WHAT IS THE POINT
OF COMPUTERS?

A QUESTION FOR PURE

MATHEMATICIANS

KEVIN BUZZARD

ABSTRACT

We discuss the idea that computers might soon help mathematicians prove theorems in

areas where they have not previously been useful. Furthermore, we argue that these same

computer tools will also help us in the communication and teaching of mathematics.

MATHEMATICS SUBJECT CLASSIFICATION 2020
68V20

KEYWORDS
Theorem prover, ITP, proof assistant.

INTERNATIONAL CONGRESS ©2022 International Mathematical Union
I ' M:| OF MATHEMATICIANS Proc. Int. Cong. Math. 2022, Vol. 2, pp. 578-608

2022 JULY 6—14 DOI 10.4171/ICM2022/166

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/

1. INTRODUCTION

Computers in 2021 are phenomenal. They can do billions of calculations in a second.
They are extremely good at obeying precise instructions accurately. Mathematics is a game
with precise rules. One can thus ask in what ways computers can be used to help us' math-
ematicians to do our job.

Of course, computers have been used to help some mathematicians to do their
job ever since computers have existed. Birch and Swinnerton-Dyer used an early computer
(which was the size of a large room and had 20 kilobytes of memory) to compute many exam-
ples of solutions to cubic equations in two variables modulo prime numbers [5]. Graphing
the output data in the right way led to new insights in the theory of elliptic curves which
ultimately became the Birch and Swinnerton-Dyer conjecture, one of the Clay Millennium
problems. At the time of writing, this conjecture is still open, although regular breakthroughs
(most recently in noncommutative Iwasawa theory) provide us with incremental progress.

This article is not about using computers in that way. This article is an attempt to
explain to all researchers in mathematics that, thanks to breakthroughs in computer science,
computers can now be used to help us not just with computations, but with reasoning. In
other words, it is about the possibility that computers might soon be helping us prove the-
orems, whether they be about “computable” objects such as elliptic curves, or about more
intractable objects such as Banach spaces, schemes, abelian categories or perfectoid spaces,
things which cannot be listed or classified, or in general stored in a traditional computer alge-
bra package in any meaningful way. In particular, it is about the possibility that computer
proof assistants can help mathematicians who up until this point have had no need for com-
putation in their research and might hence incorrectly deduce that computers have nothing at
all to offer them. I should also stress that the applications are not limited to people interested
in foundational subjects such as set theory or type theory; I am thinking about applications
in geometry, topology, combinatorics, number theory, algebra, analysis,...

I end this introduction with a summary of what to expect, and what not to expect,
from this fast-growing area within the next decade. The first thing to stress is that computers
will not be putting us out of a job. Computer proof assistants can now understand the state-
ment of the Riemann hypothesis, but I will eat my hat if a computer, all by itself, comes up
with a proof of the Riemann hypothesis (or indeed a proof of any open problem of interest
to mainstream pure mathematicians) within the next 10 years.”

What I do believe is going to happen within the next 10 years: tools will be cre-
ated which will help mathematicians prove theorems. Digitized and semantically searchable
databases of mathematics are appearing. Computers are going to start doing diagram chases
for us, filling in the proofs of lemmas, pointing out counterexamples to our ideas, and sug-
gesting results which might be helpful to us. The technology to make such tools is already

1 Throughout this article, by “us” and “we” I am referring to the community of people who,
like myself, identify themselves as pure mathematicians.

2 Conjectures which stretch beyond a 10-year period are, I think, very unwise; like mathe-
matics, sometimes computer science moves very quickly.

579 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

coming; it is viable. Furthermore, the databases of theorem statements and proofs which are
appearing will not only have applications in research; we will be able to use them for teach-
ing and for communicating mathematics in new ways. Undergraduates will be able to get
instant feedback on their work. PhD students will be able to search for theorems and coun-
terexamples in databases. Researchers will be able to write next-generation error-free papers
where details can be folded and unfolded by the user. Patrick Massot has written a thoughtful
piece [44] explaining these and other ideas in more detail. Computers are going to be able to
understand your area of mathematics, and even keep up with it as it develops. But there is a
catch. Who is going to make the database of important results in noncommutative Iwasawa
theory, or whatever area you are interested in, which will power these tools? It is not going
to be the computer scientists, because most of them know nothing about noncommutative
Iwasawa theory. It has to be us.

If you want to see progress within this domain in your own area of mathematics,
I would urge you to take some time working through some tutorials and learning one of these
computer proof assistant languages. It is not difficult to do so—I teach a popular course to
final year mathematics students where we learn how to do undergraduate level mathematics
(topology, analysis, group theory, and so on) using the Lean theorem prover.® Engaging with
harder mathematics is not at all difficult once you know the language. If you want to learn
Lean’s language, a good place to start is the Lean prover community’s website [58]. Coq and
Isabelle/HOL are two other well-established theorem provers with big mathematics libraries,
and there are plenty of others. If you can get to the point where you are able to explain the
statements of your own theorems to a computer proof assistant, then these statements can be
added to databases, and, furthermore, you have learnt a new skill. If, however, you can get to
the point where you can explain the proofs, then the Al people will be extremely interested,
as will the people building huge formalized mathematical libraries which represent a 21st
century Bourbaki. Furthermore, you will be having fun: formalization of proofs is mathemat-
ics reinterpreted as an interesting computer puzzle game. If you do not have the time, then
find a student who does. Instead of the traditional “do a project consisting of reading a paper
and then writing a paper showing that you understood the paper,” why not get a student to
write some code which proves that they understood the paper? They can learn the language
of the prover themselves, and then teach it to you as you teach them the mathematics.

The files which computer proof assistants can read and write represent a way of
digitizing mathematical ideas. Digitizing something completely changes (in fact, it vastly
augments) the ways in which it can be used. Consider, for example, the digitization of music,
with the CD and the mp3 file. This has revolutionized how music is consumed and delivered.
My collection of music consists of hundreds of vinyl records, tapes, and CDs in my office
and loft. My children’s collection is in the cloud, has essentially zero mass and volume, and
is accessible anywhere. Not only that, but cloud-based music platforms have also fundamen-
tally changed the way the modern musicians communicate with their fans, bypassing the
traditional process completely. The music industry was turned upside-down by digitization.

3 If you have Lean installed then you can take the course yourself; the materials are here [8].

580 K. BUZZARD

Mathematics has been done in the same “pencil and paper” way for millennia, but
now there is a true opportunity to rethink and enhance this approach. I do not dare to dream
what the ultimate consequences of digitizing mathematics will be, but I firmly believe that
it will make mathematics more accessible—and easier for us to do, to communicate, and to
play with. The ball is in our court.

2. OVERVIEW OF THE PAPER

This paper describes a “new” way in which computers can be used by mathemati-
cians. As mathematicians, our typical experience with computers is that we can use tra-
ditional programming languages like Python or traditional computer algebra packages like
sage to do things like compute the sum of the first 100 prime numbers. We know equally
well that these traditional tools, even though they can compute as many prime numbers as
you like (within reason), are not capable of proving that there are infinitely many primes; the
infinite is our domain, not the domain of the computer.

However, this is no longer the case. Computer proof assistants are programs which
know the axioms of mathematics. A consequence of this is that they can do both com-
puting in the traditional sense, and also reasoning. In practice this means that one can
write some computer code in a proof assistant which corresponds to the proof that there
are infinitely many primes (https://leanprover-community.github.io/lean-web-editor/#url=
https%3A%2F%2Fraw.githubusercontent.com%?2Fkbuzzard%2Fxena%2Fmaster%2Fsrc%
2FICMY%2Finfinitude_primes.lean), or even to a proof [22] of the main result in a recent
Annals paper [26].

I wrote “new” in quotes above because it is not new at all; computer scientists have
been creating tools like this for decades now. Indeed, the first computer proof assistants
appeared in the 1960s. However, more recently three things have happened. First, the tech-
nology has now reached the point where research level results across all of the traditional
mainstream areas of pure mathematics are now simultaneously accessible to these systems, at
least in theory, and, increasingly, in practice. Secondly, the systems are far more autonomous
than they used to be. Tactics are commands which can be designed by users and which are
capable of putting together hundreds if not thousands of tedious axiomatic steps, enabling
mathematicians to communicate with these machines in a high-level way, similar to the way
which they communicate with each other. Finally, and crucially, research level mathemati-
cians are finally beginning to get involved; we are seeing material at MSc level and beyond
being formalized, by mathematicians, across many areas of mathematics now. These devel-
opments mean that teaching research level material to a computer proof system in all areas
of mathematics is now becoming a feasible possibility—indeed, it is already happening right
now, and shows no signs of stopping.

The main body of this paper consists of 4 sections (numbered sections 3 to 6), which
are independent of one another, and can be read in any order.

The first is historical; it consists of descriptions of the systems which are being, or
have been used, to formalize mathematics, and discussions of results which have been taught

581 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

https://leanprover-community.github.io/lean-web-editor/#url=https%3A%2F%2Fraw.githubusercontent.com%2Fkbuzzard%2Fxena%2Fmaster%2Fsrc%2FICM%2Finfinitude_primes.lean
https://leanprover-community.github.io/lean-web-editor/#url=https%3A%2F%2Fraw.githubusercontent.com%2Fkbuzzard%2Fxena%2Fmaster%2Fsrc%2FICM%2Finfinitude_primes.lean
https://leanprover-community.github.io/lean-web-editor/#url=https%3A%2F%2Fraw.githubusercontent.com%2Fkbuzzard%2Fxena%2Fmaster%2Fsrc%2FICM%2Finfinitude_primes.lean

by humans to computers over the last 20 years. It also notes various historical technical
advances.

The second is an overview of one of the largest currently available monolithic math-
ematical libraries in existence, namely Lean’s mathematics library mathlib. Lean [23]is a
free and open source computer proof assistant written primarily by Leonardo de Moura at
Microsoft Research. Lean’s maths library math1ib [6e] is a free and open source library for
Lean, developed by a community of users across the world, ranging from undergraduates to
professional mathematicians. mathlib is the library which has powered several of the most
recent significant results in the area.

The third section consists of an introduction to type theory as a foundation for mathe-
matics; it explains how mathematical structures, theorems, and proofs can be encoded within
these foundations. Note that many of the modern computer proof systems where nonfounda-
tional mathematics is happening (Lean, Coq, Isabelle/HOL) use type theory rather than set
theory; however, type theory proves the same theorems as set theory. Furthermore, mathe-
maticians who can prove theorems but who do not know the axioms of ZFC set theory can
happily write code in a type theory proof system corresponding to these theorems without
knowing the axioms of type theory either.

