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Abstract

While the author is a professional mathematician, he is by no means an expert in the sub-
ject area of these notes. The goal of these notes is to share the author’s personal excitement
about some results of Hugo Duminil-Copin with mathematics enthusiasts of all ages, using
maximally accessible, yet precise mathematical language. No attempt has been made to
present an overview of the current state field, its history, or to place this narrative in any
kind of broader scientific or social context. See the references in Section 5 for both profes-
sional surveys and popular science accounts that will certainly give the reader a broader
and deeper understanding of the material.
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Phase transitions are dramatic physical phenomena. A physical system undergoing
a phase transition may exhibit large spatial fluctuations, a detailed understanding of which
presents an important challenge to physicists and mathematicians alike. Thanks to Hugo
Duminil-Copin and his collaborators, the recent years saw a great progress in our under-
standing of the phase transition in the 3-dimensional Ising model, perhaps the most famous
model of mathematical statistical physics.

The goal of these notes is to explain an introductory portion of this progress to
the broadest possible audience of mathematics enthusiasts. Before we get to say anything
of substance about the new results, there is a certain amount of language to develop and
background to review.

1. Mathematics and physics

Mathematics provides the universal language of science. While human languages
have words that describe natural phenomena, they lag far, far behind the language of mathe-
matics in their precision and predictive power. It is easy to fill a sizable volume with quotes
to this effect from the most prominent scientists of all epochs.1

Wouldn’t the task of writing these notes be really simple if mathematics were only a
language? There would probably be usable automatic translation available at a click. In fact,
it is a very common request to translate from mathematics to a natural language.2 Richard
Feynman, in particular, talks about it in the second of his 1964 lectures about the Character
of Physical Law.3

While mathematics has its special words and symbols, as well as grammatical rules
that govern what is the correct logical use of these symbols and what is not, the real treasure
of mathematics is the much deeper level of understanding that this language empowers. By
defining the boundaries of precise reasoning, and removing all other boundaries between
ideas, mathematics allows humans to use the most inventive and unexpected mathematical
constructions and arguments to discover deep truths about the world around us. Instead of
being lost in the confusing woods of natural languages, mathematics makes it possible for
our thought to fly safely.

These notes are about mathematical physics, the field where mathematics and
physics come together. A mathematical physicist starts by defining her or his object of

1 Gibbs measures, named so in honor of J. Willard Gibbs (1839–1903), will play the central
role in our narrative. Gibbs is remembered as very unsociable and the only words he ever
said in the Yale faculty meeting were Mathematics is a language. See the biography [30] of
Gibbs by Muriel Rukeyser. She also wrote a poem about Gibbs inspired by this quote.

2 In the narrator’s personal experience, good progress in science often happens when trying to
answer the opposite question, namely, can you translate what you just said to mathematics?

3 Feynman says, in particular, this about translating mathematics: But I do not think it is pos-
sible, because mathematics is not just another language. Mathematics is a language plus
reasoning; it is like a language plus logic. Mathematics is a tool for reasoning. It is in fact a
big collection of the results of some person’s careful thought and reasoning. By mathematics
it is possible to connect one statement to another.
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study, introducing a mathematical object that captures some essential features of one or
many physical phenomena. One calls it a model, which, unlike many other words used by
mathematicians, is a term that stays fairly close to its meaning in natural languages. Having
defined a model, a mathematical physicist is free to be arbitrarily creative in her or his choice
of mathematical tools to study this model. This investigation is going through all the natural
stages of research in mathematics: one asks precise questions, considers examples, formu-
lates conjectures, obtains partial results, and, as a proof of having achieved a really good
understanding of the model, one can prove mathematical theorems about it.

For example, in his Mathematical Principles of Natural Philosophy, Newton intro-
duced differential equation as a mathematical language to describe the motion of celestial as
well as terrestrial bodies. This gives him a model for motion of planets around the sun. In
the approximation that ignores the mutual attraction of the planets, he then mathematically
proves the planets follow Kepler’s empirical laws of planetary motion.

The language and models evolve. Each chapter in that great book of the Universe to
which Galileo refers4 in Il Saggiatore is written in a new mathematical language that has to
be discovered every time. Newtonian mechanics is an approximation that is good at model-
ing some phenomena but not others. Quantum mechanics had to be created to describe the
behavior of molecules, atoms, and other tiny constituents of the universe. Statistical physics
had to be created to describe phenomena in which the myriads of particles that form planets
and other macroscopic objects do not just move as one, but instead create very complex pat-
terns and materials through spatial interactions. The actual mathematics used in each case
is very different. The Ising model, which will be our focus of attention in this narrative, is
perhaps the most famous model of statistical physics.

A question often asked about mathematical physics is: where is the boundary
between mathematics and physics in it? In the personal view of this narrator, there is no
boundary.5 It is a really joint endeavor between mathematics and physics, where each side
contributes something extremely important. Among other things, physics provides invalu-
able intuition, rooted in laboratory and numerical experiments, as well as parallels and
correspondences that extends across different branches of physics. These can guide mathe-
matics at any of the research stages discussed above. For mathematical physicists, following
the logic of the subject is much more important than departmental affiliation. For instance,
the first truly amazing mathematical result about the Ising model was obtained by Lars
Onsager, the winner of the 1968 Nobel Prize in chemistry. In the narrator’s personal expe-
rience, physicists are very proud when they find a mathematical proof and mathematicians
are very proud when they discover a good physical explanation.

4 Philosophy is written in this grand book, which stands continually open before our eyes
(I say the ‘Universe’), but cannot be understood without first learning to comprehend the
language and know the characters as it is written. It is written in mathematical language, and
its characters are triangles, circles and other geometric figures, without which it is impos-
sible to humanly understand a word; without these one is wandering in a dark labyrinth.

5 If it really exists, the boundary is as diffuse as the boundary in (1).
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It is fitting to end this quotation-filled section with a quote from the hero of these
notes Hugo Duminil-Copin: “Mathematical Physics gathers everything I always dreamt of
as a researcher: it satisfies my curiosity to understand the physical world in which we live,
and it rewards the mathematicians with beautiful and elegant rigorous proofs.”

2. The Ising model

2.1. Stuff fluctuates in space
It is good to have a picture in mind as we discuss the definition of the Ising model.

Here is one, a simulation by Stanislav Smirnov. Its meaning will be made clear gradually.

(1)

Clearly, this is something random. The language of statistical physics is based on randomness
and probabilities.

Our world is fundamentally random. In statistical physics randomness is introduced
from the very beginning.6 From the very beginning, statistical physics talks about the prob-
abilities for a physical system to be in such or such state.

Very importantly, the randomness in the figure of (1) happens in space, here a 2-
dimensional space. In other words, in (1) we have a random spatial pattern. Note that while
obviously complex, this pattern is not pure noise. We see a very diffuse boundary between
black and white, with many islands or lakes of one color inside another. These have intricate
shapes and may be nested, that is, there can be an island on a lake in the middle of a larger
island on a larger lake, etc.

People are usually introduced to probability theory through coin tosses, rolls of
dice, and similar random events that have a few possible outcomes and no spatial structure.

6 In quantum mechanics, randomness is also present from the very beginning. In principle,
Newtonian mechanics makes exact predictions about the behavior of its models. How-
ever, for systems of large size and complexity, think Avogadro number, many billiard balls
bouncing off each other, these predictions are so complicated as to be effectively random.
This is the subject of ergodic theory, the development of which was very much stimulated
by the quest to see statistical physics emerge from Newtonian mechanics.
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Successive games of chance and similar data sets (think stock prices, air temperature, etc.)
produce random time series like that in (2). These have a 1-dimensional structure to it. They
are like beads threaded by the axis of time. In probability theory, these are known as random
processes.

(2)

Statistical physics really starts in dimension 2 or larger, studying random objects fluctuating
in the corresponding number of dimensions. Importantly, the behavior of the Ising model
(and most models of statistical physics) very strongly depends on the dimension. The Ising
model is dull in dimension 1, very interesting in dimensions 2 and 3, and regresses to the
generic, and hence not as exciting,7 Gaussian behavior in dimensions � 4.

Many past glorious mathematical successes of statistical physics concern the 2-
dimensional Ising model. While we will say a few words about it, our goal in this narrative is
to report on the great recent progress in our physical dimension 3 achieved by HugoDuminil-
Copin and his collaborators. This will come in due course. We have not defined the Ising
model, yet.

2.2. A lattice in space
While it is good to imagine that a random process like that in (2) happens in con-

tinuous time, the actual data (a stock is traded, air temperature is recorded, etc.) comes in
discrete bits. It makes both mathematical and practical sense to similarly discretize the space
in which the Ising model will live.

Mathematically, instead of having a random object defined for all points of the d -
dimensional space Rd , it will be defined only on the vertices of the d -dimensional cubic
lattice ƒ, like in the figure of (3).

(3)

7 It still takes very exciting mathematics and lots of deep ideas to prove the behavior is Gaus-
sian in dimensions d � 4.
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Let " denote the mesh size of this lattice. Then the vertices of the lattice are the points whose
coordinates are integer multiples of ", that is,

vertices.ƒ/ D "Z3
D

®
."n1; "n2; "n3/

¯
� R3; (4)

where n1; n2; n3 2 Z are integers. We will use the words “lattice vertex” and “lattice point”
interchangeably.

From the human scale point of view, we should imagine " is vanishingly small, like
the atomic scale. So, on the human scale, ƒ is very dense. But from the atomic scale point
of view, we can take " D 1. For an infinite lattice, both points of view are mathematically
completely equivalent.

2.3. Signs on a lattice
Now it is time to assign some fluctuating degrees of freedom to the vertices of the

lattice. In the Ising model, one makes the simplest possible binary choice. That is, at every
vertex v 2 ƒ, there is a random variable �.v/ that can take two possible values. The reader
may choose any name she or he likes for these values: black/white, blue/red, 0/1, ˙1, etc.
We will stick to the convention that

�.v/ D ˙1; (5)

and we will call these variables’ signs. For historical reasons, they are normally called spins,
which may be rather confusing for those familiar with spins and not familiar with the history
of the Ising model. One advantage of (5) over 0/1 and other choices is that it stresses the
symmetry between two possibilities. This symmetry is very important in the Ising model.

