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Abstract

Motivated by the Langlands program in representation theory, number theory, and geom-
etry, the theory of representations of a reductive p-adic group, originally in complex
vector spaces, has been widely developed in modules over a commutative ring during the
last two decades. This article surveys basic results obtained during this period, assuming
some familiarity with the representation theory connected to the Langlands program.
Addressed to a broader audience, the 2022 ICM Noether Lecture should be accessible
without prerequisites and convey intuition on the most striking results.
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1. Introduction

The theory of representations of a p-adic group G, for instance, GL.n;Qp/, where
Qp is the p-adic completion of Q is an essential part of the Langlands program. At the
beginning, it was a question of studying representations in a complex vector space. But the
development of its links with number theory and geometry has required studying continuous
representations in vector spaces defined over other fields than C. There are many possibilities
for such a generalization. It is easy to replace C by an algebraic closure Qac

`
of a local field

Q`, where ` is a prime different fromp. The choice of a field isomorphism C'Qac
`

identifies
continuous complex representations of G and continuous `-adic representations. A more
difficult case is that of ` D p because the topology of a p-adic group and of Qp is the
same. One even considers representations with values not in a vector space, but in a module
over some commutative ring like ZŒ1=p� or Z=pi Z; i � 1. The representations over these
different categories of coefficient rings are now essential in the theory of automorphic forms.
Their theory has been widely developed since the beginning of the 21st century, and different
versions of the local Langlands correspondence have emerged.

We review the main basic results for representations over coefficient rings1 differ-
ent from C. In an attempt to make this paper accessible to readers with a wide range of
backgrounds, we give fairly complete definitions of all terminology. Proofs are omitted, yet
we give a short indication of the key points, we cite sources and provide examples. For the
theory before 2002, the reader may consult our book2 and our article in the proceedings of
the Bejing ICM. The subject has remained confined in research articles since these last two
decades, and we hope that this survey provides a navigable route to the literature.

2. Notation

We work with a triple .F;G;R/ where F is the basic field, G the reductive p-adic
group, andR the coefficient ring. We assume that F is a local non-archimedean field of ring
of integers OF , uniformizer pF , and residue field kF of characteristic p with q elements,
G is the group G.F / of F -points of a connected reductive F -group G, endowed with the
topology generated by the open pro-p-subgroups3 and R is a commutative ring.4

An R-representation V of G will always be smooth (continuous for the discrete
topology on R). It is admissible if for all open compact subgroups K of G, the R-module
V K of vectors fixed by K is finitely generated.

The absolute Galois group GalE of a field E is the group of automorphisms of an
algebraic closure Eac fixing E. For a prime number r , Fr denotes a field with r elements,

1 That we are aware of, without geometry or derived functors.
2 Représentations `-modulaires d’un groupe réductif p-adique avec ` différent de p,

Birkhaüser, 1996.
3 Called a connected reductive p-adic group, but beware that some authors use this termi-

nology only when F contains Qp .
4 A ring is supposed to have a unit.
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Zr denotes the ring of integers in the field Qr of r-adic numbers, and Zac
r denotes the ring

of integers of Qac
r . We always denote by ` a prime number different from p.

The parabolic and parahoric subgroups play an essential role in the theory of repre-
sentations of a reductive p-adic group.

The parabolic subgroups appear for the first time in the section on parabolic induc-
tion. We fix a maximal split5 torus T of G of G-centralizer Z and a minimal parabolic
subgroupB DZU of unipotent radicalU and oppositeBop DZU op. A standard parabolic
subgroup ofG is a parabolic subgroup containing B , that is, P DMN DMB , with unipo-
tent radical N contained in U and Levi subgroup M containing Z. The opposite parabolic
subgroup P op DMN op DMBop is not standard.

The Weyl group WG is equal to the quotient of the G-normalizer of T by Z. We
denote by ZC � Z the submonoid of elements contracting U by conjugation, Z� those
contractingU op,TCD T \ZC,T �D T \Z�. The groupG is split ifT DZ and quasisplit
if Z is a torus.6

The parahoric subgroups appear for the first time in the section on Hecke algebras.
We fix a special parahoric subgroup K of G and a pro-p-Iwahori subgroup QJ of G, as
follows. We choose a special point x0 of the apartment A of T in the adjoint Bruhat–Tits
building ofG. The parahoric subgroup ofG fixing the alcove in A of vertex x0 associated to
B is an Iwahori subgroup J of G. Then K is the parahoric subgroup fixing x0 and QJ is the
maximal open normal pro-p subgroup of J . For a standard parabolic subgroup P D MN
of G, M 0 D M \ K is a special parahoric subgroup of M and QJM D QJ \M is a pro-p
Iwahori subgroup of M . We denote N 0 D K \N .

The pro-p-Iwahori subgroups ofG are allG-conjugate, but in general there are only
finitely many G-conjugacy classes of special parahoric subgroups of G.

Examples. There are two conjugacy classes of special parahoric subgroups of SL.2; F /.

The special parahoric subgroups of GL.n; F / are conjugate to GL.n;OF /.
The inverse image by the quotient map GL.n; OF /! GL.n; kF / of the (strictly)

upper triangular group of GL.n; kF / is a (pro-p) Iwahori subgroup of GL.n; F /.
The split torus T has a unique parahoric subgroup, equal to the maximal compact

subgroup T 0 D T \K D T \ J , and the quotient T=T 0 is isomorphic to the groupX�.T /

of cocharacters of T via pF . The compact mod center connected reductive group Z has a
unique parahoric subgroupZ0 DZ \K DZ \ J , and the quotientZ=Z0 is a commutative
finitely generated group (Thomas Haines and Sean Rostami [83]).

5 This means, by a common abuse of notation, that T D T where T is a maximal F -split
torus of G.

6 When G is not quasisplit, Z is not commutative.
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3. Change of basic field

The basic field F is a finite extension of Qp or of Fp..t//. It is called a p-adic field
in characteristic 0 and a local function field in characteristic p. Many geometric methods
demand F to be a local function field. For example, the proof by Bao Chau Ngo7 of the
fundamental lemma, essential in the Langlands theory, which asserts an equality between
certain linear combinations of integral orbitals over the Lie algebras ofG and of endoscopic
groups. On the other hand, when F is a local function field, the harmonic analysis is full of
traps, there are inseparable semisimple elements, there is no exponential map to pass to the
Lie algebra andG has no cocompact discrete subgroup (except for typeA),G is not a p-adic
Lie group.

But the basic field F appears only through the residual field in many constructions
(endoscopy, buildings, Iwahori Hecke algebras). This is a key to transfer properties between
basic fields of different characteristics. For instance, Jean-Loup Waldspurger [201] proved
that the fundamental lemma for F of characteristic p implies the fundamental lemma for
F of characteristic 0. There is another proof using the general transfer principle of Cluck-
ers and Loeser in model theory and motivic integration [31, 32]. In the other direction, the
fundamental lemma for the automorphic induction for GL.n; F / proved by Guy Henniart
and Rebecca Herb for F of characteristic 0 was transferred to F of characteristic p by
Henniart and Bertrand Lemaire [102] using close local fields. For a positive integer m, two
non-archimedean local fields are m-closed, if their rings of integers modulo the mth power
of their respective maximal ideals are isomorphic. The Deligne–Kazhdan philosophy can be
loosely stated as follows: the representation theory of Galois groups (or of reductive groups)
over m-close local fields is the same “up to level m”. For instance, Radhika Ganapathy [74]

proved that for two m-close local fields F , F 0 and G split, the category of complex repre-
sentations of G.F / generated by their invariants by the m-filtration subgroup of an Iwahori
subgroup is equivalent to the same category for representations of G.F 0/. For G not split,
she made sense of a natural connected reductive groupG0 overF 0 associated toG, first when
G is quasisplit (an F -form of a split group) and then when G is general (an inner form of a
quasisplit group) [75, 3.A and 5.A].

The local field Qp is a completion of Q and Q is a globalization of Qp . The local
case is simpler than the global. The ring Zp has only one prime ideal, namely pZp , but the
ring Z has infinitely many prime ideals. The absolute Galois group GalQp of Qp is simple
compared to GalQ. In the same vein, the local field F is the completion of a (non-unique)
global field8 E and E is a globalization of F , the local group G is a localization of the
group H of rational points of a connected reductive group over a global field, and H is
a globalization of G.9 An automorphic irreducible C-representation VA of the adelic group

7 Fields medal in 2020.
8 A global field is a finite extension of Q or of Fp.T /.
9 For F of characteristic p, Wee-Teck Gan, Luis Lomeli [72], for F of characteristic 0,

Shahidi (A proof of Langland’s Conjecture on Plancherel measures; Complementary Series
of p-adic groups, The Annals of Math., Series 2, Vol. 132, 2 (1990), 273–330) when G is
quasisplit, implying the general case as in [72].
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H.A/ gives by localization an irreducible C-representation V ofG and VA is a globalization
of V . The study of automorphic representations uses the theory of representations of local
reductive groups. In the other direction, some theorems of representations of local groups
are proved by embedding the local case into a global one.

The classical local Langlands correspondence introduced by Langlands in 1967–
1970 is a generalization of local class field theory from abelian Galois groups to non-abelian
Galois groups. The absolute Galois group GalkF

of the finite field kF is topologically gen-
erated but the Frobenius Frob.x/ D xq . The subgroup of elements in GalF with image an
integral power of Frob in the natural quotient map GalF ! GalkF

is the Weil group WF

of F .10 The reciprocity map of local class field theory F � Q!W ab
F identifies the irreducible

R-representations of GL.1; F / with the one-dimensional R-representations of WF when
R is an algebraically closed field. Langlands proposed a parametrization of the irreducible
C-representations of G in terms of C-representations of WF .

When G D GL.n; F /, the complex local Langlands correspondence is a theorem
which has been generalized to representations over R D F ac

`
, ` ¤ p.11 The first proofs of

local class field theory were global. Today the proofs of the local Langlands correspondence
for GL.n; F / needs global arguments, except for n D 2 and R D C, where there is a local
proof (Colin Bushnell and Henniart [21]). When F has characteristic 0, Peter Scholze [174]

gave a new local characterization of the complex local Langlands correspondence; a local
Langlands correspondence over R D F ac

p is to-day a very active research area.12

The geometrization of a (semisimple) local Langlands correspondence for all F ,
G and R D Z` for almost all ` ¤ p, obtained by Laurent Fargues and Scholze in 2021, is
entirely local.

4. Change of coefficient ring

Many features of complex representations of G use harmonic analysis only appar-
ently and can be generalized to representations over other coefficient rings. For instance,

(a) The theory of discrete series and tempered complex representations has an alge-
braic and combinatorial flavor.13 It was extended by Dat [38] to an algebraically
closed field R of characteristic different from p with a nontrivial valuation.

