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Abstract

The reciprocity conjecture in the Langlands program links motives to automorphic forms.
The proof of Fermat’s Last Theorem by Wiles [171,181] introduced new tools to study reci-
procity. This survey reports on developments using these ideas (and their generalizations)
in the last three decades.
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1. Introduction

The reciprocity conjecture in the Langlands program predicts a relationship between
pure motives1 and automorphic representations. The simplest version (as formulated by
Clozel [48, Conj. 2.1]) states that there should be a bijection between irreducible motives M

over a number field F with coefficients in Q and cuspidal algebraic representations �

of GLn.AF / satisfying a number of explicit additional compatibilities, including the equal-
ity of algebraic and analytic L-functions L.M; s/ D L.�; s/. In light of multiplicity-one
theorems [105], this pins down the correspondence uniquely. There is also a version of this
conjecture for more general reductive groups, although its formulation requires some care
(as was done by Buzzard and Gee [32]). Beyond the spectacular application by Wiles to
Fermat’s Last Theorem [181, Theorem 0.5], the Taylor–Wiles method [171, 181] gave a com-
pletely new technique—and to this date the most successful one—for studying the problem
of reciprocity. The ideas in these two papers have sustained progress in the field for almost2

30 years. In this survey, we explain how the Taylor–Wiles method has evolved over this
period and where it stands today. One warning: the intended audience for this document is
entirely complementary to the audience for my talk—I shall assume more than a passing
familiarity with the arguments of [171,181]. Moreover, this survey is as much a personal and
historical3 discussion as a mathematical one—giving anything more than hints on even a
fraction of what is discussed here would be close to impossible given the space constraints
and the competence of the author. Even with the absence of any real mathematical details in
this paper, the sheer amount of activity in this field has led me to discard any discussion of
advances not directly related to R D T theorems, which necessitates the omission of a lot of
closely related beautiful mathematics.

1.1. The Fontaine–Mazur conjecture
Let F be a number field. The Fontaine–Mazur conjecture4 [83] predicts that any

continuous irreducible p-adic Galois representation

� W GF ! GLn.Qp/

1 Here (in light of the standard conjectures [124]) one may take pure motives up to numerical
or homological equivalence. Conjecturally, one can also substitute (for irreducible motive)
the notion of an irreducible weakly compatible system of Galois representations [167] or an
irreducible geometric Galois representation in the sense of Fontaine–Mazur [83].

2 Wiles in [181] dates the completion of the proof to September 19, 1994.
3 A whiggish history, naturally. Even with this caveat, it should be clear that the narrative arc

of progress presented here at best represents my own interpretation of events. I have added
a few quotes from first hand sources when I felt they conveyed a sense of what the experts
were thinking in a manner not easily obtainable from other sources. For other survey articles
on similar topics, see [24,30].

4 Fontaine told me (over a salad de gésiers in Roscoff in 2009) that he and Mazur formulated
their conjecture in the mid-1980s. (Colmez pointed me towards these notes [81] from a
talk given by Fontaine at the 1988 Mathematische Arbeitstagung in Bonn.) He noted that
Serre had originally been skeptical, particularly of the claim that any everywhere unramified
representation inside GLn.Qp/ must have finite image, and set off to find a counterexample
(using the construction of Golod–Shavarevich [91]). He (Serre) did not succeed!
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which is both unramified outside finitely many primes and potentially semistable (equiva-
lently, de Rham [62]) at all places vjp should be associated to a motive M=F with coef-
ficients in Q. Any such � is automatically conjugate to a representation in GLn.E/ for
some finite field E=Qp and further stabilizes an OE -lattice. The corresponding residual
representation � W GF ! GLn.k/ where k D OE =�E is the residue field of E is unique
up to semisimplification. Let us assume here for expositional convenience that � is abso-
lutely irreducible. FollowingMazur [129], one may define a universal deformation ring which
parameterizes all deformations of � unramified outside a finite set S . One can then further
impose local conditions to define deformation rings R whose Qp-valued points are associ-
ated to Galois representations which are de Rham at vjp with fixed Hodge–Tate weights.
Assuming the Fontaine–Mazur conjecture, these Qp-valued points correspond to all pure
motives M unramified outside S whose p-adic realizations are Galois representations with
the same local conditions at p and the same fixed residual representation �. Assuming the
reciprocity conjecture, these motives should then be associated to a finite dimensional space
of automorphic forms. This leads to the extremely nontrivial prediction that R has finitely
many Qp-valued points. The problem of reciprocity is now to link these Qp-valued points
of R to automorphic forms.

1.2. R D T theorems
Associated to the (conjectural) space of automorphic forms corresponding to

Qp-valued points of R is a ring of endomorphisms generated by Hecke operators. The
naïve version of T is defined to be the completion of this ring with respect to a maximal
ideal m defined in terms of �. The mere existence of m is itself conjectural, and amounts—
in the special case of odd absolutely irreducible 2-dimensional representations � of GQ—to
Serre’s conjecture [156]. Hence, in the Taylor–Wiles method, one usually assumes the exis-
tence of a suitable m as a hypothesis. The usual shorthand way of describing what comes
out of the Taylor–Wiles method is then an “R D T theorem.” Proving an R D T theorem
can more or less be divided into three different problems:

(1) Understanding T. Why does there exist5 a map R ! T? This is the problem
of the “existence of Galois representations.” Implicit here is the problem of
showing that those Galois representations not only exist but have the “right local
properties” at the ramified primes, particularly those dividing p.

(2) Understanding R. Wiles introduced a mechanism for controlling R via its tan-
gent space using Galois cohomology (in particular Poitou–Tate duality [131]),
and this idea has proved remarkably versatile. What has changed, however, is
our understanding of local Galois representations and how this information can
be leveraged to understand the structure of R.

(3) Understanding why the map R ! T is an isomorphism.

5 At the time of Wiles’ result, this was seen as the easier direction (if not easy), although,
in light of the success of the Taylor–Wiles method, it may well be the harder direction in
general.
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We begin by summarizing the original R D T theorem from this viewpoint (or
more precisely, the modification by Faltings which appears as an appendix to [171]). We
only discuss for now the so-called “minimal case6” since this is most relevant for subse-
quent generalizations (see Section 6.2). Our summary is cursory, but see [67,68] for excellent
expositional sources on early versions of the Taylor–Wiles method. We start with a represen-
tation � W GQ !GL2.Fp/ forp > 2which (say) comes from a semistable elliptic curveE and
which we assume to be modular. By a theorem of Ribet [149], we may assume it is modular
of level either N D N.�/ or N D N.�/p where N.�/ is the Serre weight [156] of �.

(1) UnderstandingT: The construction of Galois representations associated tomod-
ular forms has its own interesting history (omitted here), but (in the form origi-
nally needed by Wiles) was more or less complete for modular forms (and even
Hilbert modular forms) by 1990. The required local properties at primes dif-
ferent from p followed from work of Carayol [47], and the local properties at p

were well understood either by Fontaine–Laffaille theory [82], or, in the ordinary
case, by Mazur–Wiles [130] (see also work of Hida [101,102]).

(2) Understanding R: Here R is a deformation ring of � subject to precise local
deformation conditions at p and the primes dividing N.�/. For the prime p, the
local conditions amount either to an “ordinary” or “finite-flat” restriction. One
then interprets the dual of the reduced tangent spacemR=.m2

R;p/ ofR in terms
of Galois cohomology, in particular as a subgroup (Selmer group) of classes
in H 1.Q; ad0.�// satisfying local conditions. This can be thought of as analo-
gous to a class group, and one does not have any a priori understanding of how
large it can be although it has some finite dimension d . Using the Greenberg–
Wiles formula, the obstructions in H 2.Q; ad0.�// can be related to the reduced
tangent space, and allow one to realize R as a quotient of W.k/Jx1; : : : ; xd K by
d relations. In particular, if R was finite and free as a W.k/-module (as would
be the case if R D T) then R would be a complete intersection.

(3) Understanding why the map R ! T is an isomorphism. Here lies the heart of
the Taylor–Wiles method. The ring T acts on a natural module M of modular
forms. One shows—under a mild hypothesis on �—the existence of (infinitely
many) sets Q D QN for any natural number N of cardinality jQj D d—so-
called Taylor–Wiles primes—with a number of pleasant properties:

(i) The primes q 2 Q are congruent to 1 mod pN .

(ii) Let RQ be the deformation ring capturing the same local properties as R

but modified so that the representations at primes in Q may now be ram-
ified of degree pN . There is naturally a surjection RQ ! R, but for

6 The case when the Galois representations attached to R and T have minimal level N as
determined by the residual representation.

613 Reciprocity in the Langlands program since Fermat’s Last Theorem



Taylor–Wiles primes, this modification does not increase the size of the
tangent space. In particular, for a fixed ring R1 D W.k/Jx1; : : : ; xd K
there are surjections R1 ! RQ ! R for every Q.

(iii) The corresponding rings T and TQ act naturally on spaces of modu-
lar forms M and MQ, respectively. Using multiplicity one theorems,
Wiles proves (see [181, Theorem 2.1]) that M and MQ are free of rank
one over T and TQ, respectively. The space M can be interpreted as a
space of modular forms for a particular modular curve X . The second
key property of Taylor–Wiles primes is that there are no new modular
forms associated to � at level X0.Q/, and hence M can also be inter-
preted as a space of modular forms for X0.Q/. There is a Galois cover
X1.Q/ ! X0.Q/with Galois group .Z=QZ/�, and hence an intermedi-
ate coverXH .Q/ ! X0.Q/with Galois group �N D .Z=pN Z/d acting
via diamond operators. The space MQ is essentially a localization of
a certain space of modular forms for XH .Q/ (with some care taken at
the Hecke operators for primes dividing Q). Since the cohomology of
modular curves (localized at the maximal ideal corresponding to m) is
concentrated in degree one, the module MQ turns out to be free over
an auxiliary ring SN D W.k/Œ�N � of diamond operators, and the quo-
tient MQ=aQ for the augmentation ideal aQ of SN is isomorphic to M .
It follows that TQ=aQ D T.

(iv) The diamond operators have an interpretation on the Galois deformation
side, and there is a identification RQ=aQ D R where RQ and TQ can be
viewed compatibly as SN -modules.