Minimalistically, a fragment of a configuration of the 2-dimensional Ising model
may be represented like this:

C � C � C

C C C C �

� � C C �

� � � � C

(6)

Ising, and his adviser Lenz, created the model as a model of ferromagnetism, and they imag-
ined a miniature magnet at every site of a lattice pointing in one of two possible directions.
For them, (6) represented something like this:

(7)
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As it typically happens in mathematics, physics, and elsewhere, once introduced, mathemat-
ical models live their own life and follow their own logic. In particular, they may be used to
understand phenomena that are very different from the originally envisioned applications.

History often preserves the context where people first stumble upon an important
discovery. For instance, the mineral bauxite, the world’s source of aluminium, is named after
the village of Les Baux where it was first described by P. Berthier in 1821. In the Earth’s
crust, it occurs mainly in places that are very far away from Provence and its current uses are
probably very far from what Berthier could have envisioned.

2.4. Probabilities and energy
A common misconception about probability theory is that all possible outcomes

of a random event are equally probable. While this is a good approximation for coin tosses
and dice rolls, this would not be a very interesting assignment of probabilities in the Ising
model. Indeed, if all signs were equally likely, the picture in (1) would be pure noise, indis-
tinguishable from the noise introduced by the structure of the paper or the printing process.
In particular, there would be no spatial structure to it, as it would be a collection of indepen-
dent random bits, not affected by each other in any way. If they do not feel each other, they
can be rearranged arbitrarily and hence there cannot be any significance to their particular
spatial arrangement.

Ludwig Boltzmann and Willard Gibbs, the early architects of statistical physics,
understood the connection between probabilities and energy. Energy is a central concept in
physics which appears in the Newtonian, quantum, and statistical physics in slightly different,
but compatible incarnations. Informally, it is supposed to be a universal equivalent that, just
like ordinary human money, determines the intensity of any physical process. While people
may have different attitudes towards money, energy is certainly making the physical world
go round.

Without plunging into economic or metaphysical depths, mathematically energy is
just a function

¹configurations C of signs �º
Energy

��������! R; (8)

that will be used to assign probabilities to configurations. Boltzmann and Gibbs understood
that, in equilibrium, the probability of any configuration decays exponentiallywith its energy.
To put these words into a formula, we have

Prob.C / D
1

Z.T /
exp

�
�
Energy.C /

T

�
: (9)

In this formula, we have two proportionality coefficients T and Z.T / that both deserve a
comment. Let us start with T .

Only dimensionless numbers make sense inside the exponential, but energy has
physical dimension, namely

Œenergy� D Œmass�Œlength�2Œtime��2; (10)

as exemplified by the familiar 1
2
mv2 formula for the kinetic energy in the Newtonianmechan-

ics. Therefore, we need a dimensional constant T to convert energy into dimensionless
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numbers. The constant T determines how fast probability decays with energy. Intuitively,
it sets the scale of energy fluctuations. From

Prob.C1/

Prob.C2/
D exp

�
Energy.C2/ � Energy.C1/

T

�
; (11)

we see that two configurations C1 and C2 make a comparable contribution only if the differ-
ence of their energies is not much larger than T .

From purely mathematical perspective, (9) may be taken as a definition of a statis-
tical equilibrium, which depends on a constant T � 0 called the temperature.8

The coefficient Z.T / is defined so that the probabilities of all possible configura-
tions C sum to 1. This is an interesting function of T which, for historical reasons, is often
called the partition function. Note that if we shift the energies of all configurations by the
same constant E0, then Z.T / gets a factor of e�E0=T and the probabilities do not change. In
other words, only energy differences are important in (9). This is also clear from (11).

The case T D 0, interpreted using e�1 D 0, means the absolute zero temperature:
only energy-minimizing configurations occur, and they are all equally likely.

2.5. Energy vs. entropy
The dramatic plot of statistical mechanics is the competition between energy and

entropy. Formula (9) gives preference to energy-saving configurations. They may each have
a relatively large probability, but there are typically not so many of them. Having a close-to-
minimal energy is a special property that most configurations will fail. But the competitive
advantage of most configurations is that there are many of them.

To make a mathematical question out of this, we can ask how is the energy dis-
tributed in the system described by (9)? The value of the energy in a random state of the
system is a random variable, so it is a fair question. Anticipating the fact that in a system of
large size the energy will scale linearly with a suitably defined volume V of the system, it is
better to look at energy E per unit volume. One defines its entropy by

S.E/ D
1

V
ln

�
number of states with

Energy
V

D E

�
: (12)

Here, again, we normalize the logarithm by the volume V because we expect the counts of
different possible states of the system to grow exponentially with the volume V . An equiva-
lent of (12) is inscribed on Boltzmann’s tombstone in Vienna’s Zentralfriedhof.

8 While (9) is a definition, it is still worth explaining why T is called temperature. Imagine
two systems in equilibrium at temperatures T1 and T2, respectively, which can exchange
energy but otherwise do not interact. So, the configurations of the combined system are
pairs .C1; C2/ and

Prob
�
.C1; C2/

�
D Prob.C1/ Prob.C2/; Energy

�
.C1; C2/

�
D Energy.C1/ C Energy.C2/:

From (9) the combined system is in equilibrium if and only if T1 D T2. It thus suffices to
check that (9) agrees with any other definition of a temperature for any one standard system,
such as the ideal gas. Note that many thermometers work by putting some standard probe in
contact and equilibrium with the system in question.
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Formula (12) is a definition, like formula (9). From these definitions, we conclude

Prob
�
Energy

V
D E

�
D

1

Z.T /
exp

�
V

T

�
�E C TS.E/

�„ ƒ‚ …
maximize

�
; (13)

where we hid the inessential proportionality factor in gray.
When V is very large, only those energies that minimize E � TS.E/, a quantity

known as free energy, will be observed in the system, not those that simply minimize E.
The character of this minimum depends on the temperature. For T D 0, only the energy
counts, and we get strict energy minima. For T D 1, energy means nothing and entropy
decides. For other values of T , both energy and entropy count, in different proportions. We
will see this principle in action in the Ising model.

2.6. Interactions in the Ising model
Now it is time to specify the energy function in the Ising model. Let C be a config-

uration of signs. We can write it as a function

� W ƒ ����! ¹˙1º; (14)

assigning each vertex v 2 ƒ a sign. When mathematicians talk about a function � , they
write �.v/ to denote its value at the argument v, and use the symbol � to denote the “whole”
function. A configuration in the Ising model is a function (14) and we do not need another
symbolC to denote it. What we need is to assign a number to it that will be called Energy.�/.

The spatial structure of the lattice will be taken into account by declaring that only
neighboring signs interact. That is,

Energy.�/ D

X
edges v–v0

E
�
�.v/; �.v0/

�
; (15)

where the edges are the edges in the lattice (3), the vertices v and v0 are the two endpoints
of a given edge, and E.˙1; ˙1/ is some interaction energy of the neighboring spins to be
specified momentarily.

Note that all edges contribute equally to (15), no matter where in the lattice they
occur and in which of the coordinate directions they are pointing. In other words, the inter-
actions in (15) are as homogeneous and as isotropic as the presence of a lattice in space
allows.

It remains to specify 4 numbers E.˙1; ˙1/. Since we want plus and minus to be
symmetric, we need to have

E.1; 1/ D E.�1; �1/; E.1; �1/ D E.�1; 1/;

where the latter equality also follows from the symmetry of the interaction between two
neighbors. Recall that the overall shift of energy changes nothing and note that the overall
scale of energy is equivalent to rescaling the temperature. In the end, there are no meaningful
free parameters left, and we can set

E
�
�.v/; �.v0/

�
D ��.v/�.v0/: (16)
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The minus sign here means that signs lower the energy by being equal.9 In other words, the
function (14) likes to be a constant function, or the spins in (7) like to be pointing in the same
direction. This desire, however, is not expressed globally, but only through local interaction
of each sign with its immediate neighbors.

A careful reader may have been worried for a long time by the sum in (15) being an
infinite sum of ˙1’s for the infinite cubic lattice ƒ. This worry is well justified and related
to some core mathematical and physical issues. We will devote many pages below to dealing
with it carefully. For now, let us replace the infinite lattice ƒ by any finite piece of it or any
finite graph. Then (15) is a finite sum, the probabilities in (9) are well-defined, and we have
defined the Ising model in finite volume.

2.7. Clusters and interfaces
Grouping together neighboring vertices of the same sign, we get clusters of pluses

and minuses, as in the following figure:

C � C � C

C C C C �

� � C C �

� � � � C

(17)

The boundary between the clusters is the interface between pluses and minuses. It is a .d �

1/-dimensional object glued out of sides of a unit square/cube, so a path for d D 2, a surface
for d D 3, etc. One component of the interface is highlighted in the figure of (1). For d D 3,
the interface may look something like (48) in Section 3.3.3.

From (15) we have

Energy.�/ D constC2Area.interface/; (18)

where area (or length) is the .d � 1/-dimensional lattice area, meaning that each side of
the unit cube has area 1. This means that the Ising model can be interpreted as describing a
fluctuating lattice interface, where the energy of the interface is its lattice area.

The lattice area has some peculiarities compared to usual area in Rd . For instance,
in R2, any two points are joined by a unique shortest path—a straight line segment, while
the shortest path enclosing a given volume is a circle. For the 2-dimensional lattice distance,
there are many shortest paths connecting two points. Indeed, any path that goes up/right from

9 The opposite choice of sign in (16) mathematically means negative temperature and, for
other discretization of space, e.g., the triangular lattice, may correspond to a very different
physics. For the cubic lattice, however, it can be reduced to the minus sign by flipping half
of the signs in a checkerboard fashion.
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the start to the finish in the following picture has a minimal length:

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

ı ı ı ı ı

�start

finish�

(19)

The shortest lattice paths enclosing a given volume are close to squares, not circles. Similar
features persist in all dimensions.

