spin correlations can be rewritten in terms of a percolation model, in which
case we speak of the percolation model as being a graphical representation of the Ising
model. We now propose to discuss some examples of these links between the Ising model
and percolation.

7.1. Percolation interpretation of random currents
We have seen one example of a graphical representation in Frame 5 where the

squares of spin–spin correlations get rephrased as connectivity properties of the sum of
two currents. One may easily define a percolation model out of the pair of currents above
by saying that for an edge ¹x; yº, !¹x;yº D 1 if .n1 C n2/¹x;yº > 0. Then, the square of
the spin–spin correlations between two points becomes the probability, for this percolation
model, that x and y are connected in !.

The best illustration of how intuition from percolation or the Ising model can drive
developments on the other model is provided by an important result on the Ising model in
the regime ˇ < ˇc . This result from 1987, due to Aizenman, Barsky, and Fernandez [3]

(see [39] for an alternative argument), states that correlations of the n.n.f. Ising model decay
exponentially fast as soon as ˇ < ˇc in the sense that for each such ˇ, there exists � > 0 such
that for every x; y 2 Zd ,

h�x�yiˇ;0 � exp
�
��kx � yk

�
: (7.1)

We say that the phase transition is sharp: there is no intermediate phase .ˇexp; ˇc/ in the
Ising model in which spin–spin correlations would decay polynomially. Let us mention that
a similar exponential decay was obtained recently for truncated correlations h�x�yiˇ;0 �

m�.ˇ/2 when ˇ > ˇc , see [36].
This theorem is of fundamental importance for the following reason. Perturbative

results, which are combinatorial in nature, are valid under the assumption that certain quan-
tities decay exponentially fast, and in fact with a rate of decay which is sufficiently large.
While this hypothesis is important to apply the techniques, it happens to be of little rele-
vance from a physical point of view. In fact, one expects that most of the phenomenology
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remains unchanged as long as spin–spin correlations decay exponentially fast. As a conse-
quence, (7.1) can be thought of as a bottleneck in the understanding of the phase ˇ < ˇc : as
soon as it is obtained, a number of important results can be derived from it. As an example,
the results on fluctuations of interfaces and Ornstein–Zernike estimates were proved to hold
in the whole regime ˇ < ˇc . The result also provides meaning to the correlation length �.ˇ/

mentioned in Section 4.1, as it proves that it is finite as soon as ˇ < ˇc .
Let us now comment on the proof. The argument relies on a fruitful idea consisting

in deriving differential inequalities between thermodynamical quantities of the Ising model.
The archetypical example of such differential inequalities are given, for the problem at hand,
by (recall that the magnetization m D m.ˇ; h/ is a function of ˇ and h)

m � tanh.ˇh/
@

@.ˇh/
m C m2

�
ˇ

@

@ˇ
m C m

�
and m

@

@ˇ
m � c: (7.2)

The interesting feature here is that similar differential inequalities appear when studying
Bernoulli percolation. In fact, a number of results were obtained in parallel during the 1980s,
where each result for Ising had its pendant for Bernoulli percolation, and vice versa. As
an example, critical exponents for d > 4 were obtained by Aizenman and Fernandez [7]

using differential inequalities that can be adapted to Bernoulli percolation. These techniques
are useful to transform qualitative results (e.g., a quantity tends to 0) to quantitative ones
(e.g., exponentially fast). We do not resist mentioning one of them: for h D 0 and ˇ < ˇc ,�

1 �
B

�

�
2d�2

1 C B
�

@

@ˇ
� � 2d�2; (7.3)

where �.ˇ/ WD
P

xh�0�xiˇ;0 is the susceptibility, and B.ˇ/ is the Bubble diagram and is
given by

B.ˇ/ WD

X
x2Zd

h�0�xi
2
ˇ;0: (7.4)

Since the Infrared Bound implies that B.ˇ/ remains bounded uniformly in ˇ < ˇc as soon
as d > 4, �.ˇ/ must blow up like 1=jˇ � ˇc j as ˇ approaches ˇc from below.

Another striking instance of how fruitful the connection between percolation models
and the Ising model was for the development of both models is the following continuity result
of the phase transition of the 3D Ising model, due to [5], stating that the n.n.f. Ising model
satisfies m�.ˇc/ D 0 for every d � 3.