(4) Finally, one “patches” these constructions together for larger and larger Q. This
is somewhat counterintuitive, since for different Q the Galois representations
involved are not compatible. However, one forgets the Galois representations
and only remembers the structures relative to both the diamond operators SN

and R1, giving the data of a surjection

R1 ! T1

with a compatible action of S1 D proj limSN ' W.k/Jt1; : : : ; td K. Using the
fact that T1 is free of finite rank over S1, and that R1 and S1 are formally
smooth of the same dimension, one deduces that R1 D T1 and then R D T
after quotienting out by the augmentation ideal of S1.

2. The early years

2.1. The work of Diamond and Fujiwara
Wiles made essential uses of multiplicity one theorems in order to deduce that MQ

was free over TQ. Diamond [72] and Fujiwara [85] (independently) had the key insight that
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one could instead patch the modulesMQ directly—and then argue directly with the resulting
object M1 as a module over R1 which was also free over S1. Using the fact that R1

is formally smooth, this allowed one to deduce a posteriori that M1 was free over R1

using the Auslander–Buchsbaum formula [9]. This not only removed the necessity of proving
difficult multiplicity-one results but gave new proofs of these results7 which could then be
generalized to situations where the known methods (often using the q-expansion principle)
were unavailable.8 Diamond had the following to say about how he came up with the idea to
patch modules rather than use multiplicity-one theorems:

My vague memory is that I was writing down examples of ring homomorphisms
and modules, subject to some constraints imposed by a Taylor–Wiles setup, and I
could not break “M free over the group ring implies M free over R.” (I still have
the notebook with the calculations somewhere, mostly done during a short trip
with some friends to Portugal.) I did not know what commutative algebra state-
ment I needed, but I knew I needed to learn more commutative algebra and found
my way to Bruns and Herzog’s “Cohen–Macaulay Rings” [28] (back in the library
in Cambridge, UK by then). When I saw the statement of Auslander–Buchsbaum,
it just clicked.

Diamond made a second improvement [70,71] dealing with primes away from p in
situations where the corresponding minimal local deformation problem was not controlled
by the Serre level N.�/ alone.

2.2. Integral p-adic Hodge Theory, part I: Conrad–Diamond–Taylor
One early goal after Fermat was the resolution of the full Taniyama–Shimura con-

jecture, namely, the modularity of all elliptic curves over Q. After the improvements of
Diamond, the key remaining problem was understanding deformation rings associated to
local Galois representations at p coming from elliptic curves with bad reduction at p. Since
Wiles’ method (via Langlands–Tunnell [127,178]) was ultimately reliant on working with the
prime p D 3, this meant understanding deformations at p of level p2 and level p3, since any
elliptic curve over Q has a twist such that the largest power of 3 dividing the conductor is at
most 27. Ramakrishna in his thesis [145] had studied the local deformation problem for finite
flat representations (the case when .N;p/ D 1) and proved that the corresponding local defor-
mation rings were formally smooth. The case when p exactly divides N was subsumed into
the ordinary case, also treated by Wiles. In level p2, one can show that the Galois represen-

7 There is an intriguing result of Brochard [27] which weakens the hypotheses of Diamond’s
freeness criterion even further, although this idea has not yet been fully exploited.

8 The history of the subject involves difficult theorems in the arithmetic geometry of Shimura
varieties being replaced by insights from commutative algebra, paving the way to gener-
alizations where further insights from the arithmetic geometry of Shimura varieties are
required.
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tations associated to the relevant modular forms9 of level p2 become finite flat after passing
to a finite extension L=Qp with ramification degree e � p � 1. In this range, Conrad [64,65]

was able to adapt ideas of Fontaine [80] to give an equivalence between the local Galois
deformations (assuming �jGQp

was irreducible) and linear algebra data. In particular, as in
the work of Ramakrishna, one can show that the relevant local deformation rings are formally
smooth, and so Conrad, Diamond, and Taylor were able to adapt the Taylor–Wiles method
to this setting [66].

2.3. Integral p-adic Hodge Theory, part II: Breuil–Conrad–Diamond–Taylor
A central technical ingredient in all of the arguments so far has been some use

of integral p-adic Hodge Theory, and in particular the theory of finite flat group schemes
and Barsotti–Tate groups as developed by Fontaine and others. All integral versions of this
theory required a hypothesis on either the weight or the ramification index e relative to the
bound p � 1. However, around this time, Christophe Breuil made a breakthrough10 by find-
ing a new way to understand the integral theory of finite flat group schemes over arbitrarily
ramified bases [19]. This was just the technical tool required to push the methods of [66] to
level p3. Using these results, Breuil, Conrad, Diamond, and Taylor [25] were able to show
that enough suitably chosen local deformation rings were formally smooth to prove the mod-
ularity of all elliptic curves.

2.4. Higher weights, totally real fields, and base change
Many of themethods which worked for modular formswere directly adaptable to the

case both of general rank 2motives overQwith distinct Hodge–Tate weights (corresponding
to modular forms of weight k � 2 rather than k D 2) and also to such motives over totally real
fields (which are related to Hilbert modular forms), see in particular the work of Fujiwara [85]
(and more recently Frietas–Le Hung–Siksek [84]). Another very useful innovation was a
base change idea of Skinner–Wiles [161] which circumvented the need to rely on Ribet’s
level lowering theorem. The use of cyclic base change ([127] in this case and [5] in general)
subsequently became a standard tool in the subject. For example, it meant that one could
always reduce to a situation where the ramification at all primes v − p was unipotent. The
paper [161] was related to a more ambitious plan by Wiles to prove modularity for all totally
real fields:

After Fermat I started to work with Taylor and then Diamond on the general case
but decided very soon that I would rather try to do the totally real case for GL.2/.

9 This is not true for all modular forms of level p2 and weight 2, but only for those whose
conductor at p remains divisible by p2 after any quadratic twist.

10 Much of the development of integral p-adic Hodge theory over the last 20 years since [25]
has been inspired by its use in the Taylor–Wiles method. However, the timing of Breuil’s
work was more of a happy coincidence, although Breuil was certainly aware of the fact that
a computable theory of finite flat group schemes over highly ramified bases could well have
implications in the Langlands program.
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I think this was while I was getting back into other kinds of problems but I thought
I should still earn my bread and butter. One lunch time at the IAS in 1996 Flo-
rian Pop spoke to me and explained to me about finding points over fields totally
split at some primes (e.g., real places) as he had written a paper [92] about this
with some others. Was this any use for the Tate–Shafarevich group? I immediately
saw that whether or not it was any use for TS (I doubted it) it should certainly give
potential modularity. This gave some kinds of lifting so I worked on the other half
(i.e., descent) thinking that just needed a similar insight. At some point I suggested
to Chris that we try to do Ribet’s theorem using cyclic base change as that would
be useful in proving modularity and was buying time while I waited to get the
right idea. Unfortunately, I completely misjudged the difficulty of descent and the
problem is still there. I think it is both much harder than I thought and also more
important. I hope still to prove it! Of course, Taylor found potential modularity
and then, what I had assumed was much harder, a way to think about GL.n/.

3. Reducible representations: Skinner–Wiles

One of the key hypotheses in the Taylor–Wiles method concerns restrictions on the
representation �, in particular the hypothesis that �jGQ.�p/

is absolutely irreducible. In [159,

160,162], Skinner andWiles introduced a new argument in which this hypothesis was relaxed,
at least assuming the representations were ordinary at p. In the ordinary setting, one can
replace the rings R and T (which in the original setting are finite over W.k/) by rings which
are finite (and typically flat) over Iwasawa algebras ƒ D W.k/J.Zp/d K for some d which
arise as weight spaces, the point being that the ordinary deformations of varyingweight admit
a good integral theory. The first innovation (in part) involves making a base change so that
the reducible locus is (relatively) “small,” (measured in terms of the codimension over ƒ).
The second idea is then to apply a variant of the Taylor–Wiles method to representations
% W GF ! GL2.T=p/ for nonmaximal prime ideals p of F .11 Wiles again:

We had worked out a few cases we could do without big Hecke rings in some
other papers and I would say it was more a feat of stamina and technique to work
through it. Of course, the use of these primes was much more general and system-
atic than anything that went before. There is also an amusing point in this paper
where we use a result from commutative algebra. It seemed crucial then though I
don’t know if it still is. This is Proposition A.1 of Raynaud [148]. I had thought at
some point during the work on Fermat that this result might be needed and had
asked Michel Raynaud about it. He said he would think about it. A week later he
came back to me, somewhat embarrassed that he had not known right away, to say

11 Representations % to infinite quotients T=p had also arisen in Wiles’ paper on Galois
representations associated to ordinary modular forms [180] where the concept of pseu-
dodeformation was also first introduced.
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that it was a result in his wife’s thesis. So the reference to M. Raynaud is actually
to his wife, Michèle Raynaud, though he gave the reference.

Allen [1] was later able to adapt these arguments to the p D 2 dihedral case, which
(in a certain sense) realized the original desire12 of Wiles to work at the prime p D 2.

4. The Artin conjecture

While the approach of [171, 181] applied (in principle) to all Galois representations
associated to modular forms of weight k � 2, the case of modular forms of weight k D 1 is
qualitatively quite different (see also Section 10.1). It was therefore quite surprising when
Buzzard–Taylor [33] proved weight one modularity lifting theorems for odd continuous
representations � W GQ ! GL2.Qp/ which were unramified at p. Using this, Buzzard–
Dickinson–Shepherd-Barron–Taylor [31] proved the Artin conjecture for a positive propor-
tion of all odd A5 representations, which had previously only been known in a finite number
of cases13 up to twist. Standard ordinary modularity theorems showed the existence of ordi-
narymodular forms associated to such representations �—however, the classicality theorems
of Hida [101] do not apply (and are not true!) in weight one. The main idea of [33] was to
exploit the fact that � is unramified to construct two ordinary modular forms each corre-
sponding to a choice of eigenvalue of �.Frobp/ assuming these eigenvalues are distinct.14

One then has to argue [33] that these two ordinary forms are the oldforms associated to a
classical eigenform of weight one, which one can do by exploiting both the rigid geometry
of modular curves and the q-expansion principle.