Finally, a speculative final section describes in more detail some personal ideas of
the author and others about the kinds of things which software such as this can be used for,
and how it might help us to do our jobs.

I thank the Lean prover community for welcoming me, a mathematician with very
little programming experience, into their community back in 2017, and also for reading and
giving extensive comments on a preliminary version of this article. Patrick Massot in par-
ticular sent many helpful comments on a first draft. I thank Assia Mahboubi and Manuel
Eberl for giving advice on the Coq and Isabelle/HOL code in this paper, and to both them
and Jeremy Avigad for helpful historical comments. Finally, I would like to effusively thank
Leonardo de Moura for writing my favorite computer game, and Mario Carneiro for teaching
me how to play it.

3. A BRIEF HISTORY OF FORMALLY VERIFIED THEOREMS

In this section [will talk about the previous successes of computer proof assistants—
computer programs which check human proofs—in mathematics. There are far more projects
here which I could have mentioned, and I apologize to those who have undertaken major
mathematical formalization projects which I have not cited. Examples of computer proof
assistants in which a substantial amount of mathematics has been formalized include
Lean [23], Coq [19], Isabelle/HOL [48], HOL Light [37], Metamath [45], and Mizar [47].

For a computer to formally verify a theorem, it ultimately needs to be able to deduce
the theorem from the axioms of the foundational system (typically, set theory or type theory)
which the proof assistant has been designed to use. I will use the below discussion of histor-
ical results to introduce some conceptual breakthroughs which have over the years enabled
the formalization of mathematics to become feasible.

582 K. BUZZARD

This section cannot do justice to all of the work which has occurred in the area;
I thoroughly recommend Hales’ paper “Mathematics in the age of the Turing machine” [33]
for more background and examples, although much has happened since that paper was writ-
ten in 2014.

3.1. The 20th century

Consider the problem of proving from first principles that if x and y are real num-
bers, then (x + y)(x + 2y)(x + 3y) = x3 + 6x2y + 11xy? + 6y>. We all know that the
real numbers are a commutative ring, so let us assume that fact. The question now becomes
how to use the axioms of a commutative ring to prove the equality that we want. How many
lines would a proof from first principles be? Surely not too many! We apply distributivity a
few times to expand out the brackets on the left-hand side, and then, of course, it just becomes
a matter of tidying up and equating terms. As humans we do not think too much about the
tidying-up process; however, if you try proving this in a theorem prover then you will dis-
cover that actually it is a combinatorial nightmare. For example, there is a step in the proof
where where we need to prove something of the form

((A+B)+(C+E))+ ((D+ F)+ (G + H))
=(((((A+B)+C)+D)+E)+F)+G)+H

using only the laws of commutativity and associativity of addition. Humans apply a principle
to justify this step, not an axiom, and indeed proving such a triviality using only the axioms
of a ring is surprisingly fiddly. There is also the issue of turning things like x ((2y)x) into
(2(x?))y and so on.

The very early theorem provers had very limited ability to apply principles, meaning
that proving results such (x + y)(x + 2y)(x + 3y) = x> + 6x2y + 11xy? + 6y3 would
need to be done manually, meaning something like a 30 line proof. If such a triviality hides
30 lines of axiomatic mathematics, imagine what is hidden behind claims of the form “The
function f is clearly O(x~2) for x large”? It is one thing writing a computer proof assistant—
it is quite another one to write one which scales to do the kind of things which we humans
do intuitively. For this and other reasons, many of the earlier formalization achievements of
the 20th century were mathematically trivial. In particular, there were many proofs of the
irrationality of +/2 and of the infinitude of primes, but these were being used as benchmarks
for the systems.

In the final two decades of the 20th century, computer provers began to appear which
had new functionality. In these later systems, users could write “tactics.” Tactics are com-
puter code which assembles axiom applications together into principles. For example, in a
modern prover like Lean, (x + y)(x + 2y)(x + 3y) = x3 + 6x2y + 11xy? + 6y3 can
now be proved in one line by invoking the ring tactic.* Tactics allow formalized mathemat-
ics to more closely resemble ordinary mathematical practice by making “obvious” things
automatic.

4 See [31] for a description of the sort of issues which arise when writing such a tactic.

583 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

3.2. The prime number theorem

In 2004, a team comprising Jeremy Avigad, Kevin Donnelly, David Gray, and Paul
Raff formally verified the prime number theorem, in the Isabelle/HOL system. The proof they
formalized was the ErdGs—Selberg “elementary proof.” The work used inputs from both arith-
metic and basic real analysis. Of course, calculations involving growth of functions which
look easy on paper still took time and effort to formalize. Manipulation of inequalities which
to humans look easy need to be done either by hand or via a Fourier—Motzkin elimination
tactic in a theorem prover. The reason that the Erd§s—Selberg proof was preferred to the tra-
ditional complex analysis proof was that at that time Isabelle/HOL had no complex analysis
library at all.

What we conclude is that by 2004, more serious undergraduate and MSc level mate-
rial was now in theory accessible to these systems, at least in some areas of mathematics.
We also see that we are at a stage where libraries of proofs in distinct areas of mathematics
are able to interact with one another.

In 2009 John Harrison formalized the complex-analytic proof of the prime number
theorem in the HOL Light theorem prover [36], motivated in part by the fact that HOL Light
already had a theory of complex analysis including Cauchy’s integral formula. In 2016 Mario
Carneiro formalized the Erd§s—Selberg proof in Metamath, a set theory based prover which
has essentially no tactics; as you can imagine this was a heroic effort.

Thus the Prime Number Theorem became some kind of a poster child for formal-
ization. One can understand why—it was a celebrated theorem in mathematics, the proof is
not at all trivial, and any formalization in a theorem prover demonstrates that the prover is
capable of reasoning about both the discrete and the continuous simultaneously.

As may be becoming apparent to the reader, however, one reason that the result
was being independently formalized in several theorem provers was that it is extremely dif-
ficult to translate a proof written in one of the systems to a proof in another system. One
issue is that different systems might have different foundations; for example, HOL Light and
Isabelle/HOL are type theory systems, and Metamath is a set theory system. Another issue
is that even if two proof systems have very similar foundations, they might have different
idioms; different libraries in different systems could be set up to do the same thing in very
different ways. Without getting too technical, in order for these computer proof systems to
work, one has to have some kind of a method for moving between structures “behind the
scenes”’—for example, the reals are a field, and hence they are an additive group (and a mul-
tiplicative monoid), and in particular one wants all theorems about additive groups such as
0 + a = a to apply instantly to fields such as the reals without any fuss. Humans, of course,
have no problems with this, but in a computer proof system one needs some kind of infras-
tructure which is making this happen automatically, and if different systems are doing this
in different ways then, of course, this makes automatic proof translation much harder.

Thus it came as a shock to me when in 2020 Mario Carneiro announced that he
had used his Metamath Zero project [14] to port the Metamath proof of the prime number
theorem to Lean. The two systems are about as far apart as it is possible to be—Metamath

584 K. BUZZARD

uses set theory as a foundation and Lean uses type theory, for example. Metamath proofs are
typically far more low-level, with limited automation available, whereas typical Lean proofs
are very tactic-heavy. However, the system worked, and produced code which compiled; it
was, of course, also unreadable. It was tens of thousands of lines of completely unmotivated
primitive code defining variables and applying basic principles of logic, with no comments.
In fact, it was a wonderful example of something which satisfied a formal definition of “being
a proof,” whilst in some sense imparting no information whatsoever to the human reader
other than the fact that the theorem was true.

Of course, if computers begin to write proofs by themselves, they might all look like
this, at least at first.

3.3. The four color theorem

The four color theorem (formerly the four color conjecture) was a notorious problem
in graph theory raised in the 1850s and which remained unresolved for over 100 years. One
formulation of it is the assertion that the vertices of every planar graph can be colored with
four colors in such a way that no two adjacent vertices share a color. The statement is an ele-
gant combinatorial problem, and it came as a shock to some in the mathematical community
that the proof, announced by Appel and Haken in 1976, used a computer in an essential way.
Appel and Haken constructed a collection of 1834 graphs with the property that a minimal
counterexample must contain one of these graphs as a subgraph, but that conversely no graph
containing one of these 1834 graphs as a subgraph can be a minimal counterexample. The
verification of these claims was done using a bespoke computer program which, in those
days, took over a month to finish running. The Appel-Haken proof was an outlier because
whilst the principle of the proof was possible to understand, the details were too difficult for
a human to follow in practice; one billion case splits (this is what the computer part of the
proof looks like) is not something which humans can do manually and accurately within a
reasonable time frame. The proof relies, essentially, on a computer calculation and hence it
relies on the correctness of the computer code. Small bugs in computer code are, of course,
commonplace, although it could be added that small bugs in human-written proofs are also
commonplace. However, the mathematical community is well-equipped to discover and fix
small bugs in human-written proofs, and was perhaps rather less well equipped to verify the
correctness of computer code, especially in 1976.

In 2004 Georges Gonthier finished a formal verification of the Appel-Haken
result—more precisely he formalized the 1997 Robertson—Sanders—Seymour—Thomas vari-
ant of the argument [27]. The work comprised 60,000 lines of code written in the Coq
proof assistant. In particular, it completely dwarfs the prime number project discussed in
the previous subsection. It contains a complete formalization of the theoretical part of the
work—formal proofs of results in topology (to reduce the statement about arbitrary planar
graphs to one of a discrete combinatorial nature) and graph theory—whilst also formally
verifying the computer calculation necessary to finish the proof. Note in particular that (as in
the proof of the prime number theorem) much of the work comprised writing foundational
material rather than formalizing the proof itself.

585 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

It is interesting to note that the process of formalization led to simplifications in the
argument. For example, Gonthier developed a theory of what he called combinatorial hyper-
maps, which greatly reduced the amount of topology needed in the proof, and in particular
removed the dependency of the argument on the Jordan Curve theorem. Gonthier developed
some original mathematics as part of the work—for example, he isolated a combinatorial
criterion for his hypermaps which was equivalent to planarity.

Naively, it looks like in this case we are replacing one “proof by computer” with
another one; however, this is missing the point. Firstly, the Coq formalization covers not
just the Appel-Haken computer code, but also all of the rest of the Appel-Haken argument.
Secondly, one can view the formal verification as an independent check of the proof. Finally,
instead of having to trust the code written by Appel and Haken and which few people have
read, we are instead having to trust code written by the authors of Coq. Coq has been around
for a long time (the first version was written in 1984), has a small kernel, and the system has
many users. A bug which meant that Coq could incorrectly claim that an unproved theorem
was true would be unlikely to manifest itself in just one project and is far more likely to
ultimately be discovered. In contrast, the Appel-Haken code is a bespoke piece of code with
few users so arguably bugs are more likely.