The argument relies on percolation methods applied to the double random current
representation of an argument of Burton and Keane proving the uniqueness of the infinite
connected component of percolation. The whole argument can be improved and extended
to study all translation-invariant Gibbs measures, obtaining the classification result already
mentioned in Section 5.2.

7.2. Fortuin–Kasteleyn percolation
Another (and in fact older) example of a graphical representation is provided by a

special case of the Fortuin–Kasteleyn (FK) percolation. In this model, introduced in [47], the
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Figure 3

The Edwards–Sokal coupling, with a picture of the FK Ising configuration on the left (bold edges are those with
!e D 1); in the middle, spins are attached to each cluster (one example in black and others in grey); and on the
right, the spins without the FK Ising configuration.

measure �G;p;q is given, for G D .V; E/ finite and ! 2 ¹0; 1ºE , by

�G;p;q

�
¹!º

�
WD

1

Z.G; p; q/
pj!j.1 � p/jE j�j!jqk.!/; (7.5)

where p 2 Œ0; 1� and q > 0 are the parameters of the model, called respectively the edge-
weight and the cluster-weight, j!j WD

P
e2E !e is interpreted as the number of edges in !,

and k.!/ is the number of connected components of !.
When q D 1, one ends up with the classical Bernoulli percolation model in which

the !e are independent. When q ¤ 1, the state of edges is no longer independent and one
ends up with a dependent percolation model whose study is central in modern probability
theory. From now on, we focus on the case q D 2, which we call the FK Ising model. We
confine our discussion to two features of this percolation model, namely its link to the Ising
model, and the FKG inequality.

Let us start with the former, which provides a recipe to obtain the Ising model con-
figuration out of FK Ising; see Figure 3. Consider a random variable ! 2 ¹0; 1ºE with the
law of FK Ising with parameter p 2 Œ0; 1� and construct � 2 ¹�1; 1ºV by

• choosing for every connected component C of ! a spin �C uniformly between �1

and C1, and independently of the other connected components;

• defining �x D �C for every C and every x 2 C .

Then, � has the law of the Ising model on G with parameter ˇ D
1
2

logŒ1=.1 � p/� and
h D 0. This coupling, due to Fortuin and Kasteleyn and often referred to as the Edwards–
Sokal coupling due to the paper [40], enables to express correlation functions of the Ising
model in terms of FK Ising. For instance, by decomposing on the events that x is connected
to y or not in !, one easily gets that

h�x�yiG;ˇ;0 D �G;1�e�2ˇ ;2Œx connected to y in !�: (7.6)

Similarly, h�AiG;ˇ;0 D �G;1�e�2ˇ ;2ŒFA�, where FA is the event that each connected compo-
nent of ! contains an even number (possibly equal to 0) of vertices in A. Another interesting
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feature of this coupling is that it is at the basis of so-called cluster algorithms due to Swend-
sen and Wang, who used it to speed up the Glauber dynamics and the simulation of the Ising
model, in particular near the critical point.

The interest of FK Ising and more generally FK percolation models with q � 1 is
that they enjoy some nice monotonicity properties (dependent percolation models satisfying
these properties have been an object of intense study in the past ten years). Let us mention
two such properties. The Fortuin–Kasteleyn–Ginibre (FKG) inequality states that for every
increasing functions f; g W ¹0; 1ºE ! R,

�G;p;qŒfg� � �G;p;qŒf ��G;p;qŒg�: (7.7)

This inequality is often used for indicator functions of increasing events (i.e., events for
which the indicator function is an increasing function), in which case the inequality states
that increasing events are positively correlated. Another manifestation of the monotonicity
properties is the monotonicity in p: for every increasing function f W ¹0; 1ºE ! R and
p0 � p,

�G;p0;qŒf � � �G;p;qŒf �: (7.8)

These monotonicity properties are particularly useful. The latter applied to FK
Ising and the indicator function of FA implies that h�AiG;ˇ;0 is increasing in ˇ, and the
former applied to indicator functions of FA and FB implies the second Griffiths inequality
h�A�BiG;ˇ;0 � h�AiG;ˇ;0h�BiG;ˇ;0.

7.3. The broader impact of the Ising model on dependent percolation models
In the first 50 years that followed its introduction, the theory of percolation was much

more advanced for Bernoulli percolation than for other dependent percolation models. The
past ten years have seen tremendous progress in bridging the gap between our understanding
of the Bernoulli case and the others. The interplay between dependent percolation models
and the Ising model has been fundamental for these developments.