Although the original version of this argument required a number of improvements
to the usual Taylor–Wiles method (Dickinson overcame some technical issues when p D

2 [73] and Shepherd-Barron–Taylor proved some new cases of Serre’s conjecture for SL2.F4/

and SL2.F5/-representations in [157]), it was ripe for generalization to totally real fields.15

After a key early improvement by Kassaei [106], the n D 2 Artin conjecture for totally real
fields is now completely resolved under the additional assumption that the representation is
odd by a number of authors, including Kassaei–Sasaki–Tian and Pilloni–Stroh [107–109,141,

12 As far as primary historical sources go, the introduction of Wiles’ paper [181] is certainly
worth reading.

13 In a computational tour de force for the time, Buhler [29] in his thesis had previously estab-
lished the modularity of an explicit odd projective A5 representation of conductor 800.

14 This argument can be modified to deal with the case when the eigenvalues of �.Frobp/

coincide by modifying R and T to include operators corresponding (on the Hecke side)
to Up . Geraghty and I discovered an integral version of this idea ourselves (“doubling,”
following Wiese’s paper [179]) during the process of writing [38], although it turned out
that, at least in characteristic zero, Taylor already had the idea in his back pocket in the early
2000s.

15 The proof all that finite odd 2-dimensional representations over Q are modular was com-
pleted by Khare and Wintenberger as a consequence of their proof of Serre’s conjecture,
see Section 8.
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143, 152]. On the other hand, the reliance on q-expansions in this argument has proved an
obstruction to extending this to other groups. (See also Section 11.2.)

5. Potential modularity

One new idea which emerged in Taylor’s paper [166] was the concept of potential
modularity. Starting with a representation � W GF ! GL2.Qp/ for a totally real field F , one
could sidestep the (difficult) problem of proving the modularity of � by proving it was modu-
lar over some finite totally real extension F 0=F . In the original paper [181], Wiles employed
a 3–5 switch to deduce the modularity of certain mod 5 representations from the modu-
larity of mod 3 representations. More generally, one can prove the modularity of a mod p

representation �p from the modularity of a mod q representation �q if one can find both of
them occurring as the residual representation of a compatible family where the Taylor–Wiles
hypotheses apply to �q . For example, if �p and �q are representations valued in GL2.Fp/

and GL2.Fq/ respectively, one can try to find the compatible family by finding an elliptic
curve with a given mod p and mod q representation. The obstruction to doing such a p–q

switch over F is that the corresponding moduli spaces (which in this case are twists of the
modular curve X.pq/) are not in general rational, and hence have no reason to admit ratio-
nal points. However, exploiting an idea due to Moret-Bailly [132], Taylor showed that these
moduli spaces at least had many points over totally real fields where one could addition-
ally ensure that the Taylor–Wiles hypothesis applies at the prime q. At the cost of proving
a weaker result, this gives a huge amount of extra flexibility that has proved remarkably
useful. Taylor’s first application of this idea was to prove the Fontaine–Mazur conjecture for
many 2-dimensional representations, since the potential modularity of these representations
was enough to prove (for example) that they come from compatible families of Galois rep-
resentations (even over the original field F !), and that they satisfy purity (which is known
for Hilbert modular forms of regular weight). The concept of potential modularity, however,
has proved crucial for other applications, not least of which is the proof of the Sato–Tate
conjecture (see Section 9.2).

6. The work of Kisin

A key ingredient in the work of Breuil–Conrad–Diamond–Taylor (Sections 2.2
and 2.3) (and subsequent work of Savitt [153, 154]) was the fact that a certain local defor-
mation ring Rfl defined in terms of integral p-adic Hodge theory was formally smooth.
The calculations of [25, 154], however, applied only to some (very) carefully chosen situ-
ations sufficient for elliptic curves but certainly not for all 2-dimensional representations.
In the 2000s, Kisin made a number of significant contributions, both to the understand-
ing of local deformation rings but also to the structure of the Taylor–Wiles argument
itself [117–119,121–123].
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6.1. Local deformation rings at v D p

One difficulty with understanding local deformation rings Rfl associated to finite
flat group schemes over highly ramified bases is that the group schemes themselves are
not uniquely defined by their generic fibers. Kisin [122] had the idea that one could also
define the moduli space of the group schemes themselves, giving a projective resolution
GR ! Spec.Rfl/ (this map is an isomorphism after inverting p). Kisin further realized that
the geometry of GR was related to local models of Shimura varieties, for which one had
other available techniques to analyze their structure and singularities. Later, Kisin was also
able [119] to construct local deformation rings R capturing deformations of a fixed local rep-
resentation � which become semistable over a fixed extension L=Qp and had Hodge–Tate
weights in any fixed finite range Œa; b�, absent a complete integral theory of such representa-
tions. (There are also are constructions where one fixes the inertial type of the corresponding
representation.) Kisin further proved that the generic fibers of these rings were indeed of the
expected dimension and often formally smooth.

6.2. Kisin’s modification of Taylor–Wiles
Beyond analyzing the local deformation rings themselves, Kisin crucially found a

way [122] tomodify the Taylor–Wilesmethod to avoid the requirement that these rings are for-
mally smooth, thus greatly expanding the scope of the method. First of all, Kisin reimagined
the global deformation ring R as an algebra over a (completed tensor product)

Rloc
D

bO
v2S Rv

of local deformation rings Rv for sets of places v 2 S , in particular including the prime p.16

Now, after a Taylor–Wiles patching argument, one constructs a big module M1 over R1

(and free over the auxiliary ring of diamond operators S1) but where R1 is no longer a
power series ring overW.k/ but a power series ring overRloc. If the algebrasRv for v 2 S are
themselves power series rings, one is reduced precisely to the original Taylor–Wiles setting
as modified by Diamond. On the other hand, if the Rv are (for example) not power series
rings but are integral domains over W.k/ of the expected dimension, then Kisin explained
how one could still deduce that MŒ1=p� was a faithful RŒ1=p�-module, which proves that
RŒ1=p� D TŒ1=p� and suffices for applications to modularity. More generally, assuming only
that the Rv are flat over W.k/ and that the generic fiber RvŒ1=p� is equidimensional of the
expected dimension, the modularity of any point of R reduces to showing that there is at
least one modular point which lies on the same component of RvŒ1=p�.17

16 Since the local residual representations are typically reducible, Kisin also introduced the
notion of framed deformation rings which are always well defined, and which (properly
taking into account the extra variables) are compatible with the Taylor–Wiles argument.

17 There are some subtleties to understanding RŒ1=p� for complete local Noetherian W.k/-
algebras that are not obvious on first consideration. The first and most obvious blunder
to avoid is to recognize that RŒ1=p� is usually far from being a local ring. Similarly, the
ring RŒ1=p� can be regular and still have multiple components, as can be seen in an example
as simple as R D ZpJXK=X.X � p/. Perhaps more importantly, however, the ring RŒ1=p�

“behaves” in some important ways like a finitely generated algebra over a field.
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In the original modularity lifting arguments, one treated the minimal case first and
then deduced the nonminimal cases using a subtle commutative algebra criterion which
detected isomorphisms between complete intersections. From the perspective of Kisin’s
modification, all that is required is to show that there exists a single modular point with the
right nonminimal local properties. In either case, both Wiles and Kisin used Ihara’s Lemma
to establish the existence of congruences between old and new forms, but Kisin’s argument
is much softer and thus more generalizable to other situations.18 Kisin had the following to
say about his thought process:

The idea of thinking of R as an Rloc algebra just popped into my head, after I’d
been thinking about the Wiles–Poitou–Tate formula, and how it fit into the Taylor–
Wiles patching argument. This was in Germany, I think in 2002. I had the idea
about moduli of finite flat group schemes in the Fall of 2003, after I arrived in
Chicago. It was entirely motivated by modularity. I had been trying to compute
these deformation rings, by looking at deformations of finite flat group schemes.
For e < p � 1, the finite flat model is unique, so I knew this gave the deformation
ring in this case; this already gave some new cases. However, I was stuck about
the meaning of these calculations in general for quite some time. At some point
I thought I’d better write up what I had, but as soon as I started thinking about
that—within a day—I realized what the correct picture was with the families of
finite flat group schemes resolving the deformation ring. I already knew about
Breuil’s unpublished note [18], and quite quickly was able to prove the picture was
correct. It was remarkable that prior to coming to Chicago, I didn’t even know
the definition of the affine Grassmannian, but within a few months of arriving, it
actually showed up in my own work.
To me the whole project was incredibly instructive. If I had known more about
what was (thought to be) essential in the Taylor–Wiles method, I never would
have started the project. Not having fixed ideas gave me time to build up intuition.
I also should have gotten the idea about moduli of finite flat group schemes much
sooner if I’d been more attentive to what the geometry was trying to tell me.

7. p-adic local Langlands

7.1. The Breuil–Mézard conjecture
Prior to Kisin’s work, Breuil and Mézard [26] undertook a study of certain low

weight potentially semistable deformation rings, motivated by [25]. They discovered (in part
conjecturally) a crucial link between the geometry of these Galois deformation rings (in

18 In particular, Wiles’ numerical criterion [68, Thm. 5.3] relies on certain rings being com-
plete intersections, and Kisin’s local deformation rings are not complete intersections (or
even Gorenstein) in general—see [163].
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particular, the Hilbert–Samuel multiplicities of their special fibers) with the mod-p reduc-
tions (and corresponding irreducible constituents) of lattices inside locally algebraic p-adic
representations of GL2.Zp/. In the subsequent papers [20, 21], Breuil raised the hope that
there could exist a p-adic Langlands correspondence relating certain mod-p (or p-adic
Banach space) representations of GL2.Qp/ to geometric 2-dimensional p-adic represen-
tations of GQp .19 Breuil recounts the origins of these conjectures as follows:

The precise moment I became 100% sure that there would be a non-trivial p-adic
correspondence for GL2.Qp/ was in the computations of [21]. In these compu-
tations, I reduced mod p certain Zp–lattices in certain locally algebraic repre-
sentations of GL2.Qp/, and at some point, I found out that this reduction mod p

had a really nice behaviour, so nice that clearly, it was predicting (via the mod-p
correspondence) what the reduction mod-p would be on the Gal.Qp=Qp/-side.