Gonthier wrote a very informative piece [28] about his work for the Notices of the
American Mathematical Society (including an exposition of the theory of hypermaps), as
part of the November 2008 issue; this issue was devoted to formal verification of mathematics
in a computer proof system and provides an excellent survey of the field as it then stood.

3.4. The odd order theorem

The odd order theorem is the theorem that any finite group of odd order is solvable.
In 2013 a team of 15 people led by Gonthier formally verified a proof of this theorem in
Coq [29]. This piece of work is notable for several reasons. Firstly, the proof is very long;
a complete argument (modulo the basics in group and representation theory) is presented
in the two volumes [2] and [5e]. Secondly, we have moved way beyond MSc level math-
ematics here—this work was one of the reasons that Thompson was awarded the Fields
Medal in 1970. The proof is a very delicate argument in finite group theory, much of which
involves analyzing the structure of a minimal counterexample and ultimately showing that it
cannot exist. The Coq proof involved formalizing both of the books mentioned above, plus,
of course, all the background material in group theory, representation theory, Galois theory,
and number theory; indeed, formalization of the background material took up much of the
six years which the authors spent on the proof. Figuring out how to handle such a large-scale
formalization project was also a nontrivial task.

It is perhaps worth stepping back and asking how work like this contributes to human
understanding. The naive answer to this is “it guarantees that the human proof is correct.”
However, in my opinion, this is not the main contribution. Humans were well aware even
back in the 1960s that the proof was correct—had there been any doubt, Thompson would
not have got the Fields Medal. What the formalization work shows us that theorem provers
have now become able to operate at this kind of scale. Entire books of mathematics can now

586 K. BUZZARD

be formalized in one system without the system running out of memory or grinding to a halt.
On average, one line of mathematics in [2] or [5e] corresponded to five lines of computer
code, so we learn that by 2013 the so-called “De Bruijn factor” for this kind of mathematics
is around 5. However, this ratio should not be taken too seriously: in parts of the argument,
the ratio is essentially one, and in other parts it is much larger. Note also that this factor may
vary considerably between theorem provers.

We also learn that large formalization projects such as this are a very effective way
to motivate development of foundational mathematics libraries. One consequence of this
formalization project was that Coq developed a very solid library of undergraduate-level
algebra which can, of course, be used (and is used) for other projects.

The write-up [29] of the odd order work is an interesting read. Some sections con-
centrate on the mathematics or the history, but there is also a discussion about constructive
mathematics, something which I felt should have nothing to do with the work, and also about
implementation issues, something else which mathematicians typically do not ever have to
think about. For example, one observation made in section 3 was that many theorems involv-
ing two or more finite groups would usually be formalised assuming that these groups were
both subgroups of some larger ambient finite group X . This can be done without any loss of
generality of course, because given two groups G and H , they are both subgroups of G x H.
Why is this observation important? This is an implementation issue — the domain of the com-
puter scientist. Working with subgroups rather than groups might be easier, or nicer, when
it comes to actually implement certain theorems in the theorem prover. It is worth noting
however that such a trick does not work more generally: for example in algebraic geometry
one uses the category of commutative rings with 1, and morphisms by definition send 1 to 1.
If R and S are general commutative rings with 1 then there is in general no morphism of
rings from R to R x S sending 1 to 1, so one is forced to implement commutative ring theory
in a more “traditional” manner. See [63] for how this was done in Lean.

Regarding constructivism — the authors of the work put in a lot of effort to keep their
proof “constructive”, for example the avoidance of all uses of the complex numbers when
setting up the basics of representation theory. The complex numbers do not have decidable
equality, meaning that there is in general no algorithm for proving that two constructively
defined complex numbers are equal (for example, one can evaluate a definite integral numer-
ically and observe that it seems to be 0 to 1000 decimal places, but there is not some generic
algorithm which we can apply to an arbitrary integral in order to decide whether or not it
equals 0). This means that in constructive mathematics, where the law of the excluded middle
cannot be assumed, one cannot do a case split on whether z = 0 or not, if z is a complex
number, and more generally plenty of constructions become noncomputable and hence much
harder to reason with constructively. These design choices thus increase the amount of work
needed to get representation theory working. I had thought that constructivists had died out
in the early part of the 20th century. It turns out that they are alive and well, and typically
working nowadays in computer science departments. One reason for this is that construc-
tivism plays an important role in the theory of programming languages. Reluctance to use
the law of the excluded middle is to a certain extent a cultural decision. However there are also

587 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

situations where working constructively enables a computer proof system to prove certain
results “automatically” (for example by an explicit computation). Whilst working construc-
tively may have been feasible for a project about finite groups, the law of the excluded middle
is used throughout most modern research level mathematics and it is not really feasible to
work constructively when doing the kind of mathematics which is happening nowadays in
mathematics departments. However it is also worth stressing that most modern proof assis-
tants have no problems with the law of the excluded middle, the axiom of choice, and other
non-constructive axioms — they are available, if you want them. Certain proof strategies are
ruled out if one chooses to work nonconstructively, but one can counter this by writing new
tactics specifically designed to do computations in fields such as the real and complex num-
bers. Nonconstructive axioms are used extensively in Lean’s mathematics library mathlib,
for example.

3.5. The Kepler conjecture

The Kepler conjecture states that the face-centered cubic packing is the densest way
to pack congruent spheres in 3-space. Hales and Ferguson proved the conjecture in 1998; it
had at that point been open for over 350 years (it was raised by Kepler before Fermat proposed
his Last Theorem). Part of the Hales—Ferguson proof involved the checking of over 23000
nonlinear inequalities on a computer; another part involved a computer classification of all
tame graphs. Other computer calculations were also involved. In this respect the proof is
similar to the Appel-Haken proof of the four color theorem; computations need to be carried
out which are simply far too great for humans to do in a reasonable time frame.

Because the result was regarded as important, the referees felt duty-bound to attempt
to check the computer part of the proof in some way; however, ultimately they gave up, and
in [34] Hales states that the paper was published (in the Annals) without complete certifi-
cation from the referees. In 2003 Hales announced a project to formally verify the proof
using computer proof systems. Hales used a combination of HOL Light and Isabelle/HOL,
and the project turned into an international collaboration, with 22 authors listed on the final
paper. The formalization project took around 12 years to complete, and comprised over half
a million lines of code. Just as for the other projects in this section, one of the main benefits
of the work to the formal proof community is that HOL Light’s standard library grew to
include theorems such as the Brouwer fixed-point theorem, the Krein—-Milman theorem, and
the Stone—Weierstrass theorem.

In 2017 Hales gave a talk [32] at the Newton Institute where he told the story of the
Kepler proof, and explained a vision for the future of formalized mathematics. This talk was,
for me, the turning point, and was one of the main motivations behind the work described in
the following subsection.

3.6. Perfectoid spaces

The previous formalized results all have something in common. Whilst some of
them represent truly deep mathematics, all of the formalized proofs involve reasoning about
objects which are in some sense elementary (planar graphs, prime numbers, finite groups,

588 K. BUZZARD

spheres). Furthermore, most (but not all) of the formalizing done prior to 2017 was being
done by computer scientists. In Hales’ talk linked to above, he coherently argued that for
further progress in this area, this state of affairs had to change. At that time I had only just
begun to dabble with computer proof assistants and my initial plans were to attempt to inte-
grate them into my undergraduate teaching. However, Hales” arguments resonated with me,
and within a few months I found myself working with undergraduates at Imperial College,
formalizing the definition and basic properties of schemes in the Lean theorem prover. This
project involved developing basic theories of localization of rings and of sheaves on topo-
logical spaces; however, it was relatively straightforward (modulo poor design decisions; the
reader interested in more details can see them in [12]). I was thus shocked to discover after-
wards that schemes—such a basic notion in algebraic geometry—had not been previously
formalized in any other computer proof system! Furthermore, the project made it quite clear
to me that formalizing far more heavyweight mathematical objects should easily be possible.

In late 2017 Patrick Massot (a topologist) and myself independently came up with
the idea of formalizing perfectoid spaces; the topic was in the air because it was at that time
an open secret that Scholze was going to be awarded a Fields Medal for his invention/dis-
covery of the concept and its applications to arithmetic geometry. I knew the mathematical
definition, having dabbled in the area myself, and when Johan Commelin, another arithmetic
geometer, appeared in the Lean Zulip chatroom in 2018 the three of us decided to go for it.
Around 16000 lines of code and eight months later, we had a formalized definition; one could
summarize the work as a computer formalization of the single line of mathematics “let X be
a perfectoid space”.’

The work was, of course, partly intended as a public relations stunt; computer scien-
tists were well aware of the existence of computer theorem provers, however, mathematicians
seemed not to be, and this was an attempt to make them notice. The plan was a success—
the project did seem to raise the profile of computer theorem provers within the mathematics
community. Note, however, that we did not construct any examples of perfectoid spaces other
than the empty perfectoid space,® and all three of us were well aware of the problems prevent-
ing us from formalizing any of Scholze’s serious theorems about perfectoid spaces at that
time; we were missing so many of the prerequisites. As with previous projects, one tangible
gain from the work was the growth of the mathematics library of the system in question.
Most of the results in Bourbaki’s General Topology ended up as part of Lean’s mathematics
library mathlib as a result of this project, as well as plenty of results in topological algebra,
and it also motivated the beginnings of a theory of valuations and discrete valuation fields.

One can consider the perfectoid space work as in some sense being orthogonal to
what was usually being attempted in a theorem prover. Many of the prior results highlighted

5 In the odd order formalization, the de Bruijn factor (ratio of lines of computer code to lines
of human text) was around 5. Here one could argue that it is 16000. However, one could,
of course, also argue that it might well take several thousand lines of human text to define a
perfectoid space in full.

6 To prove that the empty set can be given the structure of a perfectoid space, one needs to
check that an arbitrary product of trivial topological rings is the trivial topological ring.

589 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

in this section are proofs of long and complex theorems about relatively simple objects.
The proof that the empty set can be given the structure of a perfectoid space is a very simple
theorem about a much more complex concept. Of course, the natural next question is whether
computer proof systems can prove complex theorems about complex objects. One year after
the perfectoid space project, we began to find out.