In this narrative, we will be concerned with the phase transition in the Ising model
that happens at a certain critical temperature Tc . These terms will be introduced properly
below. For nowwe remark that for T < Tc , the Isingmodel reflects, due to the peculiarities of
the lattice area, the behavior of materials that are similarly anisotropic, for instance, crystals.
Indeed, for a crystal, a square or a cube is the shape one should expect to see, not the sphere.

At T D Tc however, this anisotropy disappears, a rather remarkable phenomenon.
In fact, at the critical temperature, not only rotation invariance is restored, but some further
symmetries appear. This is an incredibly interesting topic, but since it it would be a side trip
for our story, we refer the reader to [20,32] for details.

This concludes our brief discussion of the Ising model in finite volume. It is time
to make sense of the energy and probabilities for the whole infinite lattice. This will be our
task in Section 3.

In the process of defining the Ising model, there were choices, and we always made
the simplest possible nontrivial symmetric choice. A reader may get the impression we
defined a little mathematical toy, a basic wooden block set, which may be good for play
but seriously oversimplifies the nature. What is the place of the Ising model in the broader
landscape of statistical physics? An interested reader will find an introductory discussion of
this question in Appendix A. In short, mathematical physicists believe the Ising model pro-
vides a universal description of a very large class of phenomena in which a ˙1 symmetry
becomes broken below a certain temperature.

3. Gibbs measures

3.1. Definition
Our goal now is to define probabilities in the Ising model on the infinite cubic lattice.

More precisely, we want to know what is the probability to see any particular pattern � of
signs in any given finite subset � of ƒ. For instance, for d D 2, we want to know

Prob

0B@�
ˇ̌̌
a fixed 3 � 3
square �

D

C � C

C C �

� � C

1CA D ? 2 Œ0; 1�: (20)

386 A. Okounkov



Mathematicians denote by � j� the restriction of a function � to a subset � of arguments.
We will sometimes call the subset � a window. If we have a finite window into an infinite
system, it is reasonable to ask what is the probability to see some pattern � in it.

If � � �0, then the probabilities for the smaller window � are determined from the
probabilities for the larger window �0. Therefore, it is enough to define the probabilities for
larger and larger cubes

�L D Œ�L; : : : ; L�d � Zd
D ƒ; L D 1; 2; 3; : : : ; (21)

because any finite subset of ƒ is contained in some �L. For d D 2, the square �1 looks like
the square in (20).

The main issue with formula (9) for the infinite lattice was that the energy (15) is
infinite. Recall, however, that the important thing in physics is not the energy itself, but rather
the difference in energies and note that energy difference

�Energy D Energy.�/ � Energy.� 0/ (22)

is well defined if � and � 0 differ only at finitely many vertices.
Let us look at the example in (23), where the difference in signs is circled:

�C D

:
:
:

:
:
:

:
:
:

� � � C � C � � �

� � � C ˚ � � � �

� � � � � C � � �

:
:
:

:
:
:

:
:
:

; �� D

:
:
:

:
:
:

:
:
:

� � � C � C � � �

� � � C 	 � � � �

� � � � � C � � �

:
:
:

:
:
:

:
:
:

: (23)

Assuming this is the only difference, that is, assuming that the dots in (23) represent some
choice of signs for �C and an identical choice for ��, we can compute the energy difference
as follows:

Energy.�C/ � Energy.��/ D 4: (24)

Indeed, only the edges incident to the circled vertices change their energy, and their energy
is 3 � 1 D 2 for �C and 1 � 3 D �2 for ��. In exactly the same way, we can determine the
change of energy if we flip some signs in the interior of the window �L for any L.

Denote

�C D

C � C

C C �

� � C

; �� D

C � C

C � �

� � C

: (25)

We may interpret formula (9) as saying that
Prob.� j�1 D ��/

Prob.� j�1 D �C/
D exp.4T �1/: (26)

More generally, if � and � 0 are signs pattern in �L that differ only in the interior, we may
interpret formula (9) as saying that

eEnergy.�/=T Prob.� j�L
D �/ D eEnergy.� 0/=T Prob.� j�L

D � 0/: (27)
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Note this formula operates with finite quantities. Moreover, (27) are linear equations on the
probabilities.

Here comes the important moment.We say that an assignment of probabilities to the
events that � j�L

D � is a Gibbs measure10 if it satisfies (27) for all L and all � and � 0 that
differ only in the interior of �L. This key mathematical definition goes back to 1960s and
the work of Roland Dobrushin, Oscar Lanford, and David Ruelle. And, no, Gibbs measures
were not studied by Gibbs.

Note the change in perspective. Instead of saying that the formula (9) gives the prob-
abilities, we have rewritten (9) as a system of equations that the probabilities have to satisfy.
As with any equations, one naturally wonders: do they have a solution? If they do, how many
solutions are there?

The existence of Gibbs measures for any temperature T is a very general and soft
mathematical fact, see Section 4.4.4. The question of how many Gibbs measures there are
for a given value of T is really the central question for us in these notes.

Formula (9) was meant to describe a statistical system in equilibrium at temper-
ature T . But an infinite system can be in many different equilibria at given T , unable to
fluctuate from one to another due to an infinite energetic cost. Concretely in the Ising model,
each sign �.v/ likes to be the same as that of its neighbors. Hence, a strong local preference
for C1 or �1 may be self-reproducing in fluctuations. It could be a preference for either
C1 or �1, and if there such a preference, then the system is stuck with it. The reader will
probably have no difficulty thinking of real-life examples of this phenomenon.

Anticipating the fact that there may be many Gibbs measures at a given temperature,
we will denote by � a Gibbs measure and write �.A/ for the probability that � assigns to
some event denoted by A. For example, A can say that � j�L

D � .
In practice, it is convenient to use the averages˝

�.v1/�.v2/ � � � �.vn/
˛
�

D �.this product equals 1/ � �.it equals �1/ (28)

with respect to �, where v1; : : : ; vn are some vertices of ƒ. The averages (28) are called
correlation functions, and when one wants to stress the number of different lattice points
involved, one talks about n-point correlation functions.

In general, the averages (also known as expectations, or integrals) with respect to
a Gibbs measure � are defined as follows. Let f .�/ be a function that depends on finitely
many signs �.vi /, vi 2 ƒ. Then f takes finitely many values fj , and we can define

hf i D

X
j

fj �.f D fj /: (29)

In measure theory, general integrals with respect to a measure � are defined by approximat-
ing the integrand f by functions taking finitely many values.

10 The word measure denotes a very important concept in mathematics, which we will leave
without a proper discussion. The power of measure theory lies in being able to measure
(meaning, assign some version of length, volume, probability, etc.) rather general sets. In
our case, the probability is assigned to simple events of the form � j�L

D � and we hope the
reader will have no difficulty thinking about this.
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3.2. High temperature
3.2.1.
It is easiest to start the discussion of Gibbs measures at the infinite temperature

T D 1. Since 1=T D 0, energy disappears from (27) and we conclude that all sign patterns
are equally likely. In other words, each sign is an independent symmetric coin toss. This is
the complete description of the unique Gibbs measure for T D 1.

3.2.2.
For high enough temperatures, the unique Gibbs measure can be written as a series

in the inverse temperature
ˇ D

1

T
; (30)

following a very general perturbation theory ideas, used everywhere in mathematical
physics.

3.2.3.
Let �0 be a Gibbs measure at inverse temperature ˇ0, from which we want to con-

struct a Gibbs measure � at inverse temperature ˇ � ˇ0. Let us first consider a finite piece
� � ƒ of the infinite lattice. For a finite graph �, the unique Gibbs measure at inverse
temperature ˇ is defined by (9). We can transform this definition as follows:˝

f .�/
˛
�;ˇ

D

P
� e�ˇ Energy.�/f .�/P

� e�ˇ Energy.�/
(31)

D

P
� e�ˇ0 Energy.�/e.ˇ0�ˇ/Energy.�/f .�/P

� e�ˇ0 Energy.�/e.ˇ0�ˇ/Energy.�/
(32)

D
he.ˇ0�ˇ/Energyf .�/i�;ˇ0

he.ˇ0�ˇ/Energyi�;ˇ0

; (33)

where the summation in (31) and (32) ranges over all possible values of signs �.v/ for v 2 �.
Since the number�ˇ D ˇ � ˇ0 is small, it may be useful to expand the exponentials

in (33) in a series, using

ex
D 1 C x C

x2

2
C � � � C

xn

nŠ
C � � � : (34)

3.2.4.
For the infinite lattice ƒ, formula (33) will seemingly run into the old problem of

energy being infinite for an infinite lattice. However, it may happen that the infinities cancel
between the numerator and denominator in (33) in each term of the series expansion in
powers of �ˇ.

For concreteness, let us examine the first order of the expansion of a 1-point corre-
lation function h�.v1/i�. We have

e.ˇ0�ˇ/Energy
D 1 C �ˇ

X
edges v2—v3

�.v2/�.v3/ C � � � ; (35)
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where dots stand for terms of degree 2 or larger in �ˇ. Therefore,˝
e.ˇ0�ˇ/Energy�.v1/

˛
�0

D
˝
�.v1/

˛
�0

C �ˇ
X

edges v2—v3

˝
�.v1/�.v2/�.v3/

˛
C � � � : (36)

Dividing (36) by the average of (35), we obtain˝
�.v1/

˛
�

D
˝
�.v1/

˛
�0

C �ˇ
X

edges v2–v3

�˝
�.v1/�.v2/�.v3/

˛
�0

�
˝
�.v1/

˛
�0

˝
�.v2/�.v3/

˛
�0

�
C � � � :

(37)

The sum over the edges in (37) is infinite. However, if the edge v2–v3 is far away from
the vertex v1, we expect the corresponding signs to be approximately independent random
variables. Approximate independence means that˝

�.v1/�.v2/�.v3/
˛
�0

�
˝
�.v1/

˛
�0

˝
�.v2/�.v3/

˛
�0

: (38)

So, the difference in (37) measures how close �.v1/ and �.v2/�.v3/ are to being independent
or, equivalently, how much they are correlated. If they decorrelate sufficiently fast with the
distance between v1 and v2 then the sum in (37) will be convergent. Similar considerations
apply to all other higher terms in the expansion (37).