These ideas were further developed by Colmez in [57–59] amongst other papers20:
Colmez studied various Banach space completions defined by Breuil and proved they were
nonzero using the theory of .'; �/-modules. Since the theory of .'; �/-modules applies
to all Galois representations and not just potentially semistable ones, this led Colmez
to propose a p-adic local Langlands correspondence for arbitrary 2-dimensional repre-
sentations GQp ! GL2.E/, and he was ultimately able to construct a functor from suit-
able GL2.Qp/-representations to Galois representations of GQp . Colmez gave a talk on
his construction at a conference in Montreal in September 2005. At the same conference,
Kisin gave a talk presenting a proof of the Breuil–Mézard conjecture by relating it directly
to R D T theorems and the Fontaine–Mazur conjecture for odd 2-dimensional representa-
tions of GQ with distinct Hodge–Tate weights. While Kisin’s argument exploited results of
Berger–Breuil [14] and Colmez, it was realized by the key participants (perhaps in real time)
that Colmez’ p-adic local Langlands correspondence should be viewed as taking place over

19 The starting observation [22] is as follows: if � D ˝0�v is the automorphic representation
associated to a modular form f , then �v determines (and is determined by) �f jGQv

for
all v ¤ p (at least up to Frobenius semisimplification). On the other hand, �p does not
determine the p-adic representation �f jGQp

(except in the exceptional setting where �p is
spherical and ap is not a p-adic unit), raising the question of what extra GL2.Qp/ structure
associated to f should determine (and be determined by) �f jGQp

.
20 In [116], Kisin had shown that the p-adic representations V associated to nonclassical finite

slope overconvergent modular forms with Up-eigenvalue ap satisfied dimDcris.V / D 1,
and moreover that crystalline Frobenius acted on this space by ap . (This paper was itself
apparently motived by the goal of disproving the Fontaine–Mazur conjecture!) On the way
to the 2004 Durham symposia on L-functions and Galois representations, Fontaine raised
the question to Colmez to what extent this determined the corresponding Galois represen-
tation. Colmez worked out the answer the evening before his talk and incorporated it into
his lecture the following day, ultimately leading to the notion of trianguline representa-
tions [57].
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the entire local deformation ring. Subsequently Colmez was able to construct the inverse
functor.21 Colmez writes:

I received a paper of Breuil (a former version of [23]) during my stay at the
Tata Institute in December 2003–January 2004. In December, I was spending
Christmas under Goa’s palm trees with my daughter when Breuil’s paper arrived
in my email. That paper contained a conjecture (in the semi-stable case) that I
was sure I could prove using .'; �/-modules (if it was true…). I spent January
2004 working on it and after 15 days of computations in the dark, I finally found
a meaning to some part of a painful formula (you can find some shadow of all of
this in (iii) of Remark 0.5 of my unpublished [56]). By the end of the month, I was
confident that the conjecture was proved and I told so to Breuil who adapted the
computations to the crystalline case, and wrote them down with the help of Berger
(which developed into [14]). (One thing that makes computations easier and more
conceptual in the crystalline case is that you end up with the universal completion
of the locally algebraic representation you start with; something that is crucial
in Matthew [Emerton]’s proof of the FM conjecture.) Durham was in August of
that year and Berger–Breuil had notes from a course they had given in China [13].
Those notes were instrumental in my dealing with trianguline representations at
Durham (actually, I did some small computation and the theory just developed
by itself during the night before my talk which was supposed to be on something
else…I think I came up with the concept of trianguline representations later, to
justify the computations, I don’t remember what language I used in my talk which
had some part on Banach–Colmez spaces as far as I can remember.

7.2. Local–global compatibility for completed cohomology
From a different perspective, Emerton had introduced the completed cohomology

groups [77] as an alternative means for constructing the Coleman–Mazur eigencurve [55].
Inspired by Breuil’s work, Emerton formulated [76] a local–global compatibility conjecture
for completed cohomology in the language of the then nascent p-adic Langlands correspon-
dence. After the construction of the correspondence for GL2.Qp/ by Colmez and Kisin,

21 To add some further confusion to the historical chain of events, the published version
of [120] incorporates some of these subsequent developments. Note also that the cur-
rent state of affairs is that the proof of the full p-adic local Langlands correspondence
for GL2.Qp/ (for example as proved in [63] but see also [59, Remarque VI.6.51]) still
relies on the global methods of [78], which in turn relies on [59]. These mutual depen-
dencies, however, are not circular! The difficulty arises in the supercuspidal case. One
philosophical reason that global methods are useful here is that all global representations
are yoked together by an object (the completed cohomology group QH 1.Zp/) with good
finiteness properties. One can then exploit the fact that crystabeline representations (for
which the p-adic local Langlands correspondence is known by [59]) are Zariski dense
inside unrestricted global deformation rings ([78, Theorem 1.2.3], using arguments going
back to Böckle [15]).
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Emerton was able to prove most of his conjecture, leading to a new proof of (many cases of)
the Fontaine–Mazur conjecture. The results of Kisin [120] and Emerton fell short of proving
the full version of this conjecture for two reasons. The first was related to some technical
issues with the p-adic local Langlands correspondence, both at the primes p D 2 and 3

but also when the residual representation locally had the shape 1 ˚ " for the cyclotomic
character ". (The local issues have now more or less all been resolved [63]. The most gen-
eral global results for p D 2 are currently due to Tung [177].) A second restriction was the
Taylor–Wiles hypothesis that � was irreducible. Over the intervening years, a number of
key improvements to the local story have been found, in particular by Colmez, Dospinescu,
Hu, and Paškūnas [63, 104, 139]. Very recently, Lue Pan [137] found a way to marry tech-
niques from Skinner–Wiles in the reducible case (Section 3) to techniques from p-adic
local Langlands to completely prove the modularity (up to twist) of any geometric repre-
sentation � W GQ ! GL2.Qp/ for p � 5 only assuming the hypotheses that � has distinct
Hodge–Tate weights and that � is odd.22

8. Serre’s conjecture

In Wiles’ original lectures in Cambridge in 1993, he introduced his method with the
statement that it was orthogonal to Serre’s conjecture [150]. In some senses, this viewpoint
turned out to be the opposite of prophetic, in that the ultimate resolution of Serre’s conjec-
ture used the Taylor–Wiles method as its central core. The proof of Serre’s conjecture by
Khare and Wintenberger [111,113–115] introduced a new technique for lifting residual Galois
representations to characteristic zero (see §8.2) which has proved very useful for subsequent
modularity lifting theorems.

8.1. Ramakrishna lifting
Ramakrishna, in a series of papers in the late 1990s [146,147], studied the question

of lifting an odd Galois representation

� W GQ ! GL2.Fp/

to a global potentially semistable representation in characteristic zero unramified outside
finitely many primes. This is a trivial consequence of Serre’s conjecture23 but is highly
nonobvious without such an assumption. Ramakrishna succeeded in proving the existence
of lifts by an ingenious argument involving adding auxiliary primes and modifying the local
deformation problem to a setting where there all global obstructions vanished. The resulting
lifts had the added property that they were valued in GL2.W.k// whenever � was valued
in GL2.k/. Adaptations of Ramakrishna’s method had a number of important applications

22 The assumption on the Hodge–Tate weights is almost certainly removable using recent
progress on the ideas discussed in Section 4 (Sasaki has announced such a result). More-
over, Pan has found a different approach to this case as well, see [138, Theorem 1.0.5]

and the subsequent comments. The hypothesis that � is odd is more troublesome—see Sec-
tion 9.7.

23 Trivial only assuming the results of Tsuji [176] and Saito [151], of course.
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even under the assumption of residual modularity, including in [50] where it was used to
produce characteristic zero lifts with Steinberg conditions at some auxiliary primes. There
is also recent work of Fakhruddin, Khare, and Patrikis [79]which considerably extends these
results in a number of directions.

8.2. The Khare–Wintenberger method
One disadvantage of Ramakrishna’s method was that it required allowing auxil-

iary ramification which (assuming Serre’s conjecture) should not be necessary.24 Khare and
Wintenberger found a new powerful method for avoiding this. The starting point is the idea
that, given an odd representation � W GF ! GL2.Fp/ for a totally real field F satisfying the
Taylor–Wiles hypotheses, one could find a finite extensionH=F where � is modular (exactly
as in Section 5). Then, using an R D T theorem over H , one proves that the corresponding
deformation ring RH of �jGH

is finite over W.k/. However, for formal reasons, there is a
map RH ! RF (where R is the deformation ring corresponding to the original representa-
tion �) which is a finite morphism, and hence the ring RF =p is Artinian. Then, by Galois
cohomological arguments, one proves the ring RF has dimension at least one, from which
one deduces that RF has Qp-valued points. Even more can be extracted from this argument,
however,—the Qp-valued point of RF certainly comes from a Qp-valued point of RH , and
hence comes from a compatible family of Galois representations over H . Using the fact that
one member of the family extends to GF , it can be argued that the entire family descends
to a compatible family over F . This one can then hope to prove is modular by working at a
different (possibly smaller) prime, where (hopefully) one can prove the associated residual
representation is modular. In this way, one can inductively reduce Serre’s conjecture [156]

to the case p D 2 and N.�/ D 1, where Tate had previously proved in a letter to Serre [61,

July 2, 1973] (also [164]) that all such absolutely irreducible representations are modular by
showing that no such representations exist. The entire idea is very clean, although in prac-
tice the difficulty reduces to the step of proving modularity lifting theorems knowing either
that � is either modular and absolutely irreducible or is reducible. Khare andWintenberger’s
timing was such that the automorphy lifting technology was just good enough for the proof
to work, although this required some extra effort at the prime p D 2 (both in their own work
and in a key assist by Kisin [121]). As with Ramakrishna’s method, the Khare–Wintenberger
lifting method has also been systematically exploited for modularity lifting applications (for
example, in [11] (see Section 9.6) building on ideas of Gee [87]).

9. Higher dimensions

Parallel to the developments of p-adic Langlands for n D 2, the first steps were
made to generalize the theory to higher dimensional representations. Unlike in the case of

24 If one insists on finding a lift valued in GL2.W.k// rather than GL2.OE / for some ramified
extension E=W.k/Œ1=p�, then some auxiliary ramification is necessary in general, at least
in fixed weight.
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modular forms, substantially less was known about the existence of Galois representations
until the 1990s.

9.1. Construction of Galois representations, part I: Clozel–Kottwitz
The first general construction25 of Galois representations in dimension n > 2 was

made by Clozel [48] (see also the work of Kottwitz [125]). Clozel’s theorem applies to cer-
tain automorphic forms for GLn.AL/ for CM fields L=LC. The construction requires three
important hypotheses on � : The first is that � is conjugate self-dual, that is, �_ ' �c . If � is
a base change from an algebraic representation of LC and n D 2 then this condition is auto-
matic,26 but it is far from automatic when n > 2. The second condition is an assumption on
the infinitesimal character which (in the case of modular forms) is equivalent to the condition
that the weight k is � 2. Finally, there is a technical condition that for some finite place x

the representation �x is square integrable. A number of improvements (particularly at the
bad primes) were made by Harris–Taylor in [100, Theorem C], and later by Taylor–Yoshida
and Caraiani [42,43, 172], bringing the theory roughly in line with that of modular forms at
the time of Wiles, and in particular primed for possible generalizations of the Taylor–Wiles
method to higher dimensions.

