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ABSTRACT

This paper presents a new construction of a discrete Fourier uniqueness set in Euclidean

space.
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1. INTRODUCTION

This paper gives a new construction of a closed discrete Fourier uniqueness set
in R¥. Let us start with a definition of Fourier uniqueness. For a Schwartz function f :
RY C, its Fourier transform is defined as

£ = /R f@e oy y e R,

Definition 1.1. A set X C R? is a Fourier uniqueness set if for any Schwartz function f
the conditions

flx=0 and flx =0
imply f = 0.

In [4] we have shown that the set X = {sign(n) \/m }nez is essentially a uniqueness
set in R. More precisely, we have proven that the conditions f|xy = 0, f |x = 0, together
with one more linear constraint f’(0) = 0, imply the vanishing of f on the whole real line.
M. Stoller [5] has extended this result to R4 in the following way. For a positive real number r,
let S(r) denote the sphere in R¢ with center at the origin and radius . Stoller has proven
that the set X := | J,~, S(+/n) is a Fourier uniqueness set in R for d > 5. The following
theorem is proven in [5].

Theorem 1.2. Let d > 5 be an integer. Suppose that f : R? — C is a Schwartz function
such that f|g(/my = 0and flg(m = 0foralln € Zx. Then, f is identically zero.

Moreover, Stoller and J. P. G. Ramos have recently shown the existence of a closed
discrete Fourier uniqueness set in RY [6, THEOREM 2, REMARK 1.1].

A natural question is: How “big” is this discrete Fourier uniqueness set? More pre-
cisely, for a closed discrete subset X C R we would like to analyze the function My (r),
r € R+, that counts the number of elements of X inside of the ball of radius r about the
origin. For the Fourier uniqueness set X constructed in [6, THEOREM 2, REMARK 1.1], the function
My (r) grows superexponentially in 7.

This paper aims to construct a closed discrete Fourier uniqueness set X such that
the function My (r) grows at most polynomially in r.

1.1. Construction of a discrete Fourier uniqueness set
In this paper we will show that for a family of sufficiently uniformly distributed finite
subsets X, C S(1),n € Z>1, the union

X :=JVnX, (1.1)
n>1

is a Fourier uniqueness set. Let us give one possible quantitative description of the term
“uniformly distributed.”
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Definition 1.3. A finite subset X C S(1) is a spherical design of strength s if, for all poly-
nomials p in d variables and total degree at most s, the following holds:

1
dt= — .
/m)p(z) ¢= 5 2 P

xeX

Here d ¢ denotes the Lebesgue measure on S(1) normalized so that |, s(1) 1d¢ =1.
The main result of this paper is

Theorem 1.4. For each dimension d, there exist positive constants A= A(d) and B = B(d)
with the following property. If (X,)22  is a collection of finite subsets of S (1) such that each
set X, is a spherical design of strength BnA then the set
X = U n X,
n>1

is a Fourier uniqueness set.

It is known [1] that for a dimension d, there exists a constant ¢z such that for all
nonnegative integers s, there exists a spherical design of strength s with at most ¢4 s¢ points.
Therefore, the above theorem implies the existence of a closed discrete Fourier uniqueness
set X with a polynomially bounded function My (r).

2. AUXILIARY RESULTS FROM FOURIER ANALYSIS

Our proof of Theorem 1.4 relies on several facts from Fourier analysis and the theory
of modular forms. First, we will use the following statements about the decomposition of
a Schwartz function in R?. Let H#,, = #,,(R?) be the space of homogenous harmonic
polynomials of total degree m on R?. Let 8B,, be an orthonormal basis of J,, with respect
to the standard L, product on the unit sphere S(1). Set B := [ J B. Each Schwartz
function f : R — C has the unique decomposition

f) =" px) g(lxl).