3.2.5.
Given two random variables f1 and f2, the difference

hf1jf2i D hf1f2i � hf1ihf2i (39)

is called their covariance. For example, the covariance of f1 D �.v1/ and f2 D �.v2/�.v3/

with respect to �0 appears in (37).
In statistical physics, it is typical for covariance (39) to decay if f1 and f2 depend

on spatially separated arguments, like in (37). If this decay is exponential in the spatial
separation then we will say that the model has an exponential decay of correlations or is
exponentially decorrelated.

3.2.6.
There are higher analogs of the covariance, involving three of more arguments. For

instance, one defines˝
f1jf2jf3

˛
D hf1f2f3i � hf1f2ihf3i � hf1f3ihf2i � hf2f3ihf1i C 2hf1ihf2ihf3i: (40)

These are called cumulants and are related to the combinatorial principle of inclusion–
exclusion. They measure finer mutual dependencies between 3 or more random variables
and appear naturally in perturbation series for the following reason.

The general formula for cumulants may be obtained from the identity

ln
˝
ef1Cf2C���

˛
D

X
n

1

nŠ

X
i1;:::;in

˝
fi1 jfi2 j : : : jfin

˛
; (41)
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in which one expands the exponential as in (34) and equates terms containing the same
functions fi . In particular, let us replace f1 in (41) by tf1 and compute the value of @

@t
at

t D 0. We get

hf1ef2Cf3C���i

hef2Cf3C���i
D

X
n

1

nŠ

X
i1;:::;in�2

˝
f1jfi1 jfi2 j : : : jfin

˛
: (42)

Voila, this is just what we need in (33), with f1 D
Q

�.vi / and

f2 C f3 C � � � D

X
edges v–v0

�.v/�.v0/:

Later in Section 4.3, we will meet random variables for which all cumulants with n � 3

vanish, meaning that that any hf1 : : : fni may be written entirely in terms of the expec-
tations hfi i and the covariances hfi jfj i. Such random variables are called Gaussian. See
Section A.3.4 for more on this. In a certain precise technical sense, nonzero cumulants with
n � 3 measure the nonlinearity of the model.

3.2.7.
Going back to the special case ˇ0 D 0 and the unique Gibbs measure �0 at T D 1,

we observe that signs at different lattice sites are totally independent for �0. Thus the �ˇ

term in (38) is simply zero. In fact, great simplifications happen for �0 and a nice conver-
gent combinatorial series can be written down for � provided the inverse temperature ˇ is
sufficiently small.11 In this high-temperature range, the Gibbs measure remains unique.

Since �0 and the energy are invariant under flipping all signs, this property is inher-
ited by the perturbation series. The invariance of � under flipping all signs also follows from
its uniqueness. It follows that˝

product of odd number of �.vi /
˛
high T D 0; (43)

and in particular that ˝
�.v/

˛
high T D 0; (44)

for any v. The expected value of a single sign in (44) is the simplest measure of a possible
˙1 asymmetry of a Gibbs measure. It is a very important parameter of the Gibbs measure
called magnetization.

Also note that the uniqueness of the high-temperature Gibbs measure implies it is
invariant under shifts of the lattice ƒ. This translational invariance is an important property
for a Gibbs measure to have or not to have. For a translation-invariant Gibbs measure, the
magnetizations at all vertices of the lattice are equal.

11 Since the energy (35) is a product of terms like

eˇ�.v2/�.v3/
D cosh.ˇ/

�
1 C tanh.ˇ/�.v2/�.v3/

�
;

it is more convenient to write this series in powers of the hyperbolic tangent of ˇ,

tanh.ˇ/ D ˇ �
1

3
ˇ3

C
2

15
ˇ5

� � � � :
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3.2.8.
One should stress that the perturbative series expansion for (33) has no guarantee

of success in general. In particular, it will fail when either �0 or � have long-range correla-
tions, meaning that the signs at distant vertices do not become decorrelated sufficiently fast.
Needless to say, these are precisely the situations of maximal interest and significance!

3.3. Low temperature
3.3.1.
What about the opposite case T D 0? Equation (27) has the following meaning

at T D 0:
Energy.�/ > Energy.� 0/ ) Prob.� j�L

D �/ D 0: (45)

In other words, if the energy of a configuration can be lowered by flipping finitely many
signs, then its probability vanishes.

In terms of the interface between the pluses and minuses, formula (18) says that
it should be minimal, meaning that its length/area cannot be made any smaller by finite
modifications.12

What minimal interfaces can we think of? First, there is the empty interface. If the
interface is empty then all signs are equal. A measure �C that assigns probability 1 to the
configuration in which all signs are C, and zero probability to all other configurations, is a
Gibbs measure at T D 0. No randomness is a special case of randomness and it may happen
that the probability of just one particular configuration equals 1.

Since with an empty interface all signs can be C or all signs can be �, we have two
Gibbs measures �˙ already. But there is more. For instance, the plane x1 D

1
2
, or any plane

of the form xi D
1
2

C integer, i D 1; 2; 3, defines a minimal interface, see the figure in (46).

(46)

12 For d D 1, there is a difference between finite modifications of signs and of the interface.
We will consider finite modifications of the interface.
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We can put pluses on either side of such wall and this gives many more zero-temperature
Gibbs measures, all of which we will denote by �wall. They are not translation-invariant and,
in fact, they can be all taken to one another by a symmetry of the lattice ƒ.

A curious reader may think about more Gibbs measures at T D 0, but it is already
clear that there are plenty of them. They very visibly break the symmetries between ˙1 and
also between different lattice points.

Recall that at T D 1 we have a total disorder, which persisted to all high temper-
atures and manifested itself, in particular, by the vanishing magnetization. By contrast, the
T D 0 measures exhibit a very strong spatial order.

3.3.2.
When there is more than one Gibbs measure, the following point should be kept in

mind. Let �1 and �2 be two Gibbs measures. Then their mixture of the schematic form

�mix D 0:71�1 C 0:29�2; (47)

where 0:71 can be replaced by any number between 0 and 1, is also a Gibbs measure. Indeed,
it assigns probabilities in Œ0; 1� to all events and satisfies the linear equations (27) from the
definition of a Gibbs measure.

What does the equation (47) mean? Imagine there are two different labs in a
physics department, labeled by i D 1; 2. In the lab number i , our physical system is kept in
a state described by the measure �i . We go to a random lab and do the measurement. If our
chance to go to the first lab is 0:71 then the outcome of our measurement will be described
by (47).

Clearly, this is rather silly. It is quite unnatural and adds nothing to our understanding
of the system. Therefore, when there is more than one Gibbs measure, people usually restrict
their attention to those Gibbs measures that cannot be nontrivially written in the form (47).
They are called extremal or pure.

3.3.3.
How will the T D 0 Gibbs measure perturb for small positive T ? The interface

between plus and minus no longer has to be minimal, but every time its area increases by 1

the probability decreases by e�2=T . It is therefore natural to organize the expansion in powers
of e�2=T which is a small parameter for T positive and small.
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For example, we may perturb the wall in (46) as follows:

(48)

This perturbation increases the area by 20, so it counts with the weight .e�2=T /20 D e�40=T .
The fate of the perturbation series for zero temperature Gibbs measures is different

in different dimensions.

3.3.4.
For d D 1, there are only the measures �˙ at T D 0. Their perturbation series

breaks down at the very first term. Indeed, let �C denote the hypothetical Gibbs measure for
which the signs are positive at the positive infinity of the lattice Z.

The e�2=T term in the perturbation series for �C is then a sum over all configura-
tions like this

; (49)

where the switch of signs can occur at any place. This gives infinitely many equal terms that
affect the sign at any lattice point.

In fact, for d D 1, the high temperature disordered behavior happens for all T > 0.
Nowonder we cannot access any positive temperature by a perturbation of the T D 0 descrip-
tion. Historically, Ernst Ising studied precisely the d D 1 case and reached this conclusion
in his 1924 dissertation.

The absence of order for any T > 0 in d D 1 led to a certain temporary dip of interest
in the Ising model. See [17] for a much more informative account of the many chapters of the
Ising model history.

3.3.5.
For d � 2, the perturbation series for�˙ converges! This was first noted, in essence,

in 1936 by Rudolf Peierls, who observed that the number of relevant interfaces of given area
is bounded byCArea for some constantC . Thismakes the series converge as long as e2=T > C
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and proves that, for d � 2, the Ising model can exhibit both order and disorder, depending
on the temperature.

3.3.6.
For d D 2, the perturbation series for �wall breaks down at the first possible term

when the length is allowed to increase by 2. We already discussed in Section 2.7 that the
lattice length has just too many minimizers, and this is another consequence of this fact. In
fact, in d D 2, the measures �˙ can be shown to be the only pure Gibbs measures for T > 0.

By contrast, for d � 3, the series for �wall converges. The corresponding measures
were first studied by Dobrushin and bear his name [10, 11]. This means that at low temper-
ature and in dimensions d � 3, the Ising model can break both the ˙ symmetry and the
symmetries of the lattice. One says that some symmetry g of the system is broken by a Gibbs
measure � if g takes � to another Gibbs measure, different from �.

3.4. Critical temperature
We have talked about the behavior of the Ising model at high and low temperatures,

respectively. This behavior differs strikingly. At high temperatures, we have a homogenous
disorder. The system expresses no ˙1 preference and looks the same everywhere. At low
temperatures, vertices prefer one sign over the other and this preference may change from
vertex to vertex.

What happens for temperatures in themiddle? This questionmust be on everybody’s
mind by now. Is there some intermediate range of temperatures for which yet another quali-
tatively different behavior is observed?

For the Ising model, and related models of statistical physics, there is exactly one
critical value Tc of the temperature at which the balance between order and disorder, energy
and entropy tips. A numerical simulation, done by Stanislav Smirnov, may help visualize
this transition.

(50)
In (50) we see the d D 2 Ising model simulated on the 100 � 100 grid for T < Tc , T D Tc ,
and T > Tc , respectively. For a finite piece of the lattice, the notion of boundary conditions
is important. Formula (27) tells us about the probabilities of different signs patterns inside
the square, while signs along the boundary may be in principle assigned arbitrarily. In (50)
and also in (1), we have C1 along one the lower half of the boundary and �1 along the upper
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half, see the figure in (51), as if we are trying to simulate the nonexistent Gibbs measure
�wall in d D 2.