(b) The proof of the classification of the irreducible complex representations of
an inner form of GL.n; F / by Tadic for F � Qp uses harmonic analysis (the
simple trace formula). Alberto Minguez and Vincent Sécherre [139] gave an

10 The kernel IF of the quotient map is an extension of
Q

`¤p Z` by a pro-p group PF .
11 Proved when R D C by Gérard Laumon, Michael Rapoport, and Ulrich Stuhler in 1993 if

F � Fp..t//, and if F � Qp by Michael Harris and Richard Taylor in 2001 (Guy Henniart
gave another proof), and extended by Vignéras in 2001 to R D F ac

`
, ` ¤ p.

12 There is nothing for F and R of characteristic p, to the best of my knowledge.
13 The asymptotic behavior of coefficients may be derived from the central exponents of the

Jacquet modules.
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algebraic proof for all F and all algebraic closed fields R of characteristic dif-
ferent from p.

A prime ` ¤ p not dividing the order of a torsion element of G is called banal14 for G.
A field R is of banal characteristic for G if its characteristic is 0 or ` banal for G. A general
principle is that the properties of complex representations ofG described in purely algebraic
terms transfer to representations of G over fields R of banal characteristic.

Example. The banal primes for GL.m; F / are those coprime with qi � 1 for 1 � i � m.

The R-representations of G form a locally small abelian Grothendieck category
ModR.G/ (Vignéras [199]). For a commutative ring S which is an R-algebra, the R-repre-
sentations of G are related to the S -representations of G by the scalar extension15

S ˝R � W ModR.G/! ModS .G/

and, by the restriction its right adjoint, an S -representation is considered as an R-represen-
tation. One says that an S -representation of G in the image of the scalar extension descends
to R, or is defined on R.

When R is a field, many properties on admissible irreducible R-representations of
G still assume R to be algebraically closed although this is not necessary. A good tool to
show this is the bijection (Henniart–Vignéras [106], [107, Section 2])

V 7! BC.V /

• from the isomorphism classes of irreducible admissible R-representations V
of G,

• onto the Galois orbits16 BC.V / of the isomorphism classes of the irreducible
admissible Rac-representations of G defined on a finite extension of R.

Here BC.V / is the set of isomorphism classes of the irreducible subquotients V ac of

Rac
˝R V ' ˚

d
˚V ac2BC.V / W.V

ac/;

where d is the reduced dimension of the division R-algebra EndRG V over its center EV ,
the length of theRac-representationRac˝R V ofG is dŒEV WR�, the number of elements of
BC.V / is ŒEs

V WR�whereEs
V is the maximal separable subextension ofEV =R, andW.V ac/

is an indecomposableRac-representation ofG of irreducible subquotients isomorphic to V ac

and of length ŒEV W E
s
V �. Any V ac 2 BC.V / is V -isotypic as an R-representation of G, and

is defined on a maximal subfield of EndRG V (Justin Trias [188]).
Any irreducible admissible Rac-representation of G is absolutely irreducible and

has a central character by the Schur’s lemma. If the characteristic of R is different from p,

14 See [51], Lemma 5.22 and Corollary 5.23 for other characterizations.
15 Also called base change or induction.
16 An orbit under the group AutR.Rac/ of R-automorphisms of Rac.
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any irreducible Rac-representation of G is admissible and defined on a finite extension of R
[107].

As G is locally a pro-p group, there is no Haar measure on G with values in a
commutative ring R where p is not invertible and the R-representations of G present new
phenomena. To understand them is a crucial question.

For a field R of characteristic p, any irreducible R-representation V of G with
dimR V

K <1 for some open pro-p subgroup K of G, is admissible (Vytautas Paskunas
[155], a simple proof is given in Henniart [101]). For any open pro-p subgroup K of G, any
nonzero representation of G has a nonzero vector invariant by K (like for finite groups).

Irreducible implies admissible when G D GL.2; Qp/. Indeed, one reduces to
R D F ac

p ; in this case irreducible implies that the center acts by a character (Laurent Berger
[14]) hence is admissible by Barthel-Livne and Breuil [16].

But, there exists an irreducible non-admissible F ac
p -representation of GL.2; F / for

an unramified extension F of Qp (Daniel Le [136]). One does not know if any infinite-
dimensional irreducible non-admissible F ac

p -representation of G has a central character,
because its dimension is equal to the cardinal of F ac

p and the classical proof with the Schur’s
lemma does not apply.

It happens that a property of admissible irreducible representations ofG over a field
R transfers to representations of G over any coefficient field of the same characteristic. This
is the case in the following examples:

(i) In characteristic different from p, for the classification of cuspidal irreducible
R-representations of G by compact induction (Henniart–Vignéras [107]).

(ii) In characteristic p, for the classification of non-cuspidal17 admissible irre-
ducible R-representations of G, for the classification of non-supersingular
simple modules of the pro-p-Iwahori Hecke R-algebra of G (Noriyuki Abe,
Henniart, Florian Herzig, and Vignéras [8], Henniart–Vignéras [106]), for the
existence of a supersingular admissible irreducibleR-representation ofG when
F � Qp (Herzig, Karol Koziol, and Vignéras [110]).

For a prime r ,18 an r-adic representation ofG is a representation ofG on a Qac
r -vector space

which is continuous for the r-adic topology on the vector space. A p-adic representation of
G may be not smooth, but an `-adic representation of G is smooth if ` ¤ p. In this article,
an R-representation of G is supposed always to be smooth. A Qac

r -representation of G is a
smooth r-adic representation of G. The choice of an isomorphism

C ' Qac
r

identifies the complex representations of G and the Qac
r -representations of G.

A mod r representation of G is a F ac
r -representation of G.

17 Cuspidal and supersingular will be defined later.
18 Letter ` is reserved for the primes different from p, think r D ` or p.
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An admissible Qac
r -representation V of G is called integral if V is defined on a

finite extension E=Qr and V contains an G-stable Zac
r -lattice L,19 admissible as a Zac

r -
representation of G and descending to OE .20 The mod r representation redr .L/ D L˝Zac

r

F ac
r of G is called the reduction of L.

By the strong Brauer–Nesbitt theorem (Vignéras [189]), when r D `¤p, the Zac
`
ŒG�-

moduleL is finitely generated, of reduction red`.L/ of finite length, and the image of red`.L/

in the Grothendieck group of finite length F ac
`

-representations of G does not depend on the
choice of L; it is called the reduction of V . Two finite-length integral `-adic representations
of G are said to be congruent modulo ` when their reductions are isomorphic.

This does not hold true for Qac
p -representations of G. For example, an irreducible

Qac
p -representation V D indG

K W of G D PGL.n; F / compactly induced from a representa-
tionW ofK D PGL.n;OF / contains an admissibleG-stable Zac

p -lattice L defined on some
OE as above, of infinite length reduction, and another oneL0 of finite length reduction. Take
L D indG

K WZac
p

for a K-stable Zac
p -lattice WZac

p
of W and L0 D V \ indG

� 1Zac
p

for a small
enough discrete cocompact subgroup � of G.

5. Parabolic induction

For any triple .F;G;R/ (as in the Notation section) and any parabolic subgroup P
of G of Levi quotient M , the parabolic induction21

indG
P W ModR.M/! ModR.G/

allows constructing representations of G from representations of the smaller connected
reductive p-adic group M . The parabolic induction has excellent properties, it commutes
with small direct sums22 (Vignéras [199]); for p nilpotent in R, it is fully faithful (Vignéras
[199]); for a field R, the parabolic induction respects finite length representations with
admissible subquotients (this depends on the classification of admissible irreducible rep-
resentations if the characteristic of R is p).

The parabolic induction is exact and has a left adjoint LG
P called the Jacquet functor,

equal to the coinvariant functor .�/N with respect to the unipotent radical N of P , and a
right adjoint23 RG

P (Vignéras [199]). By adjointness, LG
P is right exact and RG

P is left exact.
The scalar extension commutes with the three parabolic functors (Henniart–Vignéras [106]).

For p invertible in R, the second adjunction

RG
P D ıPL

G
P op ;

19 A free Zac
r -submodule of scalar extension V to Qac

r .
20 The ring OE is principal but not Zac

r . The definition bypasses this difficulty.
21 indG

P .W / is the R-module of locally constant functions f W G ! W such that f .mng/ D
mf .g/ for m 2M , n 2 N , g 2 G, where G acts by right translation.

22 When R is a field of characteristic p, indG
P commutes with direct products [169].

23 By [116, 8.3.27], as ModR.G/ is a locally small abelian Grothendieck category and indG
P is

right exact and commutes with small direct sums.
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where ıP is the modulus of P ,24 is a deep property proved this year by Dat, David Helm,
Robert Kurinczuk, and Gilbert Moss [52, Corollary 1.3], originally proved by Bernstein when
R D C. When R is noetherian, the parabolic induction indG

P respects admissibility, the
second adjunction implies that ModR.G/ is noetherian, that the parabolic induction respects
projective (resp. finitely generated) R-representations [52, Corollaries 1.4, 1.5], and that LG

P

respects admissibility. The functorLG
P is exact, preserves infinite direct sums [40], and when

R is a field,LG
P respects finite length becauseLG

P respects the property of being finitely gen-
erated, and an admissible finitely generatedR-representation ofG has finite length (the proof
uses the Moy–Prasad unrefined types when R is algebraically closed but being algebraically
closed is not necessary).

For a field R of characteristic p, the adjoint functors LG
P and RG

P send an admissi-
ble irreducible R-representation of G to 0 or to an admissible irreducible R-representation
ofM . Irreducibility is necessary, an example of an admissibleR-representation V ofG with
LG

P .V / not admissible is given in (Abe–Henniart–Vignéras [10]). But contrary to the com-
plex case, the functors LG

P and RG
P fail to be exact (for RG

P , see Emerton [61] and Koziol
[122]), indG

P does not preserve finitely generated representations, RG
P does not preserve infi-

nite direct sums (Abe–Henniart–Vignéras [10, Section 4.5]).
Whenp is nilpotent in the commutative ringR, the right adjointRG

P respects admis-
sibility (Abe–Henniart–Vignéras [10]); it is equal to the Emerton’s functor OrdG

P op of ordinary
parts on admissible R-representations.25 If, moreover, R is artinian, Matthew Emerton [61]

extended the functor of ordinary parts to a ı-functor, expected to coincide with the derived
functors when the characteristic of F is 0.

Example. When G D SL.2;Qp/, Koziol [122] showed that the derived functors of RG
B and

OrdG
B are equal on any absolutely irreducible F ac

p -representations of G.

When the characteristic of F is p, surprisingly, RG
P is exact on admissible F ac

p -
representations of G (Julien Hauseux [88]).