3.7. Condensed mathematics

Clausen and Scholze have been developing a theory of condensed mathematics.
A condensed set is a variant of a topological space. The main insight is that condensed objects
may have better homological properties than topological objects (for example, the category
of condensed abelian groups is an abelian category, whereas the category of topological
abelian groups is not). They hope that these ideas will enable techniques in homological
algebra to apply to new areas of analytic geometry. At the end of 2020, Scholze approached
me and asked if we had had a study group on the work at Imperial; I answered that we had.
Scholze then asked whether we had looked through all the details of the proof of Theorem 9.1
of [51]; I answered that we had not. Scholze then remarked that he had had the same response
from other mathematicians, and raised the possibility that perhaps nobody other than himself
and Clausen had ever read the proof carefully. Furthermore, he suggested that perhaps this
might remain true even after the refereeing process. The reason he was concerned about this
was that, for Scholze, this was the theorem that the entire theory stood upon. The proof was
very technical; it built upon a more “elementary” but rather unwieldy intermediate result,
Theorem 9.4 of [51]. Scholze agreed to challenge the formalization community to prove his
Theorem 9.1 in a blog post [55], later published as [53]. Although the challenge was to the
formalization community in general, it seems that only the Lean community responded; this
is perhaps unsurprising, as (for perhaps only for sociological reasons) it has come to be the
case that mathematicians interested in “the kind of mathematics which wins Fields Medals”
and also interested in theorem provers tend to gravitate towards Lean.

Johan Commelin became the de facto leader of the formalization process, with
Patrick Massot supporting him in making a blueprint [18] of the strategy (that is, a carefully-
written roadmap) and a team of algebraic number theorists, arithmetic geometers and other
mathematicians (Riccardo Brasca, Damiano Testa, Filippo Nuccio, Adam Topaz, myself,
Patrick Massot, Bhavik Mehta,...) then began working on the project, with the occasional
help from people with a computer science background such as Mario Carneiro. Within six
months the team had grown to over ten people and we had formalized a complete proof of
Theorem 9.4 (see [15]). At the time of writing, we have not deduced Theorem 9.1, but it
is only a matter of time. A second blog post [54] by Scholze indicates his thoughts on the
matter; in particular, we see that he is now far less concerned about the situation regarding
the correctness of the results. Furthermore, Scholze has indicated (personal communication)
that the process has enabled him to better understand what powers the proof, and Commelin
not only learnt the mathematics as part of the process, but also simplified the argument in
several places, most notably in the removal of the dependency of the argument on prior work
of Breen and Deligne.

590 K. BUZZARD

For me, this represents substantial evidence that now any pure mathematics can
be formalized in theorem provers—both in theory, and in practice. It takes time, but it is
possible. The formalization of the work led both to better understanding of it, and to sim-
plifications of the argument. Also worth mentioning is that, as in many other formalization
projects, a substantial amount of time was spent formalizing background material (for exam-
ple, the theory of normed groups and the theory of profinite spaces). As the libraries of the
provers get better and start to contain the kind of material which working mathematicians
take for granted, there will be fewer of these “startup costs.”

3.8. Other results

There are plenty more examples of serious formalization efforts which we do not
have the space to cover. We list some examples here. Gouézel formalized the basic defi-
nitions of C* and C° manifolds in Lean, extending earlier work done in Isabelle/HOL.
Mahboubi and Sibut-Pinote proved irrationality of {(3) in Coq [16] and Eberl proved it in
Isabelle/HOL [24]. Mahboubi has also done extensive work on rigorous numerical values of
integrals in Coq, and also in Coq Bertot, Rideau, and Théry formally verified the first one
million decimal digits of 7 [4]. Eberl has formalized much of Apostol’s textbook on analytic
number theory in Isabelle/HOL [25]. Han and van Doorn proved independence of the contin-
uum hypothesis in Lean [35]. Immler formally verified Tucker’s calculations used to verify
the existence of the strange attractor [38]. Mehta and Dillies formally verified Szemerédi’s
regularity lemma and Roth’s theorem on arithmetic progressions in Lean, and Edmonds,
Koutsoukou-Argyraki and Paulson verified them in Isabelle/HOL. The Poincaré—Bendixson
theorem was formalized by Immler and Tan [39] in Isabelle/HOL; note that the usual proof
as understood by mathematicians relies on drawings, and formalizing drawings can be hard
work. The Ellenberg—Gijswijt resolution of the cap set conjecture was verified in Lean by
Dahmen, H6lzl, and Lewis [22]. Commelin and Lewis constructed Witt vectors and showed
that W(IF,) = Z, in [17]; this work is interesting because not only did they formalize the
delicate mathematics involved, they also wrote tactics which would enable them to reduce
various questions to the universal case in a painless manner. Finiteness of the class group
of a global field was proved in Lean by Baanen, Dahmen, Narayanan, and Nuccio in [1] (it
still astonishes me that this result, special cases of which were known to Gauss and which
is a standard theorem in an undergraduate mathematics degree, was formalized in a proof
assistant for the first time in 2021).

There is also work in progress (at the time of writing). Teams of people who collab-
orate on the Lean Zulip chat [65] are currently working on a proof of Fermat’s Last Theorem
for regular primes, and on Smale’s theorem that it is possible to evert a sphere. A general
project to formalize many basic results in the theory of schemes is also underway.

4. mathlib
In this section I will give an overview of Lean’s mathematics library, one of the
largest monolithic collections of formalized mathematics in existence and, more importantly,

591 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

one which is currently experiencing rapid growth. To a certain extent it is a personal perspec-
tive; a different point of view, which talks more about the computer science powering the
library, is presented in [6e].

The principal developer of the Lean Theorem Prover is Leonardo de Moura, who
started the project in 2013. At the 2017 Big Proof conference in Cambridge, it was decided
to split off most of the “mathematical” part of the prover from the “core” part, and move
the mathematics into a library of its own. Thus mathlib was born. At the time mathlib
contained definitions of groups, rings, and topological spaces, filters, a construction of the
rational numbers (the naturals and integers remained in core Lean), and little else. Johannes
Holzl and Mario Carneiro became the maintainers of the library, and between them they
began to slowly build more mathematics, for example, the real numbers. Holzl had written a
lot of the topology part of the repository, following the Isabelle/HOL approach which relied
heavily on the concept of a filter. Carneiro wrote a robust theory of finiteness, and slowly the
library began to become relevant to the “working mathematician.”

The library is a free and open source project. It is monolithic in the sense that there
is one definition of a group, one definition of a ring, one definition of the real numbers, and
so on, and all of these definitions can be imported simultaneously and interact with each
other. Initially it was not clear what its goals were, other than being a place where people
could experiment with doing mathematics in Lean. Mathematicians such as Scott Morrison,
myself, and Patrick Massot got involved at a very early stage, and because our background
was in mathematics which relied on classical logic (i. e., the law of the excluded middle) and
other nonconstructive axioms such as the axiom of choice, the library developed with these
classical assumptions at its core. Each successful mathematics project written in Lean and
powered by mathlib seemed to attract more mathematicians to its chatroom, which in turn
led to more projects. Within a couple of years Lewis had formalized the p-adic numbers [41],
myself and a team of undergraduates (Lau, Hughes, Livingston, and Fernandez Mir) formal-
ized schemes [12], Dahmen, Ho1zl, and Lewis formalized the 2017 Ellenberg—Gijswijt Annals
proof of the cap set conjecture [22], and Massot, Commelin, and myself formalized the def-
inition of a perfectoid space [16]. Each of these projects could not have happened without
mathlib; conversely, each of these projects contributed to the growth of mathlib.

Plenty of developments were also taking place which were not written up as papers,
and whose main purpose was simply to grow mathlib. I supervised student projects where
undergraduates could formalize material they were learning in class and add it to the library;
for example, Sylow’s theorems (Chris Hughes), nilpotent groups (Ines Wright), conformal
maps (Yourong Zang), and the Radon—-Nikodym theorem (Kexing Ying) were added this
way. Amelia Livingston developed a theory of localization of monoids and rings which we
needed for algebraic geometry. I pushed undergraduates (Hughes, Lau, Lee) to formalize
a standard Galois theory course in Lean; they developed a theory of field extensions, and
the project was then taken up by a group of mathematics PhD students in Berkeley (Miller,
Browning, Lutz) who finished the job, proving the fundamental theorem of Galois theory
and the insolvability of the quintic [7] (note that this was coincidentally formalized in Coq
just a couple of months beforehand [3]). Baanen, Dahmen, Narayanan, and Nuccio formal-

592 K. BUZZARD

ized a proof of the finiteness of the class group of a global field [1]. I was pushing algebra,
but others were pushing geometry and analysis. Gou€zel and Macbeth developed a theory
of manifolds, and Gouézel and Kudryashov developed an extensive theory of single and
multivariable calculus, including the implicit function theorem and the Picard-Lindelof the-
orem. Gouézel also formalized the Gromov—Hausdorft space: a metric space parametrizing
nonempty compact Hausdorff metric spaces up to isometry.

Morrison has developed a huge amount of category theory, and he and Topaz have
now formalized the definitions of abelian categories and the beginning of the development
of derived functors and homological algebra. Massot has developed valuation theory and a
theory of completions of uniform spaces and of topological groups and rings. Tuma devel-
oped the theory of Jacobson rings, and I developed some of the basics of other standard
ideas in commutative algebra (projective and flat modules, discrete valuation rings), and
Springer, Kuelshammer, and many others have also contributed to algebra. Holzl developed
the theory of Lebesgue measure, and van Doorn formalized Haar measure. There are many
more people who have made contributions (mathlib now has over 200 contributors) and
new contributions are always welcome. Contributions are reviewed by the maintainers. One
of the principles of the library is to do things “in the correct generality.” This meant, for exam-
ple, that multivariable calculus and some exotic integrals taking values in Banach vector
spaces was developed first, and single variable calculus was deduced as a corollary. The
library is not optimized for pedagogy or readability; the idea is to continue to make a solid
foundation for the kind of mathematics which is happening in a contemporary mathematics
department.

It is interesting to note that Lean seems to be learning mathematics at around the
same speed as an undergraduate. In the four years which the library has been growing, it
has gone from essentially zero to a solid MSc level coverage in number theory and commu-
tative algebra, and BSc level real analysis. In complex analysis, differential geometry, and
representation theory it is perhaps not quite yet at final year BSc level, but things move fast
and this sentence, written in 2021, will quickly date. For an up to date idea of the current
status of math1lib, the best idea is to take a look at the Lean community’s full overview of
mathlib [57], or its summary of the undergraduate level mathematics it contains [59].

5. A BRIEF GUIDE TO TYPE THEORY

In this section we explain the basics of type theory and how it can be used as a
foundation of mathematics. Many modern theorem provers use some version of type theory
as their foundations. For example, Isabelle/HOL and the other HOL systems use simple type
theory, Lean and Coq use dependent type theory, and the various HoTT systems developed by
Voevodsky and others use homotopy type theory. There are a few computer proof assistants
which use set theory—Metamath and Mizar are the two most prominent—howeyver, it is not
unfair to say that what nowadays most mathematics have done in theorem provers is done in
a type theory system, so a mathematician interested in dabbling in formal proofs should at
least know something about the basics, which is what this section attempts to describe.