We already saw that the Ising model is related to FK Ising and a percolation model
created out of random currents. It does not come as a surprise that one of the first dependent
percolation models to see significant progress in its understanding was the FK Ising. Of
course, the Edwards–Sokal coupling enables to transfer immediately certain known facts
about the Ising model to its percolation representation (for instance, the critical point of the
FK Ising on Z2 is 1 � e�2ˇc D

p
2=.1 C

p
2/ thanks to Onsager’s result). Also, the model

enjoys some specific features that make its direct analysis simpler than for other dependent
percolation models.

For all these reasons, the FK Ising became the entrance gate to a new realm of results
on dependent percolation models. A perfect illustration of this is provided by the study of
crossing probabilities for planar dependent percolation models. Let us provide slightly more
detail.

One important feature of critical dependent percolation models in two dimensions
is that they satisfy the box-crossing property (BCP), and its connected notion the Russo–
Seymour–Welsh theory (RSW). More precisely, if for a rectangle R, the event Cross.R/
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corresponds to the existence of a path in ! between the left- and right-hand sides of R,
the properties (BCP) and (RSW) for a percolation model on Z2 with measure P are the
following:

• (BCP) for all � > 0, there exists c > 0 such that for every n � 1,

c � P
�
Cross

�
Œ0; �n� � Œ0; n�

�
j!jŒ�n;.�C1/n��Œ�n;2n�c

�
� 1 � c almost surely:

(7.9)

• (RSW) for all � > 0, there exists C > 0 such that for every n � 1,

P
�
Cross

�
Œ0; �n� � Œ0; n�

��
� P

�
Cross

�
Œ0; n� � Œ0; �n�

��C
: (7.10)

These two properties have been the driving force of the progress in our understanding of
the 2D dependent percolation models. The FK-Ising model played an essential role in these
developments, as it was the first dependent percolation model for which (BCP) could be
proved [37]. This development triggered a whole new direction of research that led to sub-
stantial progress in our understanding of (BCP) and (RSW) for various percolation models.

8. Over the last ten years: Conformal invariance of the

Ising model

8.1. What is conformal invariance?
As mentioned before, Kadanoff used his block-spin renormalization to predict that

the large scale properties of the critical Ising model were invariant under scaling. The same
argument also leads to postulate translation and rotation invariance. In 1970, Polyakov [90]

suggested a much stronger invariance of the model. Since we saw that it is natural to associate
a QFT with the large scale properties of the critical Ising model, and since this QFT is a local
field, these properties should be invariant under any map which is locally a composition of
translation, rotation and homothety. As a corollary one predicts full conformal invariance,
i.e., invariance under all one-to-one holomorphic maps. This prediction was turned into a
classification of possible conformal field theories (CFT) in 2D in seminal papers by Belavin,
Polyakov, and Zamolodchikov [12] that generated an explosion of activity, allowing nonrig-
orous explanations of many critical phenomena.

From a mathematical perspective, the notion of conformal invariance of a model
is not straightforward to define. A number of interpretations of the limit of large scale
properties—called the scaling limit—can be taken, and we mention a few now.

For clarity of the exposition, we focus on the critical Ising model on Zd and its
rescaled versions aZd for a > 0. We drop the subscript referring to ˇ and h as they are fixed
to be equal to ˇc and 0; respectively. Consider a simply connected domain � ¨ Rd .

(Spins) The most natural approach is to consider the spin–spin correlations defined for every
a > 0 and x1; : : : ; xn 2 � by

S
.a/
� .x1; : : : ; xn/ WD h�Œx1�a � � � �Œxn�a iaZd \�; (8.1)
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where Œx�a is the vertex of aZd \ � closest to x. These Schwinger functions already
appeared as the key players in CQFT. One is then interested in the limit as a tends to 0
of these properly renormalized quantities. If the limit exists, we call it S�.x1; : : : ; xn/.

(Energies) Another object of interest is the energy–energy correlations. For a > 0 and
x1; : : : ; xn 2 �, one considers at the quantities

T
.a/
� .x1; : : : ; xn/ WD h".x1/a

� � � ".xn/a
iaZd \�; (8.2)

where "¹u;vº WD �u�v � h�u�viaZd and .x/a is the edge closest to x. The quantity "x is
called the energy. One is again interested in the limit T�.x1; : : : ; xn/ as a tends to 0 of these
properly rescaled quantities.

