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Abstract

While the author is a professional mathematician, he is by no means an expert in the sub-
ject area of these notes. The goal of these notes is to share the author’s personal excitement
about some results of Maryna Viazovska with mathematics enthusiasts of all ages, using
maximally accessible, yet precise mathematical language. No attempt has been made to
present an overview of the current state field, its history, or to place this narrative in any
kind of broader scientific or social context. See the references in Section 5 for both profes-
sional surveys and popular science accounts that will certainly give the reader a broader
and deeper understanding of the material.
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1. Spheres keep their distance

1.1. Spheres in a d-dimensional space
High-dimensional spaces really exist. A photo of a 3-dimensional object taken by

our phone may seem to be a 2-dimensional representation of the original, but : : : As we
capture, process, store, transmit, or display photos, real manipulations are happening with
long list of numbers .x1; : : : ; xd /. Not just inside the phone, but also inside our brain, the
image is processed out of many millions of electric potential readouts from the cone and rod
cells.

We will call a list of numbers x D .x1; : : : ; xd / a vector. Possible values of each xi

may be different in different contexts. It could be just a bit, meaning xi equals either 0 or 1.
It could take values from 0 to 255, as in many popular color specifications. If xi records a
value of the electric potential then, in principle, it is a real number that can take any value,
arbitrarily small or large. While these different contexts all influence and enrich each other,
our focus in this narrative will be on real vectors. Mathematicians denote real numbers by R

and d -tuples of real numbers by Rd . The number d is called the dimension.
ToR2 andR3, we can attach a familiar geometric image. Via Cartesian coordinates,

a point x D .x1; x2/ 2 R2 corresponds to a point in the plane, whereas x D .x1; x2; x3/ 2 R3

corresponds to a point in the our native 3-dimensional space. While Rd may not be as famil-
iar, it exists and it is important. With diverse uses and applications in mind, mathematicians,
scientists, and engineers are all learning to wrap their 3-dimensional heads around the d -
dimensional spaces.

A key geometric quantity in R3 is the distance between two points

kx � yk D

vuut dX
iD1

.xi � yi /2; (1)

where d D 3. For d D 2, this is the distance between two points in the plane. For any d , this
is the most natural way to define the distance between two points in Rd . It is an important
and useful notion in countless contexts, for instance, in statistical analysis.

For example, suppose wemeasured the values x0 D .x0
1; : : : ; x0

d
/where we expected

to see x D .x1; : : : ; xd /. Should we attribute the discrepancy to a small unavoidable random
noise? Or have we observed something unexpected? The distance kx0 � xk is the principal
measure of how well our measurements fit our predictions.

In this and other situations, it becomes important to separate the points x0 whose
distance from x is larger than some fixed threshold. One thus defines the ball and sphere in
Rd with center x and radius r , respectively, by

B.x; r/ D
®
x0 such that

x0
� x

 � r
¯
; (2)

S.x; r/ D
®
x0 such that

x0
� x

 D r
¯
: (3)

We will use this terminology in all dimensions, even though for d D 2 this is usually called
a disc and circle,1 respectively.

1 And for d D 1, (2) is a segment and (3) are its endpoints.
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The principal question for us in this narrative is how densely can one pack the
spheres of a fixed radius in the d -dimensional space. One may compare and contrast a sphere
with a cube

Cube.x; r/ D

°
x0 such that max

i

ˇ̌
x0

i � xi

ˇ̌
� r

±
; (4)

with center x and size .2r/ � � � � � .2r/. The maximum in (4) is an alternative measure of
proximity of two vectors x and y , and it is useful in different contexts. Spheres are excep-
tionally symmetric, preserved by all possible rotations around their center. Compared with
spheres, cubes look heavy and boxy. Stacked side to side, cubes fill the whole space, leaving
no voids between them. Two spheres can only touch at a point, and there will be voids left
no matter how cleverly we try to pack them. However, what is the densest packing that can
be achieved?

We will see that different dimensions vary significantly when it comes to sphere
packings. In particular, in R8 and R24 there exist very special arrangements of spheres,
denoted E8 and ƒ24. They have been conjectured to be the densest possible in these dimen-
sions.

Recently, this conjecture was proven in an absolutely stunning fashion by Maryna
Viazovska in a solo work [54] for E8 and by Viazovska and collaborators Henry Cohn, Abhi-
nav Kumar, Stephen D. Miller, and Danylo Radchenko for ƒ24 in [11]. For these and other
phenomenal results, Maryna Viazovska was awarded the Fields Medal, the highest honor in
mathematics, in 2022. Our modest goal in these notes is to share our personal excitement
about the amazing math that goes into both the statement and the proof of these theorems
with the broadest possible audience of mathematics enthusiasts.

1.2. Sphere packings in R2

The problem of sphere packing in two dimensions is familiar to anyone who tried
to cut circular pieces from a rolled dough while preparing any of the delicious variations on
the same universal theme, from vareniki to empanadas [56].

(5)

Naturally, one would like to minimize the fraction of the dough that gets discarded. If the
size of the dough is much larger than the radius r of the cutter then this fraction is much more
sensitive to the arrangement of circles than to the value of r . As a mathematical abstraction,
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one can consider an infinite piece of dough, and compute the fraction of the dough used
(that is, the density of the sphere packing) as a limit2 over larger and larger squares like in
the figure of (6). We will compute the densities in (6) momentarily.

Note that for the infinite plane, a simple rescaling shows that the packing density
does not depend on the radius r . This is true for sphere packing in all dimensions. In the
analysis, one may leave r as a variable, or set it to any convenient value.

Let us look at the figure in (6) more closely:

(6)

On the left, we have stacked the circles just like squares. Hence, within each square, it is the
inscribed circle that is used, and the rest discarded. Therefore, the packing density is

area of inscribed circle
area of a square

D
�

4
D 0:785 : : : (7)

If we slant the packing we can improve this. The other two arrangements in (6) are slanted
at the angle of 5�

12
D 75ı and �

3
D 60ı, respectively. Therefore the distance between the

horizontal rows of circles has decreased, and namely by a factor of

sin
5�

12
D 0:965 : : : ; sin

�

3
D

p
3

2
D 0:866 : : :

As the horizontal rows get closer, the density increases by the reciprocals of these numbers.
At �

3
this improvement has to stop, because each circle now touches not 4 but 6 other circles,

and we cannot slant the figure any further.
Arguably, the hexagonal arrangement on the right in (6), with its 6-fold symmetry,

is even more symmetric than the square arrangement on the left. It has a special name in
mathematics, namely A2. Here 2 stands for the dimension and the letter A will be discussed
a bit later. We have

density.A2/ D
�

2
p

3
D 0:906 : : : (8)

This is the densest the spheres can be packed in two dimensions. It is not simple to give a
rigorous mathematical proof of this fact, but mathematicians succeeded a long time ago; see
[22,23,53]. The person cutting the dough in the photograph (5) is evidently aware of this.

2 Readers unfamiliar with limits may probably find their discussion in [43] useful. To avoid
worrying about the existence of the limit, it is a good idea to replace the limit by limit supe-
rior in this definition.
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1.3. Contact number in R3

Let us see how well the life in three dimensions has prepared us for the analysis of
the sphere packings in R3. As a warm-up, one can consider a local version of the packing
problem, known as the contact number problem. It can be asked in any dimension and asks
for the maximal number �.d/ of spheres of radius r in Rd that can be brought in contact
with a given sphere of the same radius.

It is quite clear and will be revisited below that �.2/ D 6, realized by theA2 arrange-
ment. InR3, the problem has a long history, the origin of which legend attributes to the notes
taken by David Gregory during his conversations with Isaac Newton in 1694; see [5] for a
critical analysis of this legend.3

Newton and Gregory apparently talked about celestial bodies, in which context it is
natural to ask which percentage of the sky on one body, say the Earth, is occupied by image
of another body, say the Moon, like in the figure of (9):

(9)

This percentage depends on the ratio of the distance to theMoon andMoon’s radius. Suppose
we have two touching spheres of the same radius r like in the figure of (10):

(10)

The right triangle in (10) has hypotenuse 2r and short side r . Therefore, the opposing angle
equals

arcsin
1

2
D

�

6
; (11)

regardless of the dimension. Note that for R2 this already suffices to conclude �.2/ D 6.
For d D 3, which fraction of the sky is occupied by the spheres in (10) in each

other’s sky? Consider the sphere

S.0; r/ D
®
.x1; x2; x3/ W x2

1 C x2
2 C x2

3 D r2
¯

� R3 (12)

3 It is a problem in mathematics and human life in general that, lacking the time and resources
to research every single topic, we mostly just repeat what we have been told. Not being able
to break with this tradition, the narrator cannot do better than repeat what he read in [5].
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with center at the origin and radius r . The points with x3 � h, where h is some fixed number
between �r and r , form what is called a spherical cap. The images in the sky in (9) and (10)
are spherical caps.4

It was known already to Archimedes, and is commemorated
as the comparison of the sphere with the cylinder on the back
of the Fields Medal, that the area of a spherical cap is propor-
tional to its height r � h.

Since the cap vanishes for h D r and is the whole
sphere for h D �r , we conclude

area of the cap
area of the sphere

D
r � h

2r
D

1 � h=r

2
: (13)

For the cap in the figure of (10),

h

r
D cos

�

6
D

p
3

2
)

2r

r � h
D

4

2 �
p

3
D 14:92 : : : (14)

Since each cap occupies more that 1=15 of the surface area, 15 caps cannot fit without over-
lap, so the contact number in R3 is at most 14. It is easy to see that it is at least 12. Can it be
equal 13? In the legend, Gregory thought yes, while Newton thought no.

There is an objective difficulty here, and it has to do with the fact that there are
many different possible configurations of 12 spheres. One of them, realized for the densest
packing, can be seen on the left in the figure of (27) below. But another possibility is to put
the spheres in the 12 vertices of a regular icosahedron, like in (15), which also shows the
plot of the spherical caps.

(15)

From the spherical caps, we see that the 12 spheres are not touching each other, hence can be
moved aroundwithout losing the contact with the central sphere.5 Perhaps we canmake room

4 Of course, one gets the same geometric shape if one takes x1 � h or x2 � h instead of
x3 � h. Since caps are normally worn on the top of the head, we made the conventional
choice of the vertical x3-axis.

5 It is a fun fact to prove, see the appendix to Chapter 1 in [15], that an arbitrary permutation
of the 12 spheres may be achieved by rolling them around the central sphere.
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for the 13th sphere? The problem of fitting caps into a sphere is a close spherical relative of
the sphere packing problem6 and belongs to a broad class of problems known as spherical
codes and spherical designs [2,18].

Popular descriptions of the contact number problem often contain a suggestion for
the reader to imagine a billiard ball hanging in mid-air, and 12 further billiard balls rolling
around it. I envy those readers who have enough spatial intuition to imagine something like
this. Even in our native R3, our geometric intuition often asks for help. Help may come from
building models or from doing computations.

Geometers of all times have liked building models, using whatever materials the
technology of the time made available. They would be surely thrilled to see the computer
models that we can build today. There is a wonderful animated popular account of the con-
tact number problem at Mathematical Etudes website. I am sure many readers will find it
fascinating.

But the destination of our story being sphere packings inR8, it may be safe to expect
the computations to overtake models in such high dimension. And indeed, at the heart of
Viazovska’s proof in [54] lies a brilliant inspired computation. It puts a big exclamation mark
in a certain long line of argument. This line of argument was first born in the work of Philippe
Delsarte in the discrete setting of coding theory [17] and was later adapted to spherical codes
to compute

�.4/ D 24; �.8/ D 240; �.24/ D 196560; (16)

see [38,40,42]. It may be also used to show that �.3/ D 12, see [1,40], but many other proofs
of this fact were found earlier [5,47]. The Newton character from the legend was right.