593 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

5.1. What is a type?

Mathematicians nowadays are used to seeing the word “set” floating around when
it comes to basic definitions. For example, we are told that a group is a set equipped with a
multiplication such that some axioms hold. We are not told what a set is though; a course on
ZFC set theory tells us a list of properties which sets have, but they do not tell us what a set is.
Indeed, in this context the word “set” has no formal definition; it is simply the generic term
for an object in our model of the axioms of mathematics, and we build other mathematical
objects on top of this basic object.

In definitions such as the definition of a group, the word “set” is being used to mean
no more than “collection of elements.” In type theory, the role of a “collection of elements”
is played by the fype. A type is a collection of terms. The definition of a group in type
theory: a group is a type equipped with a multiplication such that some axioms hold. The only
difference is the notation: the set-theoretic a € X is replaced by the type-theoretic a : X.

As mentioned above, those of us who have been to a set theory class will know
that, when using set theory as a foundation of mathematics, everything is a set. For example,
the elements of a group are, strictly speaking, also sets, so one could in theory talk about
their elements too, although within the context of group theory such questions would not
be mathematically meaningful, as they are not isomorphism-invariant. In type theory this is
not possible; the elements of a type are called ferms, and in general terms are not types. In
type theory, everything is a term, and every term has a type, but not every term is a type.
For example, in type theory 3772 is a term, whose type is R, the type of real numbers. We
write 3772 : R. However, x : 3772 does not make sense, because 3772 is not a type. In a
set-theory based theorem prover, questions such as asking if the trivial group is an element of
the Riemann zeta function would make sense but its meaning would be unmathematical—it
would depend on implementation decisions. Type theory thus provides a basic check that
what you are writing has mathematical meaning.

In a type theory system, the type R is still built from Q as equivalence classes of
Cauchy sequences, or via Dedekind cuts, or as another of the standard constructions; the
mathematical part of the story is identical to the set theory setup, it is just that the language
used is slightly different (types and terms, rather than sets and elements).

One difference between types and sets, however, is that fypes do not mix: distinct
types are disjoint. This has practical advantages when formalizing mathematics because it
provides a strong check that the mathematics you are typing makes sense: in type theory, if
g is an element of the group G, then the only type that g can ever be a term of is G.

This approach does, however, have consequences which can initially come as a
shock to a mathematician. For example, one could make a type representing the positive
reals R and a type representing the reals R, but if a term x had type R~ then x itself
would not, strictly speaking, have type R; I stress again that every term has a unique type. To
make a term of type R ¢, one has to give two pieces of data: a real number, and a proof that it
is positive. A term of type R~ is an object corresponding to this pair, so, strictly speaking, it
is not a real number, and a type theory based system will hold you to this. However, of course,

594 K. BUZZARD

there is a canonical map from R~ to R—you just throw away the proof. More generally, a
type theory system could well have a coercion system, consisting of a collection of “invisi-
ble functions” mapping types to other types in the way which mathematicians would expect.
For example, given a term of type R~ ¢, it might well be possible to feed it into a function
which is expecting a term of type R; the system will just throw away the proof of positivity
and use the underlying real number anyway. Mathematicians use these invisible functions
everywhere, often without noticing. We have already mentioned above that in a foundational
system the real numbers need to be built using one of the standard constructions, for exam-
ple, via Cauchy sequences. In particular, a rational number is not literally a real number.
However, taking Lean as an example, if one has a term x : Q then one can simply write
x : R to get the corresponding real number, although a careful inspection of the corre-
sponding term will unearth the fact that the real number is actually called 1 x, indicating that
a coercion has been applied. The coercion is a ring homomorphism, and Lean has a “nor-
malize casts” tactic [42] which knows this and will apply theorems such as 1 (x+y) =1x+1y
and 1 (xxy) =7x*1y automatically (before this tactic had been written, doing mathematics
which involved switching between the naturals, integers, and rationals could be quite frus-
trating because of these invisible maps). In summary then, type theory forces you to think
more precisely about the actual objects you are working with, however, tactics can be used
to manipulate these objects the way we usually manipulate them. Learning how to “steer”
mathematics in a theorem prover this way simply comes from practice.

5.2. Inductive types

I have already mentioned that in a type theory system the definition of the real num-
bers is the same as in a set theory system—it is Cauchy sequences, or Dedekind cuts, or
whatever your favorite construction of the reals is. Similarly, the usual definitions of the
rationals and integers as quotients work just as well in type theory as they do in set theory.
But one place where the type-theoretic and set-theoretic foundations of mathematics differ
is in the definition of the natural numbers. The natural numbers are a foundational object in
mathematics—they are typically the first example of an infinite object to be born—so it is
perhaps unsurprising that different foundational systems will treat them in different ways.

In ZFC set theory, the existence of the set of natural numbers is postulated as an
axiom, namely the axiom of infinity. Type theories such as Lean’s instead allow the user
to define custom inductive types. Such types include the naturals and other recursively-
defined constructions. Implementation details of this so-called calculus of inductive con-
structions [2e] differ between systems; the rest of this section explains details which are
specific to Lean’s type theory, but much of what I say applies to Coq and Agda, other popular
type theory provers.

In Lean, the definition of the naturals looks like this:

inductive nat
| zero : nat

| succ (n : nat) : nat

595 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

This definition says “zero is a natural number, the successor of a natural number is
a natural number, and that is it.” As one might guess, this inductive construction can be used
to construct far more exotic types, but one can show that any type which can be defined using
the rules of the calculus of inductive constructions corresponds to a set which can be built
using the usual axioms of set theory.

Let us see what goes on under the hood when the naturals are defined as an inductive
type. When such a definition is made, a new type nat appears in the system, as does the
term nat . zero and the function nat.succ : nat — nat. The latter terms are called
constructors: they are ways to make natural numbers. However, one more thing also appears,
namely the eliminator for the type—the object which enables the user to construct functions
whose domain is the naturals and whose codomain is something else. It represents the idea
that the only way that one can construct naturals is via nat.zero and nat . succ, and it
states that to define a function out of the naturals, it suffices to (1) say where nat.zero
goes, and (2) to say where nat . succ n goes, given where n went. In other words, it is the
principle of recursion.

So this is how new inductive types are born in Lean; after their definition they,
together with their constructors and eliminator, are automatically added by the proof assis-
tant to the system as new constants, or axioms, or however you would like to think of them.
There are, of course, precise rules telling us the exact form of the eliminator for a given induc-
tive type; we do not go into these here. From a foundational point of view, this approach,
where new axioms appear “by magic” as types are constructed, is very different to the set-
theoretic viewpoint; however, in [62] it is shown that type theory with these constructions is
equiconsistent with set theory. The strategy of the proof is to make a model of set theory
within type theory, and to make a model of type theory within set theory. For a more precise
statement, one has to be more precise about exactly what kind of type theory one is work-
ing with. For example, Mario Carneiro’s MSc thesis [13] shows that Lean’s type theory is
equiconsistent with ZFC plus countably many inaccessible cardinals.

It is worth noting, and quite amusing, that equality itself is defined as an inductive
type in many type theory systems. This is in contrast to set theory, where equality is typically
considered as part of the logic. Indeed, equality in type theory is generally more subtle than
in set theory. Here is Lean’s definition of equality:

inductive eq {X : Type} : X — X — Prop

| refl (a : X) : eqg a a

The slightly unnerving X — X — Prop, bracketed as X — (X — Prop),
means that equality is a function which takes in an element of X and outputs a function
which takes in an element of X and outputs a Proposition, that is, a true—false statement. In
other words, if a and b are terms of type X then eq a b is a true—false statement. Using the
usual notation a = b for eq a b, we see that equality of terms of a type X is an inductive
type with one constructor, namely eq. refl a,aproofthata = a. It turns out that from this
definition we can prove all the usual properties of equality! The eliminator for the equality

596 K. BUZZARD

type is the substitution property, that if a = b then given a term of type P(a) we can get
a term of type P (b). It is a rather pleasant game to go on from this to deduce that equality
is both symmetric and transitive (for more details on this, see, for example, [9]). Of course,
whilst it is of interest to some to see how basic properties of equality can be proved within a
type theory system, it is also worth stressing that to use a computer theorem prover one does
not have to know anything about them.

5.3. Dependent types

Lean and Coq both use a version of type theory called dependent type theory, so
it is perhaps worth taking some time to explain what a dependent type is. Imagine X is a
geometric object, for example, a real manifold. Say that we have a vector bundle on X, that s,
for each point x of X a vector space V (which varies smoothly with x in some appropriate
sense). A section of this bundle is a function which takes as input a point x in X and outputs
an element of V. From a foundational point of view, there are two ways to think about such
a section. One could regard this section as a function from X to the disjoint union of the Vy,
sending x € X to an element of V. Alternatively, one could regard it as a slightly stranger
kind of “function” which has domain X but whose codomain varies according to the input.
There are times in mathematics when taking the disjoint union of the codomains is a natural
thing to do—for example, in the example above, the disjoint union of the V is naturally a
space V sitting above X. However, there are also times when taking the disjoint union is
quite unnatural. For example, in algebraic geometry one way of defining the sections of the
structure sheaf on an affine scheme Spec(R) is functions which send a prime ideal P of R
to an element of the localization Rp of R at P, and the disjoint union of the Rp as P varies
over the prime ideals of R has no natural algebraic structure. The set or type consisting of
the disjoint union of these local rings is typically not part of the mental model which an
algebraic geometer has when describing these sections.

These kinds of “functions” which have a well-defined domain, but a codomain
which can vary according to the input, are called dependent functions. Not all proof assistants
have such functions; for example, Isabelle/HOL (a powerful proof assistant which contains
a lot of analysis and analytic number theory) and various other HOL systems do not have
them, which means that certain constructions in geometry are more convoluted than in Coq
or Lean. See, for example, [6], which defines schemes in Isabelle/HOL but which has to build
a new implementation of ring theory from scratch in order to do so.

5.4. Examples

Let us take a look at some examples of what mathematics looks like in a theorem
prover based on type theory. I give these examples mainly to convince the reader who has
been brought up using the language of set theory that there really is very little difference.