9.2. The Sato–Tate conjecture, part I
Harris and Taylor (as early as 1996) started the work of generalizing the Taylor–

Wiles machinery to the setting of n-dimensional representations. They quickly understood
that the natural generalization of these ideas in n-dimensions required the hypothesis that the
Galois representations were self-dual up to a twist. This meant that one should not consider
general automorphic forms on the groupGLn.AQ/ but rather groups of symplectic or orthog-
onal type depending on the parity of n. If one replaced Galois representations over totally
real fields by Galois representations over imaginary CM fields and then further imposed the
condition that the Galois representations are conjugate self-dual, the relevant automorphic
forms should then come from unitary groups. There were two benefits of working with these
hypotheses. First of all, the relevant automorphic representations for unitary groups were,
as with modular forms, associated to cohomology classes on Shimura varieties. In partic-
ular, under the assumption that there existed an auxiliary prime x such that �x was square
integrable, they could be seen inside the “simple” Shimura varieties of type U.n � 1; 1/

considered by Kottwitz [125]. On the other hand, the same Hecke eigenclasses (if not Galois
representations) also came from a compact form of the group and thus inside the coho-
mology of zero-dimensional varieties.27 The advantage of working in this setting is that

25 Clozel’s paper is from 1991 and thus not strictly “post-Fermat” as is the remit of this survey.
However, it can be considered a natural starting point for the “modern” arithmetic theory of
automorphic forms for GL.n/ and so it seems reasonable to mention it here.

26 At least after a twist which is always possible to achieve in practice, see [50, Lemma 4.1.4].
More generally, one can work with unitary similitude groups and consider � with
�_ ' �c ˝ � for suitable characters �.

27 Inside H 0, of course.
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the freeness of MQ over the ring of diamond operators is immediate.28 In the fundamental
paper [50], Clozel, Harris, and Taylor succeeded in overcomingmany of the technical difficul-
ties generalizing the arguments of [171,181] to these representations. Although the argument
in spirit was very much the same, there are a number of points for GL2 where things are
much easier. One representative example of this phenomenon is understanding Taylor–Wiles
primes. While the Galois side generalizes readily, the automorphic side requires many new
ideas and some quite subtle arguments concerning the mod p structure of certain GLn.Qq/-
representations of conductor 1 and conductor q. In order to prove the Sato–Tate conjecture
for a modular form f , it was already observed by Langlands that it sufficed to prove the mod-
ularity of all the symmetric powers of f . However, it turns out that the weaker assumption
that each of these symmetric powers is potentially modular suffices, and by some subterfuge
only the even powers are required [95]. In order to prove potential modularity theorems,
one needs to be able to carry out some version of the p–q switch (Section 5). In order to
do this, one needs a source of motives which both generate Galois representations of the
right shape (conjugate self dual and with distinct Hodge–Tate weights) and yet also come
in positive dimensional families. It turned out that there already existed such motives in the
literature, namely, the so-called Dwork family. However, given the strength of the automor-
phy lifting theorems in [50], considerable effort had to be made in studying the geometry of
the Dwork family to ensure that the p–q switch would produce geometric Galois representa-
tions with the right local properties. These issues were precisely addressed in the companion
paper by Harris, Shepherd-Barron, and Taylor [97]. Taken together, these papers contained
all the ingredients to prove the potential modularity of higher symmetric powers of modu-
lar forms (satisfying a technical square integrable condition at some auxiliary prime) with
one exception. As mentioned earlier, the work of Kisin had simplified the passage from the
minimal case to the nonminimal case—“all” that was required was to produce congruences
between the original form and forms of higher level rather than to compute a precise congru-
ence number as in [181]. However, even applying Kisin’s approach seemed to require Ihara’s
Lemma, and despite several years of effort, the authors of [50]were not able to overcome this
obstacle.29 Here is Michael Harris’ recollection of the process:

In the spring of 1995, I was at Brandeis, Richard was at MIT, and I wanted to
understand the brand new proof of Fermat’s Last Theorem. So I asked Richard if
he would help me learn by collaborating on modularity for higher-dimensional
groups. The collaboration took off a year later, when Richard wrote to tell me
about the Diamond–Fujiwara argument and suggested that we work out the
Taylor–Wiles method for unitary groups. This developed over the next 18 months
or so into the early version of what eventually became the IHES paper with
Clozel. But it had no punch line. I was hoping to work out some non-trivial exam-

28 In more general contexts, the freeness of MQ is closely related to the vanishing of coho-
mology localized at m in all but one degree.

29 The issue remains unresolved to this day.
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ples of tensor product functoriality for GL.n/ � GL.m/, where one of the two
representations was congruent mod l to one induced from a CM Hecke character.
This would have required some numerical verification. In the meantime we got
sidetracked into proving the local Langlands conjecture [100].
The manuscript on automorphy lifting went through several drafts and was cir-
culated; you can still read it on my home page [99]. Genestier and Tilouine [88]

quoted it when they proved modularity lifting for Siegel modular forms. When
Clozel saw the draft he told me we should try to prove the Sato–Tate Conjecture.
Although this was in line with my hope for examples of tensor product functori-
ality, it seemed completely out of reach, because I saw no way to prove residual
modularity of symmetric powers.
When I heard about the Skinner–Wiles paper I came up with a quixotic plan to
prove symmetric power functoriality for Eisenstein representations, using the main
conjecture of Iwasawa theory to control the growth of the deformation rings. This
was in the spring of 2000, at the IHP special semester on the Langlands program,
where I first met Chris Skinner.
One day Chris told me that Richard had invented potential modularity. This led
me to a slightly less hopeless plan to prove potential symmetric power functo-
riality by proving it for 2-dimensional representations congruent to potentially
abelian representations, as in the potential modularity argument. I told Richard
about this idea, probably the day he arrived in Paris. He asked: why apply poten-
tial modularity to the 2-dimensional representation; why not instead apply it to
the symmetric power representations directly? I then replied: that would require
a variation of Hodge structures with a short list of properties: mainly, the cor-
rect hp;q’s and large monodromy groups. We checked that potential modularity
was sufficient for Sato–Tate. We then resolved to ask our contacts if they knew of
VHS with the required properties. The whole conversation lasted about 20 min-
utes.
I asked a well-known algebraic geometer, who said he did not know of any such
VHS. Richard asked Shepherd-Barron, who immediately told him about the
Calabi–Yau hypersurfaces that had played such an important role in the mirror
symmetry program. (And if my algebraic geometer hadn’t wanted to be dismissive,
for whatever reason, he would have realized this as well.) The hp;q’s were fine
but we didn’t know about the monodromy. However, Richard was staying at the
IHES, and by a happy accident so was Katz, and when Richard asked Katz about
the monodromy for this family of hypersurfaces Katz told him they were called the
Dwork family and gave him the page numbers in one of his books.
So within a week or two of our first conversation, we found ourselves needing
only one more result to complete the proof of Sato–Tate. This was Ihara’s lemma,
which occupied our attention over the next five years. In the meantime, Clozel had
written a manuscript on symmetric powers, based on the reducibility mod ell of
symmetric powers. The argument was incomplete but he had several ideas that led
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to his joining the project, and he also hoped to use ergodic theory to prove Ihara’s
lemma. In the summer of 2003 Clozel and I joined Richard in “old” Cambridge
to try to work this out. The rest you know. We finally released a proof conditional
on Ihara’s lemma in the fall of 2005. A few months later Richard found his local
deformation argument, and the proof was complete.

9.3. Taylor’s trick: Ihara avoidance
Shortly after the preprints [50,157] appeared, Taylor [168] found a way to overcome

the problem of Ihara’s lemma. Inspired by Kisin’s formulation of the Taylor–Wiles method
(Section 6.2), Taylor had the idea of comparing two global deformation rings R1 and R2.
Here (for simplicity) the local deformation problems associated to R1 and R2 are formally
smooth at all but a single prime q. At the prime q, however, the local deformation problem
associated to R1 consists of tamely ramified representations where a generator � of tame
inertia has characteristic polynomial .X � 1/n, and for R2 the characteristic polynomial has
the shape .X � �1/ � � � .X � �n/ for some fixed distinct roots of unity �i � 1 mod p. On
the automorphic side, there are two patched modules H1 and H2, and there is an equal-
ity H1=p D H2=p. The local deformation ring R1

q associated to R1 at q is reducible and
has multiple components in the generic fiber, although the components in characteristic zero
are in bijection to the components in the special fiber. On the other hand, the local deforma-
tion ring associated toR2 at q consists of a single component, and so using Kisin’s argument
one deduces that H2 has full support. Now a commutative algebra argument using the iden-
tity H1=p D H2=p and the structure of R1

q implies that H1 has sufficiently large support
over R1, enabling one to deduce the modularity of every Qp-valued point of R1.30

9.4. The Sato–Tate conjecture, part II
After Taylor’s trick, one was almost in a position to complete the proof of Sato–Tate

for all classical modular forms. A few more arguments were required. One was the tensor
product trick due to Harris which enabled one to pass from conjugate self-dual motives with
weights in an arithmetic progression to conjugate self-dual motives with consecutive Hodge–
Tate weights by a judicious twisting argument using CM characters. A second ingredient was
the analysis of the ordinary deformation ring by Geraghty [89]. One of the requirements of
the p–q trick was the condition that certain moduli spaces (the Dwork family in this case)
had points over various local extensions E of Qp , in order to construct a motive M over
a number field F with Fv D E for vjp. For the purposes of modularity lifting, one wants
strong control over the local deformation ring at p, and the choice of local deformation ring
is more or less forced by the geometric properties of the p-adic representations associated
to M . One way to achieve this would be to work in the Fontaine–Laffaille range where the

30 Taylor’s argument proves theorems of the form RŒ1=p�red D TŒ1=p� rather than R D T.
This is still perfectly sufficient for proving modularity lifting results, but not always other
interesting corollaries associated to R D T theorems like finiteness of the corresponding
adjoint Selmer groups (though see [2,133]).
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local deformation rings were smooth. But this requires both that M is smooth at p and that
the ramification degree e of E=Qp is one. It is not so clear, however, that the Dwork family
contains suitable points (for a fixed residual representation �) which lie in any unramified
extension of Qp . What Geraghty showed, however, was that certain ordinary deformation
rings31 were connected over arbitrarily ramified bases. The final piece, however, was the
construction of Galois representations for all conjugate self-dual regular algebraic cuspidal�
without the extra condition that �q was square integrable for some q. This story merits it own
separate discussion; suffice to say that it required the combined efforts of many people and
the resolution of many difficult problems, not least of which was the fundamental lemma by
Laumon and Ngô [128, 136] (see also the Paris book project [49, 93], the work of Shin [158],
and many more references which if I attempted to make complete would weigh down the
bibliography and still contain grievous omissions).