Delsarte-type bounds, also known as linear programming bounds, were put to work
in the sphere packings situation by H. Cohn and N. Elkies in [10]. We will talk about them
in Section 3. They require a certain magic function to complete the proof. It is this elusive
magic function that was discovered by Viazovska is her astonishing work [54].

1.4. The densest packings in R3

Let
v1; : : : ; vd 2 Rd

be a basis of Rd , equivalently a set of linearly independent vectors.7 By definition, the lat-
tice ƒ spanned by the vectors v1; : : : ; vd is formed by all vectors

ƒ D Zv1 C Zv2 C � � � C Zvd � Rd (17)

6 Strictly speaking, taking into account the spherical shape of the Earth, the person in the
figure of (5) may be solving the spherical cap packing problem. In contrast to the sphere
packing problem in Rd , the radius of the spherical cap, or equivalently its angular size,
cannot be scaled away and remains an important parameter in the problem. In the limit of
very small caps, the problem reduces to sphere packing in the flat space Rd . Of course, a
person making vareniki is not taking the radius of the Earth into account!

7 Some readers may find the explanation of these notions given in [44] useful.
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that can be obtained from the vi ’s using addition and subtraction. The linear space Rd is a
group under addition and lattices are special kinds of subgroups in it.

A sphere packing is called a lattice packing if the centers of the spheres form a
lattice. For instance, the packings in (6) are lattice packings. There, we can take v1 D .2r; 0/

is all three cases, while

v2 D .2r cos�; 2r sin�/; where � D
�

2
;

5�

12
;

�

3
;

depending on the slant angle �.
Both the hexagonal packing and the corresponding hexagonal lattice are denoted by

the symbol A2. There is a cool way to realize this lattice inside R3 as the set

A2 D

°
.x1; x2; x3/;

X
xi D 0

±
� Z3 (18)

of integer points with sum zero; see the figure in (19).

(19)

In (19), the sphere at .0; 0; 0/ is surrounded by 6 spheres with centers at all possible permu-
tations of .1; �1; 0/. These are at distance

p
2 from the origin, and hence r D

1p
2
.

In a second we will need to talk about holes in the A2 packing, shown in the figure
of (21). These come in two different flavors according to the sign in

hole center D ˙

�
2

3
; �

1

3
; �

1

3

�
C integer vector: (20)

The two kinds of holes are color-coded in (21). They are permuted by symmetries of A2.

(21)
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The densest sphere packing in R3 may be constructed by adding new layers of spheres (19)
as in the figure of (22). Each new layer is a copy of (19) shifted so that the new spheres fit
over the holes of the previous layer

(22)

Since at every step we have 2 possible choice of the holes in (20), this gives 21 different
choice of packings with the same density! However, if we want it to be a lattice packing then
there is only one choice up to an overall rotation or reflection. We can take

v1 D .1;�1; 0/;

v2 D .0; 1;�1/; (23)

v3 D .0; 1; 1/;

and these generate the lattice

D3 D

°
.x1; x2; x3/;

X
xi is even

±
� Z3: (24)

In general, one defines

Ad D

°
.x1; : : : ; xdC1/;

X
xi D 0

±
� ZdC1; (25)

Dd D

°
.x1; : : : ; xd /;

X
xi is even

±
� Zd : (26)

For d > 3, these define different lattices and different sphere packings, but it is mathematical
fact that A3 is the same as D3. Check this! Henry Cohn suggests the following exercise for
when the reader visits the grocery store next. Find some fruit stacked asA3 and some stacked
as D3. Then rotate your head until you are convinced that they are the same packing!

The proof of the fact that D3 is the densest sphere packing in R3 is a monumental
achievement of T. Hales and an inspiring story of computers helping humans to finish very
complex proofs. See [27–29,37] for more about this. It is not known, but conjectured, that D4

and D5 are the densest sphere packings in R4 and R5, respectively.
It should be stressed emphatically that the optimality discussed in these notes con-

cerns optimality among all sphere packings, not just lattice packings. Within the class of
lattice packings, the optimality of D3 was shown by Gauss in 1831 [24], while the optimality
of the D4 and D5 lattices was proven by Korkine and Zolotareff [34,35] in the 1870s.
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Following our discussion of the contact number �.3/, it is fun to examine the
arrangement of neighbors in the A3 D D3 packing. The sphere at .0; 0; 0/ has 12 neighbors
with centers at the vectors .˙1; ˙1; 0/ and their permutations. These are the 12 vectors x

of length kxk D
p

2 in the lattice A3 D D3. The corresponding spherical caps can be seen
in the figure of (27), together with 24 caps for the spheres with centers at points kxk2 D 6

and 48 caps for the spheres at the distance kxk2 D 14.

(27)

In this fashion, one can obtain very interesting collections of points on spheres from dense
lattice packings in any dimension.

2. Beyond the 3-space

2.1. 4, 5, 6, 7, 8, …
The narrator of these notes is a complete novice in the field of sphere packing trying

to share his first impressions of the striking beauty of the field with other mathematics enthu-
siasts. Among the mathematicians of older generations, I imagine I am not alone feeling like
a schoolboy again, exploring spellbound the treasures described, in particular, in the treatise
[15] by John Conway, Neil Sloane, and collaborators. The story starts deceptively simple but
quickly leads to the highest heights and deepest depths of mathematics.

To continue the parallel with one’s student years, each dimension d in the sphere
packing problem feels like a new year of math classes. While it builds on and connects with
the material form the previous years, many new phenomena and ideas appear each time.

In even further parallel to how mathematics courses change as we go trough high-
school, college, graduate school, and so on, hopefully never stopping learning, the sphere
packing problems seem to come in certain groups of dimensions. In dimensions up to 8, the
densest packing are known or conjectured to be the lattice packings

A1; A2; A3; D4; D5; E6; E7; E8: (28)

Here the known cases are underlined, the 8-dimensional case being Viazovska’s break-
through. This certainly feels like a story about exceptional Lie groups, which ends in
dimension 8 with the largest exceptional Lie group E8. The optimality of E6; E7; E8 among
lattice packings was shown by Blichfeldt [4] back in 1935.

Next come dimensions 9 through 24. Looking at the iconic picture in (29), repro-
duced here with permission from [49], we see that these dimensions start out as valley leading
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to an ascent to the sharp peak of the Leech lattice ƒ24. The Leech lattice is now proven to
give the densest sphere packing in dimension 24 by Viazovska and collaborators [11].

(29)

The Leech lattice, with its deep connections to the exceptional, or sporadic, finite simple
groups including the Monster group of Bernd Fischer and Robert Griess, is the defining
feature of the 9 to 24 valley. Again, the Monster being the largest exceptional group, the
storyline has to change after 24.

What is next? We hope the reader’s curiosity will lead her or him to explore, guided
by [7,15]. See also the tables [9,41] of the densest sphere packings currently known in different
dimensions.

2.2. Fluid diamond in d D 9

Here is one among the countless marvels of high-dimensional sphere packing.
Recall the lattice Dd from (25) formed by integer vectors with even coordinate sum. The
nearest neighbors in Dd are

p
2 away, so we can pack spheres of radius r D

1p
2
using points

of Dd as centers.
Consider the vector

 D

�
1

2
;

1

2
;

1

2
; : : : ;

1

2

�
: (30)

What is the distance between x and the nearest point v 2 Dd ? Since v has integral coordi-
nates, we have

k � vk
2

�
1

22
C � � � C

1

22„ ƒ‚ …
d times

D
d

4
:

Therefore, if d D 8, we can fit two copies of D8 into R8 with a shift by  . The resulting
lattice is nothing else than the magic E8 lattice

E8 D D8 [ .D8 C /; (31)

about which we will talk more in Section 2.3 below.
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If d D 9, we can take the vector

 i;t D  C tei ; i D 1; : : : ; 9; (32)

where t 2 R is an arbitrary number and

ei D .0 : : : ; 0; 1
i
; 0; : : : ; 0/ (33)

is the i th coordinate vector. By the same argument as before,

k t � vk
2

� 2; for v 2 D9;

so we can pack the spheres of radius r D
1p
2
using points of

fluid diamond packing D D9 [ .D9 C  i;t / (34)

as centers. Note that since both t and i are arbitrary, half of the spheres in (34) can be
shifted arbitrarily in one of the coordinate direction without running into the other half
of the spheres—a rather fluid packing! And yet, its density matches, for any t , the high-
est known density in dimension 9. It is not so easy to imagine this possible based on our
low-dimensional geometric intuition.

2.3. Stars align in E8

The exceptionally dense and symmetric E8 lattice packing which we met in (31)
certainly merits a much longer discussion. One can start this discussion from many different
angles, emphasizing different areas of mathematics where the E8 lattice naturally appears.

2.3.1. Roots
The lattices Ad and Dd from (25) have the property that kvk2 is an even integer

for any v 2 Dd . Such lattices are called even. How can we tell if a lattice ƒ as in (17) is
even? Using the concept of the inner product, recalled in Appendix A, it suffices to check
that .vi ; vj / 2 Z and .vi ; vi / 2 2Z for any basis of ƒ. Since

.; / D 2 and .; v/ 2 Z;

for any v 2 D8 and  as in (30), we see that E8 is an even lattice.
Given an even lattice ƒ, vectors ˛ 2 ƒ of the minimal nonzero norm k˛k2 D 2 are

call roots.8 These are the centers of the spheres touching the central sphere. For example,
the vectors

˛ D ˙ei ˙ ej 2 Dd ; i ¤ j; (35)

are roots. For E8, we also have the root  , as well as

˛ D

�
˙

1

2
; ˙

1

2
; ˙

1

2
; : : : ; ˙

1

2

�
such that the sum is even, (36)

8 For lattices in which the squared norm takes both even and odd integer values, vectors of
norm 1 should also count as roots. These have an important role to play in Lie theory and
many other branches of mathematics, but not in our narrative.
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of which there are 1
2
28 D 128 many. We invite the reader to check there are no other roots

for E8 and verify that the number of roots equals �.8/ D 240. Thus the roots of E8 give the
solution of the contact number problem in d D 8, and in fact this solution is unique, very
much unlike the d D 3 case discussed in Section 1.3.

2.3.2. Reflections
Every root ˛ 2 ƒ in an even lattice ƒ generates a special symmetry of the lattice ƒ,

namely the orthogonal reflection r˛ in the hyperplane orthogonal to ˛. It sends ˛ to �˛ and
fixes all vectors v? that are orthogonal to ˛.

˛

v?

r˛
�����!

�˛

v?

(37)

Explicitly, it is given by the formula

r˛.v/ D v � .v; ˛/˛; (38)

which manifestly preserves the lattice ƒ. Indeed, (101) shows the inner product takes integer
values in an even lattice. For more on (38), see Section A.3.

For example, the roots ˛ of the A2 lattice (18) are the permutations of the vector
.1;�1;0/. The reflection r.1;�1;0/ swaps the first two coordinates. Similarly, forAd � RdC1,
each reflection r˛ swaps two coordinates of RdC1.

Orthogonal symmetries of a lattice ƒ always form a finite group; see the brief intro-
duction to this concept in Appendix B. In particular, its subgroup generated by the reflections
r˛ is a finite group W generated by reflections. Such groups have been fully classified and
studied in great detail due to their crucial importance in Lie theory, singularity theory, and
many other branches of mathematics. As a corollary of this classification, we know that all
even lattices spanned by roots are orthogonal direct sums of lattices of the form Ad , Dd , or
E6; E7; E8.