PEB

m=>0

where g, are radial Schwartz functions. For p € 8, we denote

Jo(x) := p(x) gp(lIx]])- 2.1)

Theorem 2.1. Let f : R? — C be a Schwartz function. For p € B and n € Z>1, we set

$pn = Ppn(f):= sup |fp(-x)|
xeS(y/n)

Forall a, B > 0 we have
sup (deg(p)“ nb ¢p,n) < 0.
PEB,NEZ >
Proof. We have

eg(p)
bpn = sup |f(0)] =n"2"|g,(V)| sup |p(@)].
xeS(Jn) tes()
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The number g, (/1) can be computed as follows:

/ F(Jnt) 9 d
S(@1)
- /S 80 P P g
= 0" g, (V). 22)
Therefore
bom = ‘ / WOl g s [p0)
€S(1)
< sup |f(x)] Sup |p(§)| (23)
xeS(/n)

Note that there exist positive constants C; and C, depending only on dimension d such that
supeesay [P0 = G deg(p)CZd for all p € B. This gives us the estimate

$pn = Crdeg(p)*™  sup | f(x)]. 24)
x€S(/m)
Let B be a fixed positive number. Since f is a Schwartz function, we have
sup ||x||ﬂ |f(x)‘ < 00. 2.5)
xeR4
Estimates (2.4) and (2.5) imply
sup (deg(p)_zc2 nf ¢p,,,) < 00. (2.6)
PEB,NEZ >

Our next goal is to replace —2C, with an arbitrary positive constant «. Let A =
2 + -+ + 37 be the Laplace operator on R4, For a point x € R? \ {0}, we define its
polar coordlnates r = ||x| and { = = . Consider the following differential operator:

Agirf = af == -
gd-1] =T rar r 3,2

An important property of this operator is that it maps Schwartz functions to Schwartz func-
tions. Indeed, we compute in polar coordinates x = r ¢ that

r%f(rzl,...,rm:mif+---+r§dif
—Xl—f+ “+ Xa —f

and, analogously,
282f(é Ca) 2§282f+ +2C282f
r‘ —sfFfret, ..., r =r — et —
or2 ! d laxf d8x§

2 82 2 82
:Xl ﬁf—l——i-xd@f
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Thus, if f is a Schwartz function, so is A ga—1 f. Suppose that g is a radial Schwartz func-
tion and p is a homogenous harmonic polynomial on R? of total degree deg(p). Then a
straightforward computation shows that

As, (g(r) p(x)) = —deg(p) (deg(p) + d —2) g(r) p(x). (2.7)

We define A,, := —m(m + d — 2). Clearly, |A,,| ~ m? as m goes to infinity.
Now let o be a positive integer. Given a Schwartz function f, we define a new

Schwartz function f =ASu f . Suppose that f has d~ec0mp0sitio~n f= ZEE 3 Jp,thenby
equation (2.7) the new function f has decczmposition S =2 pes Jp Where fp = /\‘é‘eg(p) o
Also the numbers ¢p,n = max,eg(/m) |fp(x)] satisfy

bpn = |Adeg(p)|a Ppon-

Finally, we apply estimate (2.6) to the function f and derive

sup  (deg(p)®* 22 nf ¢,,) < 00
pE£,n Ezzl

for arbitrary positive o and . This finishes the proof of the theorem. ]

3. AUXILIARY RESULTS FROM THE THEORY OF MODULAR FORMS
Let k be a half-integer. We denote by Si (I"(2), y) the space of holomorphic cusp
forms & satisfying the transformation rule
h(t +2) = h(1),
h(r) == (—it)* h(7),
h(t +2) = h(7).
The following statement is known as the Voronoi summation formula.

Theorem 3.1. Let h be a cusp form in Sq/2(I'(2), xq) and let fz(r) = (—it)"4/2 h(_Tl)
Then, for a radial Schwartz function f : R? — C, the following summation formula holds:

Y fWmyenn) =Y f () ().
n=1

n=1
For a half-integer k and a positive number €, we define
T(k—1/2 1k
Nk.e) = Lk =1/2) ) .
Qm)k—1¢(k —2)4n

A straightforward consequence of the Stirling formula is that

k
N(k,€) ~ Ime as k — oo.