9.5. Big image conditions
The original arguments in [171,181] required a “big image” hypothesis, namely that �

was absolutely irreducible after restriction to the Galois group of Q.�p/. Wiles’ argument
also required the vanishing of certain cohomology groups associated to the adjoint repre-
sentation of the image of �. These assumptions had natural analogues in [50] (so-called
“big image” hypotheses) although they were quite restrictive, and it wasn’t clear that they
would even apply to most residual representations coming from some irreducible compatible
family. In the setting of 2-dimensional representations, the Taylor–Wiles hypothesis guaran-
tees the existence of many primes q such that q � 1 mod p and such that �.Frobq/ has
distinct eigenvalues. This ensures, for example, that there cannot be any Steinberg deforma-
tions at q because the ratio of the eigenvalues of any Steinberg deformation must be q. In
dimension n, one natural way to generalize this might be to say that �.Frobq/ has distinct
eigenvalues, although this is not always possible to achieve for many irreducible representa-
tions �. A weaker condition is that �.Frobq/ has an eigenvalue ˛ with multiplicity one. For
such q, there will be no deformations which are unipotent on inertia at q for which the gen-
eralized ˛ eigenspace is not associated to a 1-dimensional block. The translation of this into
an automorphic condition onUq-eigenvalues is precisely what is done in [50] (there are addi-
tional technical conditions on Frobq with respect to the adjoint representation ad.�/ which
we omit here). In [173], however, Thorne finds a way to allow �.Frobq/ to have an eigen-
value ˛ with higher multiplicity, and yet still cut out (integrally) the space of automorphic
forms whose Galois representations decompose at q as an unramified representation plus a
one dimensional representation which is tamely ramified of p-power order. This technical
improvement is very important because (as proved in the appendix by Guralnick, Herzig,
Taylor, and Thorne [173]) it imposes no restrictions on � when p � 2n C 1 beyond the con-

31 In Geraghty’s setting, the residual representations � were locally trivial. Hence the defini-
tion of “ordinary” was not something that could be defined on the level of Artinian rings,
and the construction (as with Kisin’s construction of local deformation rings associated to
certain types) is therefore indirect.
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dition that � is absolutely irreducible after restriction to GQ.�p/. This improvement is very
useful for applications.

9.6. Potentially diagonalizable representations
After the proof of Sato–Tate for modular forms, Barnet-Lamb, Gee, and Geraghty

turned their attention to proving the analogous theorem for Hilbert modular forms of regular
weight. The methods developed so far were well suited both to representations � which were
either ordinary or when � was not ordinary but still Fontaine–Laffaille. (The latter implies
that �jGQp

is absolutely irreducible of some particular shape.) For a modular form over Q,
one easily sees that � takes one of one of these forms for any sufficiently large p. For Hilbert
modular forms, one certainly expects that the ordinary hypothesis should hold for all vjp

and infinitely many p, but this remains open. The difficulty arises when, for some prime p

(that splits completely, say) the p-adic representation is ordinary at some vjp but nonordi-
nary other vjp. The reason that this causes issues is that, when applying the Moret-Bailly
argument in the p–q switch, one wants to avoid any ramification at p for the nonordinary
case, and yet have large ramification at the ordinary case to make � locally trivial, and these
desires are not compatible. The resolution in [10] involved a clever refinement of the Harris
tensor product trick. These ideas were further refined in [11] and led to the concept of a poten-
tially diagonalizable representation � W GE ! GLn.Qp/ for some finite extension of E=Qp .
Recall from Section 6.2 that, in the modified form of the Taylor–Wiles method, proving
modularity of some lift of � often comes down to showing the existence of a modular lift
lying on a smooth point of the corresponding component of the generic fiber of Rloc. In light
of Taylor’s Ihara avoidance trick (Section 9.3), the difficulty in this problem is mostly at the
prime p, and in particular the fact that one knows very little about the components of general
Kisin potentially crystalline deformation rings. A potentially diagonalizable representation
is one for which, after some finite (necessarily solvable!) extension E 0=E, the representa-
tion �jG0

E
is crystalline and lies on the same generic irreducible component as a diagonal

representation. This notion has a number of felicitous properties. First, it includes Fontaine–
Laffaille representations and ordinary potentially crystalline representations. Second, it is
clearly invariant under base change. Third, it is compatible with the tensor product trick of
Harris. These features make it supremely well adapted to the current forms of the Taylor–
Wiles method. By combining this notion with methods of [10,12], as well as extensive use of
Khare–Wintenberger lifting (Section 8.2), Barnet–Lamb, Gee, Geraghty, and Taylor in [11]

proved the potential automorphy of all conjugate self-dual irreducible32 odd33 compatible
systems of Galois representations over a totally real field.

32 One variant proved shortly thereafter by Patrikis–Taylor [140] replaced the irreducibility
condition by a purity condition (which is automatically satisfied by representations coming
from pure motives).

33 Although there is no longer a nontrivial complex conjugation in the Galois group of a CM
field, there is still an oddness condition related to the conjugate self-duality of the represen-
tation and the fact that there are two ways for an irreducible representation to be self-dual
(orthogonal and symplectic).
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9.7. Even Galois representations
The Fontaine–Mazur conjecture for geometric Galois representations � W GQ !

GL2.Qp/ predicts that, up to twist, either � is modular or � is even with finite image. The
methods of [171,181] required the assumption that � was modular and so a priori the assump-
tion that � was odd (at least when p > 2). Nothing at all was known about the even case
before the papers [34,35] in which a very simple trick made the problem accessible to modu-
larity lifting machinery under the assumption that the Hodge–Tate weights are distinct. The
punch line is that, for any CM field F=F C, the restriction Sym2.�/ W GF ! GL3.Qp/ is
conjugate self-dual and no longer sees the “evenness” of �.34 Hence one can hope to prove
it is potentially modular for some CM extension L=LC, and then by cyclic base change [5]

potentially modular for the totally real field LC. But Galois representations coming from
regular algebraic automorphic forms for totally real fields will not be even,35 and thus one
obtains a contradiction. These ideas are already enough to deduce the main result of [34]

directly from [11], although in contrast [35] uses (indirectly) the full strength of the p-adic
local Langlands correspondence via theorems of Kisin [120]. The papers [34,35] still fall short
of completely resolving the Fontaine–Mazur in this case even for p > 7, since there remain
big image hypotheses on �. On the other hand, this trick has nothing to say about the case
when the Hodge–Tate weights are equal (see Section 12).

9.8. Modularity of higher symmetric powers
Another parallel development in higher dimensions was the extension of Skinner–

Wiles (Section 3) to higher dimensions. Many of the arguments of Skinner–Wiles relied
heavily on the fact that any proper submodule of a 2-dimensional representation must have
dimension 1, and one-dimensional representations are very well understood by class field
theory. Nonetheless, in [174], Thorne proved a residually reducible modularity theorem
for higher dimensional representations. In order to overcome the difficulty of controlling
reducible deformations, he imposed a Steinberg condition at some auxiliary prime. Although
this is a definite restriction, it does apply (for example) to the Galois representation coming
from the symmetric power of a modular form which also satisfies this condition. In a
sequence of papers [51–53], Clozel and Thorne applied this modularity lifting theorem to
prove new cases of symmetric power functoriality (see also the paper of Dieulefait [74]).
A key difficulty here is again the absence of Ihara’s lemma in order to find automorphic
forms with the correct local properties. Very recently (using a number of new ideas), Newton
and Thorne [134,135] were able to (spectacularly!) complete this program and prove the full
modularity of all symmetric powers of all modular forms.

34 The representation � itself restricted to GF will not be odd in the required sense—one
exploits the fact here that 3 is odd whereas symplectic representations are always even
dimensional.

35 I managed to twist Taylor’s arm into writing the paper [169] which proved this for odd n,
which sufficed for my purposes where n was either 3 or 9. This is now also known for gen-
eral n, see Caraiani–Le Hung [44].
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10. Beyond self-duality and Shimura varieties

All the results discussed so far—with the exception of those discussed in Sec-
tion 4—apply only to Galois representations which are both regular and satisfy some form
of self-duality. Moreover, they all correspond to automorphic forms which can be detected
by the (étale) cohomology of Shimura varieties. Once one goes beyond these representations,
many of the established methods begin to break immediately.36

An instructive case to consider is the case of 2-dimensional geometric Galois rep-
resentations of an imaginary quadratic field F with distinct Hodge–Tate weights. The cor-
responding automorphic forms for GL2.AF / contribute to the cohomology of locally sym-
metric spaces X which are arithmetic hyperbolic 3-manifolds.37 These spaces are certainly
not algebraic varieties and their cohomology is hard to access via algebraic methods. One of
the first new questions to arise in this context is the relationship between torsion classes
and Galois representations. Some speculations about this matter were made by Elstrodt,
Grunewald, and Mennicke at least as far back as 1981 [75], but the most influential conjec-
ture was due to Ash [6], who conjectured that eigenclasses in the cohomology of congruence
subgroups ofGLn.Z/ overFp (which need not lift to characteristic zero) should give rise ton-
dimensional Galois representations over finite fields. Later, conjectures were made [7, 8] in
the converse conjecture in the spirit of Serre [156] linking Galois representations to classes in
cohomology modulo p. Certainly around 2004, however, it was not at all clear what exactly
one should expect the landscape to be,38 and so it was around this time I decided to start
thinking about this question39 in earnest. I became convinced very soon (for aesthetic rea-
sons if not anything else) that if one modified T to be the ring of endomorphisms acting on
integral cohomology (so that it would see not only the relevant automorphic forms but also
the torsion classes) then there should still be an isomorphismR D T. Moreover, this equality
would not only be a form of reciprocity which moved beyond the conjecture linking motives
to automorphic forms, but it suggested that the integral cohomology of arithmetic groups
(including the torsion classes) were themselves the fundamental object of interest. Various

36 I should warn the reader that this section and the next (even more than the rest of this paper)
is filtered through the lens of my own personal research journey—caveat lector!