Here is what the claim that /2 is not rational looks like in Isabelle/HOL:

theorem sqgrt2_not_rational:
"sgrt 2 ¢ Q"

597 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

You can see the proof on Isabelle’s Wikipedia article [64]. The fact that 2 is a term
of a type and not a set, or an element of a set, is invisible.
Here is some more advanced mathematics, written in Coq:

Lemma prod_Cyclotomic n

(n > 0)%N —-> \prod_(d <- divisors n) 'Phi_d = 'X"n - 1.

This is the statement that the product of the dth cyclotomic polynomials over d | n
is X — 1. Note the hypothesis n > 0, an assumption which a human would typically omit;
computers are very picky with such “edge cases.”

Here is the definition of a perfectoid ring in Lean, taken from the Lean perfectoid
spaces website [11] which accompanies the article [16].

/—— A perfectoid ring is a Huber ring that is complete, uniform,
that has a pseudo-uniformizer whose p-th power divides p in the
power bounded subring,
and such that Frobenius is a surjection on the reduction
modulo p.-/
structure perfectoid_ring (R : Type) [Huber_ring R] extends

Tate_ring R : Prop :=

(complete : is_complete_hausdorff R)

(uniform : is_uniform R)

(ramified : d w : pseudo_uniformizer R, w”"p | p in R°)
(Frobenius : surjective (Frob R°/p))

The comment at the top of the code is the “docstring” for the code—this is the
human-readable explanation of what the Lean definition perfectoid_ring represents,
and this docstring is visible when you hover your cursor on the word perfectoid_ring
in some Lean code; if you are running the code in an IDE such as Microsoft VS Code then
right-clicking on this word will jump you to the definition.

The Lean definition pretty much coincides with the human definition. If R is a Huber
ring which is a Tate ring (these are technical properties of topological rings), then we say R
is a perfectoid ring if it is complete, uniform, and satisfies a couple of technical properties.
The point to observe is that the computer code is no more or less difficult than the human
definition.

5.5. Foundations

In my experience, mathematicians often have very little interest in the technicalities
of the logical foundations of their subject—they cannot list the axioms of set theory, but
they know from experience what is “legal mathematics.” The controversies of the early 20th
century about whether nonconstructive methods are allowed in mathematical proofs have
long ago died down; working mathematicians use the law of the excluded middle all over the

598 K. BUZZARD

place, and many use the axiom of choice in some form or another (indeed, countable depen-
dent choice can be invoked almost without one noticing). A typical research mathematician
will have gone to at most one course on the foundations of mathematics; in such a course
one typically learns that Zermelo—Frankel set theory with the axiom of choice, or ZFC, can
be used as a foundation for much of mathematics. Indeed, it can be used for essentially all of
mathematics up until the 1960s; however, Grothendieck’s supergeneral cohomology theories
developed in SGA4 introduced a new “axiom of universes” (the assertion that every set is an
element of a set which is a model of ZFC). This axiom cannot be proved from the axioms
of ZFC, by Godel’s theorem. The original proofs of the Weil conjectures in theory used this
axiom in the weak sense that at the time the only reference for étale cohomology was SGA4.
However, Deligne and others point out in SGA4% that the theory of étale cohomology, and
hence the proof of the Weil conjectures, can be set up within ZFC alone. Readers interested
in the contortions that one has to go through in order to do this can look at the Set Theory sec-
tion of the Stacks project, for example, here [61, HTTPS://STACKS.MATH.COLUMBIA.EDU/TAG/@@@H].
For a more extreme example, see Section 4 of [52], where we see a Fields Medallist forcing
a more elaborate theory into ZFC.

My personal opinion is that whilst ZFC was a wonderful foundation for much of
early 20th century mathematics, the lack of a universe axiom now means that it is becoming
more and more of an effort to get parts of modern mathematics to fit into it. In books and
papers dealing with infinity categories or condensed mathematics, it is not at all uncommon
to see universes showing up, and I do wonder whether now it is time for mathematicians
to begin embracing universes, as Grothendieck was encouraging us to do since the 1960s.
Coq’s type theory and Lean’s type theory both contain universes as part of the foundations;
however, mathematicians can choose not to use them if they so desire.

6. THE FUTURE

In this section I describe some of the plausible consequences of formalizing mathe-
matics in a computer theorem prover. I also highlight some things which I believe will remain
out of reach for some time yet. Patrick Massot’s more extensive observations [44] are also
well worth a read (indeed, several of my ideas here were formed after conversations with
Massot).

6.1. A new kind of mathematical document

Right now, an author of a textbook or research paper has to decide how much
background material to assume, and which techniques they will regard as standard in the
arguments they present. In other words, they have to decide where to start, and how fast to
go. If a potential reader (for example, a new PhD student, or an undergraduate interested in
the area) does not have the necessary prerequisites then it will be far more difficult for them
to get anything out of the paper.

Computer formalization offers the possibility of a new kind of mathematical doc-
ument, where the reader can make the decisions about how much detail is visible. Patrick

599 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

https://stacks.math.columbia.edu/tag/000H

Massot has been experimenting with such documents. A preliminary version of his vision
can be seen at his Sphere Eversion Project web pages [43]. This is a project whose main
goal is to formalize in Lean a proof of Smale’s theorem saying that a sphere can be turned
inside out (or more formally, that there is a homotopy of immersions between the identity
immersion of S? in R and the antipodal immersion). At the time of writing, the proof is
not yet fully formalized, but it is only a matter of time. The blueprint is written in IKTgX, but
using plasTeX it has been converted into a web page with live Lean links. Right now these
links take you to static web pages containing Lean code, but tools are currently being devel-
oped which will change this. Alectryon is a program available for Coq and Lean which can
turn compiled code into web pages. Tools like Alectryon will enable us to make documents
which will allow links to dynamic web pages displaying anything from mathematical details
to interactive pictures, in a human-readable form, and which will allow one to keep digging
right down to the axioms, although, of course, it is unlikely that anyone would like to go
down this far.

There are already variants of this idea in existence, Lamport’s idea of a “structured
proof” came from a desire to encourage mathematicians to write far more details down in
their papers, but one can see why such a proposal would not go down well. Here we can
let automation do part of the work for us. The Metamath proof assistant also offers similar
functionality already, because Metamath has very little automation and hence drilling down
to the axioms is essentially the same as inspecting the proof.

One could also imagine error-free undergraduate textbooks also written in this way,
where statements which a student cannot understand (perhaps because they are ambiguous)
can be inspected in more details until difficulties are resolved.

6.2. Semantic search in a mathematical database

One thing that is not going to happen any time soon is some kind of revolution where
all mathematicians start writing all their papers in a formal proof assistant. Whilst one might
expect a future where some papers are partially, or even completely formalized in a theorem
prover (see, for example, [30, 48, 56]), this kind of approach will not become the norm any
time soon. Faced with this reality, how will formalized mathematics be able to keep up with
the frontiers of mathematics?

I have already mentioned Tom Hales’ 2017 “Big Conjectures” talk at the Newton
Institute in Cambridge. In the talk [32], Hales argued for a formalized version of Math
Reviews/Zentralblatt. That is, a website whose role is to formally szate the results being
announced in the main mathematical journals. Note that such a project is nowhere near as
far-fetched as the idea of formalizing mathematical proofs in real time; theorem statements
are far easier to formalize.

The issue with Hales’ plan, as he points out in the talk, is that to be able to formalize
statements of theorems in even a part of modern mathematics such as the Langlands philos-
ophy, one would have to define all of the basic objects which mathematicians in this area
use. In the Langlands philosophy this would include, but be by no means limited to, defini-
tions of automorphic forms and automorphic representations, Galois representations, abelian

600 K. BUZZARD

varieties, the rings defined by Fontaine and used to do p-adic Hodge theory, schemes, all the
cohomology theories used in the area, perfectoid spaces, adeles and ideles,.... The Lean
community has over the last few years pushed hard to get some of the main definitions of
modern research mathematics into mathlib. At Imperial College alone we currently have
Oliver Nash developing the basics of the theory of Lie Algebras so we can talk about centers
of universal enveloping algebras, Marfa Inés de Frutos-Ferndndez developing the theory of
adeles and ideles of global fields with an eye on the statements of class field theory, Amelia
Livingston developing group and Galois cohomology, Jujian Zhang developing sheaf coho-
mology with an eye on GAGA, and Ashvni Narayanan developing the basics of Iwasawa
theory in her PhD thesis. I have already mentioned the work of myself, Massot and Commelin
defining perfectoid spaces. The work of Scott Morrison, Bhavik Mehta, Justus Springer, and
Adam Topaz has recently enabled us to start developing the theory of sheaves on sites and
homological algebra, so cohomology theories are now not too far away. Of course, much
remains to be done, but we are hoping that the idea of being able to formally state the theo-
rems of Annals and Inventiones algebraic number theory papers in Lean will soon become
a reality.

A related project is formalizing tags in the Stacks Project [61], which is a gigantic
online database of algebraic geometry, freely accessible online. When printed out, it fills
over 7000 pdf pages. Formalizing all the proofs in the database would be an extremely
arduous task involving many person-decades of work with current technology. In theory
it is possible, however, one would need a team who were experts in both algebraic geom-
etry and in formalization. Furthermore, for it to actually happen, the incentive structure in
academic mathematics would have to change drastically. Publishing papers in prestigious
computer science conference proceedings explaining how you developed the basic theory
of Cohen—Macauley rings and modules in a theorem prover (and, of course, such work
would be publishable in a prestigious computer science conference proceedings—nobody
has ever done it before) is perhaps not something which is recognized by promotions com-
mittees.

However, there is a solution available to us right now. Formalizing just the definitions
and theorem statements in the Stacks Project is a much simpler task. Anybody interested in
algebraic geometry would be more than welcome to learn Lean by attempting to formalize
statements in Stacks Project tags. Point your web browser to the Lean Zulip instance [65] and
ask where to get started in the #new members stream.

The reason that building such databases is important is that they will enable the
community to build tools the likes of which mathematicians have never seen before. Let
us imagine that all the definitions and theorem statements in the Stacks Project have been
formalized in Lean or some other theorem prover. A “hammer” is a tool which runs inside
a theorem prover and which can attempt to construct mathematical arguments by piecing
together results in a database. The original hammer was Isabelle/HOL’s Sledgehammer [49].
The cleverness behind such tools is the ability to isolate which of the many results in the
database look the most useful, and to concentrate on these when attempting to prove the
required result. Now consider a PhD student who is beginning to learn algebraic geometry.