The main technical tool in our proof of Theorem 1.4 is the following statement about the
space of modular forms Sg (I'(2), xx).
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Theorem 3.2. Fix anumber € € (0,1/2) and for a half-integer k set N(k) := | N(k,€)]. For
NE=1 i the space S (T'(2), xa)

each half-integral weight k > 5/2, there exist elements (hy,),, 1

such that:

(1) the function h,, has the Fourier expansion

hm(‘l,') — em’mr + Z Chm(n) eninr;

neZ
n>N(k)

(2) the function i = (—it)~* hm(_Tl) has the Fourier expansion
hn() = > ¢ (n)e™":
nez

n>N(k)
(3) the Fourier coefficients cy,, (n) and Cji (n) satisfy the following estimates:
ichm (I’l)| <C m—k/2+a nk/2+017
‘cﬁm (n)| <C m—k/2+0t nk/2+0t.

Here C and o are positive constants independent of k, m, and n, and depending

on e.

4. PROOF OF THEOREM 3.2
Let Py, m be the Poincaré series for the group I"(2) and multiplier system yx (see
[3, P. 47, EQUATION (3.2)]). The Fourier coefficients of the Poincaré series can be explicitly
computed by the Petersson formula,
Py (M) =8mm + Y S(m.n.c) ge(m.n). 4.1
c>0
Here g.(m,n) is the following sum:
k—
2n (n s 4m /mn
Felm,n) = = — Je—t| ——— |
i*c \m ¢
the function J, is the Bessel J-function given by the power series

B S (_l)e x v+2¢4
J”(x)_z_z_:oe!r(ﬁ+1+v)(§) '

And S(m, n, c) is the Kloosterman sum defined in [3, P. 51, EQUATION (3.13)]. The following
estimate can be found in [5].

Lemma 4.1. For a half-integer weight k > 5/2 and positive integers m, n, the Fourier coef-
ficients of Poincaré series satisfy:

k-1
2

m _
‘CPk,,(m)_Sm,n’ =\|— & 2n1+5m1+6C,
? n
k;l

|c~ (m)| < m : g2 plte ite o
Prn - :
’ n

Here C is an absolute constant and ¢ is any number in the interval (0, %]
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Lemma 4.2. For a half-integer weight k > 5/2 and positive integers m, n lying in the inter-
val [1, N(k, €)], the Fourier coefficients of Poincaré series satisfy:

(1) [er, (m) = Bmal (2)'F" < wgys

2) lep, (m)] (5 )T < < N

Proof. Part (1) of the lemma is an immediate consequence of Stirling’s formula.
The Mehler—Sonine formula [2] gives the following integral representation of the
Bessel J -function:

2)V 1 -1
Jy(z) = @2 e'? (1 —52)”_% ds, v>—,zeC.
Tv+1/2)J7 2
This integral representation implies an estimate
2)V 2
|Jv 5 (z/2)

Ot 77

Also, we use the trivial estimate for the Klostermann sums (see [3, EQUATION (3.13)])
|S(m.,n,c)| < 2.

‘We combine these two estimates with the Petersson formula (4.1) for the Fourier coefficients
of the Poincaré series and obtain

k=1
|CPk’,, (m) — 8m,n| (%) ’ <2m ZC

4m /mn
S| ——
c>0 ¢
(@m/e)ft ket
<d4r mn) 2
Z rv+1 / 2) (mn)
C(k -2) 2n)*! k1
— z . 4.2
A TS VT (mn) (4.2)
Note that \/mn < N(k, €), therefore inequality (4.2) and our choice of the function N(k, €)
imply part (2) of the lemma. Proof of part (3) is analogous. |

Proof of Theorem 3.2. Fix a half-integral weight k and € € (0,1/2) andset N := | N(k,¢€)].
Consider a matrix A = (a,,,,,,)f,ft’n=1 with entries defined by the coefficients of the Poincaré

series P, 1= P m as
Co () ()3 it m.n e [1,N],
e (1= N) G257 if me[l,N], ne[N+1,2N],
a =
T ) ep, (2N N) if me[N+1,2N], nell,N],

cp, v —N)C= )7 if m,ne[N+1,2N].