A representation of G over a field R is called unramified when it is trivial on the
subgroup G0 of G generated by its compact subgroups.26 The group ‰R.G/ of unramified
R-characters  W G ! R� of G is a torus. One says that .F; G; R/ satisfies generic irre-
ducibility property if for any parabolic subgroup P of G of Levi M and any irreducible
R-representation W of M , the set of  2 ‰R.M/ such that indG

P .W ˝  / is irreducible is
Zariski-dense in ‰R.M/.

Generic irreducibility property is probably true for any F , G and any field R. It
is known for R of characteristic p (Abe–Henniart–Vignéras [10]) or when F � Qp and R
algebraically closed of characteristic different from p (Dat [38]).

24 ıP .m/ D jdet AdLie N .m/j 2 q
Z.

25 There is no description of RG
P

on non-admissible representations.
26 This coincides with the classical definition (Henniart–Lemaire [103, 2.12 Remarque 1]).
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Dat [38, Theorem 3.11] extended the complex Langlands quotient theorem to any alge-
braically closed field R of characteristic different from p with a nontrivial valuation � (for
example, Qac

`
).

An admissible R-representation V of G is �-tempered (Dat [38, Definition 3.2])
if for any standard parabolic subgroup P D MN such that LG

P .V / ¤ 0, any exponent �
in LG

P .V / satisfies ��.ı�1=2
P �/ 2 CA�

P .27 It is called discrete if ��.ı�1=2
P �/ 2 CA�

P . The
exponents of LG

P .V / are the R-characters of the split component AM of the center of M
appearing in LG

P .V / seen as an R-representation of AM .

Theorem 5.1 (Dat–Langlands quotient theorem). (i) When P D MN is a stan-
dard parabolic subgroup ofG,W is a �-tempered irreducibleR-representation
of M , and  2 ‰R.M/ satisfies ��. / 2 .A�

P /
C, then the R-representation

indG
P .W ˝  / has a unique irreducible quotient J.M;W; /.

(ii) Any irreducible R-representation V of G is isomorphic to J.M;W;  / for a
unique triple .P;W; /.

From the Dat’s theory of �-tempered representations, David Hansen, Tasho Kaletha,
and Jared Weinstein deduced (see [84, C.2.2)]):

The Grothendieck group of finite length `-adic representations ofG is generated by
representations of the form indG

P .W ˝ /, for a standard parabolic subgroupP DMN ofG,
an integral irreducible `-adic representation W of M and an unramified `-adic character  
of M .

6. Admissible representations and duality

The classification of irreducible admissible R-representations of G is an objective
of the local Langlands program. There are few finite-dimensional representations whenG is
not compact modulo the center, and admissibility is a crucial finiteness property.

When R is a noetherian commutative ring, a subrepresentation of an admissible
R-representation of G is admissible. A quotient of an admissible R-representation of G is
admissible [195] and the category ModR.G/

a of admissibleR-representations ofG is abelian
if p is invertible in R, or if R is a finite field of characteristic p and F � Qp .28

Example. When F � Fp..T // and p is not invertible in R, there exists an admissible rep-
resentation with a non-admissible quotient (Abe–Henniart–Vignéras [10]).

27 Let �.M/ denote the set of simple roots of T in M , �.P / the set of simple roots in P of
TM , A� D X ˝Z R where X is the lattice of rational characters of T , and .�; �/ a WG -
invariant scalar product on A�. Then CA�

P
D

P
˛2�.P / R�0 ˛ and .A�

P
/C is the cone

¹x 2A�; .x; ˛/ D 0 for ˛ 2 �.M/; .x; ˛/ > 0 for ˛ 2 �.P /º.
28 The completed group algebra of RŒK� is noetherian when F � Qp but not when

F � Fp..T //.
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Let R be a field. The smooth dual V _ of an R-representation V of G is the smooth
part of the contragredient action of G on the linear dual V � D HomR.V;R/.29

For R of characteristic different from p, the smooth dual is an autoduality on
ModR.G/

a. In particular, V _ is irreducible if and only if V is irreducible. The smooth
dual and the parabolic induction and its left adjoint satisfy30:

.indG
P W /

_
' indG

P .W
_ıP /; LG

P .V
_/ '

�
LG

P op.V /
�_
;

for any R-representation W of M and any admissible R-representation V of G.
For R of characteristic p, the smooth dual of any infinite dimensional admissible

irreducible R-representation of G is zero! For F of characteristic 0, Jan Kohlhaase [117]

developed a higher smooth duality theory on ModR.G/
a. He studied the i th smooth duality

functors S i W ModR.G/
a ! ModR.G/

a for 0 � i � d D dimQp G under tensor product,
inflation and induction and proved that for V 2 ModR.G/

a, the integer

d.V / D max
®
i j S i .V / ¤ 0/

¯
satisfies

(i) d.V / D 0 if and only if V is finite dimensional,

(ii) d.indG
P W / D d.W / C dimQp N , for a parabolic subgroup P D MN and

W 2 ModR.M/a,

(iii) d.V / D 1 and S1.V / coincides with the Colmez’s contragredient introduced
for the p-adic Langlands correspondence forG D GL.2;Qp/,R D F ac

p , and V
irreducible of infinite dimension; for the Steinberg representation StG which is
irreducible, S1.StG/ is indecomposable of length 2!

For G unramified,31 K a hyperspecial subgroup of G, W 2 ModFac
p
.K/ and i > dimQp U ,

we have S i .indG
K W / D 0 (Claus Sorensen [185]).

7. Supercuspidal support

An R-representation V of G is called cuspidal if it is killed by the left and right
adjoints of the parabolic induction

LG
P .V / D R

G
P .V / D 0;

for all parabolic subgroups P ¤ G.
When p is invertible in R, the second adjunction implies that V is cuspidal if

and only if LG
P .V / D 0 for any proper parabolic subgroup P of G. Any irreducible R-

29 The smooth dual is the set of linear forms on V fixed by some open subgroup of G.
30 The normalized induction indG

P .W ˝ ı
1=2
P

/ commutes with the smooth dual, the second
isomorphism is equivalent to the second adjunction.

31 G is quasisplit and splits over some unramified extension of F .
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representation V of G is a subrepresentation of indG
P W for some cuspidal irreducible R-

representation W . Assuming that R is an algebraically closed field,32 the pair .M; W / is
unique modulo G-conjugation; the G-conjugation class of .M; W / is called the cuspidal
support of V . Twisting the cuspidal support by unramified characters, we get the inertial cus-
pidal support � of V . So, � is the set of .M 0;W 0/ which are G-conjugate to .M;W ˝‰/
for some  2 ‰R.M/. The subgroup of w 2 WG fixing M acts on the R-representations
of M . Let H be the group of w 2 WG such that W w ' W ˝  for some  2 ‰R.M/ and
S the (finite) group of  2 ‰R.M/ such thatW ˝ ' W . Then,� is an algebraic variety
with regular functions O.�/ D .RŒM=M 0�S /H .

Whenp is not invertible inR, one needs bothLG
P andRG

P to define cuspidality. For a
fieldR of characteristicp, the trivial representation 1G ofG and the Steinberg representation
StG D indG

B .1Z/=
P

P ©B indG
P .1M / satisfy, for any parabolic subgroup P of Levi M ,

LG
P .1G/ D 1M ; RG

P .1G/ D 0; LG
P .StG/ D 0; RG

P .StG/ D StM :

The Steinberg representation is not a subrepresentation of indG
P W for any cuspidal admis-

sible irreducible R-representation W . Any irreducible R-representation V of G is a sub-
quotient of indG

B W for some R-representation W of Z (for R algebraically closed, see
Abe–Henniart–Herzig–Vignéras [8, IV.1]). This is very different from the complex case!

An admissible irreducible R-representation of G which is not isomorphic to a sub-
quotient of a proper parabolically induced representation indG

P W for all P ¤ G; W an
admissible irreducible R-representation of M , is called supercuspidal.33

A cuspidal irreducible admissible R-representation is always supercuspidal if R is
a field of characteristic 0 or p, but not if the characteristic of R is ` ¤ p!

Example. WhenG DGL.2;Qp/,RD F ac
`
; ` dividespC 1, the unique infinite dimensional

irreducible subquotient of the representation indG
B 1Z indecomposable of length 3 is cuspidal

and non-supercuspidal.

Any admissible irreducibleR-representation V ofG is a subquotient of indG
P W for

some supercuspidal admissible irreducible R-representation W .
For a field R of characteristic p, .P; W / is unique modulo G-conjugation. This

follows from the classification.
For a field R of characteristic different from p, the G-conjugation class of .M;W /

is called a supercuspidal support of V . Contrary to the cuspidal support, the supercuspidal
support is not always unique if the characteristic of R is ` ¤ p.

Examples. The supercuspidal support is not unique when R D F ac
`
; ` divides q2 C 1 and

G is the finite group Sp8.Fq/ (Olivier Dudas [58]) or Sp8.F / (Dat [49]).

32 Being algebraically closed is probably not necessary.
33 One does not need to suppose that W is irreducible when R is an algebraically closed field

of characteristic different from p (Dat [49]).
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The supercuspidal support is unique if R has characteristic 0, or G is an inner form
of GL.n;F / (Minguez–Sécherre [141]), orG is the unramified unitary group U.2; 1/, p ¤ 2
(Kurinczuk [126]), when R is algebraically closed (this is probably not necessary).

When R is algebraically closed, the twist by unramified characters of a supercus-
pidal support of V is called an inertial supercuspidal support of V ; if all the irreducible
R-representations ofG have a unique supercuspidal support, the Bernstein variety BR.G/ is
the disjoint union of the inertial supercuspidal supports of the irreducible R-representations
of G.

An irreducible Qac
`

-representation of G is integral if and only if its supercuspidal
support is integral (Dat–Helm–Kurinczuk–Moss [52, Corollary 1.6]). Is any irreducible mod
` representation of G a subquotient of the reduction of an integral irreducible `-adic repre-
sentation?

For a fieldR of banal characteristic forG, any cuspidal irreducibleR-representation
of G is supercuspidal and projective in the category of R-representations of G with a given
central character. The reduction of an integral cuspidal irreducible `-adic representation ofG
is irreducible and cuspidal, and any cuspidal irreducible mod `-representation ofG lifts34 to
an integral cuspidal irreducible `-adic representation ofG (Dat–Helm–Kurinczuk–Moss, to
appear). The reduction of an integral irreducible `-adic representation ofGmay be reducible.
Does any irreducible mod ` representation of G lift to an integral irreducible `-adic repre-
sentation of G?