37 Already by 1970, Serre (following ideas of Langlands) was trying to link Mennicke’s
computation that GL2.ZŒ

p
�109�/ab is infinite to the possible existence of elliptic curves

over Q.
p

�109/ with good reduction everywhere [60, Jan 14, 1970].
38 I recall conversations with a number of experts at the 2004 Durham conference, where

nobody seemed quite sure even what the dimension of the ordinary deformation ring R

of a 3-dimensional representation � W GQ ! GL3.Fp/ should be. Ash, Pollack, and
Stevens had computed numerical examples where a regular algebraic ordinary cuspidal
form for GL3.AQ/ not twist-equivalent to a symmetric square did not appear to admit
classical deformations. (I learnt about this example from Stevens at a talk at Banff in
December 2003.) This would be easily explained if R had (relative) dimension 0 over Zp

but be more mysterious otherwise.
39 One great benefit to me at the time of thinking about Galois representations over imaginary

quadratic fields was that it did not require me to understand the geometry of Shimura vari-
eties which I have always found too complicated to understand. The irony, of course, is that
the results of [4,17] ultimately rely on extremely intricate properties of Shimura varieties.
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developments served only to confirm this point of view. Inmy paper withMazur [40], we gave
some theoretical evidence for why ordinary families of Galois representations of imaginary
quadratic fields might on the one hand be positive dimensional and explained completely by
torsion classes and yet not contain any classical automorphic points at all. During the pro-
cess of writing [36], Dunfield (numerically) compared the torsion classes in the cohomology
of inner forms of GL2 and the data was in perfect agreement with a conjectural Jacquet–
Langlands correspondence for torsion (later taken up in joint work with Venkatesh [41]).
Emerton and I had the idea of working with completed cohomology groups both to con-
struct Galois representations and even possibly to approach questions of modularity. The
first idea was to exploit the well-known relationship between the cohomology of these man-
ifolds and the cohomology of the boundary of certain Shimura varieties. We realized that if
we could control the codimension of the completed cohomology groups over the noncom-
mutative Iwasawa algebra, the Hecke eigenclasses would be forced to be seen by eigenclasses
coming from the middle degree of these Shimura varieties where one had access to Galois
representations.40 On the automorphy lifting side, we had even vaguer ideas [37, §1.8]41 on
how to proceed. A different (and similarly unsuccessful) approach42 was to work with ordi-
nary deformations over a partial weight space for a split prime p D vw in an imaginary
quadratic field F . That is, deformations of � which had an unramified quotient at v and w

but with varying weight at v and fixed weight at w. Here the yoga of Galois deformations
suggested that R should be finite flat over W.k/ in this case (and even a complete inter-
section). Moreover, one had access to T using an overlooked43 result of Hida [103], and in
particular one could deduce that T has dimension at least one. If one could show that T
was flat over W.k/, then one could plausibly apply (assuming the existence of Galois repre-
sentations) the original argument of [171, 181]. The flatness of T, however, remains an open
problem.44

10.1. The Taylor–Wiles method when l0 > 0, part I: Calegari–Geraghty
Shortly before (and then during) the special year onGalois representations at the IAS

in 2010–2011, I started to work with Geraghty in earnest on the problem of proving R D T
in the case of imaginary quadratic fields, assuming the existence of a surjection R ! T.
A computation in Galois cohomology shows that the expected “virtual” dimension of R

over W.k/ should be �1, and hence the patched module M1 should have codimension 1

40 Unfortunately, these conjectures [37, Conj. 1.5] remain all open in more or less all cases
except for Scholze’s results in the case of certain Shimura varieties [155, Cor. 4.2.3].

41 Pan’s remarkable paper [137] turned some of these pipe dreams into reality.
42 This is taken from my 2006 NSF proposal, and I believe influenced by my conversations

with Taylor at Harvard around that time.
43 One should never overlook results of Hida. I only learnt about this paper when Hida pointed

it out to me (with a characteristic smile on his face) after my talk in Montreal in 2005. I was
pleased at least that the idea that these families were genuinely nonclassical was not antici-
pated either in [103] or in Section 4 of Taylor’s thesis [170].

44 One might even argue that there is no compelling argument to believe it is true—the
problem is analogous to the vanishing of the �-invariant in Iwasawa-theoretic settings.
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over the ring of diamond operators S1. We realized this was a consequence of the fact
that, after localizing the cohomology at a non-Eisenstein maximal ideal, the cohomology
should be nonzero in exactly two degrees. More precisely, patching the presentations of these
SN -modules would result in a balanced presentation ofM1 as an S1-module with the same
(finite) number of generators as relations. We then realized that the same principle held more
generally for n-dimensional representations over any number field. In characteristic zero,
the localized cohomology groups were nonzero exactly in a range Œq0; q0 C l0� (with q0

and l0 as defined in [26]) where �l0 coincided with the expected virtual dimension of R

over W.k/ coming from Galois cohomology. We could thus show—assuming the localized
torsion cohomology also vanished in this range—that by patching complexesPQ (rather than
modules MQ), one arrives at a complex P1 of free S1 modules in degrees Œq0; q0 C l0�.
Because the ring R1 of dimension dimR1 D .dimS1/ � l0 acts by patching on H �.P1/,
a simple commutative algebra lemma then shows that M1 D H �.P1/ has codimension l0

over S1 and must be concentrated in the final degree. In particular, the Taylor–Wiles method
(as modified by Diamond) could be happily adapted to this general setting.45 Moreover, the
arguments were compatible with all the other improvements, including Taylor’s Ihara avoid-
ance argument amongst other things.46 We also realized that the same idea applied to Galois
representations coming from the coherent cohomology of Shimura varieties even when the
corresponding automorphic forms were not discrete series. While our general formulation
involved a number of conjectures we considered hopeless, the coherent case had at least one
setting in which many more results were available, namely the case of modular forms of
weight one, where the required vanishing conjecture was obvious, and where we were able
to establish the existence of the required map R ! T with all the required local proper-
ties by direct arguments. Although the state of knowledge concerning Galois representations
increased tremendously between the original conception of [38] and its final publication, by
early 2016 it still seemed out of reach to make any of the results in [38] unconditional.

10.2. Construction of Galois representations, part II
Before one can hope to prove R D T theorems, one needs to be able to associate

Galois representations to the corresponding automorphic forms. There are two contexts in
which one might hope to make progress. The first is in situations where the automorphic
forms contribute to the Betti cohomology of some locally symmetric space—for exam-
ple, tempered algebraic cuspidal automorphic representations for GLn.AF / and any F . The
second is in situations where the automorphic forms contribute to the coherent cohomology

45 David Hansen came up with a number of these ideas independently [94].
46 These methods only prove RŒ1=p�red D TŒ1=p�red, of course. In situations where T ˝ Q D 0,

the methods of [38] in the minimal case prove not only that R D T but also that (both) rings
are complete intersections. Moreover, one also has access to level raising (on the level of
complexes) and Ihara’s lemma [41, §4], and I tried for some time (unsuccessfully) to adapt
the original minimal ) nonminimal arguments of [181] to this setting. There certainly
seems to be some rich ideas in commutative algebra in these situations to explore, see, for
example, recent work of Tilouine–Urban [175].
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of some Shimura variety. Here the first and easiest case corresponds to weight one modular
forms, where the Galois representations were first constructed by Deligne and Serre [69].

In work of Harris–Soudry–Taylor [98,165], Galois representations were constructed
for regular algebraic forms for GL2.AF / for an imaginary quadratic field F and satisfying a
further restriction on the central character. Harris, Soudry, and Taylor exploited (more or less)
the fact that the automorphic induction of such forms are self-dual (although not regular) and
still contribute to coherent cohomology, so one can construct Galois representations using a
congruence argument as in the paper of Deligne and Serre [69]. On the other hand, this does
not prove the expected local properties of the Galois representation at vjp.

It was well-known for many years that the Hecke eigenclasses associated to regular
algebraic cuspidal automorphic forms for GLn.AF / for a CM field F could be realized as
eigenclasses coming from the boundary of certain unitary Shimura varieties of type U.n;n/.
It was, however, also well known that the corresponding étale cohomology classes did not
realize the desired Galois representations.47 Remarkably, this problem was completely and
unexpectedly resolved in 2011 in [96] by Harris–Lan–Taylor–Thorne. Richard Taylor writes:

For [96] I knew that the Hecke eigenvalues we were interested in contributed to
Betti cohomology of U.n; n/. The problem was to show that they contributed to
overconvergent p-adic cusp forms. I was convinced on the basis of Coleman’s
paper “classical and overconvergent modular forms” [54] that this must be so.
I can’t now reconstruct exactly why Coleman’s paper convinced me of this, and it
is possible, even probable, that my reasoning didn’t really make any sense. How-
ever, it was definitely this that kept me working at the problem, when we weren’t
really getting anywhere.

Amazingly, this breakthrough immediately inspired the next development:

10.3. Construction of Galois representations, part III: Scholze
In [155], Scholze succeeded in constructing Galois representations associated to tor-

sion classes in the setting of GLn.AF / for a CM field F . Scholze had the idea after seeing
some lectures on [96]:

During a HIM trimester at Bonn, Harris and Lan gave some talks about their con-
struction of Galois representations. At the time, I had some ideas in my head
that I didn’t have any use for: That Shimura varieties became perfectoid at infi-
nite level, and that there is a Hodge–Tate period map defined on them. The only
consequence I could draw from this were certain vanishing results for completed
cohomology as conjectured in your work with Emerton; so at least I knew that the

47 For a more basic example of what can go wrong, note that the Hecke eigenvalues of Tl

on H 0.X; Qp/ of a modular curve are 1 C l , which corresponds to the Galois representa-
tion Qp ˚ Qp.1/. However, only the piece Qp occurs inside H 0.
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methods were able to say something nontrivial about torsion classes in the coho-
mology. After hearing Harris’ and Lan’s talks, I was trying to see whether these
ideas could help in extending their results to torsion classes. After a little bit of
trying, I found the fake-Hasse invariants, and then it was clear how the argument
would go.