2.3.3. ADE classification
How does this classification work? In an even lattice ƒ spanned by roots, one can

always choose the basis of roots so that

.˛i ; j̨ / D 0 or �1; i ¤ j: (39)

For example, for E8, we can take

˛i D ei � eiC1; i D 1; : : : ; 6; (40)
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together with
˛7 D e6 C e7; ˛8 D �: (41)

We see that .˛i ; j̨ / D 0 for most pairs i; j , and that .˛i ; j̨ / D �1 precisely for the pairs
connected by an edge in the following graph:

E8 D

1 2 3 4 5

6

7 8
(42)

The graph (42) is a very convenient graphical way to represent the Gram matrix

Bƒ D
�
.˛i ; j̨ /

�
:

It is called the Dynkin diagram or the Coxeter diagram.
The ADE classification is really the classification of all possible diagrams like (42)

for which the corresponding Gram matrix Bƒ is positive definite (a concept which will be
explained and used in Section 3.1 below). This is not as difficult as it sounds, and revolves
around the fact any subgraph of a positive definite diagram is a positive definite diagram.

For instance, if we erase nodes 1; 2; 3; 8; 7; 6; 5 from (42) in that order, we get dia-
grams for lattices E7, E6, D5, D4, D3 D A3, A2, A1, that are known or conjectured to give
the densest packings in the corresponding dimensions.

In the opposite direction, if we try to invent the lattice E9 with the diagram

“E9” D

0 1 2 3 4 5

6

7 8
(43)

we see that this does not work because the determinant detBE9 of the corresponding Gram
matrix vanishes.9

2.3.4. Discriminant
In general, the determinant or the discriminant of an even lattice ƒ,

�ƒ D detBƒ; (44)

is a very important quantity that enters the following formula for the density of the corre-
sponding sphere packing.

The ƒ-translates of the parallelepiped

…ƒ D

²
x D

X
xi ˛i ; max jxi j �

1

2

³
(45)

tile the whole space, each tile containing exactly one lattice point as its center. This just the
story about the cube (4) in different coordinates. We have

Vol…ƒ D
p

�ƒ: (46)

9 In fact, the diagram (43) is the Dynkin diagram of the infinite affine reflection group of type
OE8 in R8.
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Therefore, if ƒ is even and the roots are the vectors of minimal length then

density of the sphere packing D

VolB.0; 1p
2
/

p
�ƒ

: (47)

The smaller the discriminant, the larger the density. Since the discriminant is an integer, 1 is
the smallest it can be, and in fact

�E8 D 1: (48)

Lattices with �ƒ D 1 are called unimodular. Even unimodular lattices exist only in dimen-
sions that are multiples of 8, and E8 is the unique even unimodular lattice in R8.

In dimension 24, there exist 24 even unimodular lattices, and the superamazing
Leech lattice is distinguished among them by having no roots! In other words, one can pack
spheres of radius r D 1 with centers in Leech lattice instead of r D

1p
2
. While a meaningful

discussion of the Leech lattice transcends the introductory nature of these notes, we hope
that the reader’s curiosity will be satisfied by the accounts in [15,19,52].

2.3.5. Codes
Recall how at the very beginning, in Section 1.1, we talked about the possible values

of the entries xi in a vector x D .x1; : : : ; xd /. While everywhere else in this narrative we
consider the case of real entries xi , let us turn our attention to the case xi 2 ¹0; 1º for a brief
moment. In other words, let us talk about binary vectors.

The natural distance between binary vectors is the Hamming distancex � x0

Hamming D

Xˇ̌
xi � x0

i

ˇ̌
: (49)

It measures the number of entries in which x and x0 differ, and it is very natural for error
correction and other applications. If x and x0 represent the input and output of a transmission
through a binary communication channels, then (49) is the number of errors that occurred
during the transmission. If we can pack nonintersecting Hamming balls of radius r in ¹0;1ºd

then the centers C � ¹0; 1ºd of these balls give binary code words of length d that corrects
up to r errors. A related concept is the minimal distance ı between the code words from C .
Evidently, ı > 2r .

Given a code C , we define bC � Zd as the set of integer vectors that have the same
parity as some code word from C . Clearly, if v ¤ v0 are two distinct points of bC thenv � v0

 � min.2;
p

ı/;

and hence we can pack sphere of half that radius with centers at bC .
For d D 8, there exists a remarkable code C with ı D 4. It is obtained by adding the

parity bit to Hamming .7; 4/-code, see [1, 15]. The corresponding packing bC is isomorphic
to the E8 packing. Similarly, the Leech lattice can be obtained from the Golay code.
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2.3.6. The Coxeter plane
There is the following cool way to visualize roots for any finite reflection group

(requires familiarity with eigenvalues and also with complex numbers, see Section A.5).
The material in this section may feel a bit advanced and it could be a good idea to come back
to it after reading the material in the Appendix.

Recall the basis ˛i from Section 2.3.3 and consider the corresponding reflec-
tions r˛i

. Consider the product C of all these reflections taken in some order. The reflections
do not commute, so C depends on the order. Remarkably, however, the conjugacy class of C
is independent of the order. A a particularly nice choice is

Coxeter element C D r˛1r˛3r˛5r˛8„ ƒ‚ …
commute

r˛2r˛4r˛6r˛7„ ƒ‚ …
commute

; (50)

which presents C as a product of two involutions, that is, two elements that each square to 1,
where 1 is the identity matrix.

The order and eigenvalues of a Coxeter element can be computed abstractly. ForE8,
we have C30 D 1 and the eigenvalues of C are exactly the primitive roots of unity of order 30

or, equivalently, the roots of the cyclotomic polynomial

z8
C z7

� z5
� z4

� z3
C z C 1 D 0: (51)

We can take any one of them and project the roots onto corresponding eigenspace C � C8,
called the Coxeter plane. The resulting collection of points are the centers of the circles in the
figure of (52). The radii in that figure have no exact mathematical meaning and are simply
adjusted to resemble a sphere packing. The colors will be explained below.

(52)

Consider the involutions

Rgreen D r˛1r˛3r˛5r˛8„ ƒ‚ …
commute

; Rblue D r˛2r˛4r˛6r˛7„ ƒ‚ …
commute

; (53)

where the colors refer to the color-coding in the Dynkin diagram in (52). By construction,
the involutions (53) satisfy

RgreenC D Rblue D C�1Rgreen; (54)
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and hence generate, together with C, the symmetry group of a regular 30-gon in the Coxeter
plane. We have

Rgreen ˛i D �˛i ; i 2 ¹1; 3; 5; 8º: (55)

Therefore, all green vertices land on a line in the Coxeter plane—the line perpendicular to
the line fixed by Rgreen. An identical argument works for Rblue.

We can use the figure in (52) to illustrate the following important concepts related to
roots. First, the roots can be partitioned into positive and negative by a generic hyperplane in
R8, which we can take to be the preimage of a line in the Coxeter plane. In (52), the negative
roots are in gray, while the positive roots are colored.

Second, one can choose the roots ˛i from Section 2.3.3 as the simple positive roots.
These are the positive roots that cannot be written nontrivially as a sum of positive roots.
They are monochromatic in (52) where the colors correspond to the coloring of the Dynkin
diagram as before.

Third, all positive roots are nonnegative integer linear combinations of simple roots.
The proportions in which the simple roots combine to produce a given positive root are plot-
ted as pie charts in the figure of (52). In particular, the dichromatic roots in (52) correspond
to the roots

˛i C j̨ D r˛i
. j̨ / D r

j̨
.˛i / when .˛i ; j̨ / D �1; (56)

which exist for any pair of neighbors in the Dynkin diagram.
See Appendix F for more on connections between E8 and regular polygons.

2.4. Very large dimensions
Our discussion of sphere packings in arbitrarily large dimensions will be very brief

due to both objective lack of information about them and limits of the present narrative.
Let us call a sphere packing in Rd saturated if no additional sphere of the same

radius r can be inserted into it. Remarkably, the density of a a saturated packing is at least
2�d . We invite the reader to pause for a second and try to prove this. Maryna Viazovska says
this is one of her favorite entry-level problems about sphere packings.

One way to prove this is to note that, for a saturated packing, balls of twice the radius
with the same centers have to cover the whole Rd . Otherwise, there would a point where we
can insert another sphere of radius r . From

VolB.0; r/ D 2�d VolB.0; 2r/;

we get the sought lower bound for the density of a saturated packing.
As simple as this sounds, this bound is remarkable. As we review in Appendix E, the

volume of B.0; r/ decays superexponentially with dimension d for any r . Hence a packing
achieving a 2�d density must have superexponentially many spheres in any cube Œ0; L�d �

Rd as d ! 1. Also, the best known improvements to the 2�d lower bound are only basically
linear in d .

As to the upper bounds on density, that by Kabatiansky and Levenshtein [31] has
been holding the world record at 2�0:5990:::d since 1978, although the methods described
below allowed Cohn and Zhao [13] to achieve a constant factor improvement.
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3. Upper bounds on packing density

3.1. Positive definite forms and functions
3.1.1.
Let us start with with simplest possible inequality. For any real number x, x2 � 0.

As trivial as this sounds, this proves, for instance, that

x2
1 � 2x1x2 C 2x2

2 � 2x2x3 C x2
3 D .x1 � x2/2

C .x2 � x3/2
� 0: (57)

3.1.2.
An expression of the form

B.x/ D

nX
i;j D1

bij xi xj ; (58)

where bij 2 R are coefficients, is called a quadratic form in the variables x D .x1; : : : ; xn/.
In the sum (58), we may and will assume that bij D bj i . The symmetric array of numbers
.bij / is called the matrix of the quadratic form (58).

A quadratic form is called positive semidefinite if it takes only nonnegative values,
like that in (57). One writes B � 0. Forms that take positive values for nonzero arguments
are called positive definite. For instance, (57) is positive semidefinite but not definite, since
it vanishes for x D .1; 1; 1/.

3.1.3.
If B1; B2 � 0 then

c1B1 C c2B2 � 0 (59)

for all coefficients c1; c2 � 0. Mathematicians say that the set of positive semidefinite forms
is a convex cone.

For example, for n D 2, we have

b11x2
1 C 2b12x1x2 C b22x2

2 � 0 ,
b11 � 0; b22 � 0;

b2
12 � b11b22:

(60)

In the 3-space with coordinates .b11; b22; b12/, the set of the positive semidefinite forms is
the familiar cone plotted in the figure of (61) with its vertex at the origin .b11; b22; b12/ D

.0; 0; 0/.

(61)

The interior of this cone corresponds to positive definite forms.
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3.1.4.
Here is an example of an interesting positive semidefinite form. Fix some angles

�1; : : : ; �n and let
"i D .cos�i ; sin�i / 2 R2; i D 1; : : : ; n;

be unit vectors in R2 having the angle �i with the horizontal axis. Let us add them with
coefficients x1; : : : ; xn; see the figure in (62).

x1 "1

x2 "2

x3 "3

x4 "4
P

xi "i

(62)

We define the form Bcos.x/ as the squared length of this sum. Using inner products, see
Appendix A, we compute

Bcos.x/ D

X
xi "i

2

D

�X
xi "i ;

X
xj "l

�
D

X
ij

."i ; "l /xi xj D

X
ij

cos.�i � �j /xi xj � 0: (63)

This is not obviously nonnegative based on coefficients, but we know it must be nonnegative
as a squared length.

3.1.5.
In general, let f .t/ be an even function; that is, let f .t/ satisfy

f .t/ D f .�t /:

We say that f is positive definite if the quadratic form

Bf .x/ D

nX
i;j D1

f .ti � tj /xi xj � 0 (64)

is positive semidefinite for any choice of t1; : : : ; tn. It follows from (63) that f .t/ D cos t is
positive definite. Similarly, f .t/ D cos!t is positive definite for any frequency !.

To get a better feeling for positive-definite functions, the reader may want to deduce
from (60) that f .0/ > 0 for any positive-definite function f .t/ that is not identically zero.