601 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

Such a student would then be able to ask the theorem prover a question, and the prover could
attempt to use the database to answer the question positively (by piecing together a proof) or
negatively (by producing a counterexample, like the website w-base [21] is doing for coun-
terexamples in topology). The resulting output of the computer would be able to explicitly
point to references in the literature, or direct proofs of the claims it is making in its argument.
This sort of tool—computer assisted learning—has the potential to beat the techniques cur-

99 ¢

rently used by PhD students (“‘google hopefully,” “page through a textbook/paper hopefully,”

99

“ask on a maths website and then wait,” “ask another human’) hands down. But as I have
stressed before, the main thing which is missing is the database of theorems, and it is up to
us to construct it. The sooner it is there, the sooner the tools will appear. And the bigger the

database gets, the more powerful the tools will become.

6.3. Checking proofs

Some computer scientists have argued that mathematicians are sloppy, and our liter-
ature has errors in, and that this problem can be solved with computer proof assistants. Such
an argument might initially look plausible, and I myself was a proponent of it a few years
ago, but it does not stand up to much scrutiny. Firstly, the experts in our community know
which results can be relied upon. Secondly, many errors are not serious and can be fixed.
Thirdly, the more serious instances of this problem cannot be solved with computer proof
assistants right now anyway. A great example is Mochizuki’s claimed proof of the ABC con-
jecture [46]. This proof has now been published in a serious research journal; however, it is
clear that it is not accepted by the mathematical community in general. One could challenge
Mochizuki, or indeed anyone, to formalize the proof in a computer theorem prover. How-
ever, this would be a completely unreasonable thing to do. A computer formalization is not
expected of other proofs appearing in our literature. Furthermore, the key sticking point right
now is that the unbelievers argue that more details are needed in the proof of Corollary 3.12
in the main paper, and the state-of-the-art right now is simply that one cannot begin to for-
malize this corollary without access to these details in some form (for example, a paper proof
containing far more information about the argument).

What would, however, be feasible is for mathematicians to formalize parts of tech-
nical work, or to get others to do so. There might be several reasons to do such a thing—
Commelin and his team have already shown that theorem provers can be used to check parts
of complex proofs which humans might find it difficult to plough through, whilst learning
about the mathematics in the process.

6.4. Teaching

I have heard students say “I think my proof is OK” when talking about their home-
work. Computer proof assistants are able to tell them immediately if this is so—as long as
the student has taken the trouble to learn the language of the proof assistant. Should we be
teaching undergraduate mathematicians how to use computer proof assistants? I certainly
think so. Patrick Massot in Orsay and myself at Imperial College London are both teaching
undergraduate-level courses which do precisely this.

602 K. BUZZARD

Students want feedback on their work as soon as possible. A computer proof assis-
tant can supply it immediately.

Beginner students can be confused about the basics. What is the difference between
Ve > 0,36 > 0,...and 3§ > 0, Ve > 0, ...? Once these systems become easier for mathe-
maticians to use, students can experiment for themselves with well-chosen examples supplied
by a lecturer and begin to understand what is going on. I was once told by a student “I did
not understand equivalence relations, so I formalized them in Lean, and then I understood
them.” Forcing students to think pedantically and logically can be good for them.

It is, however, worth stressing that asking a weak student to both keep up with your
course and to simultaneously learn how to use a computer theorem prover is clearly asking
too much from that student. The provers need to become easier to use, perhaps with graphical
interfaces and documentation more appropriate for mathematicians. Asking people to change
the way they teach is, of course, asking a lot. However, mathematics education experts will
be only too happy to tell us that our preferred medium—“write for an hour on a board”—is
becoming less and less appropriate for our students, who like to learn things by watching 5
minute videos or playing with interactive toys. Can we make abstract mathematics more inter-
active? I suspect that we can. The more people who understand how to use these machines,
the sooner the new ideas will come.

6.5. Other ideas

I do not claim to have exhausted the possibilities here. The people who designed
the CD in the 1980s surely could not envisage music services like YouTube and Spotify,
or the audiobook. The people who started to think about how to make typesetting of books
look good on a computer screen surely did not envisage devices like the Kindle. It is time to
look beyond how we usually teach and learn mathematics, and try to understand how we as
a community of mathematicians can use the inevitable digitization of mathematical material
as a tool to make our lives, and the lives of our students, better. As Carneiro once said, you
cannot stop progress.

ACKNOWLEDGMENTS
I thank the Lean prover community for welcoming me, a mathematician with very little
programming experience, into their community back in 2017, and also for reading and
giving extensive comments on a preliminary version of this article. Patrick Massot in par-
ticular sent many helpful comments on a first draft. I thank Assia Mahboubi and Manuel
Eberl for giving advice on the Coq and Isabelle/HOL code in this paper, and to both them
and Jeremy Avigad for helpful historical comments. Finally, I would like to effusively
thank Leonardo de Moura for writing my favorite computer game, and Mario Carneiro
for teaching me how to play it.

603 WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

[1]

[2]

[3]

[4]

[5]

[6]

(7]

(8]

[9]

[1e]

[11]

[12]

[13]

604

REFERENCES

A. Baanen, S. R. Dahmen, A. Narayanan, and F. A. E. Nuccio, Mortarino

Majno di Capriglio, A formalization of Dedekind domains and class groups of
global fields. In 12th International Conference on Interactive Theorem Proving,
ITP 2021, June 29 to July 1, 2021, Rome, Italy (virtual conference), edited by

L. Cohen and C. Kaliszyk, pp. 5:1-5:19, LIPIcs 193, Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik, 2021.

H. Bender and G. Glauberman, Local analysis for the odd order theorem. With
the assistance of Walter Carlip. London Math. Soc. Lecture Note Ser. 188, Cam-
bridge University Press, Cambridge, 1994.

S. Bernard, C. Cohen, A. Mahboubi, and P.-Y. Strub, Unsolvability of the quintic
formalized in dependent type theory. In 12th International Conference on Inter-
active Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (vir-
tual conference), edited by L. Cohen and C. Kaliszyk, pp. 8:1-8:18, LIPIcs 193,
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.

Y. Bertot, L. Rideau, and L. Théry, Distant decimals of : formal proofs of some
algorithms computing them and guarantees of exact computation. J. Automat.
Reason. 61 (2018), no. 1-4, 33-71.

B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II. J. Reine
Angew. Math. 218 (1965), 79-108.

A. Bordg, L. Paulson, and W. Li, Grothendieck’s schemes in algebraic geometry.
2021, https://isa-afp.org/entries/Grothendieck_Schemes.html, Formal proof devel-
opment.

T. Browning and P. Lutz, Formalizing Galois theory, 2021. Exp. Math. published
online, 2021.

K. Buzzard, Formalising mathematics: a first course for mathematicians. https://
github.com/ImperialCollegeLondon/formalising-mathematics, accessed: 30-11-
2021.

K. Buzzard, Induction on equality. https://xenaproject.wordpress.com/2021/04/18/
induction-on-equality/, accessed: 30-11-2021.

K. Buzzard, J. Commelin, and P. Massot, Formalising perfectoid spaces. In Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020,
edited by J. Blanchette and C. Hritcu, pp. 299-312, ACM, 2020.

K. Buzzard, J. Commelin, and P. Massot, Lean perfectoid spaces.
https://leanprover-community.github.io/lean-perfectoid-spaces/, accessed: 30-
11-2021.

K. Buzzard, C. Hughes, K. Lau, A. Livingston, R. Ferndndez Mir, and S. Mor-
rison, Schemes in Lean, 2021. Exp. Math. published online, 2021.

M. Carneiro, The type theory of Lean. https://github.com/digama0/lean-type-
theory/releases/download/v1.0/main.pdf, accessed: 30-11-2021.

K. BUZZARD

https://isa-afp.org/entries/Grothendieck_Schemes.html
https://github.com/ImperialCollegeLondon/formalising-mathematics
https://github.com/ImperialCollegeLondon/formalising-mathematics
https://xenaproject.wordpress.com/2021/04/18/induction-on-equality/
https://xenaproject.wordpress.com/2021/04/18/induction-on-equality/
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf

[14]
[15]

[16]

[17]

[18]

[19]

[2e]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

605

M. Carneiro, Metamath Zero. 2021, https://github.com/digama0/mmo0.

D. Castelvecchi, Mathematicians welcome computer-assisted proof in ‘grand
unification’. https://www.nature.com/articles/d41586-021-01627-2, accessed: 30-
11-2021.

F. Chyzak, A. Mahboubi, T. Sibut-Pinote, and E. Tassi, A computer-algebra-based
formal proof of the irrationality of ¢ (3). In International Conference on Interac-
tive Theorem Proving, pp. 160-176, Springer, 2014.

J. Commelin and R. Y. Lewis, Formalizing the ring of Witt vectors. In CPP’21:
10th ACM SIGPLAN International Conference on Certified Programs and
Proofs, virtual event, Denmark, January 17-19, 2021, edited by C. Hritcu and

A. Popescu, pp. 264277, ACM, 2021.

J. Commelin and P. Massot, Blueprint for the Liquid Tensor Experiment. https://
leanprover-community.github.io/liquid/, accessed: 30-11-2021.

Coq Development Team, The coq proof assistant. http://coq.inria.fr, accessed:
11-12-2021.

T. Coquand and C. Paulin, Inductively defined types. In COLOG-88, International
Conference on Computer Logic, Tallinn, USSR, December 1988, Proceedings,
edited by G. Mints, pp. 50-66, Lecture Notes in Comput. Sci. 417, Springer,
1988.

J. Dabbs and S. Clontz, r-base. https://topology.pi-base.org/, accessed: 30-11-
2021.

S. R. Dahmen, J. Holzl, and R. Y. Lewis, Formalizing the solution to the cap set
problem. In 10th International Conference on Interactive Theorem Proving, pp.
15-19, LIPIcs. Leibniz Int. Proc. Inform. 141, Schloss Dagstuhl — Leibniz-Zent.
Inform., Wadern 2019.

L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, The Lean the-
orem prover (system description). In Automated Deduction — CADE-25 (Cham),
edited by A. P. Felty and A. Middeldorp, pp. 378-388, Springer, 2015.

M. Eberl, The irrationality of £(3). 2019, https://www.isa-afp.org/entries/Zeta_3_
Irrational.html, accessed: 30-11-2021.

M. Eberl, Nine chapters of analytic number theory in Isabelle/HOL. In 10th Inter-
national Conference on Interactive Theorem Proving, ITP 2019, September 9—12,
2019, Portland, OR, USA, edited by J. Harrison, J. O’Leary, and A. Tolmach,

pp. 16:1-16:19, LIPIcs 141, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2019.

J. S. Ellenberg and D. Gijswijt, On large subsets of ;' with no three-term arith-
metic progression. Ann. of Math. (2) 185 (2017), no. 1, 339-343.