(Geometry of interfaces) In two dimensions, another direction was proposed in the 1990s.
It consists in considering the low-temperature representation, i.e., the interfaces between
plus and minus spins. In a domain �, it creates a family of nonintersecting loops together
with arcs from boundary to boundary. Let C� be the set of such collections of loops and arcs.
The set C� can be turned into a metric space by attaching a distance d� which, heuristically,
states that two configurations are close to each other when the large loops and arcs are close to
each other. Let us call C

.a/
� the random variable obtained by considering the low-temperature

expansion of a critical Ising model configuration in aZd \ �. Here, we are interested in the
limit of C

.a/
� as a random object.

Now, what do we mean by conformal invariance? Roughly speaking, we mean
that certain quantities of the model are conformally covariant/invariant. With the defi-
nitions above, it would for instance mean that there exists a way of renormalizing the
S

.a/
� .x1; : : : ; xn/ and T

.a/
� .x1; : : : ; xn/ in such a way that they converge to quantities

S�.x1; : : : ; xn/ and T�.x1; : : : ; xn/ that satisfy that there exist �� ; �" such that for every
conformal (i.e., holomorphic and one-to-one) map f W � ! f .�/, we have

Sf .�/

�
f .x1/; : : : ; f .xn/

�
D

ˇ̌
f 0.x1/

ˇ̌���
� � �

ˇ̌
f 0.xn/

ˇ̌���
S�.x1; : : : ; xn/; (8.3)

Tf .�/

�
f .x1/; : : : ; f .xn/

�
D

ˇ̌
f 0.x1/

ˇ̌��"
� � �

ˇ̌
f 0.xn/

ˇ̌��"
T�.x1; : : : ; xn/: (8.4)

For the geometry of interfaces, the situation is even simpler as one means that the family of
loops and arcs C

.a/
� converges to a limit C� as a tends to 0 and that this limit satisfies that

Cf .�/ and f .C�/ have the same law for every conformal map f W � ! f .�/.

8.2. Conformal invariance of the 2D Ising model
Around 15 years ago, Smirnov [95] and Chelkak and Smirnov [28] obtained a major

breakthrough towards proving conformal invariance of 2D Ising model. This fundamental
proof, that we discuss below, opened the way to a very deep understanding of the scaling
limit of the model.

A few years later, Chelkak–Izyurov–Hongler [27] proved conformal covariance of
the spin–spin correlations (with �� D 1=8). It was later proved in [22] that the quantities
S�.x1; : : : ; xn/ are the Schwinger functions of a random distribution, that can be understood
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as the spin-field that physicists sometimes refer to. In the same spirit, conformal covariance
of the energy–energy correlations was proved in [63] (with �" D 1). In this case, one may
prove that the correlations are not the Schwinger functions of a random distribution. Turning
to interfaces, the following result was the culmination of the theory: the arcs in C� are given
by the so-called free arc ensemble of parameter 3 and the loops by conformal loop ensembles
of parameter 3 in the simply connected domains obtained as the complements of the arcs
(see [13,14]). In particular, the scaling limit is conformally invariant. This body of work uses
the ideas from [28, 95] together with the theory of the Schramm–Loewner evolution and its
consequences.

As mentioned above, an important breakthrough came from the works [28,95] where
conformal covariance of so-called fermionic observables f

.a/
� is proved. Those observables

are linear combinations of order–disorder operators (see Frame 6) considered by Kadanoff
and Ceva in [73], see also [26] for several connections to other classical objects.

Frame 6: Fermionic observable
Consider a simply connected domain � � C and for a > 0, let be the largest

connected component of aZ2 \ �. Consider n vertices x1; : : : ; xn of , and n faces
f1; : : : ; fn of such that fi is bordered by xi for every 1 � i � n. Choose n disjoint
cuts `1; : : : ; `n, i.e., families of dual edges .e�

i .j // forming self-avoiding paths in the
dual from the unbounded face to the center of fi . Define the disorder operator �` for
a cut ` as the observable that effectively switches the coupling constants of the edges
ei .j / associated with the e�

i .j / in the cut (it can be written as a product of terms of the
form expŒ�2ˇ�x�y � over edges appearing in the family of edges ¹ei .j / W i; j º). Then,
the order–disorder correlations are given by the formula

F
.a/
� .x1; f1; : : : ; xn; fn/ WD h�x1�`1

� � � �xn�`n
i: (8.5)

Let us mention that these quantities can be expressed in terms of correlations of Grass-
mann variables in the Schultz–Mattis–Lieb representation [93].