3.1.6.
It follows from (59) that the function

f .t/ D

X
k

ck cos.!kt /; ck � 0; (65)

is positive definite for any frequencies !k as long as the coefficients ck are nonnegative.
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The coefficients ck with which the different frequencies contribute to the function
f .t/ will be very important in what follows and the generic notation ck will not be adequate
for them.We need some notation that incorporates the name of the function f , frequency!k ,
and the fact that we expand f in cosines and not some other periodic functions, specifically
not in sines. A popular choice, satisfying all of these criteria is to replace ck by Of c.!k/. So,
we write

f .t/ D

X
Of c.!k/ cos.!kt /; Of c.!k/ � 0: (66)

A classical theorem of Bochner says that, conversely, every positive definite function is a
limit of functions of the form (66). See Appendix B for more on this.

3.1.7.
In equation (64), it is perfectly OK to make the argument of f be a vector t 2 Rd .

We say that a function f .t/ is even if

f .t/ D f .�t/;

and we say it is positive definite if

Bf .x/ D

nX
i;j D1

f .ti � tj /xi xj � 0 (67)

for any x and any t1; : : : ; tn.
The only modification required in the formula (66) is that the frequencies also

become vectors !k and we replace the product !kt by the inner product .!k ; t/. In sum, the
function

f .t/ D

X
Of c.!k/ cos

�
.!k ; t/

�
; Of c.!k/ � 0; (68)

is positive definite and every positive definite function of t 2 Rd is a limit of functions of
the form (68).

3.1.8.
To feed the reader’s curiosity, we note briefly that the differences ti � tj in the

definition of a positive definite function may be replaced by the ratios ti t
�1
j of elements ti

of an arbitrary group G. For the additive group of Rd , we get the positive definite functions
as discussed above.

Bochner’s theorem is then interpreted as saying that f is a diagonal matrix element
of an orthogonal representation of G. Viewed from the correct angle, this is very close to a
tautology, as noted by Gelfand and Naimark [26] and Segal [48]. See Appendix B for more
on this.

3.2. The fundamental bound
3.2.1.
We will now explain how positive definite functions may be used to bound the den-

sity of sphere packings following H. Cohn and N. Elkies [10]. Related considerations, in
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which translations are replaced by rotations, were used to bound the contact numbers; see
[1,38–40,42]. As we already mentioned bounds of this type originated in coding theory [17].

3.2.2.
Consider a packing of spheres of radius r in Rd and suppose it is periodic in each

coordinate direction with period L. For instance, consider the figure in (6) and let the square
in (6) be the square Œ0; L�2 2 R2. Then the leftmost packing in it is periodic, and the other
two can be made periodic if we erase the spheres intersecting the boundary of the square
Œ0; L�2. In (69) one can see the result for the middle packing in (6).

For large L, the number of spheres intersecting the boundary of Œ0; L�2 can be
bounded from above by a constant multiple of L. Therefore, erasing these spheres changes
the density by at most a constant multiple of L�1. We conclude that we can come arbitrarily
close to the optimal packing density using periodic packings.

(69)

In dimension d , we may need to erase at most a constant multiple of Ld�1 many
spheres, and again this changes the density by at most a constant multiple of L�1. We con-
clude that any upper bound on the density of periodic packings with an arbitrarily large
period L gives an upper bound on the density of all sphere packings.

3.2.3.
So, returning to our periodic packing, suppose it has n spheres with centers in Œ0;L�d

and let
t1; : : : ; tn 2 Œ0; L�d (70)

be the centers of these spheres.
The translates of the cube Œ0; L�d tile the whole space Rd and any periodic sphere

packing is just repeated in all these translates. Mathematicians call the basic tile Œ0; L�d the
fundamental domain. So, the number n is the number of spheres per fundamental domain.
It directly measures the density of packing by

packing density D
n

Ld
volume

�
B.0; r/

�
(71)

because the sphere packing is periodic. So, our goal is to bound the ratio n=Ld .
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3.2.4.
To bound n=Ld , we will use a certain positive definite function f .t/, which will be

similarly periodic with period L in all coordinates.
To make (68) periodic, the frequencies !’s should be integer multiples of 2�

L
. We

define
!k D

2�

L
k; (72)

where k D .k1; : : : ; kd / 2 Zd is a vector with integer entries, and consider a function of the
form

f .t/ D

X
kD.k1;:::;kd /2Zd

Of c.k/ cos
�

2�

L
.k; t/

�
; Of c.k/ � 0: (73)

We have written (73) as an infinite sum over all possible frequencies that produce functions
with period L. Readers who are not comfortable with infinite sums yet may assume that
only finitely many of the coefficients Of c.k/ are nonvanishing in (73). Readers who have
seen infinite series, should assume that (73) converges for those values of the argument that
will be used below.

The series (73) is a Fourier series; see Appendix C for more on this.

3.2.5.
Recall that f .0/ > 0 for any nonzero positive definite function. For other values of

the argument, f .t/ may be positive or negative, as exemplified by cos!t .
By periodicity, f is positive at any point whose coordinates are integer multiples

of L. We will denote the set of all such points by LZd . Imagine that we managed to arrange
f so that

distance.t; LZd / � 2r ) f .t/ � 0: (74)

In other words, we would like the function f .t/ to look like function in the figure of (75),
namely, positive near the points in LZd and negative away from them:

(75)

At this point, this is just a wish. There is absolutely no guarantee that we can find a suitable
function.We are only saying that any positive definite function satisfying (74) will give some
upper bound on the packing density. Whether this bound will be good or bad remains to be
seen.
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Stressing this logical point is important because the incredible brilliance of Via-
zovska’s paper [54] is precisely in finding a certainmagic positive definite function thatmakes
everything work.

3.2.6.
Because the points (70) are the centers of a periodic sphere packing, we have

distance
�
ti � tj ; LZd

�
� 2r; i ¤ j;

and hence f .ti � tj / � 0 for i ¤ j . Therefore for the value of (67) at the pointx D .1; : : : ;1/,
we obtain

Bf

�
.1; 1; : : : ; 1/

�
D

X
i;j

f .ti � tj / �

X
i

f .ti � ti / D nf .0/: (76)

This will be one side of the eventual inequality involving the number n of spheres in the
packing.

3.2.7.
For the other side of the inequality, we note from (73) that the matrices of these

quadratic forms satisfy
Bf D

X
k

Of c.k/Bcos. 2�
L .k;t// (77)

and that all terms in this sum are positive definite. Therefore the sum is at least as large as
the k D 0, that is, the B1 term

Bf

�
.1; 1; : : : ; 1/

�
� Of .0/B1

�
.1; 1; : : : ; 1/

�
D Of .0/n2: (78)

Here we dropped the superscript from Of c.0/ because the zero frequency means a constant
function and there is no choice between the cosine and sine for k D 0. Comparing (78)
with (76), we deduce

n �
f .0/

Of .0/
: (79)

This is the sought upper bound on the number n.

3.2.8.
To denominator Of .0/ in (79) may be interpreted as the average of the function f

over the fundamental domain Œ0;L�d . Indeed, the function cos. 2�
L

.k; t//with k ¤ 0 changes
sign when shifted by 1

2
of its minimal period due to

cos.x C �/ D � cos.x/:

Therefore, its average over the whole period vanishes. Thus

Of .0/ D average of f over Œ0; L�d

D
1

Ld

Z
Œ0;L�d

f .t/ d t; (80)
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where the second line is for readers familiar with integrals. Readers unfamiliar with integrals
may want to consider (80) as the definition of the integral in terms of the average values of
the function.

3.2.9.
Putting (79) and (80) together, we get

n

Ld
D

number of spheres in Œ0; L�d

volume of Œ0; L�d
�

f .0/R
Œ0;L�d

f .t/ d t
: (81)

Here f .t/ is a periodic function with period L in each coordinate, which is positive definite
and satisfies (74).

3.2.10.
As we discussed before, to go from periodic packings to all packings, the period L

in (81) should get arbitrarily large. Remarkably, there is a way to make one function f work
for all periods L as follows.

We consider a function f .t/ such that

(i) f .t/ is positive definite,

(ii) f .t/ � 0 if ktk � 2r ,

(iii) jf .t/j decays sufficiently fast as t ! 1.

As before, let (70) be the centers of the spheres in Œ0; L�d . This means that all centers of the
spheres have the coordinates ¹ti C LZd º. If jf .t/j decays sufficiently fast as t ! 1 then
the series

f .t/ D

X
v2LZd

f .t C v/ (82)

converges, is periodic in t, and is also positive definite. Evidently,Z
Œ0;L�d

f .t/ d t D

Z
Rd

f .t/ d t: (83)

As before, we have

f .0/ �
1

n

X
v2LZd

X
i;j

f .v C ti � tj / D
1

n

X
i;j

f .v C ti � tj / �
n

Ld

Z
Rd

f .t/ d t: (84)

The first inequality here relies on the fact that v C ti � tj is a difference between two sphere
centers, and hence has the norm at least 2r when nonzero. The second inequality is the
inequality (78) applied to the periodic function f .

We conclude
density of

sphere centers
� min

f

f .0/R
Rd f .t/ d t

; (85)

where the minimum is over all nonzero functions satisfying the properties (i)–(iii) above.
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Bounds of this type are often called linear programming bounds because they ask for
a minimum of a ratio of two linear functions on a convex set defined by conditions (i)–(iii).
Instead of minimizing the ratio, we can consider positive definite functions normalized by
f .0/ D 1, which is an affine linear equation, and maximize the linear function

R
Rd f .t/ d t

on the resulting convex set.

3.2.11.
Note that both the sets and functions to be extremized are invariant under rotations

of Rd , which is a compact group; see Section B.8. Compactness implies there is a well-
defined average over all rotations of f , which is also a minimizer in (85). This average is a
rotation-invariant function, that is, it depends on ktk only. Such functions are often called
radial. To summarize, all we need is a function of one (radial) variable, not d variables.

4. Viazovska’s magic function

4.1. Lattice packings that saturate the bound
4.1.1.
Suppose there are a lattice ƒ and a function f such that the corresponding packing

saturates the bound (85). This implies at once that this packing is the densest possible, but
also implies certain very special properties of the function f .

Indeed, the inequality (84) was obtained by discarding some nonpositive and non-
negative terms, respectively. If the resulting inequality is an equality then this means all
discarded terms vanish.

The first inequality in (84) is an equality if and only if

f .v/ D 0; for all v 2 ƒ n ¹0º: (86)

If f is radial then it vanishes for all vectors that have the same length as a nonzero vector
from ƒ. For E8 this is the set

p
2n, for n D 1; 2; : : :

4.1.2.
There is a very nice space of functions onRd formed by functions that rapidly decay

at infinity together with all their derivatives. It is called the Schwartz space. For functions f

in the Schwarz space, the Fourier transform formulas (161) and (162) from Appendix C
become nicely convergent integrals. The function Of .k/ � 0 in

f .t/ D

Z
Rd

Of .k/e2�i.k;t/ dk (87)

is also in Schwarz space and is even/radial if and only if f .t/ is even/radial. It is nonnegative
because the function f .t/ is positive definite by our assumption.

As we will see momentarily, the second inequality in (84) becomes an equality pre-
cisely when the Fourier transform vanishes

Of .k/ D 0 for all k 2 ƒ
_

n ¹0º (88)
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for all nonzero vectors in the dual lattice, see Appendix C.7. Note the symmetry between (86)
and (88). The symmetry is particularly pronounced for E8 because E_

8 D E8. For ƒ D E8

and a radial function f , this means the vanishing of the Fourier transform Of .k/ for all vectors
k of length

p
2n, where n D 1; 2; : : :

4.1.3.
To see (88), let us replace Œ0; L�d in the derivation of (84) by the fundamental par-

allelepiped for ƒ. We redefine

f .t/ D

X
v2ƒ

f .t C v/: (89)

Since it is ƒ-periodic, we have

f .t/ D
1

p
�ƒ

X
k2ƒ_

Of .k/ exp
�
2�i.k; t/

�
; Of .k/ � 0; (90)

where the coefficients are found from (160) and (162) usingZ
Rd =ƒ

f .t/e�2�i.k;t/ d t D

Z
Rd

f .t/e�2�i.k;t/ d t: (91)

Because there is only one sphere in the fundamental parallelepiped, the inequality in (84)
becomes

f .0/ D
1

p
�ƒ

X
k2ƒ_

Of .k/ �
1

p
�ƒ

Of .0/; (92)

where 1p
�ƒ

is the density of the sphere centers, see (46). Clearly, (92) is an equality if and
only if (88) holds.