G. Gonthier, The four colour theorem: Engineering of a formal proof. In Com-
puter Mathematics, S8th Asian Symposium, ASCM 2007, Singapore, December
15-17, 2007. Revised and invited papers, edited by D. Kapur, p. 333, Lecture
Notes in Comput. Sci. 5081, Springer, 2007.

WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

https://github.com/digama0/mm0
https://www.nature.com/articles/d41586-021-01627-2
https://leanprover-community.github.io/liquid/
https://leanprover-community.github.io/liquid/
http://coq.inria.fr
https://topology.pi-base.org/
https://www.isa-afp.org/entries/Zeta_3_Irrational.html
https://www.isa-afp.org/entries/Zeta_3_Irrational.html

[28]

[29]

[3e]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

606

G. Gonthier, Formal proof—the four-color theorem. Notices Amer. Math. Soc. 55
(2008), no. 11, 1382-1393.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux,
A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca, L. Rideau, A. Solovyeyv,

E. Tassi, and L. Théry, A machine-checked proof of the odd order theorem. In
Interactive Theorem Proving — 4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013. Proceedings, edited by S. Blazy, C. Paulin-Mohring,
and D. Pichardie, pp. 163-179, Lecture Notes in Comput. Sci. 7998, Springer,
2013.

S. Gouézel and V. Shchur, Corrigendum: A corrected quantitative version of the
Morse lemma [MR 3003738]. J. Funct. Anal. 277 (2019), no. 4, 1258-1268.

B. Grégoire and A. Mahboubi, Proving equalities in a commutative ring done
right in Coq. In Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLSs 2005, Oxford, UK, August 22-25, 2005, Proceedings, edited
by J. Hurd and T. F. Melham, pp. 22-25, Lecture Notes in Comput. Sci. 3603,
Springer, Oxford, UK, 2005.

T. Hales, Big conjectures. https://www.newton.ac.uk/seminar/21474/, accessed:
30-11-2021.

T. C. Hales, Mathematics in the age of the Turing machine. In Turing’s legacy:
developments from Turing’s ideas in logic, pp. 253-298, Lect. Notes Log. 42,
Assoc. Symbol. Logic, La Jolla, CA, 2014.

T. Hales, M. Adams, G. Bauer, T. D. Dang, J. Harrison, L. T. Hoang, C. Kaliszyk,
V. Magron, S. McLaughlin, T. T. Nguyen, Q. T. Nguyen, T. Nipkow, S. Obua,

J. Pleso, J. Rute, A. Solovyev, T. Hoai An Ta, N. T. Tran, T. D. Trieu, J. Urban,

K. Vu, and R. Zumkeller, A formal proof of the Kepler conjecture. Forum Math.
Pi5(2017), €2, 29.

J. M. Han and F. van Doorn, A formal proof of the independence of the con-
tinuum hypothesis. In Proceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA,
January 20-21, 2020, edited by J. Blanchette and C. Hritcu, pp. 353-366, ACM,
2020.

J. Harrison, Formalizing an analytic proof of the prime number theorem.

J. Automat. Reason. 43 (2009), no. 3, 243-261.

J. Harrison, HOL light: An overview. In Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLSs 2009, Munich, Germany, August
17-20, 2009. Proceedings, edited by S. Berghofer, T. Nipkow, C. Urban, and

M. Wenzel, pp. 60—66, Lecture Notes in Comput. Sci. 5674, Springer, 2009.

F. Immler, A verified ODE solver and the Lorenz attractor. J. Automat. Reason. 61
(2018), no. 1, 73-111.

K. BUZZARD

https://www.newton.ac.uk/seminar/21474/

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[se]

607

F. Immler and Y. K. Tan, The Poincaré—Bendixson theorem in Isabelle/HOL. In
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (New York, NY, USA), CPP 2020, pp. 338-352, Association for
Computing Machinery, 2020.

B. Kjos-Hanssen, S. Niraula, and S. Yoon, A parametrized family of Tversky met-
rics connecting the Jaccard distance to an analogue of the normalized information
distance. 2021, arXiv:2111.02498.

R.Y. Lewis, A formal proof of Hensel’s lemma over the p-adic integers. In Pro-
ceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (New York, NY, USA), CPP 2019, pp. 15-26, Association for
Computing Machinery, 2019.

R. Y. Lewis and P-N. Madelaine, Simplifying casts and coercions (extended
abstract). In Joint Proceedings of the 7th Workshop on Practical Aspects of
Automated Reasoning (PAAR) and the 5th Satisfiability Checking and Sym-

bolic Computation Workshop (SC-Square) Workshop, 2020 co-located with the
10th International Joint Conference on Automated Reasoning (IJCAR 2020),
Paris, France, June—July, 2020 (virtual), edited by K. Korovin, L. S. Kotsireas,

P. Riimmer, and S. Tourret, pp. 53—62, CEUR Workshop Proceedings 2752,
CEUR-WS.org, 2020.

P. Massot, The sphere eversion project. https://leanprover-community.github.io/
sphere-eversion/blueprint/index.html, accessed: 30-11-2021.

P. Massot, Why formalize mathematics? https://www.imo.universite-paris-saclay.
fr/~pmassot/files/exposition/why_formalize.pdf, accessed: 11-12-2021.

N. D. Megill and D. A. Wheeler, Metamath: A computer language for mathemat-
ical proofs. Lulu Press, Morrisville, North Carolina, 2019. http://us.metamath.org/
downloads/metamath.pdf.

S. Mochizuki, Inter-universal Teichmiiller theory III: Canonical splittings of the
log-theta-lattice. Publ. Res. Inst. Math. Sci. 57 (2021), no. 1, 403-626.

A. Naumowicz and A. Kornilowicz, A brief overview of mizar. In Theorem
Proving in Higher Order Logics (Berlin, Heidelberg), edited by S. Berghofer,

T. Nipkow, C. Urban, and M. Wenzel, pp. 67-72, Springer, Berlin, Heidelberg,
20009.

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A proof assistant for
higher-order logic. Lecture Notes in Comput. Sci. 2283, Springer, 2002.

L. C. Paulson and J. C. Blanchette, Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In The 8th
International Workshop on the Implementation of Logics, IWIL 2010, Yogyakarta,
Indonesia, October 9, 2011, edited by G. Sutcliffe, S. Schulz, and E. Ternovska,
pp- 1-11, EPiC Series in Computing 2, EasyChair, 2011.

T. Peterfalvi, Character theory for the odd order theorem. London Math. Soc.
Lecture Note Ser. 272, Cambridge University Press, Cambridge, 2000. Translated
from the 1986 French original by Robert Sandling and revised by the author.

WHAT IS THE POINT OF COMPUTERS? A QUESTION FOR PURE MATHEMATICIANS

https://arxiv.org/abs/2111.02498
https://leanprover-community.github.io/sphere-eversion/blueprint/index.html
https://leanprover-community.github.io/sphere-eversion/blueprint/index.html
https://www.imo.universite-paris-saclay.fr/~pmassot/files/exposition/why_formalize.pdf
https://www.imo.universite-paris-saclay.fr/~pmassot/files/exposition/why_formalize.pdf
http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[¢e]

[61]

[62]

[63]

[64]

[65]

P. Scholze, Lectures on analytic geometry. https://www.math.uni-bonn.de/people/
scholze/Analytic.pdf, accessed: 30-11-2021.

P. Scholze, Etale cohomology of diamonds. 2017, arXiv:1709.07343.

P. Scholze, Liquid tensor experiment, 2021. Exp. Math. published online, 2021.
P. Scholze, Half a year of the Liquid Tensor Experiment: Amazing developments.
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-
experiment-amazing-developments/, accessed: 30-11-2021.

P. Scholze, Liquid tensor experiment. https://xenaproject.wordpress.com/2020/12/
05/liquid-tensor-experiment/, accessed: 30-11-2021.

N. Strickland and N. Bellumat, Iterated chromatic localisation. 2019,
arXiv:1907.07801.

The Lean prover community, A mathlib overview. https://leanprover-community.
github.io/mathlib-overview.html, accessed: 30-11-2021.

The Lean prover community, The Lean community website. https://leanprover-
community.github.io/index.html, accessed: 30-11-2021.

The Lean prover community, Undergraduate mathematics in mathlib. https://
leanprover-community.github.io/undergrad.html, accessed: 30-11-2021.

The mathlib community, The Lean mathematical library. In Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs (New
York, NY, USA), CPP 2020, pp. 367-381, Association for Computing Machinery,
2020.

The Stacks Project Authors, Stacks Project. 2018, https://stacks.math.columbia.
edu.

B. Werner, Sets in types, types in sets. In Theoretical aspects of computer soft-
ware (Sendai, 1997), pp. 530-546, Lecture Notes in Comput. Sci. 1281, Springer,
Berlin, 1997.

E. Wieser, Scalar actions in Lean’s mathlib. 2021.

Wikipedia, Isabelle (proof assistant). https://en.wikipedia.org/wiki/Isabelle_
(proof_assistant), accessed: 30-11-2021.

Zulip, The Lean community Zulip chatroom. https://leanprover.zulipchat.com,
accessed: every day since 2018.

KEVIN BUZZARD

Department of Mathematics, Imperial College London, London, UK,

k.buzzard @imperial.ac.uk

608

K. BUZZARD

https://www.math.uni-bonn.de/people/scholze/Analytic.pdf
https://www.math.uni-bonn.de/people/scholze/Analytic.pdf
https://arxiv.org/abs/1709.07343
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://arxiv.org/abs/1907.07801
https://leanprover-community.github.io/mathlib-overview.html
https://leanprover-community.github.io/mathlib-overview.html
https://leanprover-community.github.io/index.html
https://leanprover-community.github.io/index.html
https://leanprover-community.github.io/undergrad.html
https://leanprover-community.github.io/undergrad.html
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://en.wikipedia.org/wiki/Isabelle_(proof_assistant)
https://en.wikipedia.org/wiki/Isabelle_(proof_assistant)
https://leanprover.zulipchat.com
mailto:k.buzzard@imperial.ac.uk

	1. Introduction
	2. Overview of the paper
	3. A brief history of formally verified theorems
	3.1. The 20th century
	3.2. The prime number theorem
	3.3. The four color theorem
	3.4. The odd order theorem
	3.5. The Kepler conjecture
	3.6. Perfectoid spaces
	3.7. Condensed mathematics
	3.8. Other results

	4. mathlib
	5. A brief guide to type theory
	5.1. What is a type?
	5.2. Inductive types
	5.3. Dependent types
	5.4. Examples
	5.5. Foundations

	6. The future
	6.1. A new kind of mathematical document
	6.2. Semantic search in a mathematical database
	6.3. Checking proofs
	6.4. Teaching
	6.5. Other ideas

	References