Smirnov introduced a fermionic observable f
.a/

� defined at centers of edges
¹x; yº of that can be written as a linear combination (with complex coefficients) of the
F

.a/
� with x1 equal to x or y, and f1 to one of the two faces bordered by ¹x; yº. The

details of the definition are unimportant here and the take-home message is that Chelkak
and Smirnov proved that the limit (as a tends to 0) of these fermionic observables is
conformally covariant.

The conformal covariance of the fermionic observable should be understood as the
first brick among the conformal covariance results of spin–spin, energy–energy correlations,
and even of the conformal invariance of interfaces. Let us mention that these results require
substantial additional ideas compared to [28,95]. In fact, conformal covariance/invariance of
virtually all quantities one may be interested in the 2D Ising model can be recovered today.
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The proof of the theorem relies on the observation that f
.a/

� is the solution of a dis-
crete version of a Riemann–Hilbert boundary value problem. More precisely, the function
can be proved, via combinatorial arguments involving the van der Waerden high-temperature
expansion, to be preholomorphic (see Frame 7), and to satisfy certain boundary conditions.
These special features are connected to the integrability of the model. From general prin-
ciples on preholomorphic functions, the limit as a tends to 0 of these objects must be the
holomorphic solution of a continuum Riemann–Hilbert boundary value problem, which can
be computed and proved to be conformally covariant. Such reasoning has been used in several
existing proofs of conformal invariance, for instance for dimers or Bernoulli site percolation
on the triangular lattice. It has created an explosion of results in the field as many quantities
can be proved to converge using a similar strategy.

Frame 7: Preholomorphic observables
The notion of preholomorphic function on a planar graph G appeared implicitly

in the work of Kirchhoff on electrical networks [76]. It was explicitly linked to holomor-
phicity in the work of Isaacs [66, 67], in which the author proposed to discretize the
Cauchy–Riemann equation to get to the definition (on the square lattice)

F.NW/ � F.SE/ D i
�
F.NE/ � F.SW/

�
; (8.6)

where NW, SW, SE, and NE are the four corners found in counterclockwise order
around each face, when starting from the top left vertex.

The properties of preholomorphic functions have been the object of a renewed
interest with the emergence of the question of conformal invariance in connections to
boundary value problems. Indeed, general theorems stating that preholomorphic func-
tions satisfying certain boundary value conditions converge when taking finer and finer
mesh size to holomorphic solutions of the continuum version of the boundary value
problem took a central place in the theory.

In the case of the Ising model, the complexity of the boundary value problem
(involving a condition on the argument of the fermionic observable) pushed Smirnov
to introduce a stronger notion of preholomorphicity, called s-holomorphicity, which is
also satisfied by fermionic observables. The advantage of this notion is that it enables
one to define the imaginary part of the primitive of the square of the observable, which,
roughly speaking, becomes the discrete solution of a Dirichlet boundary value problem,
a much more tractable problem for which convergence (when a tends to 0) can be proved
very elegantly.

8.3. Towards universality of the 2D Ising model
As mentioned in Section 4.2.2, the large-scale properties of the critical Ising model

should not depend on the precise properties of the underlying graph. With the tremendous
successes that have been achieved over the years in the case of the Ising model on Z2 and
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more generally on planar graphs, it is natural to test the validity of the universality hypothesis
in this context. Several advances have been made in this direction in the last 15 years.

The first impressive progress can be found in the work of Chelkak and Smirnov
themselves [28]. They observed that the preholomorphicity argument leading to conformal
invariance can be articulated naturally in the setting of so-called isoradial graphs. An iso-
radial graph is an embedding of a graph G in the plane such that every face of the graph is
inscribed in a circle of radius 1. In this context, one may define special coupling constants
Jx;y depending on the graph in such a way that ˇc D 1 and that the fermionic observable is
naturally preholomorphic on this graph. Then, the strategy of Chelkak and Smirnov on the
square lattice applies to isoradial graphs with the same conclusions. Note that this result can
be understood as a universality result on the graph (isoradial graphs are a fairly large family
of planar graphs, even though not fully general), but that the choice of Jx;y is determined by
the embedded graph itself. Moreover, a striking feature of this theorem is that no transitivity
or quasitransitivity is required for this to work.