4.1.4.
We conclude that to “finish” the proof of optimality of the E8 lattice, one needs to

find a function f .x/ of one variable satisfying the following constraints. We interpret f .x/

as a radial function on R8 and define the Fourier-transformed radial function Of .x/ by

Of .x/ D

Z
R8

f
�
ktk

�
e�2�it1x d t; (93)

where t1 is the first coordinate of the vector t. We need the function f and Of to look like
the functions in the figure of (94).

(94)

Namely, function Of .x/ � 0 is nonnegative for all x while f .x/ � 0 for x �
p

2. Further,
both functions vanish for x D

p
2n, n D 1; 2; : : : Finally, since �E8 D 1, we may assume

that f .0/ D Of .0/ D 1.
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4.2. The wait is over
In his Fields medal laudatio [8] for Maryna Viazovska, Henry Cohn talks about his

attempts to complete this last step, that is, to find the magic function f . In particular, he says:

“When Elkies and I proposed this method in 1999, Viazovska was still in sec-
ondary school. Without realizing how profoundly difficult the remaining step
was, I imagined that we had almost solved the sphere packing problem in eight
and twenty-four dimensions, and our inability to find the magic functions was
extremely frustrating. At first, I worried that someone else would find an easy
solution and leave me feeling foolish for not doing it myself. Over time I became
convinced that obtaining these functions was in fact difficult, and others also
reached the same conclusion. For example, Thomas Hales has said that I felt
that it would take a Ramanujan to find it [32]. Eventually, instead of worrying that
someone else would solve it, I began to fear that nobody would solve it, and that
I would someday die without knowing the outcome. I am grateful that Viazovska
found such a satisfying and beautiful solution, and that she introduced wonderful
new ideas for the mathematical community to explore.”

Viazovska’s solution is truly striking. She gives an extremely nontrivial explicit formula for
the magic functions in terms of modular forms; see Appendix D. There is no way to tell if
Ramanujan could have found it, but I would guess that seeing the solution would have made
Ramanujan extremely, extremely happy.

Henry Cohn’s laudatio [8] contains a very detailed masterfully written account of
Viazovska’s construction. I do hope the reader feels sufficiently prepared to work through
it. While certainly not easy, it is very rewarding. There is a good reason computations like
this are recognized by the highest honor in all of mathematics. I also hope the reader opens
the interview [55] in which Maryna Viazovska talks, in particular, about her search for the
elusive magic function.

4.3. Interpolation
4.3.1.
During her search for the magic function, Viazovska conjectured the following sys-

tematic way to construct functions like those in (94). Namely, she conjectured that a radial
Schwartz function onR8 is uniquely specified by the values of f , f 0, Of , and Of 0 at the points

x D
p

2n; n D 1; 2; 3; : : :

In other words, there exists an interpolation basis an, bn, Oan, Obn of the Schwartz space such
that for every f we have

f .x/ D

1X
nD1

f .
p

2n/an.x/ C

1X
nD1

f 0.
p

2n/bn.x/

C

1X
nD1

Of .
p

2n/ Oan.x/ C

1X
nD1

Of 0.
p

2n/ Obn.x/: (95)
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In particular, the magic function f has to be proportional to b1.x/ because all other coeffi-
cients vanish for it.

4.3.2.
This conjecture of Viazovska was proven in her work [12] with Henry Cohn, Abhi-

nav Kumar, Stephen D. Miller, and Danylo Radchenko. They reformulate (95) as a certain
functional equation for the following generating series F.�; x/ and OF .�; x/. By definition,

F.�; x/ D

1X
nD1

an.x/e2�in�
C 2�i�

1X
nD1

p
2nbn.x/e2�in� ; (96)

and similarly for OF .�; x/ with hats everywhere. Note that

F.� C 2; x/ � 2F.� C 1; x/ C F.�; x/ D 0; (97)

and similarly for OF .�; x/.
The radial function f� .t/ D e�i�ktk2 , where t 2 R8, has Fourier transform

Of� .t/ D ��4e��iktk2=� :

Therefore, for f D f� , equation (95) reads

e�i�ktk2

D F.�; x/ C ��4 OF .�1=�; x/: (98)

The authors of [12] solve equations (98) and (97) in terms of modular forms and deduce
formulas for the interpolation basis in (96). In particular, this yields a formula for b1, and
hence for the E8 magic function.

The appearance of � and�1=� in equation (98) is certainly a hint that modular forms
have a role to play; compare with Section D.4. Note, however, that F.�; x/ is not periodic
in � , instead (97) says that .T � 1/2 annihilates F.�; x/, where T shifts � by 1. (This is a
fancy way to say that F.� C n; x/ is linear in n for n 2 Z.) Ultimately, this is linked to the
appearance of the modular functions for the subgroup �.2/ and also of the quasimodular
Eisenstein series E2.

Like Viazovska’s original construction, proving the interpolation formula (95)
requires a certain cooperation between math and humans. Math has to make sure there
is a miracle to be discovered. Humans have to send their brightest minds on the voyage to
discover it.

4.3.3.
Similar results are also obtained in [12] for the Leech lattice. These stronger results

imply the optimality of E8 and ƒ24 not just for sphere packing but also for certain more
general geometric optimizations problems.

4.3.4.
I hope the readers share the narrator’s sense of awe at this absolutely amazing math-

ematics and join me in warmest congratulations on it being recognized by the Fields Medal.
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I also hope the readers got the sense that today’s mathematics is not just extraordinarily pow-
erful, but also concrete, understandable, and fun, once one finds the right idea and the right
point of view. While finding that right point of view is not at all easy, my biggest hope is to
have inspired my youngest readers to believe that mathematics can be beautiful and reward-
ing, both as a subject and as a profession. Maybe this is also a good place for me to thank
Maryna Viazovska and Henry Cohn for this special opportunity to be introduced to their
wonderful subject.

5. Further reading

The Quanta Magazine has published several popular accounts of these and related
developments, see [30,32,33].

Among introductory or survey articles written by top experts in the field, one could
mention [7,14,20,21,49]. These were written prior to Viazovska’s breakthrough. See [6,8,16]

for expositions of Viazovska’s breakthrough.
The reader will surely enjoy reading the textbooks [19, 52] and the comprehensive

reference book [15]. A very interesting physics perspective on sphere packings may be found
in [45].

I hope the reader has a lot of fun studying these sources as well as the original
articles [10–12,54].

A. Inner products

A.1.
In the following discussion we assume that the reader is familiar with basic linear

algebra, in particular with the notion of a vector space such asRd . There exist many beautiful
engaging professional expositions of the subject; see, for instance, [3, 36, 51]. Some readers
may find the brief introduction in [44] usable.

A distance function like (1) is an extra structure on the linear space Rd , meaning it
is not part of the definition of a linear space. But is interacts very nicely with the linear space
structures.

First, it is invariant under the translations. So it enough to specify the distance kxk

to the point x from the origin 0 2 Rd . This is also called the norm of the vector x. The
formula

kxk
2

D

X
x2

i (99)

is valid in the coordinates with respect to the standard basis e1; : : : ; ed of Rd , but will
not remain valid in a different basis e0

1; : : : ; e0
d
. To describe the effect of a linear change

of variables, and for many other computations, it is very convenient to introduce the inner
product associated to (99). By definition,

.x; y/ D

X
i

xi yi : (100)

520 A. Okounkov



The norm (99) and the inner product (100) determine each other by kxk2 D .x; x/ and

2.x; y/ D kx C yk
2

� kxk
2

� kyk
2: (101)

If
x D

X
xi ei D

X
x0

i e
0
i (102)

is the expansion of x in two different bases, then

kxk
2

D

X
x2

i D

X
ij

�
e0

i ; e0
j

�
x0

i x
0
j : (103)

We see that the squared norm is given by a quadratic form as in Section 3.1.2. Further, this
quadratic form is positive definite because kxk2 > 0 for any x ¤ 0.

A.2.
Given any positive definite quadratic form B.x/, we can define a new norm by

kxk
2
B D B.x/: (104)

Using a version of row reduction for the matrix .bij / called the Gram–Schmidt orthogonal-
ization, we can always find a new basis e0

i in which

kxk
2
B D

X�
x0

i

�2
:

Such a basis is called an orthonormal basis for the form (104).
Linear transformations g that preserve kxk2 are called orthogonal. Linear isometries

is another word for orthogonal transformations. They take orthonormal bases to orthonormal
bases. Writing this condition in terms of matrix entries of g D .gij /, we see it is equivalent
to gTg D 1, where gT D .gj i / is the transposed matrix and 1 denotes the identity matrix.
Equivalently,

g�1
D gT; (105)

where g�1 is the inverse matrix.
To summarize, invertible linear transformations g take the standard norm kxk2 to

all possible positive definite norms (104), and g takes kxk2 to itself if and only if g is orthog-
onal. This means that all possible positive definite quadratic forms are the same as invertible
linear transformations considered up to precomposing with an orthogonal transformation.
See Appendix D for more on this.

A.3.
If e1; : : : ; ed is a basis such that .ei ; ej / D 0 for i ¤ j then the expansion x DP

xi ei can be written as

x D

X
i

.x; ei /

.ei ; ei /
ei : (106)

We will find it convenient in Section C.4 below.
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Also note the link with the formula for the reflection in the hyperplane orthogonal
to the vector e1,

re1.x/ D x � 2
.x; e1/

.e1; e1/
e1: (107)

Indeed, the transformation (107) changes the sign of the e1-coefficient in (106) and leaves all
other coefficients unchanged. If .e1; e1/ D 2, in particular, if e1 is a root in an even lattice,
then (107) simplifies to (38).

A.4.
Let ƒ � Rd be a lattice generated by vectors v1; : : : ; vd as in Section 1.4. The

matrix
Bƒ D

�
.vi ; vj /

�
(108)

is called the Gram matrix. This is a positive definite symmetric matrix and any two collec-
tions of vectors v1; : : : ; vd and v0

1; : : : ; v0
d
with the same Gram matrices (108) can be taken

one to another by an orthogonal transformation of Rd . Therefore, in the context of lattice
sphere packings, we only care about the Gram matrices of lattices.

A.5.
Complex numbers are expressions of the form10

z D a C bi; (109)

where a and b are real numbers and i is a symbol satisfying i2 D �1. One can add and
multiply complex numbers using this rule. We denote the set of complex numbers by C.

The complex conjugate number is defined by

Nz D a � bi: (110)

Importantly,
z Nz D a2

C b2; (111)

which is a nonzero real number for z ¤ 0. This means, in particular, that z�1 D
1

a2Cb2 Nz,
which defines division by a nonzero complex number. In other words, complex numbers
form a field.

Tuples z D .z1; : : : ; zd / of complex numbers form a linear space Cd , in which one
defines

kzk
2

D

X
zi Nzi ; .z; z0/ D

X
zi Nz0

i : (112)

These norms and inner products are called Hermitian, and linear transformations that pre-
serve them are called unitary.