From Lemma 4.2, we know that A is diagonally dominated and therefore invertible. More-
over, the inverse matrix B = (b )2, _, := A7! satisfies

> 2¢
(b = Smnl < D_26) = —. 4.3)
k=1
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Consider modular forms

N
he =02 be Pa+ bepen Pn'2 . £=1,....N. (44)

n=1

From the definition of coefficients by ,, we see
cp(m)=28¢,, for £,m=1,...N.
For the functions /g (1) := (—=it)* h¢(—1/7), we find

By =03 Z(bgnP,,—i-bg,HNPn)nkz;l, £=1,...,N. (4.5)

The matrix A has symmetries ampn = am+Np+N a0d ApiNn = Amp+n for m,n =
1,..., N. Same symmetries are inherited by B, namely b, » = bt Na+N, bmtNn =
bm n+n under same assumptions on indices m and n. Hence, we can rewrite (4.5) as

N
~ 1=k S k-l
he =072 (bysnm Po+boynnin P)n 2. £=1.... N
n=1
Thus, we see that
c,;l(m) =8 miN =0 for {,m=1,...,N.

Finally, we prove part (3) of the theorem. Let £ and m be integers such that £ € [1, N]
and m € (N, 00). We apply definition (4.4) and estimate the mth Fourier coefficient of /1 as

lea ()| €5 m'F <3 (Ibeal [en, (m) | n'Z m'5 4 by |es, )| 02 m'2").

Now we apply Lemma 4.1 and estimate (4.3) in order to obtain

N
k=1 1-k 2 2C
T mz < —2 1+6‘C < N2+s 1+s_
|Ch‘(m)| ™= —2e ,;E n! ~ (1 —2¢)e2 m
Analogously, we show that
k=1 1k 2C
~ {7z 5 < N2+s 1+s.
‘chf(m)’ " (1 —2e)e? "
This finishes the proof of Theorem 3.2. |

5. PROOF OF THEOREM 1.4
Lemma 5.1. Let (X,)52, be a sequence of subsets of S(1) such that X, is a spherical
design of strength D(n) and let X := J,—, ~/nXn. Suppose that f is a Schwartz function
suchthat f|x = 0. There exist an absolute positive constant C independent of f and X and
a positive number 3, which depends linearly on dimension d, such that for all p € B and
n e Z>1,

dpn <C deg(p)ﬁ Z bg.n-

qeB
deg(q)>D(n)—deg(p)
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Proof. By (2.3), we have
bpn = ‘[ f(«/ﬁﬁ)p(é)dé‘- sup [p(9)].
S(1) tes(1)

For M € Z>¢, we define the “head” of f as

hy = Z fo

pEB
deg(p)<M

= Z fp.

PEB
deg(p)>M

and the “tail” as

The integral in (2.3) can be written as

/ F0) [ @] dE = / (hae (VD) + 0 (VD) | p©)] d2.
S(1) S(1)

For a finite set Y C S(1) and a function g : S(1) — C, we will use the notation

1
/Yg@)dz = 7 280

yeyYy

Suppose the integer M is chosen so that M + deg(p) < D(n). Then, our assumption
that the set X}, is a spherical design of strength D(n) implies that

/ hat (V/nd)) HP(E)HdE:/ hy (Vn?) || p(0)]| de.
S(1) Xn
Thus, we can write the integral (2.2) as

/ Tt (V) | p(©)] ¢ + / (VD) | p©)] de
Xn S(1)
=[X<f—zM>(ﬁ§> 1) d;+/ (i) [p0)] g

S
fo,, £ | p©)] dt + (/S(l)—Ln)zM<ﬁc> lp©)de. G

The first summand in the above line vanishes by the assumption that f|x, = 0. Therefore,
we can estimate the integral (2.2) in the following way:

] / F(nE) p(©)
S(1)

<2 sup [p(®)| sup |mar(x)]. (5.2)
tes(1) xeS(y/n)

‘We observe that

sup ()] = DY Py
XES(\/'T) qeB
deg(q)>M

This finishes the proof of Lemma 5.1. ]