8. Hecke algebras

Hecke Z-algebras appear everywhere in the theory of representations of G, giving
algebraic proofs of properties proved earlier with harmonic analysis. An open subgroup K
of G which is compact, or compact modulo the center of G, defines a Hecke ring

H .G;K/ D EndZŒG� ZŒKnG�;

naturally isomorphic to the opposite of ZŒKnG=K�. For any commutative ringR, the Hecke
R-algebra HR.G;K/ D EndRŒG�RŒKnG� is the scalar extension to R of H .G;K/.

Finiteness property of HR.G; K/. The center ZR.G;K/ of HR.G;K/ is a finitely gener-
atedR-algebra and HR.G;K/ is a finitely generated ZR.G;K/-module, ifR is a noetherian
Z`-algebra.

This theorem of Dat–Helm–Kurinczuk–Moss [52] is the key of the proof of the
second adjunction. It was proved by Deligne and Bernstein for complex Hecke algebras.
It is equivalent to another statement, involving the endomorphism ring ZR.G/ of the iden-
tity functor of ModR.G/, called the Bernstein center:

ForR as above, any finitely generatedR-representationV ofG is ZR.G/-admissible
and the natural image of ZR.G/! EndRŒG� V is a finitely generated R-algebra.

34 Is the reduction modulo ` of an integral cuspidal irreducible `-adic representation of G.
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The highly nontrivial proof uses the Fargues–Scholze local version of the Vincent
Lafforgue’s theory of excursion operators [65].

The finiteness theorem is true for the Iwahori and the pro-p Iwahori Hecke rings
(R D Z and K D J or QJ ) (Vignéras [196]). Is it true for any Hecke ring?

The K-invariant functor

V 7! V K
' HomRŒG�

�
RŒKnG�; V

�
W ModR.G/! Mod HR.G;K/

and its left adjoint M !M ˝HR.G;K/ RŒKnG� relate the R-representations of G and the
right HR.G;K/-modules. From now on, an HR.G;K/-module will be a right module.

When R is a field and the order of any finite quotient of K is invertible in R, the
K-invariant functor induces a bijection between the (isomorphism classes of) irreducible
R-representations V ofG with V K ¤ 0 and the (isomorphism classes of) simple HR.G;K/-
modules.

If R is a field of characteristic different from p, an irreducible R-representation of
G is admissible (Henniart–Vignéras [107, Theorem 3.2]), any simple HR.G;K/-module has
finite dimension. For any field R, a simple module of the Iwahori or pro-p Iwahori Hecke
algebra has finite dimension.

Let ModR.G/.K/ denote the category ofR-representations ofG generated by their
K-invariant vectors. When any subrepresentation of any representation in ModR.G/.K/

belongs to ModR.G/.K/, the category ModR.G/.K/ is abelian and equivalent by the K-
invariant functor to

ModR.G/.K/ Q!Mod HR.G;K/:

This is the case ifR D C andK is an Iwahori subgroup J by a classical result of Borel, or a
pro-p Iwahori subgroup QJ (Vignéras [196]). The category ModC.G/.J / is an indecompos-
able factor of ModC.G/. QJ /, and ModC.G/. QJ / is a factor of ModC G/.

ForR of characteristic p, the category ModC.G/. QJ / is not abelian in general. How-
ever, it is abelian ifRDF ac

p andGDGL.2;Qp/ or SL.2;Qp/;p¤ 2 (Ollivier [146],35 Koziol
[119], Ollivier–Schneider [151]).

For a prime r , a Qr -representation V ofG is called locally integral if for some finite
extension E=Qr , V K admits a H .G;K/-stable OE -lattice for all open compact subgroups
K of G.

An integral irreducible Qac
r -representation is clearly locally integral. The converse is

true if r D ` ¤ p [38]. The equivalence between integral and locally integral for irreducible
Qac

p -representations of G is an open question. It is the analogue of the Breuil–Schneider
conjecture [20] restricted to smooth representations (Hu [113], Sorensen [183,184]).

A finite length Qac
p -representation V ofG is locally integral if and only if (Dat [41])

�.ı
�1=2
P �/ 2 �P �

CA�
P

for any standard parabolic subgroup P DMN of G with LG
P .V / ¤ 0, and any exponent �

of LG
P .V /.

36

35 Supposing that a uniformizer of F acts trivially.
36 �P is half the sum of the roots of AM in LieP . The formula can be simplified!
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9. Representations over a field of characteristic

different from p

For any commutative ring R, an R-representation W of an open subgroup K of G
defines an R-representation indG

K W of G by compact induction.37

Example. indG
K 1K D RŒKnG� for the trivial R-representation 1K of K.

Assume that R is a field of characteristic different from p, until the end of this
section.

All cuspidal irreducible R-representations of G are conjectured to be compactly
induced from open subgroups of G compact modulo the center of G.

ForR algebraically closed, the conjecture has been proved for the level 038 cuspidal
representations of any G or when

G has rank 1 (Martin Weissman [203]),

G is an inner form of GL.n; F / (Minguez–Sécherre [141]), or of SL.n; F / (Peyi
Cui [36,37]),

G is a classical group (Stevens [187], Stevens–Kurinczuk–Skodlerak [131]) or a
quaternionic form of G (Skodlerak [181]), if p ¤ 2.

G splits on a moderately ramified extension of F and p does not divide the order
of the absolute Weyl group (Fintzen [66]).

Being algebraically closed is not necessary and there is an explicit list X of pairs .K;W / of
G whereK is an open subgroup ofG compact modulo the center andW anR-representation
of K such that indG

K W is irreducible cuspidal satisfying (Henniart–Vignéras [107]):

(a) any cuspidal irreducible R-representation of G is isomorphic to indG
K W for

some .K;W / 2 X unique modulo G-conjugation,

(b) indG
K W and W have the same intertwining algebra

EndRŒK�W ' EndRŒG� indG
K W;

(c) indG
K W is supercuspidal if and only if W is supercuspidal, for the “natural

notion of supercuspidality” of W ,39

(d) X is stable by automorphisms of R.

Until the end of this section, assume R algebraically closed andG D GL.m;D/ whereD is
a central division algebra of dimension d2 over F , n D md .

37 The R-module of functions f W G ! W supported on finitely many cosets Kg, satisfying
f .kg/ D �.k/f .g/ for k 2 K, g 2 G where G acts by right translation.

38 Definition in the section on Bernstein blocks.
39 Fintzen gave another proof when G is moderately ramified and p does not divide the order

of the absolute Weyl group.
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Minguez and Sécherre [140] classified the irreducible R-representations of G with
a given supercuspidal support by “supercuspidal multisegments,” and those with a given
cuspidal support by “aperiodic cuspidal multisegments.” This generalizes the Bernstein–
Zelevinski classification of complex irreducible representations of GL.n;F /. ForR of char-
acteristic `, the proof uses the theory of `-modular types (Minguez–Sécherre [141]) and deep
results on affine Hecke algebras of type A at roots of unity.

Any irreducible `-modular representation of G is a subquotient of the reduction of
an integral irreducible `-adic representation [140]. In the other direction, any irreducible `-
modular representation V of G lifts to an `-adic representation when it is supercuspidal or
“banal” or unramified40 (Dat [38], Minguez–Sécherre [139,140,142]) or when it is cuspidal and
G D GL.n; F /. Contrary to the case G D GL.n; F /, some irreducible cuspidal `-modular
representation of G may not lift and the reduction of a integral cuspidal irreducible `-adic-
representation ofG may be reducible; but its irreducible components are cuspidal and in the
same inertial class.

Example. When q D 8, ` D 3, d D 2, any integral irreducible `-adic representation of
D� containing an homomorphism � W O�

D ! .Qac
`
/� trivial on 1C PD such that � ¤ �q

has dimension 2 and its reduction is reducible. When q D 4, ` D 17, d D 2, there exists
an irreducible cuspidal `-modular representation of GL.2;D/ not lifting to Qac

`
(Minguez–

Sécherre [143]).

Let DC.G/ denote the set of isomorphism classes of the essentially square inte-
grable irreducible (or discrete series) complex representations of G. The complex local
Jacquet–Langlands correspondence

JLC W DC

�
GL.m;D/

�
Q!DC

�
GL.n; F /

�
is a bijection characterized by a character relation on matching elliptic regular conjugacy
classes. Fixing an isomorphism C ' Qac

`
, the complex local Jacquet–Langlands correspon-

dence gives an `-adic local Jacquet–Langlands correspondence

JLQac
`
W DQac

`

�
GL.m;D/

�
Q!DQac

`

�
GL.n; F /

�
independent of the isomorphism C 'Qac

`
, and respecting integrality. Minguez and Sécherre

[143] proved that two integral representations of DQac
`
.GL.m; D// are congruent modulo

` if and only if their transfers to GL.n; F / are congruent modulo `. But there is no `-
modular local Jacquet–Langlands correspondence compatible with the `-adic local Jacquet–
Langlands correspondence by reduction, as, for example, when d D 2 and q C 1 � 0

modulo `, the trivial representation 1Qac
`

of D� corresponds to the Steinberg StQac
`

of
GL.2; F / of reduction modulo ` of length 2 (Dat [43]). However, the Badulescu morphism
[13]

LJQac
`
W G rQac

`

�
GL.n; F /

�
! G rQac

`

�
GL.m;D/

�
;

40 V GL.m;OD/ ¤ 0, equivalent to V irreducibly parabolically induced from an unramified
character of a Levi subgroup [142].
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where G rR.G/ is the Grothendieck group of finite length R-representations of G, gives by
reduction an `-modular Badulescu morphism

LJFac
`
W G rFac

`

�
GL.n; F /

�
! G rFac

`

�
GL.m;D/

�
:

Sécherre and Stevens [180] introduced the interesting notions of mod ` inertial supercuspidal
support and linkage for irreducible complex representations � , � 0 of G.

(a) Picking an isomorphism C ' Qac
`

one supposes that � is an `-adic represen-
tation of G. The inertial cuspidal support of � contains an integral cuspidal
representation � . The mod ` inertial supercuspidal support of � is the inertial
supercuspidal support of any irreducible component of r`.�/; it depends only
on the isomorphism class of � .

(b) � , � 0 are linked if there are prime numbers `1; : : : ; `r different from p, and
irreducible complex representations � D �0; �1; : : :, �r D � 0 such that, for
each i 2 ¹1; : : : ; rº, the representations �i�1, �i have the same mod `i inertial
supercuspidal support.

When � , � 0 are essentially square integrable, they are linked if and only if their images by the
local Jacquet–Langlands correspondence JLC are linked if and only if (Dotto [55]) they have
the same semisimple endoclass (a type invariant). When G D GL.n; F / and � , � 0 are cus-
pidal, they have the same endoclass if and only if the associated irreducible representations
of Weil group WF by the local Langlands correspondence share an irreducible component
when restricted to the wild inertia group.