10 The numbers a and b are called the real and imaginary part of the complex number z. Ter-
minology notwithstanding, complex numbers really exist. For example, the imaginary unit
i is the very first symbol in the Schrödinger equation, one of the fundamental equations
describing our really complex world.
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B. Groups and positive definite functions

B.1.
In R3, consider rotations g around the origin. For a vector v 2 R3, we will denote

by gv 2 R3 the result of applying the rotation g to v.
Remarkably, if we perform two rotations g2 and g1 in succession, the result is

another rotation (can you prove this?) which we will denote by g1g2. It is called the compo-
sition or the product of two rotations. By construction,

.g1g2/v D g1.g2v/ (113)

for every v. Note the order in which we write the product. It is important. In general, g1g2 ¤

g2g1, as we invite the reader to check this in examples. From (113) it follows that

.g1g2/g3 D g1.g2g3/; (114)

so we do not need the brackets when we write the products.
There is a special identity rotation 1 that does nothing and satisfies

1g D g1 D g (115)

for every g. Finally, for every rotation g there is the inverse rotation g�1 such that

g�1g D gg�1
D 1: (116)

B.2.
In mathematics, any set G with a special element 1 2 G, a binary product operation

.g1; g2/
product

��������! g1g2;

and a unary inverse operation
g

inverse
��������! g�1;

satisfying (114), (115), and (116) is called a group. A subset G0 � G closed under product
and inverse is called a subgroup.

This is a very important notion, some examples of which are

GL.n; R/ D the group of all invertible n � n real matrices; (117)

O.n; R/ D the subgroup of n � n orthogonal matrices; (118)

SO.n; R/ D orthogonal matrices with det g D 1; (119)

S.n/ D permutations of an n-element set; (120)

and so on. Orthogonal matrices were discussed in Section A.2. By construction, we have

SO.n; R/ � O.n; R/ � GL.n; R/ (121)

and we can also embed
S.n/ � O.n; R/ (122)

523 The magic of 8 and 24

https://en.wikipedia.org/wiki/Group_(mathematics)


by making S.n/ permute the basis vectors. The group SO.3; R/ is the group of rotations of
R3 around the origin discussed above.

For a much more basic example of a group, one can take the group of real numbers
R with the operation of addition. The zero 0 2 R is the identity element for this operation.
Similarly, Rd is a group with respect to addition. The group Rd is simpler that the groups
in (117)–(120) in one important aspect. The operation in Rd is commutative, meaning that
g1g2 D g2g1 for any g1 and g2.

In all examples above, R can be replaced by an arbitrary field. The field C of com-
plex numbers and the group U.n/ of n � n unitary matrices are particularly important in
mathematics.

B.3.
One can also use a ring with unit in place of R above, for instance, the ring Z of

integers. In defining GL.n; Z/, one needs to make sure that the inverse g�1 of an integral
matrix g 2 GL.n; Z/ is also integral. For a commutative ring like Z, it is enough to require
that the determinant deg g 2 Z is an invertible element, meaning that deg g D ˙1.

The subgroup GL.n; Z/ � GL.n; R/ consists of matrices that preserve the standard
lattice Zn � Rn. Similarly, matrices preserving an arbitrary lattice ƒ � Rn form a subgroup
that becomes GL.n; Z/ in a suitable basis. This is an infinite group. By contrast, orthogonal
matrices preserving a given lattice always form a finite group.11 This group is the boring
¹˙1º for a generic lattice, but can be very interesting for lattices like E8 and ƒ24.

B.4.
A map between groups

G ! G0

preserving the group structure is called a group homomorphism. A special kind of homo-
morphism

� W G ! O.n; R/ (123)

is called an orthogonal representation of G of dimension n. It represents every g 2 G by an
orthogonal matrix �.g/ and we have

�.g1g2/ D �.g1/�.g2/:

For example, (122) is an orthogonal representation. If the target group O.n; R/ is replaced
by GL or the unitary group, one talks about linear or unitary representation.

Let an orthogonal representation as in (123) be given and and let v 2 Rn be a vector
with kvk D 1. It defines a function on G by

f�;v.g/ D
�
�.g/v; v

�
: (124)

11 Can you prove it? Note that we consider transformations that preserve the origin of ƒ.
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Such functions are called diagonal matrix elements. If v is the first basis vector in some basis
of Rn then f�;v.g/ is the matrix element �.g/1;1.

Since �.g�1/ D �.g/�1 D �.g/T, we conclude that (124) is symmetric,

f�;v.g�1/ D f�;v.g/: (125)

If g1; : : : ; gd 2 G are arbitrary group elements and x D .x1; : : : ; xn/ is arbitrary then

k

X
i

xi �.gi /vk
2

D

X
i;j

f�;v

�
gi g�1

j

�
xi xj : (126)

Clearly, the quadratic form in (126) is positive semidefinite.
Functions f .g/ that are symmetric, f .g�1/ D f .g/, and produce positive semidef-

inite forms
P

i;j f .gi g�1
j /xi xj are called positive definite functions on G. If f ¤ 0 then we

can normalize it by f .1/ D 1.
For the additive group Rd , this is the definition from Section 3.1.5. The analog of

Bochner’s theorem for G says that any positive definite function is a diagonal matrix element
of an orthogonal representation. This representation could be infinite-dimensional, hence
the need for limits in Bochner’s theorem. A solid amount of mathematical care is required to
work with infinite-dimensional representations, much beyond the introductory style of these
notes. We will therefore consider the case of a finite group G, which already contains many
key features of the general story.

B.5.
The simplest finite group is the group Z=mZ of integers modulo m, with the addi-

tion operation. It is generated by one element 1, not to be confused with the identity 1. In
this group, 1 is the zero element. For brevity, we denote it by Z=m in what follows.

The study of representations of groups is a generalization of the theory of eigen-
values and eigenvectors of a matrix. From the eigenvectors of the generator �.1/, one can
conclude that any orthogonal representation of Z=m, in a suitable basis, is the sum of 2 � 2

matrix blocks

�.j / D

0@cos 2�kj
m

� sin 2�kj
m

sin 2�kj
m

cos 2�kj
m

1A ; k D 1; : : : ; m � 1;

the trivial representation
�.j / D 1;

and the sign representation �.j / D .�1/j , which exists for even m. In all cases, the diagonal
matrix elements for Z=m are nonnegative combinations of the functions

fk.j / D cos
2�kj

m
; k D 0; : : : ; m � 1:

Our next goal is to show that these exhaust all positive definite functions f on Z=m.
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B.6.
To this end, we consider the representation �reg ofZ=m on anm-dimensional vector

space with basis ı0; : : : ; ım�1 given by

�reg.j /ıi D ıiCj mod m:

This is called the regular representation. We introduce an inner product on it by

.ıa; ıb/ D f .b � a/:

This is symmetric because f is symmetric, positive semidefinite because f is positive def-
inite, and preserved by the action of Z=m. The vectors of zero norm form a linear subspace
that is preserved by Z=m, and the representation of Z=m on the quotient by this subspace is
orthogonal. Finally,

f .j / D
�
�reg.j /ı0; ı0

�
;

and this finishes the proof.

B.7.
The above discussion may be further simplified if one uses complex numbers and

unitary representations. For a unitary representation �.g/, we have

f�;v.g�1/ D f�;v.g/; (127)

and (126) turns into a positive definite Hermitian form. A complex-valued function on a
group is called positive definite if it satisfies these two properties.

For a commutative group like Z=m, unitary representations are sums of 1-dimen-
sional representations

�k.j / D exp
�

2�ijk

m

�
; k D 0; : : : ; m � 1; (128)

and the argument given above proves that positive definite functions on Z=m are nonnega-
tive linear combinations of the functions (128). One-dimensional representations are called
characters and often denoted by the letter �.

In (128), the letter i denotes the imaginary unit, and the exponential of an imaginary
number may be defined by

eit
D 1 C i t C

.i t/2

2
C

.i t/3

3Š
C � � �

D

�
1 �

t2

2
C

t4

4Š
� � � �

�
C i

�
t �

t3

3Š
C

t5

5Š
� � � �

�
D cos.t/ C i sin.t/; (129)

as discovered by Leonhard Euler around 1740. Note the famous special case

e�i
D �1: (130)
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B.8.
We started this section with a discussion of rotations of R3, which, in addition to

forming a group, have two further important properties. First, rotations form a manifold,
namely the real projective 3-space. Groups forming amanifold are called Lie groups. Second,
this manifold is compact.

Compact Lie groups are very important in mathematics and they have been com-
pletely classified. This classification includes the classification of compact connected Lie
groups and of finite simple groups. In both cases, there are certain well-understood infinite
series as well as finitely many exceptional cases, surrounded by a much denser air of mystery.
The classification of compact connected Lie groups is very close to the ADE classification12

from Section 2.3.3, and it ends in the largest exceptional group E8. Among the finite groups,
there is the largest sporadic group called the Monster, which is very closely connected to the
Leech lattice ƒ24.

C. Fourier series

C.1.
Let us revisit the regular representation of Z=m from Section B.6. Every group G

acts on the linear space of functions f W G ! C by the following rule:�
�reg.g/f

�
.g0/ D f .g0g/: (131)

In (131) we have the result of evaluation of the new function �reg.g/f at a group element g0.
The square brackets in (131) are put around �reg.g/f just to stress that this is a new function,
obtained by the action of g from the original function f .

The basis ı0; : : : ; ım�1 from Section B.6 corresponds to the functions

ık.j / D ıkj ; where ıkj D

8<: 1; k D j;

0; otherwise:
(132)

C.2.
The following Hermitian product,

.f1; f2/reg D

X
j 2Z=m

f1.j /f2.j /; (133)

makes the regular representation of Z=m unitary. The basis (132) satisfies

.ık ; ık0/reg D ıkk0 : (134)

12 In this classification, the lattices An correspond to special unitary groups SU.n C 1/, while
the lattices Dn correspond to even orthogonal groups SO.2n/.
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C.3.
Now consider the functions (128) as elements of the regular representation. We

compute

.�k ; �k0/reg D

X
j 2Z=m

exp
�

2�ij.k � k0/

m

�
D jGjık;k0 : (135)

Indeed, the sum in (135) is a sum of a geometric progression and it vanishes if k ¤ k0. We put
the cardinality jGj in (135) instead of m because (135) is the simplest case of a very general
relations known as orthogonality of characters (and other matrix elements of irreducible
representation). In the case of a finite group, the cardinality jGj is the correct factor to put
into these orthogonality relations.

C.4.
We have found two orthogonal bases ¹ıkº and ¹�kº in the space of complex-valued

functions on G D Z=m. Let us expand a general function in these bases using (106).
The expansion in the basis ¹ıkº amounts to a tautology,

f D

X
k2Z=m

f .k/ık : (136)

The expansion in the basis �k , by contrast, amounts to something very nontrivial. By (106),
the coefficients Of .k/ in the expansion

f D

X
k2Z=m

Of .k/�k (137)

are given by

Of .k/ D
.f; �k/reg

.�k ; �k/reg
D

1

m

m�1X
j D0

f .j / exp
�

�
2�ijk

m

�
: (138)

The expansion (137), written out, takes a very similar form

f .j / D

m�1X
kD0

Of .k/ exp
�

2�ijk

m

�
: (139)

Formulas (138) and (139) describe the Fourier transform on the commutative group G D

Z=m. By (139), every function f .j / can be written as a combination of characters �k . The
coefficients Of .k/ in (139) are the average values of f �k .

A similar Fourier transform on groups exists very generally. For noncommutative
groups, one should take matrix elements of unitary representations instead of characters.
This will remain entirely outside of our narrative.

C.5.
After talking about Fourier transform for a finite commutative group Z=m, let us

consider the simplest commutative connected Lie group SO.2/ of rotations in R2 around
the origin. A rotation is specified by the angle � 2 Œ0; 2��, with the endpoints 0 and 2�
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representing the same identity element in SO.2/. The group operation is the addition of
angles �, taken modulo 2� . Thus, we may think of SO.2/ as the quotient

SO.2/ D R=2�Z

of a linear group by a lattice subgroup.
For any m, we have the subgroup

Z=m D

²
� D

2�j

m
; j D 0; : : : ; m � 1

³
� SO.2/ (140)

formed by rotations that preserve a regular m-gon. As m gets large, these become denser and
denser. Let us formally take the m ! 1 limit in the formulas (138) and (139), and see if we
get the formulas for the Fourier transform on SO.2/.