(51)

Such a boundary condition allows one to focus on the properties of the interface by singling
out one special component of the interface that goes from one vertical side of the boundary
to another. This interface is clearly visible for T < Tc , has essentially evaporated for T > Tc ,
and it is both visible and very strongly fluctuating at the critical point T D Tc .

All features of the T > Tc are microscopic, everything happens on the lattice scale.
The T < Tc has one macroscopic feature—the interface, but its fluctuations are again small
in size and would not be visible from far away.13 What is common between the T ¤ Tc

pictures is that the signs at different lattice points become independent exponentially fast
with the lattice distance. The rate of this exponential decay sets the typical scale of observed
features in both pictures.

By contrast, the T D Tc picture has some features on all scales, enabled by the slow
polynomial decorrelations. In fact, the lattice mesh " ! 0 limit of the critical d D 2 Ising
model is invariant not just under scaling, but under all conformal transformations. These
are transformations that look like scaling and rotation in a very small neighborhood of any
point.14 For the proof of conformal invariance of the d D 2 critical Ising model, Stanislav
Smirnov was awarded the 2010 Fields Medal, the only Fields Medal previously awarded for
the study of the Ising model. While our focus in these notes is on d D 3, we hope a curi-
ous reader will open [20, 32] for more on conformal invariance. After the groundbreaking
1984 work of three Alexanders, Belavin, Polyakov, and Zamolodchikov, conformal invari-
ance and the language of Conformal Field Theory (CFT) grew to be the most powerful tool
for understanding 2-dimensional critical phenomena.

It is the job of a statistical physicist to predict macroscopic properties of materials
from the macroscopically invisible fluctuations that take place on the atomic scale. It is a
very, very interesting job, with its challenges and rewards, and the study of the Ising model
at T ¤ Tc is no exception. But the statistical physicist’s finest hour is when she or he gets to

13 It may be useful to explain, in terms of the figure in (50), why there is no Gibbs measure
�wall in d D 2 for 0 < T < Tc . If we fix any finite window at exactly the middle height, the
interface will pass over it or under it with probability almost 1

2 . As a result, we will observe
�˙ in our window with probabilities 1

2 as the square in (51) grows to infinity. For d D 3

and T < Tc , the interfaces fluctuates less, and we will see it in the window as the measure
�wall.

14 It is easier to define conformal transformation as the transformations that preserve all angles
between curves. They can scale and rotate by different amounts in the vicinity of different
points. The case d D 2 is special in that there is an abundance of such transformations.
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describe a system that does exhibit macroscopic fluctuations. Phase transitions are these kind
of phenomena. In particular, the order/disorder phase transition in the Ising model certainly
packs more excitement, and is much more widely applicable, than what happens at T ¤ Tc .
So, what happens at T D Tc? This question calls for the start of a new section.

4. What happens at T D Tc?

4.1. Critical Gibbs measures
With our focus on Gibbs measures in this narrative, it is clear what our next question

is going to be. Is there one or are there many Gibbs measures at T D Tc? This question may
be phrased as continuity of the phase transition. Indeed, if there are many Gibbs measures at
T D Tc , there will be one of them, say, �c , which is not the T # Tc limit of the unique high-
temperature measure �high T. Thus, for a system in state �c , a tiny increase in temperature
will lead to a jump to �high T, meaning a jump in physical properties.

In a live or online class, it may be a good idea to take a poll on this question. Do
you think it is going to be continuous? Or not? Phase transitions come in both flavors in
nature. When the water melts or boils, its properties change discontinuously. At the pressure
of 1 atmosphere, water boils at 100ıC. Increasing the pressure increases the boiling point
monotonically until, at the pressure of 217:7 atmospheres, we reach a very special point
called the water critical point. After it, the difference between liquid and vapor disappears.
When going through this point, the properties of the system remain continuous. Admittedly,
this is a much more delicate example than simply boiling the water.

Another example of a continuous phase transition is the Curie critical point, the
original motivation for the introduction of the Ising model. Magnets loose their magnetic
properties when heated. For an iron magnet, this happens at 770ıC, and the loss of mag-
netic properties is continuous. The Ising model is not a particularly convincing model of
magnetism for several reasons, so we should be careful with drawing conclusions from this
example.

4.2. The Potts model
A very important difference between a magnet and Ising model signs is that magne-

tization is a vector that can be rotated in all possible ways. These rotational symmetries are
very different from the simple ˙1 symmetry of the binary degrees of freedom in the Ising
model. Rotations form a continuous Lie group. Importantly, rotations can be arbitrarily small.

Closer to the Ising model are the models with a larger, but still finite symmetry
group. The most important example is the Q-state Potts model, the Ising model being the
Q D 2 case of the Potts model. In the Potts model, the function

� W ƒ ����! ¹1; 2; : : : ; Qº (52)
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can take Q possible values, and the energy has the same form (15) with

E.a; b/ D

8<: ED; a D b;

E¤; a ¤ b:
(53)

This is invariant under all QŠ possible permutations of the values in (52). As with the Ising
model, the exact values of constants in (53) are not important as long as E¤ > ED.

Simulations of the critical Q-state Potts model by V. Beffara for d D 2 and Q D

2; 3; 4; 5; 6; 9 may be seen in (54).

(54)

Different colors represent clusters of different values of Q. The reader will notice a clear
difference in behavior between the top Q � 4 row and the bottom Q � 5 row.

4.3. Theorems
Our goal on the preceding pages was to ignite the reader’s interest in what happens

in the 3-dimensional Ising model at the critical temperature. To add to the suspense, we start
with the following fundamental result of Hugo Duminil-Copin and his collaborators in the
d D 2 case.

Theorem 1 ([18,19]). The phase transition in the Q-state Potts model for d D 2 is continuous
if and only if Q � 4.

Theorem 1 is a logical conjunction of two different results proven using two different
sets of tools. The continuity for Q � 4 is proven in the paper [19] by Hugo Duminil-Copin,
Vladas Sidoravicius, and Vincent Tassion, building, in particular, on the earlier solo work
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[12] of Hugo Duminil-Copin. The discontinuity forQ > 4 is proven in the paper [18] by Hugo
Duminil-Copin, Maxime Gagnebin, Matan Harel, Ioan Manolescu, and Vincent Tassion.

After the depth of the continuity question has been underscored yet another time by
Theorem 1, we can finally state the following result of Michael Aizenman, Hugo Duminil-
Copin, and Vladas Sidoravicius.

Theorem 2 ([2]). The phase transition in the d D 3 Ising model is continuous.

It is expected that the phase transition for the d D 3 Potts model is discontinuous
for Q � 3, see [16]. As to the higher dimension we have the following result. Recall we have
met the Gaussian random fields in Section 3.2.5, see also Section A.3.4 in the Appendix.
The scaling limit refers to the limit when we take correlations, suitably scaled, for larger and
larger spatial separations. It describes what we would actually observe on our human scale.15

Theorem 3 ([1]). The scaling limit of the critical Ising model in d D 4 is Gaussian.

I hope the readers share the narrator’s sense of awe at this absolutely amazing math-
ematics and join me in warmest congratulations on it being recognized by the Fields Medal.
I also hope the readers got the sense that today’s mathematics is not just extraordinarily pow-
erful, but also concrete, understandable, and fun, once one finds the right idea and the right
point of view. While finding that right point of view is not at all easy, my biggest hope is to
have inspired my youngest readers to believe that mathematics can be beautiful and reward-
ing, both as a subject and as a profession. Maybe this is also a good place for me to thank
Hugo Duminil-Copin, Stanislav Smirnov, and Martin Hairer for this special opportunity to
be introduced to their wonderful subject.

4.4. Contours of proofs, seen in the distance
4.4.1.
We hope the reader agrees that the majestic view of Theorems 1, 2, and 3 was worth

the uphill hike through the foothills of the Ising range. We also hope the reader will not
be discouraged to learn that a much longer and steeper climb is needed to get a good view
of the actual mathematics that goes into the proof of these theorems. As we stressed at the
beginning, having a mathematical proof is a measure of our understanding of the model and,
certainly, understanding is a great reward for any effort.

To help the reader master the subject, there are brilliant expositions available, in
particular by Hugo Duminil-Copin himself. In [16], the reader will find a very fun, colorful,
and engaging explanation of Theorems 1, 2, and many other results.

4.4.2.
Let us start with Theorem 2 and a discussion of the basic logic of how something

like this could be proven. One logical point we should make from the very beginning is that
we do not know the value of Tc for d D 3.

15 if we lived in a corresponding number of spatial dimensions
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It is a gift of nature to mathematical physicists that many fascinating and highly
nontrivial exact results can be obtained in the Ising, Potts, and related models when d D 2.
In particular, it is known that for the square lattice Potts model we have

Tc D
2

ln.1 C
p

Q/
; d D 2: (55)

This goes back to the 1941 work of Kramers and Wannier in the Q D 2 Ising case and is
proven by Vincent Beffara and Hugo Duminil-Copin in [5], in general.

Formulas like this are extremely sensitive to the exact lattice formulation of the
model, and other d D 2 models presumably converging to the same critical CFT at their
(unknown!) critical point loose the magic. In addition to being a huge help in the study of the
Ising and the Potts models proper, exact results very much contributed to how mathematical
physicists think about their subject in general. We will say a few words about them below.

Nothing of the kind was ever discovered for d D 3, and there are many different
strong hints that the physics, and the mathematics, in the plane and in the space are just
different.