10. Bernstein blocks

For a commutative ringR, a nontrivial idempotent e in the Bernstein center ZR.G/

decomposes the abelian category

ModR.G/ D e
�
ModR.G/

�
� .1 � e/

�
ModR.G/

�
into a direct product of two abelian full subcategories. When the idempotent e 2 ZR.G/ is
primitive, the subcategory e.ModR.G//, where e acts by the identity, is indecomposable (no
nontrivial factors) and called a block.

Bernstein and Deligne factorized ModC.G/ into blocks. Their arguments are valid
for any algebraically closed field R of characteristic 0. The decomposition is based on the
uniqueness of the supercuspidal support. We have

ModR.G/ D
Y

�2BR.G/

ModR.G/�

over the connected components � of the Bernstein variety BR.G/. The Bernstein block
ModR.G/� consists of the R-representations of G all of whose irreducible subquotients
have inertial supercuspidal support �. The center of the block ModR.G/� is the ring of
regular functions on the variety �.
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WhenG is an inner form of GL.n;F /, two complex discrete series ofG in the same
block are inertially equivalent. The complex Jacquet–Langlands correspondence commutes
with twisting by characters, and yields a bijection between the blocks containing discrete
series. Andrea Dotto [55] parametrized these blocks by two algebraic invariants (one is the
endo-class) and obtained a complete algebraic description of the Jacquet–Langlands corre-
spondence at the level of inertial classes.

For an algebraically closed field R of characteristic different from p, the Deligne–
Bernstein decomposition remains true (Sécherre and Stevens [179]). Bastien Drevon and
Vincent Sécherre [57] described the block decomposition of the abelian category of finite
length R-representations of G. Unlike the case of all R-representations of G, several non-
isomorphic supercuspidal supports may correspond to the same block. A supercuspidal block
is equivalent to the principal block of the multiplicative group of a suitable division algebra.

WhenR is an algebraically closed field of characteristic ` banal forG, it is expected
that the Deligne–Bernstein decomposition remains true and that the reduction modulo `
gives a bijection between the blocks of `-adic representations of G and the blocks of mod `
representations of G.

WhenRDW.F ac
`
/ is the Witt ring of F ac

`
andG DGL.n;F /, Helm [96–98] showed

that the block decomposition of ModFac
`
.G/ lifts to a block decomposition of ModW.Fac

`
/.G/,

ModW.Fac
`

/.G/ D
Y

�2BFac
`

.G/

ModZac
`
.G/�:

The block ModW.Fac
`

/.G/� consists of the W.F ac
`
/-representations of G such that any irre-

ducible subquotient V

• has a supercuspidal support in � modulo isomorphism, if `V D 0,

• is such that the reduction modulo ` of an integral element in the inertial class of
the supercuspidal support of V is in � modulo isomorphism, if `V D V .

The center of ModW.Fac
`

/.G/ is naturally isomorphic to the ring of endomorphisms of the
Gelfand–Graev representation of G,41 and the center of ModW.Fac

`
/.G/� is a finitely gener-

ated, reduced, `-torsion free W.F ac
`
/-algebra.

The principal block of ModR.G/ contains the trivial R-representation of G. When
R D C, the principal block is equivalent to the category of modules over the Iwahori Hecke
C-algebra. The blocks have been computed in a large number of examples with the theory
of types. Many blocks are equivalent to the principal block of another group G0.

Example. For an algebraically closed field R of characteristic different from p and G an
inner form of GL.n; F /, each block of ModR.G/ is equivalent to the principal block of a
product of general linear groups [179].

41 indGL.n;F /
U

 , where  is a generic W.F ac
`
/-character of the unipotent radical U of a Borel

subgroup of GL.n; F /.
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When R D Qac
`
;Zac

`
or F ac

`
, Dat explained the known coincidences between the

blocks of ModR.G/ and predicted many more by a functoriality principle involving dual
groups [47,48].

For a commutative ringRwherep is invertible, there is a decomposition of ModR.G/

by the Moy–Prasad depth [40, Appendix A].
AnR-representation V ofG has depth 0 if V D

P
x V

QGx is the sum of its invariants
V

QGx by the pro-p radicals QGx of the subgroups ofG fixing the vertices of the adjoint Bruhat–
Tits building of G. The possible depths form a sequence of non-negative rational numbers
r0 D 0 < r1 < � � � . The category ModR.G/

.r/ ofR-representations ofG of depth r is abelian
with an explicit finitely generated projective generator but is generally not a block. We have

ModR.G/ D
Y
n2N

ModR.G/
.rn/:

When p D 0 in R, the Bernstein center ZR.G/ of G is as small as possible, equal
to the Bernstein center of the center Z.G/ of G (see Ardakov–Schneider [12] when R is a
field, but their proofs are valid for a commutative ring, see also Dotto [55])

ZR

�
Z.G/

�
D lim
 �
K

R
�
Z.G/=K

�
; K � Z.G/ open compact subgroup:

WhenE=Qp is a finite extension of ring of integersOE , the category of locally finite
representations (equal to the union of their subrepresentations of finite length) of GL.2;Qp/

on OE -torsion modules with a central character decomposes as a product of blocks with a
noetherian center (Paskunas and Shen-Nin Tung [159]).

11. Satake isomorphism

The structure of the Hecke ring of any special parahoric subgroupK of G is under-
stood via the Satake transform

Sat W H .G;K/! H .Z;Z0/; Sat.f /.z/ D
X

u2U 0nU

f .uz/ for z 2 Z:

It is an injective ring homomorphism, and as H .Z; Z0/ ' ZŒZ=Z0� is commutative, it
shows that the Hecke ring H .G;K/ is commutative. A basis of the image of Sat is

S� D

X
�02W.�/

ı1=2.�=�0/e�0 for � 2 ZC=Z0;

where e� 2 H .Z; Z0/ corresponds to � (Henniart–Vignéras [105], [104, Proposition 2.3]).
This shows that modulo isomorphism, the commutative Hecke ring H .G; K/ does not
depend on the choice of K.

By scalar extension to a commutative ring R, the Satake transform extends to a
map Sat W HR.G;K/! HR.Z;Z

0/. For R D C, it is well known that ı1=2
B Sat induces an

isomorphism
HC.G;K/ ' C

�
Z=Z0

�WG :
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An all-important special case was singled out by Langlands, that is, where G is unramified
and where K is a hyperspecial maximal compact subgroup of G. Langlands interpreted the
Satake isomorphism as giving a parametrization of the isomorphism classes of complex irre-
ducible representations ofG with a nonzeroK-fixed vector, by certain semisimple conjugacy
classes in a complex group OG “dual” to G.

For a field R of characteristic p, Sat induces an isomorphism (Henniart–Vignéras
[105])42

HR.G;K/ ' R
�
ZC=Z0

�
:

Instead of focusing on the trivial R-representation 1K of K, one can consider two
finitely generated R-representations W , W 0 of K and the Hecke R-bimodule

HR.G;K;W;W
0/ ' HomRŒG�.indG

K W; indG
K W

0/:

It is realized as a set of compactly supported functions f WG!HomR.W;W
0/with a certain

K-biinvariance. In the case W D W 0, it is an algebra called an Hecke algebra with weight
W that we rather write HR.G; K;W /; the Hecke algebra with trivial weight is the Hecke
R-algebra HR.G;K/. For any standard parabolic subgroup P DMN , the Satake transform
generalizes to an injective map

SatM W HR.G;K;W;W
0/! HR.M;M

0;WN 0 ;W 0

N 0/;

SatM .f /.m/.v/ D
X

n2N 0nN

f .nm/.v/

form 2M , v 2W , where v! v is the quotient mapW !WN 0 (similarly forW 0!W 0

N 0 ).
The functional approach of SatM (Henniart–Vignéras [104, Section 2]) is a motivation to
prefer it to another generalization considered in (see Herzig [109] whenG is split, Henniart–
Vignéras [105])

Sat0M W HR.G;K;W;W
0/! HR.M;M

0;W N 0

;W 0N 0

/;

Sat0M .f /.z/.v/ D
X

u2U 0nU

f .uz/.v/

for v 2 W N 0 . The maps Sat0M and SatM are related by taking duals [104].
When R is an algebraically closed field of characteristic p and W , W 0 are irre-

ducible, the generalized Satake transforms play a role in the modulo p and p-adic Lang-
lands correspondence. In this situation WU 0 , W 0

U 0 have dimension 1, the Hecke bimodule
HR.G; K; W; W

0/ is nonzero if and only if the R-characters of Z0 on WU 0 , W 0

U 0 are Z-
conjugate. ForM D Z, there are explicit bases .SW;W 0

�
/ of the image of SatZ , and .TW;W 0

�
/

of HR.G;K;W;W
0/ such that

SatZ.TW;W 0

�
/ D S

W;W 0

�

for � 2 ZC.W;W 0/=Z0 where ZC.W;W 0/ is a certain union of cosets of Z0 in ZC (Abe–
Herzig–Vignéras [11]). The proof relies on the theory the pro-p-Iwahori Hecke R-algebra.

42 With Z�=Z0 instead of ZC=Z0, but these monoids are isomorphic.

351 Representations of p-adic groups over commutative rings



A simple consequence is the “change of weight”43 which is an important step in the proof of
the classification of admissible irreducibleR-representations ofG. There is also a change of
weight the pro-p-Iwahori Hecke algebra giving another proof for the change of weight for
G (Abe [4]). For an Hecke algebra HR.G; K; W / with irreducible weight W , one gets an
explicit inverse of the Satake isomorphism (Henniart–Vignéras [104])44:

SatZ W HR.G;K;W / Q!HR.Z
C; Z0;WU 0/:

For G quasisplit, HR.Z
C; Z0; WU 0/ ' RŒZC=Z0�, hence HR.G;K;W / is commutative

and does not depend on the choice of .K;W /modulo isomorphism. ForG general, the center
of HR.G;K;W / contains a finitely generated subalgebra ZT isomorphic toRŒTC=T 0�, and
HR.G;K;W / is a finitely generated ZT -module.