Theorems 3.1 and 3.2 give us other inequalities for the numbers (¢p.n)pe8,nez., -
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Lemma 5.2. Fix € € (0,1/2) and set N(k) := | N(k, €)|. Suppose that a Schwartz func-
tion f is an eigenfunction of the Fourier transform. There exists an absolute positive constant
C big enough such that for all p € B and all positive integers m < N(deg(p) + d/2), we
have

_d d
Ppm < Cm*" % Z n**e ¢y
nez
n>N(deg(p)+d/2)

Proof. Let f be a Schwartz function in R?. As described in Section 2, this function has a
decomposition
f) =) ), frx) = p(x) gy(lxl)-
PEB

Here for each homogenous harmonic polynomial p € 8, the function g, : R>o — C is such
that the function x +> g, (|x|) on R is a radial Schwartz function. A known result in analysis
implies that x — g, (|x|) is a Schwartz function on any Euclidean space R*. We denote by
F the s-dimensional Fourier transform and have

Fa(f)x) = Fa(p(x) gp(1x])) = (=) P p(») Fus2ae() (€0 (17])-

Let {hm, }N(d/ ZHdee(P)) Sa/24deg(p)(I'(2), x) be the modular forms constructed in

Theorem 3.2. By Theorem 3.1, for each integer m on the interval [1,..., N(d /2 + deg(p))],
we have the following linear relation between values of g,:

> (V) cn, () =Y Fataaen(n) (€) (V1) ¢ (n).
n=1

n=1

Therefore for each point ¢ on the sphere S(1), we have

ng(f ) P e (n)

n=1
=)™ 3" g2 e (@) (VD) p(S D)2 ¢ ().
n=1

This is equivalent to

S (W n " e, ) = () =P 3 F(fnyn 1 ¢ (),

n=1 n=1
Conditions (1) and (2) of Theorem 3.2 imply that for an integer m in the interval [1, N(d /2 +
deg(p))] and a point ¢ on the sphere S(1),

deg(p) deg(p)

fr(Nmym ™2 —Z So(V1 Q) e, () + (=) P fo(Vn &) ¢ (m))

Now condition (3) of Theorem 3.2 and the assumption that f is an eigenfunction of the
Fourier transform imply that

o]

~dele) —deg(p) d  deg(p) d_ deg(p)
|fp(f§)m - ’ =C Z |fp(ﬁ§)|n+pn1+7p+am_4 52 +a
n=N(d/2+deg(p))+1 .
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Wesetd :=« + d /4. Forall p € 8 and all positive integers m < N(deg(p) + d/2),

we have
$pm < Cm® Z n® p.n.
n>N@ee(p)+d/2)

Now, we are ready for the final step in the proof of Theorem 1.4. In particular, we
will define the positive constants A(d) and B(d). We will show that for a suitable choice
of A(d) and B(d) the growth condition of Theorem 2.1, combined with the inequalities of
Lemmas 5.1 and 5.2, implies the vanishing of the numbers (¢p.n)pe Bnelso-

For each € € (0, 1/2), there exists a sufficiently small positive number b such that

1
N(k,e) > bk, ke EZzl.
For a polynomial p € B, we set

N(p) := bdeg(p).
Note that
N(p) = N(deg(p) +d/2).
Let C’ and y be positive numbers (depending on dimension d) such that dim #,,, < C' m?.
Note that y = d — 2 is admissible. We will need the following technical statement.

Lemma 5.3. For each dimension d, we consider D(n) := B n‘a, where

- 1 CccC’ -
B>2max(b+g,m), A=20l+,3+)/+3

Then

(1) for p,q € B and n € Z>,, the conditions n > N (p) and deg(q) > D(n) —
deg(p) imply n < N (q).