In recent developments, Chelkak generalized the conformal invariance result to a
wider class of Ising models, namely those defined on planar locally-finite doubly periodic
weighted graphs .G; J /, i.e., weighted graphs which are invariant under the action of some
lattice ƒ � Z ˚ Z (in such case G=ƒ is a finite graph embedded in the torus). For such
models, Chelkak proved in [25] that there exists an embedding in the plane, called an s-
embedding, with the property that the scaling limit of the critical model defined on this
embedding is conformally invariant.

This result is a strong indication of universality for planar graphs. Now what happens
beyond planar graphs? The universality conjecture asserts that the scaling limit depends
on the large scale geometry of the graph (for instance, a planar Euclidean geometry). In
particular, one may consider the graph obtained with the vertex-set Z2 and edge-set given
by pairs of vertices at a distance at most R of each other. This model, called the finite-
range model on Z2, should have a behavior that is similar to the nearest-neighbor case as
it is “almost planar.” The additional difficulty is that nonplanarity immediately breaks the
integrability of the system. The universality of such Ising models has been investigated in
two different directions.

First, one may consider finite-range models that are perturbations of the nearest-
neighbor integrable case, meaning that non-nearest neighbor interactions are very weak,
i.e., that Jx;y is small when 1 < kx � yk2 � R. Using the Schultz–Mattis–Lieb Grassmann
representation [93] of the nearest neighbor case, one may express the partition function and
more generally the energy–energy and spin–spin correlations in terms of Grassmann vari-
ables, and therefore at the end in terms of the nearest-neighbor model. Using an elaborate
multiscale analysis and studying the renormalization of parameters induced by this multi-
scale analysis, Giuliani–Greenblatt–Mastropietro derived in [52] the large-scale behavior of
energy–energy correlations in the full plane. While the previously mentioned renormaliza-
tion schemes in dimension 4 were enabled by the fact that the model is a small perturbation of
the discrete GFF (which is a Gaussian process), the two-dimensional case relies on a similar
connection, this time to the n.n.f. Ising model on Z2 (which has a Grassmannian structure).
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As a consequence, the strategy suffers from the same limitations as the 4D case in the sense
that it is restricted to small perturbations of the n.n.f. Ising model on Z2.

A totally different approach explaining the emergence of planarity in finite range
Ising models was proposed in [6] based on the random current representation. The under-
lying idea relies on the fact that thanks to the switching lemma, intersection properties
of random currents with sources are related to the structure of n-point correlations in the
model. Yet, the intersection properties of long paths on the graph induced by Z2 and the
edges between vertices at a distance R of each other resemble the ones that can be obtained
for planar graphs. As an example of a possible application, one can obtain that spin–spin cor-
relations on the boundary of a domain � have a Pfaffian structure, a result which is specific
to the universality class of the 2D Ising model. More precisely, for any collection of points
x1 D .k1; 0/; : : : ; x2n D .k2n; 0/ satisfying k1 < k2 < � � � < k2n on the boundary of the
upper half-plane H WD Z � ZC,

h�x1 � � � �x2niH;ˇc
D Pfaffn

��
h�xi

�xj
iH;ˇc

�
1�i<j �2n

��
1 C o.1/

�
; (8.7)

where o.1/ is a function of the points x1; : : : ; x2n which tends to zero for configuration
sequences with min¹jxi � xj j W 1 � i < j � 2nº tending to infinity.

This is, to the author’s knowledge, the first property witnessing the 2D Ising univer-
sality class that can be obtained in a level of generality that is not restricted to planar graphs
and their perturbations. Also, the proof relies on the key properties of the Ising model that
one would like to use: the ˙ spin symmetry (entering the story through the use of the random
current representation) and the large scale planarity of the underlying graph (which for finite
range models on Z2 is the reason behind the “almost” intersection properties of long paths).
The trade-off is that full conformal invariance of this family of models is still out of reach.

8.4. Conformal bootstrap in 3D Ising model
At this point, we already mentioned that the 1D Ising model was trivially solved in

the original paper of Ising [68], and that it took 20 more years to achieve a solution of the 2D
Ising model [86]. We also saw that the model in dimensions 4 and higher is much simpler as its
large-scale properties should be Gaussian. This singles out 3D as the remaining challenging
dimension. To the best of our knowledge [97], it is not known whether the model is integrable
or not. This is particularly problematic as the third dimension is probably the most relevant
one physically (for instance, the model should be in the universality class of liquid–vapor
systems, and totally anisotropic magnets).