One chooses an element s in the center ofM which strictly contractsN by conjuga-
tion. There is a unique element Ts 2 HR.M;M

0; WN 0/ with support M 0s such that Ts.s/

is the identity on WN 0 . The generalized Satake transform

SatM W HR.G;K;W / ,! HR.M;M
0;WN 0/

is a localization at Ts .45 The natural intertwiner

IV W indG
K W ! indG

P .indM
M 0 WN 0/

is injective and its localization at Ts is bijective when W satisfies a regularity assumption46

(Herzig [108], Abe [3], Henniart–Vignéras [104]).
For a field R of characteristic p, the supersingularity of an admissible irreducible

R-representation V ofG is defined with the Satake homomorphism (Abe–Henniart–Herzig–
Vignéras [8]). First, assumingR algebraically closed, an homomorphism ZR.G;K;W /!R

from the center ZR.G; K;W / of an Hecke algebra HR.G; K;W / with irreducible weight
is said to be supersingular if it does not extend to the center of HR.M;M

0; WN 0/ via the
Satake homomorphism for any P ¤ G. As V is admissible, there exists some irreducible
representation W of K such that HomRŒG�.indG

K W; V / ¤ 0. If HomRŒG�.indG
K W; V / as

a module over the center of HR.G; K; W / contains an eigenvector with a supersingular
eigenvalue, V is called supersingular. This does not depend on the choice of .K; W /. For
R not algebraically closed, V is called supersingular if some admissible irreducible Rac-
representation V ac of G which is V -isotypic as an R-representation, is supersingular. This
does not depend on the choice of V ac (Henniart–Vignéras [106]).

ForG unramified andK hyperspecial, using the geometric Satake equivalence, Xin-
wein Zhu [209] identified the Hecke ring H .G; K/ with a ring associated to the Vinberg

43 The change of weight theorem is an isomorphism between two compactly induced represen-
tations.

44 This isomorphism for Sat0 is proved when G is split in Herzig [109], and in general in
Henniart–Vignéras [105].

45 This means that the image of SatM contains Ts and that its localization at Ts is
HR.M;M

0;WN 0 /.
46 Meaning that the map HR.M;M

0; VN 0 /˝HR.G;K;V / indG
K V ! indG

P .indM
M 0 VN 0 / is

bijective, if the kernel of V ! VN 0 contains kV .N op/0 for all k 2 K n P 0.P op/0.
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monoid of OG and formulated a canonical Satake isomorphism. He proved that the commu-
tative Z-algebra H .G; K/ is finitely generated. He extended his formulation to an Hecke
algebra HOE

.G;K;W / with weight a finite freeOE -moduleW arising from an irreducible
algebraic representation E ˝OE

W of G, where E=F is a finite extension.
For F of characteristic 0 and R a field of characteristic p, Claudius Heyer [112,

Theorem 4.3.2] defined a derived generalized Satake homomorphism.
For F of characteristic 0,G split,K hyperspecial andR D Z=paZ, a � 1, Niccolo

Ronchetti [167] established a Satake homomorphism for the derived Hecke Z=paZ-algebra of
.G;K/ (a graded associative Z=paZ-algebra whose degree 0 subalgebra is HZ=paZ.G;K/).
The relation with the Heyer derived Satake homomorphism is unclear.

12. Pro-p Iwahori Hecke ring

The Iwahori Hecke ring H .G; J / and the pro-p Iwahori Hecke ring H .G; QJ /

modulo isomorphism depend only on G, because the Iwahori subgroups of G are conju-
gate, as well as the pro-p Iwahori subgroups.

They are both natural generalizations of affine Hecke Z-algebras. We will focus on
the pro-p Iwahori Hecke ring which is more involved, that we will denote by H .G/, but all
the results apply to Iwahori Hecke rings with some simplifications.

Our motivation to study the pro-p Iwahori Hecke ring instead of the Iwahori Hecke
ring comes from the theory of mod p representations.47 Any nonzero mod p representation
of G has a nonzero QJ -fixed vector, and the pro-p radical of any parahoric subgroup of G is
contained in some G-conjugate of QJ .

For any commutative ring R, the pro-p Iwahori Hecke R-algebra HR.G/ D R˝Z

H .G/ is a specialization of the generic pro-p Iwahori Hecke RŒq��-algebra H .G/.q�; c�/

of G, introduced by Nicolas Schmidt [170, 171] when G is split (Vignéras [198] in general).
The q� are finitely many indeterminates and the finitely many c� 2 RŒq�� satisfy simple
conditions. The general principle is that one proves properties of the generic pro-p Iwahori
Hecke RŒq��-algebra by specializing all q� to 1, and then one transfers them to HR.G/ by
specialization.

Example. The affine Yokonuma–Hecke algebra defined by Maria Chlouveraki and Loic
Poulain d’Andecy is a generic pro-p Iwahori Hecke algebra (Chlouveraki and Sécherre [30]).

The main features48 of affine HeckeR-algebras generalize to the generic pro-p Iwa-
hori HeckeR-algebra, and by specialization to HR.G/. TheRŒq��-module H .G/.q�; c�/ is
free with an Iwahori–Matsumoto basis of elements satisfying braid relations and quadratic
relations, with “alcove walk bases” associated to the Weyl chambers. There are product for-

47 Flicker [69] studied the pro-p Iwahori Hecke complex algebra when G is unramified.
48 The Iwahori Matsumoto presentation, the Bernstein basis, the Bernstein–Lusztig relations,

the description of the center, and the geometric proofs of Görtz [78].
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mulas involving different alcove walk bases, and Bernstein–Lusztig relations from which
one deduces an explicit canonical RŒq��-basis of the center [196].

Finiteness properties of the pro-p Iwahori ring H .G/.

(i) The center Z.G/ of H .G/ is a finitely generated Z-algebra and H .G/ is a
finitely generated Z.G/-module.

(ii) Z.G/ contains a canonical subring ZT isomorphic to the affine semigroup Z-
algebra ZŒTC=T 0�, and the ZT -modules Z and H are finitely generated.

(iii) The elements of the Iwahori–Matsumoto basis49 of H .G/ are invertible in
ZŒ1=p�˝Z H .G/.

(iv) For any commutative ring R, the center of HR.G/ is ZR.G/ D R˝Z Z.G/.

For any field R, any simple HR.G/-module is finite dimensional by (i) and (iv) [101].
Xuhua He and Radhika Ganapathy [93] gave an Iwahori–Matsumoto presentation of

the Hecke ring H .G; Jn/ of the nth congruence subgroup Jn of J for any n 2 N>0.
For a standard parabolic subgroup P DMN , although HR.M/ is not contained in

HR.G/, there is a parabolic induction

indH.G/

H.M/
D�˝HR.M/ XG;P WModHR.M/!ModHR.G/; XG;P D indG

P

�
RŒ QJMnM�

�
of right adjoint HomHR.G/.XG;P ;�/ and of left adjoint a certain localization (hence the
left adjoint is exact, a surprise when p is not invertible in R as the functor .�/N for repre-
sentations is not exact). The parabolic induction and its right adjoint for the group and for
the pro-p Iwahori Hecke algebra correspond to each other via the pro-p Iwahori invariant
functors. The same holds true for the left adjoint functor if R is a field of characteristic dif-
ferent from p, but Abe gave a counterexample for G D GL.2;Qp/ and R of characteristic
p (Ollivier–Vignéras [154]). The parabolic induction is isomorphic to

indH.G/

H.P /
D �˝H.P / H .G/ W Mod HR.M/! Mod HR.G/;

where H .P / D ZŒ. QJ \ P /nG=. QJ \ P /� is the parabolic pro-p Iwahori Hecke ring of P
for two ring homomorphisms H .M/ H .P /! H .G/ (Heyer [111]).

For an algebraically closed fieldR of characteristicp and an irreducibleR-represen-
tation W of a special parahoric subgroup K containing QJ , an inverse Satake-type isomor-
phism

f W HR.Z
�; Z0;W U 0

/ Q!HR.G;K;W /

is obtained by composition of two natural algebra isomorphisms (Ollivier [149] when G is
split, Vignéras [200] in general). The first isomorphism is associated to a “good” alcove walk
basis

HR.Z
�; Z0;W U 0

/ Q!EndHR.G/

�
W

QJ
˝

HR.K; QJ / HR.G/
�
:

49 The Iwahori–Matsumoto basis of H .G/ is given by the characteristic functions of the
double cosets of G modulo QJ .
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The dimension of W QJ is 1. The second isomorphism

EndHR.G/

�
W

QJ
˝

HR.K; QJ / HR.G/
�
Q!HR.G;K;W /

is associated to a naturalHR.G/-module isomorphismW QJ ˝
HR.K; QJ / HR.G/ Q!.indG

KW /
QJ .

WhenG is split, f is the inverse of the generalized Satake isomorphism Sat0Z (Ollivier [149]).

13. Modules of pro-p Iwahori Hecke algebras over a field

in characteristic p

There is a numerical mod p local Langlands correspondence for the pro-p Iwahori
Hecke algebra of GL.n; F / (Vignéras [191]). The following two sets have the same (finite)
cardinality50:

(a) the isomorphism classes of the n-dimensional irreducible F ac
p -representations

of Gal.F ac=F / with a fixed value of the determinant of the action of a Frobe-
nius;

(b) the isomorphism classes of the supersingular simple modules HFac
p
.GL.n; F //

with a fixed action of pF embedded diagonally.

WhenF �Qp , this was significantly improved by Grosse-Kloenne [80,81]. He constructed an
exact and fully faithful functor from the category of finite length supersingular
HF

pd
.GL.n; F //-modules to the category of Fd

q -representations of Gal.F ac=F /, if
pd � q.51

We recall that the pro-p Iwahori Hecke ring H .G/ of G is a finitely generated
module over a central subring ZT ' ZŒTC=T 0�. A nonzero (right) HR.G/-module V is
called

ordinary if the action on V of any z 2ZT corresponding to a non-invertible element
of the semigroup TC=T 0 is invertible;

supersingular if for any v 2 V and any z 2 ZT corresponding to a non-invertible
element of TC=T 0, there exists n 2 N such that znv D 0.

Let R be an algebraically closed field of characteristic p.

Classification of simple HR.G/-modules. The supersingular simple HR.G/-modules are
classified (Vignéras [200]). The simple HR.G/-modules are classified in terms of the simple
supersingular HR.M/-modules for the Levi subgroups M of the parabolic subgroups of G
(Abe [6]; being algebraically closed is not necessary, see Henniart–Vignéras [106]):

For a standard parabolic subgroup P D MN of G and a simple supersingular
HR.M/-module W , there is a notion of extension eP 0.W/ of W to HR.M

0/ for a parabolic

50 Equal to the number of irreducible unitary polynomials of degree n in kF ŒX�.
51 F sep D F ac as the characteristic of F is 0.
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subgroupP 0 DM 0N 0 ofG containingP . There is a maximalP 0 with this property, denoted
byP.W/. For a parabolic subgroupQwithP �Q�P.W/, there is a generalized Steinberg
HR.M.W//-module

stP.W/
Q .W/ D indH.G/

H.Q/

�
eQ.W/

�
=

X
Q¨Q0�Q.W/

indH.G/

H.Q0/

�
eQ0.W/

�
:

The triple .P;W ;Q/ is called standard. The HR.G/-module

IH.G/.P;W ;Q/ D indH.G/

H.P.W//

�
stP.W/

Q .W/
�

is simple, and any simple HR.G/-module is isomorphic to IH.G/.P;W ;Q/ for some stan-
dard triple .P;W ;Q/ unique modulo G-conjugation. It is ordinary if and only if P D B .