Let us rewrite the formulas (138) and (139) using the variable � D
2�j
m

. We get

Of .k/ D
1

m

X
�2Z=m

f .�/e�ik� ; (141)

f .�/ D

X
k2Z=m

Of .k/eik� : (142)

In (141), we interpret Z=m as the subgroup (140), while in (142) we have a summation of
a periodic function of k over any period of length m in Z. As m ! 1, the sum in (141)
approximates the integral over the group SO.2/, while the sum (142) becomes the sum over
all integers k. Thus, we get

Of .k/ D
1

2�

Z 2�

0

f .�/e�ik� d�; (143)

f .�/ D

X
k2Z

Of .k/eik� : (144)

We stress that our derivation of these formulas was just by a formal analogy with the case
of a finite group and much more serious work is required to both interpret these formulas
correctly and prove them. Questions like these belong to the field of harmonic analysis, which
is a very deep and important part of mathematics. We leave the reader by the entrance to this
glorious edifice, referring to [46,50] for possible further reading. But to stimulate the reader’s
curiosity, we will do one example.

C.6.
Fix some angle �0 and consider the function

f .�/ D

8<: 1; cos.�/ � cos.�0/;

0; otherwise:

In other words, this function equal 1 on the “spherical cap” Œ��0; �0� and vanishes outside
of it. From (143), we compute

Of .k/ D
1

2�

Z �0

��0

e�ik� d� D

8<: �0

�
; k D 0;

sin.k�0/
k�

; k ¤ 0;
(145)
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where we used the relation (129) between the complex exponential and the trigonometric
functions. Using (129) again, we can write (144) as follows:

f .�/
?
D

�0

�
C 2

1X
kD1

sin.k�0/ cos.k�/

k�
; (146)

where the question mark indicates that the exact interpretation of this equality is beyond the
scope of these notes.

A picture being worth a thousand words, we just plot the partial sums of the series
above for �0 D

�
3
and k up to 3, 5, 10, and 50, respectively.

(147)

One salient feature of (147) are the very strong oscillations of the Fourier series near the
point of discontinuity of the function, known as the Gibbs phenomenon.

Experimenting with Fourier series is a lot of fun, and we invite the reader to do
more experiments! The functions that are actually needed in Viazovska’s proof are infinitely
differentiable and their Fourier expansions converge to them very nicely.

C.7.
The following common generalization of (138), (139), (143), (144) is valid for any

commutative Lie group13 G. It describes the expansion of a function f on G in terms of the
characters of G.

Unitary characters of G, that is, continuous homomorphisms

� W G ! U.1/ D
®
z 2 C; jzj D 1

¯
; (148)

form a commutative group G^ with respect to pointwise multiplication of characters. The
trivial character � D 1 is the identity of this group. If the group G is compact then G^ is
discrete, and visa versa. The group G^ is called the Pontryagin dual group, or the dual group
for short.

Mathematicians write

1 ! G1 ! G ! G2 ! 1 (149)

to indicate that G1 is a Lie subgroup of G with quotient G2. They call a sequence of the
form (149) a short exact sequence. Duality reverses short exact sequences:

1 ! G^
2 ! G^

! G^
1 ! 1; (150)

13 as well as for more general locally compact commutative groups

530 A. Okounkov

https://en.wikipedia.org/wiki/Gibbs_phenomenon
https://en.wikipedia.org/wiki/Pontryagin_duality


which means that characters of G2 are the characters of G that are trivial when restricted
to G1, and vice versa. One replaces the 1’s by 0’s in short exact sequences when the group
operation is written as addition.

For example, any inner product . �; � / on Rd gives the identification .Rd /^ Š Rd

by
�k.t/ D exp

�
2�i.k; t/

�
: (151)

If ƒ � Rd is a lattice then the quotient group in

0 ! ƒ ! Rd
! Rd =ƒ ! 0 (152)

is a group abstractly isomorphic to SO.2/d which can be realized concretely by gluing the
opposite sides of the fundamental parallelepiped for ƒ. Mathematicians call such group a
torus. Using (151), we get the identifications

.Rd =ƒ/^
D ƒ

_
; (153)

ƒ^
D Rd =ƒ

_
; (154)

where ƒ_ is the dual lattice

ƒ
_

D
®
k such that .k; v/ 2 Z for all v 2 ƒ

¯
: (155)

C.8.
While as abstract groups, all lattices and tori of the same dimension are isomorphic,

they are all very different in the context of sphere packing and other problems involving
distances and inner products. It is, therefore, important to distinguish clearly between a lattice
ƒ and the dual lattice ƒ_.

In general, ƒ_ is very different from ƒ. For example, if we scale ƒ by a factor then
ƒ_ scales by the reciprocal factor. However,

.Zd /_
D Zd ; E_

8 D E8; (156)

and, in general, if a lattice is integral, which means that .v1; v2/ 2 Z for all v1; v2 2 ƒ, and
unimodular, which means that �ƒ D 1 then14 ƒ_

D ƒ.

C.9.
The Fourier transform on a general compact commutative group G takes the form

f .g/ D

X
k2G^

Of .k/�k.g/; (157)

Of .k/ D

Z
G

f .g/�k.g/ dprobg; (158)

where the integration is with respect to the invariant measure on the group G of total
volume 1. Measures of total volume 1 are often called probability measures, hence the
subscript in (158).

14 Indeed, integrality implies that ƒ � ƒ
_, while �ƒ is the order of the group ƒ

_
=ƒ.
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For tori, the integral in (158) is just the usual integral over the fundamental domain,
normalized so that the volume of the fundamental domain equals 1. Recall that this volume
equals

p
�ƒ with respect to usual volume form d t. Therefore, for G D Rd =ƒ, the Fourier

transform takes the form

f .t/ D

X
k2ƒ_

Of .k/e2�i.k;t/; (159)

Of .k/ D
1

p
�ƒ

Z
Rd =ƒ

f .t/e�2�i.k;t/ d t: (160)

C.10.
We remind the reader that we glide over all the deep analytic issues involved in the

Fourier transform on continuous groups. For our narrative, this is justified by the fact that
the actual functions that come up in Viazovska’s proof have very nice analytic properties.

While for noncompact groups G the Fourier transform presents further analytic dif-
ficulties, one can formally take the limit of a very large lattice ƒ in (159) and (160) and
obtain

f .t/ D

Z
Rd

Of .k/e2�i.k;t/ dk; (161)

Of .k/ D

Z
Rd

f .t/e�2�i.k;t/ d t: (162)

As ƒ becomes very large, the dual lattice ƒ_ becomes very dense and the sum in (159)
becomes the integral in (161).

D. Modular forms

D.1. The space of lattices
The many special lattices we met in these notes may be interpreted as some very

special points in a space that parametrizes all possible lattices ƒ � Rd . How should think
about this space?

An arbitrary lattice ƒ � Rd may be obtained from the standard lattice Zd � Rd

by a change of basis or, equivalently, as a result of linear transformation

ƒ D gZd ; g 2 GL.d; R/: (163)

Further, gZd D Zd if and only if g 2 GL.d; Z/. Thus®
lattices in Rd

¯
D GL.d; R/=GL.d; Z/; (164)

where the quotient sign means that we identify g1 and g2 if g�1
1 g2 2 GL.d; Z/.

For sphere packing andmany other problems, we do not want to distinguish between
isometric lattices, that is, lattices that differ by postcomposing g with an orthogonal trans-
formation. Thus we consider´

lattices in Rd

up to isometry

µ
D O.d; R/nGL.d; R/=GL.d; Z/: (165)
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Finally, for the sphere packing problem, we can rescale the lattice arbitrarily, while simulta-
neously rescaling the radius of the spheres. Thus, one may want to consider´

lattices in Rd up to
scale and isometry

µ
D

�
R>0O.d; R/

�
nGL.d; R/=GL.d; Z/; (166)

where R>0 is the subgroup of GL.d; R/ consisting of positive multiples of the identity
matrix.

D.2.
Let us see what the space (166) looks like for d D 2. Let ƒ be a lattice and let

v 2 ƒ be a vector of minimal length. We will complete v to a basis ¹v; v0º of the lattice ƒ

by choosing a shortest vector v0 among those not proportional to v. Note, however, that �v0

is another vector with the same properties as v0.
Since we take lattices up to scale and isometry, wemay arrange so

that v D e1 D .1; 0/ is the standard basis vector. What are the possibilities
for v0 D .v0

1; v0
2/? First, we need to havev0

2
D v0

1
2

C v0
2

2
� 1: (167)

Second, v0
˙ e1

2
D

v0
2

˙ 2v0
1 C 1; (168)

which means that v0 can be made shorter by adding or subtracting e1,
unless ˇ̌

v0
1

ˇ̌
�

1

2
: (169)

The combination of (167) and (169) describes the domain shown in the
figure on the left plus the symmetric domain below the horizontal axis.
Using the symmetry between v0 and �v0, we may restrict our attention to
the figure on the left. Every point in this domain corresponds to a certain
lattice in R2, but some pairs of points on the boundary correspond to the

same lattices. Indeed, the vertical boundaries differ by a shift by e1. Since this shift does
not change the lattice, they have to be glued as indicated. Points on the round boundary
correspond to lattices generated by two vectors v; v0 of equal length. Since we can declare
either one of them to be equal to e1, we may demand additionally that the angle between v

and v0 is not larger than �=2. This leads to gluing the round boundary to itself as indicated.
Once we do this gluing, we get a surface of the shape shown in the figure of (170).

(170)
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The two cone points of this surface correspond to the special lattices—the square lattice and
the hexagonal latices. They are special because they are preserved by some nontrivial trans-
formations in O.2; R/. The surface in (170) has an infinitely long neck, which is sometimes
call the cusp. A lattice ƒ runs off to infinity in this neck if kv0k

kvk
! 1.

D.3.
Functions on quotient spaces like (164), (165), and (166) are called automorphic

functions. They are objects of extreme beauty, complexity, and importance for mathematics.
It suffices to say that they played a very essential role in Andrew Wiles’ proof of Fermat’s
last theorem.

In these notes, we will limit ourselves to the discussion of one basic class of such
functions for d D 2, called the Eisenstein series.15 Let ƒ � R2 be a lattice. We can identify
R2 with the complex numbers C from Section A.5 and then ƒ becomes a subset of C. We
define

Ek.ƒ/ D
1

2

X
z2ƒprimitive

1

zk
; (171)

where primitive means that z is not a positive multiple of another vector, in particular this
means that z ¤ 0. The series (171) converges absolutely for k > 2 and vanishes for k odd
because the contributions of z and �z cancel. For even k, z and �z make the same contri-
bution, hence the 1

2
factor in front.

If we multiply the lattice ƒ by a complex number w then

Ek.wƒ/ D w�kEk.ƒ/: (172)

Note that multiplication by w combines rotations and scaling of ƒ. As a result, Eisenstein
series are not exactly invariant under rotation and scaling, but rather transform in the way
described by (172) under rotation and scaling. Using (172), we may assume that

v D 1; v0
D �; (173)

where � is a complex number in the upper half-plane. The series (171) being a sum of the
terms .n C m�/�k , where .n; m/ runs over coprime pairs of integers, the Eisenstein series
Ek is a holomorphic function of the parameter � .