4.4.3.
Recall our discussion of the T D 0 Gibbs measures and note that, of all possible

Gibbs measures, the measure �C clearly has the most pluses, while the measure �� has
the least possible number of them. This basic comparison persists to all temperatures. All
possible Gibbs measures are, in a certain precise mathematical sense, sandwiched between
�� and �C. Hence, the continuity question may be phrased as

�C

‹
D ��; T D Tc : (56)

To see whether �C

‹
D ��, one does not need to compute all correlation functions. Well-

developed techniques in the subject reduce the question to the comparison of 1-point correla-
tion functions, that is, magnetizations, at all vertices. Since�˙ are both translation-invariant
and differ by exactly the flip of all signs, the continuity question is equivalent to˝

�.any one point/
˛
�C

‹
D 0; at T D Tc : (57)

This may sounds like we made good progress until we remind ourselves that we do not know
the value of Tc , or any equation that determines this number. An approximate value of Tc is
known from numerical experiments, but it is not useful for us now. The only thing we know
about Tc is that

Tc D inf
®
T such that

˝
�.v/

˛
�C

D 0
¯
: (58)

But since the T # Tc continuity is precisely the crux of the matter, we did not progress much.
We will be just going in circles until we can relate the question (57) to something which is
either:

(a) true for all temperatures, or

(c) is manifestly continuous as T # Tc :
(59)
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4.4.4.
In the (c) category in (59), one can actually describe the limit of the unique high-

temperature Gibbs measure as T # Tc . One has

lim
T #Tc

�high T D �freejT DTc ; (60)

where �free is the free boundary Gibbs measure that can be constructed as follows.
There is a universal way to produce Gibbs measures for any temperature. Recall

the discussion of the boundary condition from Section 3.4. For all sufficiently large L, say
L � 100, fix some configurations of signs

� j@�L
D �L; L D 100; 101; 102; : : : ; (61)

along the boundary @�L of the cube �L from (21) as in the figure of (62). The values of �L

can be all C1, can be all �1, can be like the Dobrushin’s boundary conditions from (51), or
can be anything at all. In particular, they do not have to be related to each other for different
values of L.

(62)

For allL, equation (27) defines a unique probability distribution�L for signs in�L and thus
probability distributions for signs in any smaller cube �L0 � �L. Possible values of � j�L0

form a finite set and probability distributions on a finite (or compact) set are compact.16

Hence there is a subsequence of L for which the limit

�.� j�L0 D �/ D lim
L!1

�L.� j�L0 D �/ (63)

exists for all L0 and � . Since it is a limit of solutions of (27), it is a Gibbs measure. Inciden-
tally, this proves that the set of Gibbs measures is nonempty for any T .

Any Gibbs measure may be obtained in this way. Indeed, if we make �L random and
let it be distributed according to some Gibbs measure � then �L D �.

The measure �free is obtained when instead of fixing the boundary signs, we take all
possible sign configuration in �L, weighted according to the temperature and their energy.
This means we really sum over all possible configurations of ˙ along the boundary in (62)
with the corresponding weights. The measure �free is not pure. In fact, it is known that [6]

�free D
1

2
�C C

1

2
��; T < Tc : (64)

16 The key property of a compact set that we need here is that any infinite sequence of ele-
ments of a compact set has a converging subsequence.
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While �˙ are at the two extremes of the set of the Gibbs measure, the measure �free is its
very center. In particular, it is˙-symmetric. It thus makes sense, and can be shown formally,
that it is the T # Tc limit of the unique high-temperature measure in (60).

4.4.5.
In the (a) category in (59), we would like a comparison between�C and�free which

is valid for all temperatures.
From (64), we see that it is hopeless to compare magnetizations, as they will defi-

nitely differ below Tc . However, since �C and �� differ by a sign flip, their n-point corre-
lation functions are equal for any even number n. This means that both above and below Tc

we have *
nY

iD1

�.vi /

+
�C

D

*
nY

iD1

�.vi /

+
�free

; T ¤ Tc ; n is even; (65)

and thus it is a reasonable hope to extend this to T D Tc .
In fact, if (65) can be extended to T D Tc for n D 2, that would be the end of the

proof because of the following argument.
On the one hand, as a very special case of a general FKG inequality published in

1971 by Cees Fortuin, Pieter Kasteleyn, and Jean Ginibre [23], one has˝
�.v/

˛
�

˝
�.v0/

˛
�

�
˝
�.v/�.v0/

˛
�

(66)

for any Gibbs measure �. For a translation-invariant measure �, it follows that17˝
�.v/

˛2
�

� lim
kv�v0k!1

˝
�.v/�.v0/

˛
�

: (67)

For �free, the right-hand side of (67) can be seen to vanish at Tc as a consequence of the
T # Tc continuity. If the 2-point functions for �free and �C are the same then (67) implies
h�.v/i�C

D 0 at T D Tc , and we are done.

4.4.6.
What do we remember about the sign configurations if we forget all n-point corre-

lations for n odd? It is easy to see that we remember precisely the clusters of equal signs
which we talked about in Section 2.7, see the figure in (68).

C � C � C

C C C C �

� � C C �

� � � � C

�!

? ?

?

? ? ?

? ? ? ?

(68)

17 As a side remark, the inequality in (67) is, in fact, an equality for �C and this is how
Onsager’s formula (71) for magnetization for d D 2 was originally derived.
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The Ising model thus becomes a random cluster model, the random object in which is a
random partition of lattice vertices into clusters.18 Such random cluster models play a very
important role in mathematical physics and are closely related to various percolationmodels,
see [16]. In a percolation model, the edges of a lattice, or of a more general graph, are kept
or erased with some probabilities and the connected pieces of what remains are called the
percolation clusters.

The analog of a magnetization for a random cluster model is the probability that
two neighboring vertices v–v0 belong to the same cluster. A closely related quantity is
h�.v/�.v0/i�, where v–v0 is an edge of the lattice. By an analysis reminiscent of how (56) is
deduces from (57), the authors of Theorem 2 show:

h�.v/�.v0/i�C
D h�.v/�.v0/i�free

for an edge v–v0
)

the random cluster models
for �C and �free are equal.

(69)

Recall that the equality of the random cluster models implies the equality (65) for all T .

4.4.7.
It “only” remains to show that˝

�.v/�.v0/
˛
�C

�
˝
�.v/�.v0/

˛
�free

D 0 (70)

for one edge v–v0. And this is where the real ascent or perhaps even flight begins and our
excursion wraps up.

We will just say that the authors of [2] estimate the left-hand side in (70) using a
certain auxiliary percolation model, the edges in which are kept or erased by a procedure
that takes its input from the Ising model or, more precisely, from the random current rep-
resentation of the Ising model. This random current representation may be compared and
contrasted with the high-temperature expansion from Section 3.2.

Recall how we talked in the beginning about a mathematician’s freedom do intro-
duce and use any auxiliary mathematical structure that may shed new light on the question
at hand. Just like a geometer is free to introduce any auxiliary construct, a mathematical
physicist is free to introduce any auxiliary model, limited only by one’s own imagination.
While there is no physical percolation happening in the Ising model, one can learn a great
deal about the Ising model from the percolation model studied in [2].

4.4.8.
The proof of Theorem 1 is very different and is based on certain highly nontrivial

exact results for the square lattice d D 2 Q-state Potts model. From the early days of the
Ising model to the modern heights of Theorem 1, exact results played a very important role
in the development of statistical physics, and mathematical physics in general.

18 In specialized literature, the term random cluster model often refers to a particular class of
models that are related to the Ising clusters by a further random refinement, see [16].
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For instance, the continuity in the d D 2 Ising model case follows at once from the
celebrated formula of Onsager (see, e.g., [3,4] for a historical account)˝

�.v/
˛
�C

D

�
1 �

1

sinh4.2=T /

� 1
8

; T � Tc ; (71)

where the formula (55) for the critical temperature is obtained solving the equation

sinh.2=Tc/ D 1:

The plot of this function can be seen in the figure of (72).

(72)

In addition to the continuity, we observe the remarkable fact that magnetization behaves like
.Tc � T /

1
8 , a result that found a deep explanation in conformal field theory.19

4.4.9.
Ultimately, the algebraic structure responsible for exact computations is a certain

infinite-dimensional symmetry algebra present in the Q-state Potts model on the square lat-
tice. It extends to the discrete lattice level the infinite-dimensional symmetries of the CFT
limit—amost remarkable phenomenon. The algebra in question is a q-deformation of the Lie
algebra of 2 � 2 matrices with entries in Laurent polynomials in one variable. The parameter
q of this deformation is related to the parameter Q by

q C q�1
D �

p
Q:

Hence the difference between Q > 4 and Q � 4 is the difference between q being negative
real and q being a complex number on the unit circle jqj D 1.

While this is a strikingly beautiful story in mathematics, it does not really belong in
our narrative, with our focus on the amazing d D 3 breakthrough achieved in a total absence
of exact results. We do suggest, however, that the interested reader opens [8] for a general
introduction to quantum group with a view towards their applications, [26, 29] for classic
treatments by some of the key figures in the development of the subject, and maybe also [25]

for a representation-theoretic take on the origin of the structures used in the Q � 4 part of

19 Numerical bootstrap computations [21] predict that in d D 3 the magnetization behaves
like .Tc � T /ˇ where ˇ D 0:326419 : : : This is a much more robust and universal number
than the critical temperature, but a good mathematical understanding of it awaits future
generations of mathematical physicists.
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the proof. All of this, of course, in addition to the brilliant exposition of the actual proofs
in [16].

Asked whether he likes exact results or estimates better, Hugo Duminil-Copin says:
“I prefer estimates. They usually offer a more robust approach to critical phenomena, and I
am as much as possible trying to obtain proofs that are not based on exact formulae.”

“I certainly agree with Hugo, inequalities are more versatile. But I am not sure we
would have advanced so far without having some exact identities first. It is a miracle that
there are any equalities concerning the Ising model. Onsager’s calculation was shocking at
the time, as it provided an exact formula for a function exhibiting a phase transition. This
and later miraculous equalities, together with inequalities, forged our understanding of the
Ising model. Hugo is a master of both inequalities and equalities, and has really moved the
frontier of statistical physics with many beautiful theorems with equally beautiful proofs. I
congratulate Hugo from all my heart, bravo!”, says Stanislav Smirnov.

“Hugo Duminil-Copin’s work has brought unprecedented clarity to our mathemat-
ical understanding of phase transitions in statistical mechanics. The elegance of his proofs
truly makes them seem come straight out of The Book”, says Martin Hairer.

5. Further reading

Popular accounts of these and related developments include [9, 34]. See especially
the popular piece [15] written by Hugo Duminil-Copin for the Oberwolfach’s snapshots of
modern mathematics.