Extensions. The extensions between simple HR.G/-modules

ExtiH.G/

�
IHR.G/.P1;W1;Q/; IH.G/.P2;W2;Q2/

�
; i � 0;

are either 0, or extensions between supersingular simple modules of a specialization of a
generic pro-p Iwahori Hecke algebra which is not of a pro-p Iwahori Hecke R-algebra
(Abe [2]). In more details, considering the central characters, the extensions are 0 ifP1 ¤P2.
When P D P1 D P2, following the construction of the simple modules, we have

ExtiHR.G/

�
IH.G/.P;W1;Q/; IH.G/.P;W2;Q2/

�
' ExtiHR.M 0/

�
stP

0

Q0
1
.W1/; stP

0

Q0
2
.W2/

�
for some P 0, Q0

1, Q0
2,

ExtiHR.G/

�
stGQ1

.W1/; stGQ2
.W2/

�
' Exti�r

HR.G/

�
eG.W1/; eG.W2/

�
for some explicit r 2 N�0, and using results of Ollivier–Schneider [150],

ExtiHR.G/

�
eG.W1/; eG.W2/

�
' ExtiHR.M/=I .W1;W2/

for some ideal I of HR.M/ acting on W1, W2 by 0. Abe computed explicitly Ext1 for two
supersingular simple HR.M/=I -modules.

. When G D GL.2; F /, Cédric Pépin and Tobias Schmidt proved:

(i) The 2-dimensional supersingular simple HFac
p
.G/-modules can be realized

through the equivariant cohomology of the flag variety of the dual group OG
over F ac

p [160].

(ii) There is a version in families of the Breuil’s semisimple mod p Langlands cor-
respondence for GL2.Qp/ [161].

(iii) There is a Kazhdan–Lusztig theory for the generic pro-p Iwahori Hecke ZŒq�-
algebra of G, where the role of OG is taken by the Vinberg monoid V OG

and
its flag variety; the monoid comes with a fibration V OG

! A1 and the dual
parametrization of HFac

p
.G/-modules is achieved by working over the 0-fiber.

They introduce a generic pro-p antispherical module and a generic pro-p Satake
homomorphism for a generic spherical Hecke ZŒq�-algebra [162].
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14. Representations over a field of characteristic p

In this section, R is a field of characteristic p. The admissible irreducible R-
representations of G are classified in terms of the supersingular admissible irreducible
R-representations of the Levi subgroups of G (Abe–Henniart–Herzig–Vignéras [8] for R
algebraically closed, Henniart–Vignéras [106] for R not algebraically closed).

Classification. The representation indG
P W parabolically induced from an irreducible admis-

sible supersingular R-representation W of a Levi subgroup M of a parabolic subgroup P
of G, has multiplicity 1 and irreducible subquotients

IG.P;W;Q/ D indG
P.W /

�
e.W /˝ StP.W /

Q

�
for the parabolic subgroups Q of G containing P and contained in the maximal parabolic
subgroup P.W / where the inflation of W to P extends to a representation e.W /, and

StP.W /
Q D .indP.W /

Q 1Q/=
X

Q¨Q0�P.W /

indP.W /
Q0 1Q0 :

Any irreducible admissible R-representation V of G is isomorphic to IG.P; W; Q/ for a
unique triple .P;W;Q/ modulo G-conjugation.

A similar classification holds true for the irreducible admissible genuine mod p
representations of the metaplectic double cover of Sp2n.F / (Koziol–Peskin [124]).

There is a complete description of indG
P W for any irreducible admissible R-

representation W of M [106]. As a corollary, one obtains generic irreducibility and for
any admissible irreducible R-representation V of G,

V supersingular , V cuspidal , V supercuspidal:

When F has characteristic 0, the higher duals .S i .IG.P;W;Q///i�0 are computed
in terms of .S i .W //i�0 in a few cases (Kohlhaase [117]).

The extensions between R-representations indG
P W of G, parabolically induced

from supersingular absolutely irreducibleR-representationsW of Levi subgroups, are com-
puted in many cases when G is split and R finite (Hauseux [86,87,89,90]).

When P D B , the irreducible subquotients of indG
B W are called ordinary. An

admissible R-representation of G with ordinary irreducible subquotients is called ordinary.
The QJ -invariant functor induces an equivalence between the category of finite length

ordinary R-representations of G generated by their QJ -invariant vectors and the category of
the finite length ordinary HR.G/-modules, assuming R algebraically closed (Abe [5]).

The pro-p Iwahori invariant IG.P; W;Q/
QJ is computed and depends only on the

pro-p Iwahori invariant W QJM (Abe–Henniart–Vignéras [9,10]).
The supersingular admissible irreducible R-representations V of G are not under-

stood, this remains an open crucial question for two decades and a stumbling block for
the search of a mod p or p-adic local Langlands correspondence if G ¤ GL.2;Qp/. The
supersingularity can be seen on the pro-p Iwahori invariants (Ollivier–Vignéras [154] for
R algebraically closed, but being algebraically closed is not necessary Henniart–Vignéras
[106]):
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V is supersingular, V
QJ is supersingular, some nonzero subquotient of V QJ is

supersingular.
The classification of simple supersingular HR.G/-modules does not help because

we do not have enough information on the pro-p Iwahori invariant functor.
When G D GL.2;Qp/, Breuil [16] relying on the work of Barthel–Livne classified

the supersingular admissible irreducible mod p representations. This was the starting point
of the mod p local Langlands correspondence for GL2.Qp/. There are two main novel fea-
tures. The mod p local Langlands correspondence involves reducible representations and
extends to an exact functor from finite length representations of GL2.Qp/ to finite length
representations of Gal.Qac

p =Qp/.
WhenG ¤GL.2;Qp/, supersingular admissible irreducible mod p representations

are classified only for some groups close to GL.2;Qp/: for SL.2;Qp/ (Abdellatif [1], Cheng
[27]), and for the unramified unitary group U.1; 1/.Q2

p=Qp/ in two variables (Koziol [118]).
When F ¤ Qp , there can be many more supersingular admissible irreducible mod p rep-
resentations of GL.2; F / than 2-dimensional irreducible representations of Gal.F sep=F /

(Breuil–Paskunas [19]); they cannot be described as quotients of a compact induction by a
finite number of equations (Hu [115] if F � Fp..T //, Schraen [176] if F=Qp is quadratic, Wu
[204] in general if F © Qp).

When R is a field of characteristic p and F � Qp , Herzig–Koziol–Vignéras [110]

proved that any G admits a supersingular admissible irreducible R-representation, using a
local method of Paskunas [155] if the semisimple rank rG of G is 1, and a global method if
rG > 1. The existence is not known if F � Fp..T //.

There have been recent advances which strongly suggest that the study of mod p
representations of G is best done on the derived level. When R is a field of characteristic p,
Schneider [172] introduced the unbounded derived categoryDR.G/ of R-representations of
G. When QJ is torsion free (this forcesF to be of characteristic 0),DR.G/ is equivalent to the
derived category of differential graded modules over a differential graded version HR.G/

�

of the pro-p Iwahori Hecke R-algebra of G, by the derived QJ -invariant functor.
The parabolic induction indG

P W ModR.M/ ! ModR.G/ being exact extends to
an exact derived parabolic induction R indG

P W DR.M/! DR.G/ between the unbounded
derived categories. The total derived functor of RG

P is right adjoint to R indG
P . The category

DR.G/ has arbitrary small direct products andR indG
P commutes with arbitrary small direct

products (Heyer [112]), henceR indG
P has a left adjoint.52 When QJ is torsion free, the functor

R indG
P corresponds to the derived parabolic induction functor on the dg Hecke algebra side,

via the derived QJ -invariant functor (Sarah Scherotzke and Schneider [169]).
The Kohlhaase duality functors are related to the derived duality functor

RHom.�; R/ (Schneider–Sorensen [173]).
The cohomology algebra Ext�ModR.G/.RŒ

QJ nG�; RŒ QJ nG�/ is simpler than of
HR.G/

�; when G D SL.2;Qp/, p � 5, its structure is explicited by Ollivier and Schneider
[152,153].

52 By Brown representability; Heyer [112] gave another proof.
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15. Local Langlands correspondences for GL.n;F /

The complex local Langlands correspondence for GL.n; F / is a bijection between
the isomorphism classes of irreducible complex representations of GL.n; F / and the iso-
morphism classes of n-dimensional Weil–Deligne complex representations, given by local
class field theory when n D 1, and characterized by the requirement that the L and "
factors53 attached to corresponding pairs of complex representations coincide (Henniart
[100]). An n-dimensional Weil–Deligne complex representation is a pair .�; N / where �
is an n-dimensional Frobenius semisimple complex representation of the Weil group WF

and N 2 EndC � is a nilpotent endomorphism satisfying �.w/N�.w/�1 D qjwjN for all
w 2 WF .54 The supercuspidal irreducible C-representations of GL.n; F / correspond to the
n-dimensional irreducible C-representations of WF .55

A twist of the correspondence by an unramified complex character of GL.n; F / is
compatible with the automorphisms of C. For a prime r , an isomorphism C 'Qac

r transfers
the twisted complex local Langlands correspondence to a local Langlands correspondence
for Qac

r -representations of GL.n; F /. For r D ` ¤ p, the nilpotent part is related to the
action of the tame inertia group on an `-adic representation of WF . By reduction modulo
` of the `-adic local Langlands correspondence composed with the Zelevinski involution
on `-adic representations of GL.n;F /, one obtains a `-modular local Zelevinski correspon-
dence. The `-modular local Zelevinski correspondence is a parametrization for `-modular
irreducible representations of GL.n; F / by n-dimensional Weil–Deligne `-modular repre-
sentations, defined as above with F ac

`
instead of C. The supercuspidal irreducible `-modular

representations of GL.n; F / correspond to the n-dimensional irreducible `-modular repre-
sentations of WF . But the nilpotent part N of the Weil–Deligne `-modular representation
has no obvious Galois interpretation.