D.4.
Exchanging the roles of v and v0 in (173) leads to the transformation

� 7! �1=�; (174)

15 or, more precisely, holomorphic Eisenstein series
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which takes the complex upper half-plane to itself. Here is what this transformation does to
the Cartesian coordinates on the upper half-plane:

D.5.
The following beautiful formulas for the series Ek may be derived in terms of the

variable q D e2�i� . For � in the upper half-plane, the corresponding q lies in the unit circle
jqj < 1. We have

Ek D 1 �
2k

Bk

1X
nD1

�X
d jn

d k�1

�
qn; (175)

where Bk are the Bernoulli numbers, and the coefficient of qn is determined by summing
over all divisors d of the number n. In particular, we have

E2 D 1�24 q�72 q2�96 q3�168 q4�144 q5�288 q6�192 q7�360 q8���� ; (176)

E4 D 1C240 qC2160 q2C6720 q3C17520 q4C30240 q5C60480 q6C82560 q7C140400 q8C��� ; (177)

E6 D 1�504 q�16632 q2�122976 q3�532728 q4�1575504 q5�4058208 q6�8471232 q7�17047800 q8���� ;

(178)

where we have added the series E2. Not being absolutely convergent, the series E2 may be
summed with some further choices, and (176) is the result. The readers who feel they have
already seen the number 240 somewhere recently are not mistaken.

D.6.
A holomorphic function f .ƒ/ of a lattice ƒ � C which satisfies (172) and remains

bounded as long as the shortest vector v 2 ƒ is bounded away from 0 is called a modular
form of weight k. We can multiply modular forms of different weights, and the weights add
under multiplication. Thus modular forms form an algebra, and it is a classical theorem that

Modular forms D CŒE4; E6�: (179)

The square brackets mean that E4 and E6 generate the algebra of modular forms freely, mean-
ing, they do not satisfy any polynomial equation in two variables.

One often adds the series E2, whose converges requires some regularization, making
its transformation law a bit more complicated. With this addition, the algebra (179) becomes

Quasimodular forms D CŒE2; E4; E6�: (180)
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D.7.
There are countless applications of modular forms to the study of lattices. A very

major one is the subject of these introductory notes—Viazovska’s gigantic breakthrough.
For a much more basic one, consider the following situation.

Let ƒ � Rd be a lattice. We can associate to it its theta series

‚ƒ.q/ D

X
v2ƒ

q
1
2 kvk2

: (181)

This converges for jqj < 1 for any lattice ƒ. If ƒ is even then this is a series in q. And if ƒ

is additionally unimodular then this is a modular form of weight d=2.
In particular, for ƒ D E8 we should get a modular form of weight 4, and from (179)

we see that it can only be a multiple of E4. Comparing the coefficients of q0, we conclude

‚E8 D E4: (182)

Thus the coefficients in (177) count the vectors of a length
p

2n in the latticeE8. In particular,
240 is the number of roots.

E. The volume of a d-dimensional ball

E.1.
Let B.0; r/ be the d -dimensional ball (2) of radius r . Its volume is proportional

to rd , namely
VolB.0; r/ D vd rd ; (183)

with some proportionality constant vd . Our goal in this section is to compute this constant.
As we will see, it is given in terms of a certain special function (184).

E.2.
The Gamma function is defined by the following integral:

�.s/ D

Z 1

0

e�xxs�1dx; (184)

which converges when s > 0. For complex s, the integral (184) converges when the real part
<s > 0. Integration by parts gives

�.s C 1/ D s�.s/; (185)

and, using this formula, one can extend the definition of �.s/ to all values of s, except s D

0; �1; �2; : : :

From (185) and the base case �.1/ D 1, we conclude

�.n/ D 1 � 2 � 3 � � � .n � 1/ D .n � 1/Š; n D 1; 2; 3; : : : (186)

The Gamma functions is, in a certain technical sense, the most natural extension of the fac-
torial .n � 1/Š to a function of a complex variable.
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E.3.
Consider the plot (thick curve) of the logarithm of integrand in (184) for s D 1000.

(187)

We will come back to the meaning of the thin curve later. In (187), we have the logarithm,
meaning the integrand itself takes very large values. Their maximum is at the solution of

.e�xxs�1/0
D

�
�1 C

s � 1

x

�
e�xxs�1

D 0 ) x D s � 1: (188)

Hence �.1000/ should be something of the order . 999
e

/999. Refining this argument, one can
deduce a more precise asymptotic relation

�.s C 1/ �
p

2�s

�
s

e

�s

(189)

known as the Stirling formula. It is often used to approximate factorials.

E.4.
Let us put x D y2 in (184). Since dx D 2ydy, we get

�.s/ D 2

Z 1

0

e�y2

y2s�1dy: (190)

In particular, we get the famous Gaussian integral for s D
1
2
,Z 1

�1

e�y2

dy D �

�
1

2

�
: (191)

Let us multiply d copies of (191). We get

�

�
1

2

�d

D

Z
Rd

e�.y2
1 C���Cy2

d
/ dy1 � � � dyd

D

Z
Rd

e�kyk2

dy: (192)

We observe the remarkable fact that the integrand in (192) depends only on the norm of the
vector y .

While in this section we have to assume that the reader has some familiarity with
integrals, it may be worth recalling how Lebesgue integral is defined. One approximates the
integrand by a function taking a discrete set of values and weighs each value by the volume
of the set where this value is taken.

In particular, we can approximate the function kyk by the functions

"

�
kyk

"

�
! kyk; " ! 0; (193)
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that take the value r D k", k D 0; 1; 2; : : : , on the spherical shell formed by the difference
of B.0; r/ and the smaller ball B.0; r � "/. From (183), we conclude

VolB.0; r/ � VolB.0; r � "/ � d vd rd�1": (194)

ThereforeZ
Rd

e�kyk2

dy D d vd

Z 1

0

e�r2

rd�1 dr D
d

2
vd �

�
d

2

�
D vd �

�
d

2
C 1

�
; (195)

where we have used equalities (190) and (185).
Putting (192) and (195) together, we conclude

vd D
�. 1

2
/d

�. d
2

C 1/
: (196)

E.5.
To simplify (196), we note that the �r2 formula for the area of circle computes the

Gaussian integral! Indeed,

v2 D � ) �

�
1

2

�
D

p
�: (197)

In fact, the
p

2�s prefactor in the Stirling formula (189) comes from approximating the
integral (184) by a Gaussian integral peaked at x D s � 1 for s ! 1. The Gaussian approx-
imation for the integrand means the quadratic approximation for its logarithm, and the latter
is plotted thin in the figure of (187).

This connects all the different appearances of the number � in this section.

E.6.
Therefore, we have the following great mnemonic formula:

vd D
�d=2

.d=2/Š
: (198)

For odd dimensions, we should define the factorial using the Gamma functions, and con-
cretely,

.d=2/Š D �

�
d

2
C 1

�
D

d

2

d � 2

2

d � 4

2
� � �

1

2
�

�
1

2

�
D 2�.dC1/=2dŠŠ

p
�; for d odd:

(199)
Here dŠŠ means the double factorial of an integer d , that is, the product of odd (respectively,
even) integers in ¹1; : : : ; dº.

E.7.
Note that from the Stirling formula, we have

VolB.0; r/ �
1

p
�d

�
2�e r2

d

�d=2

;

which leads to a very remarkable conclusion: the volume of a ball of arbitrarily large fixed
radius r goes to 0 as d ! 1 superexponentially fast!
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F. More on E 8 and regular m-gons

F.1.
In addition to Coxeter elements C, which have order 30, the groupW.E8/ generated

by reflections in the roots of theE8 lattice has distinguished conjugacy classes of elements of
order 24 and 20; see [25]. In this section, we will denote a representative of these conjugacy
classes by C30, C24, and C20. The eigenvalues of each Cm are the primitive mth roots of
unity. There are exactly 8 of those in each case.

Projecting the roots on any of the eigenspaces, one gets the following patterns:

F.2.
From a slightly different angle, the relation betweenE8 and regular polygonsmay be

seen as follows. For any m, the mth roots of unity ¹1; �; �2; : : : ; �m�1º, where � D exp. 2�i
m

/,
are the images of the group G D Z=m in a 1-dimensional representation. For instance, for
m D 6 these are the vertices of a regular hexagon

�0

�1�2

�3

�4 �5

(200)

We can also consider the image of the group ring ZG, that is, the subring

ƒ D ZŒ�� � C:

This is the set of points that can be obtained by adding and subtracting the vertices of a
regular m-gon. For instance, for m D 4; 6, this will be the square lattice A1 ˚ A1 and the
hexagonal lattice A2, respectively.

The powers 1; �; �2; : : : are linearly independent overQ until we get to ��.m/, where
�.m/ is number of residues modulo m that are coprime to m, also known as Euler’s totient.
The number ��.m/ is an integral linear combination of the numbers 1; �; : : : ; ��.m/�1, given
by the coefficients of the cyclotomic polynomial

‰m.x/ D

Y
gcd.i;m/D1

.x � �i / D x�.m/
C � � � 2 ZŒx�: (201)
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See (51) for the explicit form of ‰30. Thus,

ƒ Š Z�.m/
� C (202)

as a group under addition. Since we want to construct E8, we focus our attention on the case

�.m/ D 8 ) m 2 ¹15; 20; 24; 30º: (203)

The number 15 here corresponds to the element C2
30. We skip it, since the 15-gon and the

30-gon generate the same ƒ.
Lest the reader imagine ƒ � C as a lattice, we plot the points

P29
iD0 ci �

i , where
� D exp. �i

15
/ and ci 2 ¹0; 1; 2; 3º; ƒ is a free abelian subgroup of C, but it is not a lattice.

(204)

F.3.
Let v 2 E8 be a vector such that the vectors Ci

mv span the lattice E8, and consider
the diagonal matrix element

�v.�i / D
�
Ci

mv; v
�

E8
: (205)

Since ‰m.Cm/ D 0, this gives a well-defined linear function on ƒ. Put slightly differently,
since the eigenvalues of Cm are the primitive roots of unity, only those Fourier coefficients
of �v, viewed as a function on G, do not vanish. This makes it well-defined as a function
on ƒ. Furthermore, the function (58) being positive definite, these Fourier coefficients are
positive.

For example, let us take the particular Coxeter element constructed in (50) and the
following vectors:

v D ˛5; v0
D 2e8; (206)

that is, the triple node in the Dynkin diagram and twice the last coordinate vector. From the
explicit expression

C30 D
1

4

26666666666664

�1 �1 3 �1 �1 1 1 �1

3 �1 �1 �1 �1 1 1 �1

�1 �1 �1 �1 3 1 1 �1

�1 3 �1 �1 �1 1 1 �1

�1 �1 �1 �1 �1 �3 1 �1

�1 �1 �1 3 �1 1 1 �1

�1 �1 �1 �1 �1 1 �3 �1

�1 �1 �1 �1 �1 1 1 3

37777777777775
; (207)
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one can check that the corresponding functions � and �0 are given by

�.�i / D

��
2 cos

�
�i

15

���
; �0.�i / D

��
4 cos

�
�i

15

���
; (208)

where bbxcc denotes the integer between 0 and x that is closest to x. These formulas may be
illustrated as follows:

�.�i / D

2

1

1

1
1

1
0000

�1
�1

�1

�1

�1

�2

(209)

and

�0.�i / D

4

3

3

3
2

2
100�1

�2
�2

�3

�3

�3

�4

(210)

The proximity of these functions to the cosine function can be interpreted as the proximity
of the vectors v and v0 to the plane in which C30 acts as a rotation by �=15.

F.4.
In the style of Appendix B.6, one can turn this construction around as follows. One

can check directly that the Fourier coefficients satisfy

O�.j / is

8<: > 0; gcd.j; m/ D 1;

D 0; gcd.j; m/ > 1;
(211)

and similarly for �0. We can then define the E8 lattice as the group ƒ with the quadratic form

.v; v0/E8 D �.vv0/; v; v0
2 ƒ: (212)

In fact, the functions

�m.�i / D

��
2 cos

�
2�i

m

���
; �0

m.�i / D

��
4 cos

�
2�i

m

���
; m 2 ¹20; 24; 30º; (213)

all work and exhibit the E8 lattice as a lattice with an isometry Cm of the corresponding
order. In this realization, the isometry is given by multiplication by �. For specific m, the
numbers 2 and 4 in (213) can be replaced by other even integers.
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