We quoted many times from [16] and an interested reader is certainly advised to
continue her or his exploration of the subject following these lectures. Among other survey
articles written by Hugo Duminil-Copin, one may list [13,14,17].

To anyone who can read French, Hugo Duminil-Copin wholeheartedly recommends
the lectures [27] by Jean-François Le Gall and the book [33] by Wendelin Werner. Another
very important book is the subject is [24] by Geoffrey Grimmett.

I hope the reader has a lot of fun studying these sources as well as the original
articles including [2].

A. The universal attraction of the Ising model

A.1. Universality
It is hard to tell the atomic composition of a liquid bywatching it evaporate or freeze.

There is a good reason it took humans millenia to figure out the microscopic composition of
macroscopic objects. Part of the reason is that a great many different microscopic systems
have the same macroscopic behavior.

Molecules live on a nanometer (that is, 10�9m) scale and there is incredibly many
of them in a macroscopic piece of any material (18 D 2 C 16 grams of H2O contain about
6 � 1023, the Avogadro number, of molecules). It sounds completely impossible that their
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individual behavior could be observed by us. Instead, we observe only the combined, or
averaged, effect of myriads of molecules.

For instance, if we have a container of gas, we can measure the density, the pressure,
the temperature, etc. These measure the average number of molecules20 per unit of volume,
the average force per unit area exerted by the gas on the wall of the container, and the average
kinetic energy ofmolecules, respectively. In principle, we couldmeasuremore quantities, but
the equation of state (an important concept in statistical physics) tells that temperature and
pressure are enough. Add to this the vector of the wind, and there is no further information
about the gas that a weather station can provide.

Mathematically, what does it mean that there is no further information? Recall the
concept of a Gibbs measure from Section 3. It assigns a probability to every event one can
detect and hence an average, or expected value, to any observable quantity. If some finite
number of these expectations already determine the whole Gibbs measure then they deter-
mine the outcome of every possible measurement in our system.

Going back to the gas, on a macroscopic scale, it is described by 2 scalars, temper-
ature and pressure, and one vector, wind velocity. These vary in space and time if the gas is
not in global equilibrium and are the ingredients in the mathematical models of motion of
gases and fluids. In some sense, the job of a statistical physicist is to provide the arrow

description on the 1 nm scale
statistical
physics

�����������! description on the 1 m scale ; (73)

connecting two very different kind of physics, and two communities of mathematical physi-
cists studying the corresponding phenomena using very different models and mathematical
tools. Since the source and the target in (73) are so very different, it is impossible for the
target to be a faithful image of the source. To reiterate, we cannot tell the atomic composi-
tion of air just by feeling a cool breeze. Put differently, an enormous amount of information
is discarded by the arrow (73).

This loss of information is a win for a statistical physicist. It means there is no
pressing need to study every possible scenario of microscopic interactions. People call it
universality, meaning the macroscopic conclusions should hold universally and indepen-
dently of most microscopic details. Within each universality class, it is thus reasonable to
restrict our attention to the simplest possible microscopic model.

Universality is a very important ingredient in how statistical physicists think about
their subject. To be clear, it is always an enormous mathematical challenge to prove any
universality statement rigorously. However, there is an appealing heuristic description of the
universality classes based on the renormalization group idea of Kenneth Wilson. We will
say a word about it below.

20 If we have a mixture of several gases, there will be separate densities for each kind of
molecules. These can be traded for the corresponding partial pressures.
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A.2. Models like the Ising model
A.2.1.
How can stuff fluctuate in space? We should have some fluctuating degrees of free-

dom, which we may describe by an N -tuple of numbers

�.x/ D
�
�1.x/; �2.x/; : : : ; �N .x/

�
2 RN :

Here, the argument x is a d -dimensional vector, which we will discretize to a latticeƒ � Rd .
It is good to visualize ƒ as a fine mesh "Zd � Rd approximating the space Rd in the
continuous limit " ! 0.

In parallel with (14), we can write �.x/ as a random function

ƒ
�

�����! ˆ � RN ; (74)

where ˆ is the range of the possible values of �. In the Ising model, for instance, N D 1 and
ˆ D ¹˙1º.

A.2.2.
The interactions are described by an energy function, such as the energy (15) in the

Ising model. In general, one imagines

Energy D External potential C Pair potential C � � � ; (75)

where dots stand for other possible interactions. We will assume (75) is translation-invariant.
Then the first term has the form

External potential D

X
x2ƒ

U1

�
�.x/

�
; (76)

for some function U1 on ˆ in (74). In the continuous " ! 0 limit, the sum in (76) becomes
the integral of U1.�/.

In the Ising model, one can add such term. This is called Ising model in an external
field. It breaks the˙1 symmetry and destroys the critical point. It is very interesting, however,
to study the response of the critical Ising model to a small external field.

If (76) is the only nonzero term in (75), then from (9) we conclude that the values
of �.x/ are independent identically distributed N -dimensional random variables with prob-
ability density function proportional to e�U1.�/=T . In space, this is a complete noise, with
some nontrivial distributions of values, hence not something of great interest to us now.

A.2.3.
A translation-invariant pair potential has the form

Pair potential D

X
x;y2ƒ

U2

�
�.x/; �.y/; x � y

�
: (77)

This term puts spatial interactions in (75). We may assume each term in (77) is x $ y

symmetric.
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For the cubic lattice Ising model, U2 vanishes unless x � y D ˙ei , where ei are
the coordinate vectors. In principle, one can allow next-nearest neighbors to interact, as well
as lattice sites further away.21 It is important, however, for the interaction to decay rapidly
with the distance between x and y. Models in which everything interacts with everything
behave like a crowd and are usually well-described by the crowd average � fluctuating in
some potential Ueffective.�/ derived from U1 and U2.

For a pair of neighbors v; v0 in the Ising model, we can write

� �.v/�.v0/ D �1 C
1

2

j�.v/ � �.v0/j2

kv � v0k2
(78)

because v � v0 is a unit vector and � takes values ˙1. The fraction on the right in (78) is a
lattice version of the square of the derivative of � in the direction of v � v0. Since an overall
shift of energy does nothing, we see that the pair energy in the Ising model can be written as
a discretization of 1

2
kr�k2, where r denotes the gradient of the function.

In general, we may think of (74) as of discretization of a map Rd ! ˆ, like in the
figure of (79).

(79)
The role of the pair potential is to hold the values of this map together by putting an energy
price on wild oscillations. One natural notion of energy for a continuous map is the Dirichlet
energy 1

2

R
k

@�
@x

k2, the construction of which in general requires a metric in the domain and
target of �. The anisotropic and anharmonic relatives of the Dirichlet energy are certainly
possible and important in the description of materials with the corresponding properties.

A.3. Critical points
A.3.1.
Wilson’s idea22 was that the arrow in (73) can be presented as a composition of

many similar arrows that each change the scale by modest factor, such as 2,

2�30 m // 1 m

2�30 m // 2�29 m // 2�28 m // � � � // � � � // 1 m:

(80)

21 In fact, the authors of Theorem 2 prove it in much wider generality than described in these
notes.

22 Like any fundamental idea in science, this one had many precursors in the work of many
people. See, e.g., [7,22,28,31,35–37] for various perspectives.
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Stepping off the firm mathematical grounds for the rest of this section, we may hypothesize
that the change of scale by 2 corresponds to some renormalization transformation

.U1; U2; U3; : : : /
R

�����! .U 0
1; U 0

2; U 0
3; : : : /; (81)

where U3 corresponds to possible triple interactions in (75), etc. Since the arrow in (73) is
the transformationR raised to some very large power, we should put two theories in the same
universality basket if they become identical after many iterations of (81).

A.3.2.
While heuristic, this argument underscores the importance of scale-invariant

models. If there really was a well-defined transformation (81), such theories will be its
fixed points. It makes sense that the result in (73) is scale invariant, since we certainly expect
the same macroscopic description to be valid at both the 1m and 2m scales.

The invariance here should be understood up to redefinition of the fields. Indeed, if
�1.x/ is measured in meters then R should act on it by �1.x/ 7! 2�1�1.2x/. In general, if

�i .x/
R

�����! 2��i �i .2x/;

then the number �i is called the scaling dimension of �i . For a lattice model, scale-
invariance means scale-invariance of the mesh " ! 0 limit, in which we rescale the fields �i

by "�i . It is this limit that we actually observe on the macroscopic scale. See [7] for a superb
exposition of scaling and renormalization.

Near a fixed point of R, we have much better chance of understanding what R does.
Many nearby theories will be attracted back to the fixed points by repeated applications ofR.
These should be put in the same universality class.

A.3.3.
The critical Ising model should be scale-invariant. For T ¤ Tc , there is a micro-

scopic scale in the model set by the scale at which the signs exponentially decorrelate. At
T D Tc , this becomes infinite and scale-invariance should appear. Currently, there is no
mathematical proof of this for d D 3 and it remains an important open problem. Numerical
experiments [21] give

��;3 D 0:518154 : : :

as the scaling dimension of the spin field in d D 3.

A.3.4.
Importantly, for d D 2 and d D 3, this is not a Gaussian fixed point. A Gaussian

random field is a generalization of a Gaussian process with d -dimensional time. For a Gaus-
sian field, ˆ D RN and the functions U1 and U2 are quadratic. In suitable coordinates,
the field thus becomes a superposition of many noninteracting Gaussian random variables.
While certainly a very, very important part of probability theory and mathematical physics,
Gaussian fields do not describe materials with nonlinear interactions.
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By contrast, Theorem 3 implies that for d � 4, the critical Ising model is Gaussian
and ��;4 D 1. It is a very difficult and important mathematical theorem to prove, and it
underscores the crucial importance of dimensionality in statistical mechanics.

A.3.5.
Which other microscopic models will fall into the critical Ising fixed point? The

crucial feature of the Ising model is the ˙1 symmetry between the two possible values of
�.v/. One should expect that any potential U1 which has two symmetric minima, like the
function in (82),

U1.�/ D ; (82)

has the same critical scaling limit. For T < Tc , there should be Gibbs measures that prefer
to stay close to one of the minima in (82), thus breaking the symmetry. For T > Tc , one
expects a unique symmetric Gibbs measure.