In recent years, a striking progress has been made on the physics side using the
so-called conformal bootstrap. A conformal field theory (CFT) is characterized by the cor-
relation functions h��i of an infinite number of local operators A.x/, which in the case of
Ising should be understood as the objects obtained by taking the limit of random variables
defined in terms of spins next to a given position of space. For example, the scaling limit
of spin and energy observables �x and "¹x;yº D �x�y � h�x�yi give such local operators in
the case of Ising, but one may think of more complicated ones, such as the scaling limit of
(products of) the gradient �xCy � �x of the spins.

202 H. Duminil-Copin



Conformal invariance already forces huge constraints on the correlations of opera-
tors in the theory. Oversimplifying slightly, for scalar local operators there must exist expo-
nents �A and coefficients fABC such that˝

A.x/A.y/
˛
D

1

kx � yk
�A

2

; (8.8)

˝
A.x/B.y/C.z/

˛
D

fABC

kx � yk
�AC�B��C

2 ky � zk
�BC�C ��A

2 kz � xk
�C C�A��B

2

(8.9)

(in (8.8), we adopted without loss of generality the normalization of A that makes the con-
stant in the numerator equal to 1). The exponents and coefficients depend a priori on the CFT,
but a striking feature is that there exists a way, called the conformal block decomposition, to
express multipoint correlations of local operators in terms of three-point functions by gluing
points together using the so-called operator product expansion. This theoretically shows that
all the information in a CFT can be encoded in terms of the �A and the fABC . Of course,
determining these coefficients is very difficult.

While in 2D this was done in the 1980s, the analogous question remains widely
open in 3D. Nevertheless, one can proceed in a slightly different way by asking which
choices of these quantities can lead to a consistent CFT. This approach, called the confor-
mal bootstrap, was shown to be amazingly powerful in 3D. The underlying idea is that one
is facing an infinite family of consistency relations coming from different ways of applying
the conformal block decomposition (which is not unique). For instance, one may start with
hA.x1/A.x2/A.x3/A.x4/i and proceed by gluing first x1 and x2 or, on the contrary, x3 and
x4. This leads to two decompositions of the same object as a linear combination (with pos-
itive coefficients in the Ising case) of known objects called the conformal blocks. Equalling
these two decompositions, one ends up with constraints on the possible exponents.

There is a priori no reason to be able to determine the critical exponents as the
unique values satisfying a (finite) number of constraints thus obtained. Indeed, the set of
possible values may not shrink when considering more and more conditions, but it happens
that in the case of the Ising model, the region of the plane for possible critical exponents
.�� ; �"/ for the spin and energy local operators can be reduced drastically, to a point where
estimates—namely .�� ;�"/ D .0:5181489.10/;1:412625.10//—using this bootstrap tech-
nique become way better than Monte Carlo simulations. We refer to [41, 77, 92] for some of
the original papers and [94] for a review of the most recent progress in this very exciting area
of modern theoretical physics.

Let us conclude that even if one may use conformal bootstrap to exactly identify the
critical exponents, this would leave the question of proving that the critical 3D Ising model
indeed converges to a CFT widely open. In some sense, getting sufficient information on
the possible scaling limits and proving that these scaling limits indeed exist are two almost
entirely disjoint questions even though, of course, one may hope that information on the
former question would help answer the latter.
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9. A tail to this story

The Ising model has always played the role of a locomotive in the developments of
statistical physics. Its central place and incredible properties turn it into an amazing play-
ground for both mathematicians and physicists. As a consequence, during most of its history
novel techniques were developed to solve problems on it, which later led to whole indepen-
dent fields of mathematical physics (integrable systems, graphical representations, rigorous
renormalization methods, etc.).

Let us mention several long-standing problems remaining widely open for this
model. At the top of the list, universality of the 2D behavior (see Section 8.3), critical
properties of the 3D model (see Section 8.4), and the roughening phase transition (see Sec-
tion 5.3) are among the most important unsolved puzzles. Solving them will probably require
the development of new techniques that will again, through cross-fertilization, benefit the
whole field of statistical mechanics.
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