Dat [43–45] obtained a geometric realization of the `-adic local Zelevinski corre-
spondence and of the `-modular local Zelevinski correspondence on the unipotent56 irre-
ducible F ac

`
-representations of GL.n; F / when the order of q in F�

`
is at least n [42],57 and

when q � 1 mod ` and ` > n [46].58

Kurinczuk and Matringe [127–130], extended to `-modular representations the
Rankin–Selberg local constants of Jacquet, Piatetski-Shapiro, and Shalika of pairs of com-
plex generic representations of linear groups, and the Artin–Deligne local constants of pairs
of complex Weil–Deligne representations. These local constants are preserved by the com-
plex local Langlands correspondence, but not by the `-modular local Zelevinski correspon-
dence. Enlarging the space of `-modular Weil–Deligne representations to representations
with not necessarily nilpotent operators, they suggested a `-modular local Langlands cor-

53 For a fixed nontrivial C-character of F .
54 jwj is the power of q to which w raises the elements of the residue field kF .
55 N D 0.
56 D in the principal blockD subquotients of some IndG

B .�/ for � an unramified character of a
Borel subgroup B , this is not the definition of Lusztig.

57 The regular case.
58 The limit case.

359 Representations of p-adic groups over commutative rings



respondence compatible with the formation of local constants and characterized by a list
of natural properties. When R is a noetherian W.F ac

` /-algebra, using the Rankin–Selberg
functional equations, Matringe and Moss [138] proved that an R-representation of GL.n;F /
of Whittaker type admits a Kirillov model.

When the characteristic of F is 0, Breuil and Schneider [20] motivated by an hypo-
thetical p-adic extension of the local Langlands correspondence, suggested a modified local
Langlands correspondence where the complex representations of GL.n; F / are no more
irreducible. The Langlands quotient theorem realizes an irreducible C-representation V of
GL.n;F / as a quotient of a certain parabolically induced representation indG

P W . In the mod-
ified version, V is replaced by a twist of indG

P W by an unramified character of GL.n; F /.
When the characteristic ofF is 0, Emerton and Helm [62] motivated by a local Lang-

lands correspondence in families and by global contexts, introduced the generic `-adic local
Langlands correspondence which has useful applications to the cohomology of Shimura
varieties. For any finite extensionE=Q`, it is a map � 7! �.�/ from n-dimensional continu-
ousE-representations of the Galois group Gal.F ac=F / to finite lengthE-representations of
GL.n; F / with an absolutely irreducible generic socle and no other generic irreducible sub-
quotients.59 Each �.�/ contains a GL.n;F /-stableOE -lattice �.�/o of reduction having an
absolutely irreducible socle and no other generic subquotients, unique modulo homotethy.

The generic mod ` local Langlands correspondence (Emerton–Helm [62]) is com-
patible with the generic `-adic local Langlands correspondence by reduction modulo `.
Irreducible representations of GL.n;F / are no longer irrreducible, Weil–Deligne representa-
tions are now Galois representations, and the Zelevinski involution does not intervene. For a
finite extensionR=F`, it is the unique map � 7! �.�/ from n-dimensionalR-representations
of Gal.F ac=F / to finite length R-representations of GL.n; F / such that

(1) �.�/ has an absolutely irreducible generic socle and no other generic irreducible
subquotients,

(2) For all finite extensionsE=Q` of ring of integersOE and residue field kE con-
tainingR, and continuous representation � W Gal.F ac=F /! GL.n;OE / lifting
�˝R kE , the reduction of �.�/o60 embeds in �.�/˝R kE .

(3) �.�/ is minimal with respect to the above two conditions.

For GL.2; F /, the correspondence is fairly concrete and explicit when ` ¤ 2 (Helm [95]).
Emerton and Helm [99] introduced also a notion of a local Langlands correspon-

dence in families.61 For any suitable complete local noetherean algebraR with finite residue
field k, it is the unique map � 7!�.�/ from the continuous representations � WGal.F ac=F /!

GL.n;R/ to the admissibleR-representations of GL.n;F / that interpolates the generic local

59 It is a slight modification of the Breuil and Schneider correspondence transferred to `-adic
representations; the socle of V is the maximal semisimple subrepresentation of V .

60 � identifies with a representation Gal.F ac=F /! GL.n;E/.
61 For an example of a local p-adic Langlands correspondence in families for GL.2;Qp/, see

Ildar Gaisin and Joaquin Rodrigues Jacinto [70].
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Langlands correspondences over the points of SpecR and satisfies certain technical hypothe-
ses.

The existence of the map amounts to showing that whenever there is a congruence
between two `-adic representations of Gal.F ac=F /, there is a corresponding congruence on
the other side of the `-adic generic local Langlands correspondence. The key idea of the
proof is the introduction of the Bernstein center Z of ModZac

`
.GL.n; F // (Helm [96–98]),

which encodes deep information about congruences between integral Qac
`

-representations of
GL.n;F /. For instance, if two integral irreducible Qac

`
-representations of GL.n;F / become

isomorphic modulo `, then Z acts on these representations by scalars congruent modulo `.
When G is quasisplit, motivated by a local Langlands correspondence in families,

Dat, Helm, Kurinczuk, and Moss [51] studied the scheme of Langlands parameters of G
with coefficient the smallest possible ring R D ZŒ1=p�. In particular, this allows studying a
chain of congruences of Langlands parameters modulo several different primes. In a work in
progress, they extend the Emerton–Helm–Moss local Langlands correspondence in families
to a conjecture which asserts the existence of isomorphisms between

(a) the center of ModZŒq�1=2�.G/,

(b) the ring of functions on the moduli stack of Langlands parameters62 for G over
ZŒq�1=2�,

(c) the descent to ZŒq�1=2� of the endomorphisms of a Gelfand–Graev representa-
tion of G.

They prove the conjecture when G is any classical p-adic group after inverting an integer.
The conjecture should follow from a Fargues–Scholze conjecture [65, I.10.2].63

The blocks in the category of ZacŒ1=p�-representations ofG of depth 0 are in natural
bijection with the connected components of the space of tamely ramified Langlands param-
eters for G over ZacŒ1=p�; there is only one block (the category is indecomposable) if G is
semisimple and simply connected, or unramified (Dat–Lanard [53]).

When the characteristic of F is 0, the p-adic local Langlands correspondence for
GL.n;F / is a hypothetical correspondence between continuous unitaryE-Banach space rep-
resentations of GL.n; F / and n-dimensional continuous E-representations of Gal.F ac=F /,
for any finite extension E=Qp , given by local class field theory when n D 1. Using global
methods, Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Paskunas,
and Sug Woo Shin [26] constructed a candidate when p does not divide 2n. For F DQp and
n D 2, it coincides with the p-adic local correspondence envisioned by Breuil 20 years ago,
constructed by Pierre Colmez [33], and analyzed by Paskunas [157], Colmez, Dospinescu,
Paskunas [35].

62 Constructions of moduli spaces of Langlands parameters have been also proposed
by Fargues and Scholze ([65] over Z`; ` ¤ p using the condensed mathematics of
Clausen–Scholze) and by Xinwen Zhu [208]. The local Langlands correspondence is now
conjectured to exist at a categorical level (Denis Gaitsgory [71]).

63 Private communication of Dat.
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When n � 2 and Dn is the central division algebra over F of invariant 1=n,
Scholze [175] constructed a candidate for a p-adic and mod p Jacquet–Langlands corre-
spondence from GL.n; F / to D�

n in a purely geometric way, using the cohomology of the
infinite-level Lubin–Tate space. The mod p Jacquet–Langlands correspondence is a canon-
ical map from the admissible mod p representations of GL.n; F / to the admissible mod p
representations of D�

n having a continuous action of Gal.F ac=F /. For F D Qp and n D 2,
it is studied by Dospinescu–Paskunas–Schraen [54].

16. Gelfand–Kirillov Dimension

Let R be a field and V an irreducible admissible R-representation of G. For any
decreasing sequence .Ki /i�1 of open compact subgroups of G with limit the trivial group,
the dimensions dimR V

Ki for i � 1 are finite. If V is finite dimensional, dimR V
Ki D dimR V

when i is large enough. Generally, the dimension of V is infinite and the increasing sequence
.dimR V

Ki /i�1 tends to infinity, but how?
When F has characteristic 0, one can choose an OF -lattice L of the Lie algebra G

ofG on which the exponential map exp is defined and such thatK D exp.L/ is a group, and
consider the decreasing sequence .Ki D exp.p2i

F L//i�1. WhenRDC, the Harish-Chandra
local character expansion of V implies that dimR V

Ki eventually becomes polynomial64

dimR V
Ki D PL;V .q

i /; PL;V .X/ 2 QŒX� for i large enough.

The degree dV of the polynomial PL;V ŒX� does not depend on the choice of L. It is half the
dimension of a unipotent conjugacy class in G,

0 � dV � dimF U;

and is 0 if and only if V is finite dimensional. The integer qdV measures the growth of
.dimR V

Ki /i�1 for any choice of L.
ForF of either characteristic 0 orp, whenGDGL.n;F /,Ki D 1Cp

iC1
F M.n;OF /

for i � 1, if R D C, the Roger Howe local character expansion implies that the dimensions

dimR V
Ki D PV .q

i /; PV .X/ 2 ZŒX�

are polynomial when i is large, for a polynomialPV .X/with integral coefficients and degree
dV � n.n � 1/=2. When V is cuspidal (or more generally, generic), dV D n.n � 1/=2.

Example. For GL.2; F /, V is infinite dimensional if and only if dV D 1.

Any cuspidal irreducible `-modular representation V of GL.n; F / lifts to an irre-
ducible cuspidal `-adic representation, implying that the dimensions dimR V

Ki satisfy the
same properties. This is probably true for any irreducible representation of GL.n; F / over
any field R of characteristic `.65

64 Harish-Chandra, Notes by Stephen DeBacker and Paul J. Sally, Admissible invariant distri-
butions on reductive p-adic group, University Lecture Series Vol. 16, 1999, 97 pp.

65 Article in preparation.
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For a finite fieldR of characteristic p,G DGL.2;Qp/ and V admissible absolutely
irreducible, Stefano Morra [144] computed dimR V

Ki for i � 1. The dimensions satisfy the
above properties.

For F of characteristic 0,R a finite field of characteristic p,K a uniformly powerful
open pro-p subgroup ofG,Ki the closed subgroup ofK generated by ¹kpi

; k 2Kº for i � 1,
and V an admissible R-representation of G, there is a positive integer ıV not depending on
the choice ofK and positive real numbers a� b such that (Calegari–Emerton [24], Emerton–
Paskunas [64], Dospinescu–Paskunas–Schraen [54]):

apiıV � dimR V
Ki � bpiıV :

The integer ıV which is a sort of Iwasawa dimension of the dual of V , is called the Gelfand–
Kirillov dimension of V . When F=Qp is unramified, the admissible R-representations V of
GL2.F / studied by Breuil–Herzig–Hu–Morra–Schraen [18] in mod p cohomology satisfy
ıV D ŒF W Qp�. If V is isomorphic to IG.P;W;Q/, we have66

ıIG.P;W;Q/ D ıW C dimQp NQ;

where NQ is the unipotent radical of the parabolic subgroup Q of G.
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