While the details of these measures, as well as the values of the critical temperature
Tc , will depend U1 and U2, the large-scale fluctuations of the T D Tc measure (as captured
by the themesh " ! 0 limit of the latticemodel) should probably be universal and the same as
for the critical Ising model. In other words, the critical Ising model should give the universal
description of the transition between the broken and unbroken ˙1 symmetry.

In light of Theorem 1, the reader may wish to contemplate what happens if the
potential U1 has 3 minima

U1.�/ D ; (83)

which can be permuted in all possible ways by the symmetries of the theory.

References

[1] M. Aizenman and H. Duminil-Copin, Marginal triviality of the scaling limits of
critical 4D Ising and '4

4 models. Ann. of Math. (2) 194 (2021), no. 1, 163–235.

410 A. Okounkov



[2] M. Aizenman, H. Duminil-Copin, and V. Sidoravicius, Random currents and
continuity of Ising model’s spontaneous magnetization. Comm. Math. Phys. 334
(2015), no. 2, 719–742.

[3] R. J. Baxter, Onsager and Kaufman’s calculation of the spontaneous magnetiza-
tion of the Ising model. J. Stat. Phys. 145 (2011), no. 3, 518–548.

[4] R. J. Baxter, Onsager and Kaufman’s calculation of the spontaneous magnetiza-
tion of the Ising model: II. J. Stat. Phys. 149 (2012), no. 6, 1164–1167.

[5] V. Beffara and H. Duminil-Copin, The self-dual point of the two-dimensional
random-cluster model is critical for q � 1. Probab. Theory Related Fields 153
(2012), no. 3–4, 511–542.

[6] T. Bodineau, Translation invariant Gibbs states for the Ising model. Probab.
Theory Related Fields 135 (2006), no. 2, 153–168.

[7] J. Cardy, Scaling and renormalization in statistical physics. Camb. Lect. Notes
Phys. 5, Cambridge University Press, Cambridge, 1996.

[8] V. Chari and A. Pressley, A guide to quantum groups. Cambridge University
Press, Cambridge, 1995. Corrected reprint of the 1994 original.

[9] N. Curien, Hugo Duminil-Copin et les transitions de phase. Images des Mathé-
matiques, CNRS (2017). https://images.math.cnrs.fr/Hugo-Duminil-Copin-et-les-
transitions-de-phase.

[10] R. L. Dobrushin, An investigation of Gibbs states for three-dimensional lattice
systems. Teor. Veroyatn. Primen. 18 (1973), 261–279 (Russian, with English sum-
mary).

[11] R. L. Dobrushin and S. B. Shlosman, The problem of translation invariance of
Gibbs states at low temperatures. In Mathematical physics reviews, pp. 53–195,
Sov. Sci. Rev. Sect. C: Math. Phys. Rev. 5, Harwood Academic Publ., Chur, 1985.

[12] H. Duminil-Copin, Divergence of the correlation length for critical planar FK per-
colation with 1 � q � 4 via parafermionic observables. J. Phys. A 45 (2012), no.
49, 494013, 23.

[13] H. Duminil-Copin, Random currents expansion of the Ising model. In European
Congress of Mathematics, pp. 869–889, Eur. Math. Soc., Zürich, 2018.

[14] H. Duminil-Copin, Sixty years of percolation. In Proceedings of the International
Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures,
pp. 2829–2856, World Sci. Publ., Hackensack, NJ, 2018.

[15] H. Duminil-Copin, Counting self-avoiding walks on the hexagonal lattice.
In Snapshots of modern mathematics from Oberwolfach, 2019. https://www.
imaginary.org/sites/default/files/snapshots/snapshots-2019-006.pdf.

[16] H. Duminil-Copin, Lectures on the Ising and Potts models on the hypercubic lat-
tice, Random graphs, phase transitions, and the Gaussian free field. In Springer
Proc. Math. Stat., pp. 35–161, 304, Springer, Cham, 2020.

[17] H. Duminil-Copin, 100 Years of the (critical) Ising Model on the Hypercubic
Lattice. In Proceedings of the International Congress of Mathematicians, Vol. 1,
pp. 164–210, EMS Press, 2022.

411 The Ising model in our dimension and our times

https://images.math.cnrs.fr/Hugo-Duminil-Copin-et-les-transitions-de-phase
https://images.math.cnrs.fr/Hugo-Duminil-Copin-et-les-transitions-de-phase
https://www.imaginary.org/sites/default/files/snapshots/snapshots-2019-006.pdf
https://www.imaginary.org/sites/default/files/snapshots/snapshots-2019-006.pdf


[18] H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion, Discon-
tinuity of the phase transition for the planar random-cluster and Potts models with
q > 4. Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 6, 1363–1413 (English, with
English and French summaries).

[19] H. Duminil-Copin, V. Sidoravicius, and V. Tassion, Continuity of the phase tran-
sition for planar random-cluster and Potts models with 1 � q � 4. Comm. Math.
Phys. 349 (2017), no. 1, 47–107.

[20] H. Duminil-Copin and S. Smirnov, Conformal invariance of lattice models. In
Probability and statistical physics in two and more dimensions, pp. 213–276, Clay
Math. Proc. 15, Amer. Math. Soc., Providence, RI, 2012.

[21] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A.
Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization
and precise critical exponents. J. Stat. Phys. 157 (2014), no. 4–5, 869–914.

[22] M. Fisher, The renormalization group in the theory of critical behavior. Rev.
Modern Phys. 46 (1974), no. 4, 597.

[23] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some
partially ordered sets. Comm. Math. Phys. 22 (1971), 89–103.

[24] G. Grimmett, Percolation. 2nd edn., Grundlehren Math. Wiss. 321, Springer,
Berlin, 1999.

[25] Y. Ikhlef, R. Weston, M. Wheeler, and P. Zinn-Justin, Discrete holomorphicity
and quantized affine algebras. J. Phys. A 46 (2013), no. 26.

[26] M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models. CBMS Reg.
Conf. Ser. Math. 85, Published for the Conference Board of the Mathematical Sci-
ences, Washington, DC; American Mathematical Society, Providence, RI, 1995.

[27] J.-F. Le Gall, Intégration, Probabilités et Processus Aléatoires. 2006. https://
www.imo.universite-paris-saclay.fr/~jflegall/IPPA2.pdf.

[28] H. Maris and L. Kadanoff, Teaching the renormalization group. Am. J. Phys. 46
(1978), no. 6, 652–657.

[29] N. Reshetikhin, Lectures on the integrability of the six-vertex model. In Exact
methods in low-dimensional statistical physics and quantum computing,
pp. 197–266, Oxford Univ. Press, Oxford, 2010.

[30] M. Rukeyser, Willard Gibbs. Doubleday, Doran and Company, New York, 1942.
[31] D. Shirkov, Fifty years of the renormalization group. CERN Cour. 41 (2001),

19–22.
[32] S. Smirnov, Discrete complex analysis and probability. In Proceedings of the

International Congress of Mathematicians. Volume I, Hindustan Book Agency,
New Delhi, 2010.

[33] W. Werner, Percolation et modèle d’Ising. Cours Spéc. 16, Société Mathématique
de France, Paris, 2009(French).

[34] A. Whitten, Mathematicians Prove Symmetry of Phase Transitions. Quanta Mag.
(July 8 2021). https://www.quantamagazine.org/mathematicians-prove-symmetry-
of-phase-transitions-20210708/.

412 A. Okounkov

https://www.imo.universite-paris-saclay.fr/~jflegall/IPPA2.pdf
https://www.imo.universite-paris-saclay.fr/~jflegall/IPPA2.pdf
https://www.quantamagazine.org/mathematicians-prove-symmetry-of-phase-transitions-20210708/
https://www.quantamagazine.org/mathematicians-prove-symmetry-of-phase-transitions-20210708/


[35] K. Wilson, Renormalization group and critical phenomena. I. Renormalization
group and the Kadanoff scaling picture. Phys. Rev. B 4 (1971), no. 9, 3174.

[36] K. Wilson, Renormalization group and strong interactions. Phys. Rev. D 3 (1971),
no. 8, 1818.

[37] J. Zinn-Justin, Renormalization and renormalization group: From the discovery
of UV divergences to the concept of effective field theories. In Quantum Field
Theory: Perspective and Prospective, pp. 375–388, Springer, 1999.

Andrei Okounkov

Department of Mathematics, University of California, Berkeley, 970 Evans Hall Berkeley,
CA 94720–3840, USA, okounkov@math.columbia.edu

413 The Ising model in our dimension and our times

mailto:okounkov@math.columbia.edu

	1. Mathematics and physics
	2. The Ising model
	2.1. Stuff fluctuates in space
	2.2. A lattice in space
	2.3. Signs on a lattice
	2.4. Probabilities and energy
	2.5. Energy vs. entropy
	2.6. Interactions in the Ising model
	2.7. Clusters and interfaces

	3. Gibbs measures
	3.1. Definition
	3.2. High temperature
	3.2.1. 
	3.2.2. 
	3.2.3. 
	3.2.4. 
	3.2.5. 
	3.2.6. 
	3.2.7. 
	3.2.8. 

	3.3. Low temperature
	3.3.1. 
	3.3.2. 
	3.3.3. 
	3.3.4. 
	3.3.5. 
	3.3.6. 

	3.4. Critical temperature

	4. What happens at T=T_c?
	4.1. Critical Gibbs measures
	4.2. The Potts model
	4.3. Theorems
	4.4. Contours of proofs, seen in the distance
	4.4.1. 
	4.4.2. 
	4.4.3. 
	4.4.4. 
	4.4.5. 
	4.4.6. 
	4.4.7. 
	4.4.8. 
	4.4.9. 


	5. Further reading
	A. The universal attraction of the Ising model
	A.1. Universality
	A.2. Models like the Ising model
	A.2.1. 
	A.2.2. 
	A.2.3. 

	A.3. Critical points
	A.3.1. 
	A.3.2. 
	A.3.3. 
	A.3.4. 
	A.3.5. 


	References