(2) for all positive integers m and all ¢ € B withm > N (q), we have

Z C 'deg(p)ﬂ 2t <,
ne€Zs1,pEB:
n>=N(p)
D(n)—deg(p)=<deg(q)

Proof. Part (1) of the lemma follows immediately from our choice of A and B. Indeed, we
observe that A > 1 and B > % Therefore we have

. 7 2
N(q) = bdeg(q) > b(2Bn* — deg(p)) > b(Fn - %) =n.
We rewrite the sum in part (2) in the following way:
Z C. deg(p)ﬂ . nZd-‘rl
n€Zs1, pEB:

n=~N(p)
D(n)—deg(p)=<deg(q)

= Z Z C -deg(p)? - n2+1,

neZx PEB:
D(n)—% <deg(q) deg(p)<%
deg(p)=D(n)—deg(q)
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Now we use that D(n) — 5 > %é n4 and estimate the above expression by
= > > C -deg(p)P - n?**!.
neZs1 PEB:
1B nA<deg deg(p)<p

deg(p)=D(n)—deg(q)

Next we use the fact that the dimension of Hgeo(p) is bounded by C” deg(p)” and bound the

< Z Z C C'sPHy . p2e+1,

sum in part (2) by

This sum does not exceed

Finally, we crudely estimate each term of this sum by substituting n + ( 2—'};) 1/4 and bound-
ing the number of terms by ( Z—'g)l/ 4 This gives us an upper bound
206+B+y+3
CC’ (2m a
bB+r \p B
Now, our choice of Aand B guarantees that the sum in part (2) of the lemma is less than m.
|

Proof. We are ready to complete the proof of Theorem 1.4. Let (X,)52; be a collection
of spherical designs on the sphere S(1). We suppose that for each n the design X, has
strength D(n) = BnA , where A and B are defined in the Lemma 5.3. We will show that
X =, v/nXy is aFourier uniqueness set. Suppose that 1 : R? — C is a Schwartz function
that satisfies

flx=0 and flx =0. (5.3)

Then for each n € Z>1, we have

flyax, = flyax, =0

Without loss of generality, we assume that f is an eigenfunction of the Fourier transform.
Consider the sum
> dpan®tl (5.4)

PEB, nel:
n=N(p)

By Theorem 2.1, this sum of nonnegative numbers converges to a finite limit.
By Lemma 5.1, we can estimate the sum (5.4) as

Z p.n n®th < Z n**ttc deg(P)ﬂ ) Z bg.n-

PEB,NEL: PEB,NEl: geB:
n=N(p) n=N(p) deg(q)>D(n)—deg(p)
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We have chosen the numbers A and B so that the conditions n > N (p) and deg(g) > D(n) —
deg(p) imply n < N (g). We apply Lemma 5.2 and estimate

Y ppan®t < Y n¥T Cdeg(p)f - > > mEn® ggm.

PEB.NEL: PEB,nEL: gEB: mez:
n=N(p) n=AN(p) deg(q)>D(n)—deg(p) m=N (9))

Here, C is a new constant equal to the product of the constant C from Lemma 5.1 and the
constant C from Lemma 5.2. We change the order of summation and arrive at

Z $pnn® ! < Z m® $gm Z C n***!deg(p)”.

PEB,NEL: mezZ,qeB: PEB,ne:
n>~N(p) m=>~N(q)) n>~N(p)
D(n)—deg(p)=<deg(q)

By Lemma 5.3, the inner sum on the right-hand side of this inequality satisfies

Z C n2t1 deg(p)ﬁ <m.

PEB,NEL:
n>N(p)
D(n)—deg(p)=<deg(q)

This inequality is guaranteed by our choice of function D. Suppose that the nonnegative
numbers (g, m)mez,qep are not all zero. Then

m>N(q)
Z ¢p,n nd+1 < Z ¢q’m m&-‘rl'
PEB,NEL: qeB.,meL:
n=N(p) m=N(q)

This is a contradiction. Therefore, our assumptions on the Schwartz function f imply that
¢q,m = 0 whenever m > N (g). Moreover, Lemma 5.2 implies that ¢, , = O for all ¢ € B
and n € Z > 0. Finally, we deduce from Theorem 1.2 that for all harmonic polynomials p in
the basis B the functions f, in the decomposition (2.1) of the Schwartz function f vanish.
Therefore, f is also identically zero. This finishes the proof of Theorem 1.4. ]
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