Even after this breakthrough, Scholze’s construction still fell short of the conjectures
in [38] in two ways. The first was that the Galois representation (ignoring here issues of
pseudorepresentations) was valued not in T but in T=I for some ideal I of fixed nilpotence.
This is not a crucial obstruction to the methods of [38]. The second issue, however, was that
the Galois representations were constructed (in the end) via p-adic congruences, and thus
one did not have control over their local properties at p which are crucial for modularity
applications.

10.4. The Taylor–Wiles method when l0 > 0, part II: DAG
Although not directly related to new R D T theorems, one new recent idea in the

subject has been the work of Galatius–Venkatesh [86] on derived deformation rings in the
context of Venkatesh’s conjectures over Z. This work (in part) reinterprets the arguments
of [38] in terms of a derived Hecke action. The authors define a derived version R of R

with �0.R/ D R. Under similar hypotheses to [38], the higher homotopy groups of R are
shown to exist precisely in degrees 0 to l0. One viewpoint of the minimal case of [38] is that
one constructs a (highly noncanonical) formally smooth ring R1 of dimension n � l0 with
an action of a formally smooth ring S1 of dimension n such that the minimal deformation
ring R is R1 ˝S1

S1=a for the augmentation ideal a. Moreover, the ring R is identified
both with the action of T on the entire cohomology and simultaneously on the cohomol-
ogy in degree q0 C l0. On the other hand, when l0 > 1, the intersection of R1 and S1=a

over S1 is never transverse,48 and homotopy groups of the derived intersection recover the
cohomology in all degrees (under the running assumption, one also knows that the patched
cohomology is free). On the other hand, there is a more canonical way to define R, namely
to take the unrestricted global deformation ring Rglob (which has no derived structure) and
intersect it with a suitable local crystalline deformation ring as algebras over the unrestricted
local deformation ring. The expected dimension of this intersection is also �l0 over W.k/,
although this is not so clear from this construction. Hence [86] can be viewed as giving an
intrinsic definition of R independent of any choices of Taylor–Wiles primes and showing
that its homotopy groups are related (as with R1 ˝L

S1
S1=a) to the cohomology.49 These

48 When l0 D 1, the intersection can be transverse when R is a finite ring. In this setting, the
relevant cohomology is also nonzero and finite in exactly one degree. On the other hand,
as soon as Hom.R; Qp/ is nonzero (for example, when there exists an associated motive)
and l0 > 0, the intersection will always be nontransverse.

49 There are some subtleties as to what the precise statement should be in the presence of
global congruences, but already this author gets confused at the best of times between
homology and cohomology, so I will not try to unentangle these issues here.
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ideas have hinted at a closer connection between the Langlands program in the arithmetic
case and the function field case than was previously anticipated,50 see, for example, the work
of Zhu [182].

11. Recent progress

11.1. Avoiding conjectures involving torsion I: the 10-author paper
As mentioned in Section 10.3, even after the results of [155] there remained a signif-

icant gap to make the results of [38] unconditional, namely, the conjecture that these Galois
representations had the right local properties at p and a second conjecture predicting the
vanishing of (integral) cohomology localized at a nonmaximal ideal m outside a certain
precise range (corresponding to known results in characteristic zero). It should be noted
that the second conjecture was still open (in all but the easiest cases) in the simpler setting
of Shimura varieties. The first hints that one could possibly make progress on this second
conjecture (at least for Shimura varieties) was given in an informal talk by Scholze in Bel-
lairs51 in 2014. This very quickly led to a long term collaboration between Scholze and
Caraiani [45,46], which Caraiani describes as follows:

At the Barbados conference in May 2014, Peter gave a lecture on how one might
compute the cohomology of compact unitary Shimura varieties with torsion coef-
ficients. The key was to have some control for R�HT �F` restricted to any given
Newton stratum. He was expressing this in terms of a conjecture that had grown
out of his work on local Langlands using the Langlands–Kottwitz method. After
his talk, I went to ask him some questions about this conjecture and it sounded
like there were some things that still needed to be made precise. He asked if I
wanted to help him make his strategy work. After some hesitation (because I didn’t
think I knew enough or was strong enough to work with him), I accepted. Later
that evening, I suggested switching from the Langlands–Kottwitz approach to
understanding R�HT �F` to an approach more in the style of Harris–Taylor. This
relies on the beautiful Mantovan product formula that describes Newton strata
in terms of Rapoport–Zink spaces and Igusa varieties. Maybe something like this
could help illuminate the geometry of the Hodge–Tate period morphism? Peter

50 Not anticipated by many people, at least; Michael Harris has been proselytizing the exis-
tence of a connection for quite some time.

51 I was invited to give the lecture series in Bellairs after Matthew Emerton did not respond to
his emails. Through some combination of the appeal of my own work and the fact that the
lectures were given on a beach in Barbados, I managed to persuade Patrick Allen, George
Boxer, Ana Caraiani, Toby Gee, Vincent Pilloni, Peter Scholze, and Jack Thorne to come,
all of whom are now my coauthors, and all of whom (if they were not already at the time)
are now more of an expert in this subject than I am. The thought that I managed to teach any
of them something about the subject is pleasing indeed.
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immediately saw that this should work and we made plans for me to visit Bonn
that summer to continue the collaboration.
As Peter and I were finishing writing up the compact case, it became clear to us
that the vanishing theorem would give a way to construct Galois representations
associated to generic mod p classes that preserves the desired information at p.
Peter started thinking about the non-compact case and how that might apply to
the local-global compatibility needed for Calegari–Geraghty. I remember dis-
cussing this with him at the Clay Research conference in Oxford in September
2015. By spring 2016, Richard started floating the idea of a working group on
Calegari–Geraghty and found out that Peter and I had an approach to local-
global compatibility. Around June 2016, Richard suggested to me to organize the
working group with him. Peter was very excited about the idea, but wasn’t sure
he would be able to attend for family reasons. In the end, we found a date in late
October 2016 that worked for everyone.

Theworking groupmet under the auspices of the first “emerging topics” workshop52

at the IAS to determine the extent to which the expected consequences could be applied
to modularity lifting: A clear stumbling point was the vanishing of integral cohomology
after localization outside the range of degrees Œq0; q0 C l0�. On the other hand, Khare and
Thorne had already observed in [112] by a localization argument that this could sometimes
be avoided in certain minimal cases. It was this argument we were able to modify for the
general case, thus avoiding the need to prove the (still open) vanishing conjectures for torsion
classes.53 The result of the workshop was a success beyond what we could have reasonably
anticipated—we ended up with more or less54 the outline of a plan to prove all the main
modularity lifting theorems which finally appeared in [4], namely the Ramanujan conjecture
for regular algebraic automorphic forms for GL2.AF / of weight zero for any CM field F ,
and potential modularity (and the Sato–Tate conjecture) for elliptic curves over CM fields.

There have already been a number of advancements beyond [4] including in particu-
lar by Allen, Khare, and Thorne [3] proving the modularity of many elliptic curves over CM

52 Although later described as a “secret” workshop, it was an “invitation-only working group.”
53 I regard my main contribution to [4] as explaining how the arguments in [38] using Taylor’s

Ihara avoidance (Section 9.3) were incompatible with any characteristic zero localization
argument in the absence of (unknown) integral vanishing results in cohomology. The objec-
tion (even in the case l0 D 0) was that it was easy to construct complexes P 1 and P 2 of
free S1 modules so that the support of H �.P 1=p/ and H �.P 2=p/ coincided (as they
must) but that (for example) H �.P 1/Œ1=p� was zero even though H �.P 2/Œ1=p� was not.
The objection to this objection, however, which was resolved during the workshop (and
which to be clear I played no part in resolving!) is to not merely to compare the support
of the complexes P i =p but to consider the entire complex in the derived category. In
particular, even (say) for a finite Zp-module M , the module MŒ1=p� is nonzero exactly
when M ˝L Fp has nonzero Euler characteristic.

54 It is worth emphasizing that an incredible amount of work was required to turn these ideas
into reality, and that this intellectual effort was by and large carried out by the younger
members of the collaboration.
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fields and a potential automorphy theorem for ordinary representations by Qian [144]. It does
not seem completely implausible that results of the strength of [11] for n-dimensional regular
Galois representations of GQ are within reach.

11.2. Avoiding conjectures involving torsion II: abelian surfaces
A second example that Geraghty and I had considered during the 2010–2011 IAS

special year was the case of abelian surfaces, corresponding to low (irregular) weight Siegel
modular forms of genus g D 2. It was clear that a key difficulty was proving the vanish-
ing of H 2.X; !2/m where X was a (compactified) Siegel 3-fold with good reduction at p,
where m is maximal ideal of the Hecke algebra corresponding to an absolutely irreducible
representation, and where !jY D det���1

A=Y
on the open moduli space Y � X admitting

a corresponding universal abelian surface A=Y . In other irregular weights (correspond-
ing to motives with Hodge–Tate weights Œ0; 0; k � 1; k � 1� for k � 4) the vanishing of
the corresponding cohomology groups was known by Lan and Suh [126]. The vanishing
ofH 2.X;!2/m was more subtle, however, because the corresponding group does not vanish
in general before localization in contrast to the previous cases. In [39], we proved a minimal
modularity theorem for these higher weight representations and a minimal modularity the-
orem in the abelian case contingent on the vanishing conjecture above which we did not
manage to resolve (and which remains unresolved). I finished and then submitted the paper
after I had moved to Chicago and Geraghty had moved to Facebook in 2015. I then started
working with Boxer and Gee55 on this vanishing question under certain supplementary local
hypotheses. (By this point, Galois representations associated to torsion classes in coherent
cohomology had been constructed by Boxer [16] and Goldring–Koskivirta [90].) But then
in November of 2016 (one week after the IAS workshop!), Pilloni’s paper on higher Hida
theory [142] was first posted. It was apparent to us that Pilloni’s ideas would be extremely
useful, and the four of us began a collaboration almost immediately. Just as in [4], we were
ultimately able to avoid proving any vanishing conjectures. However, unlike [4], the way
around this problem was not purely by commutative algebra, but instead by working with
ideas from [142]. Namely, instead of working with the cohomology of the full Siegel modu-
lar variety X , one could work with the coherent cohomology of a certain open variety of X

with cohomological dimension one whose (infinite dimensional) cohomology could still be
tamed using the methods of higher Hida theory [142] in a way analogous to how Hida theory
controls the (infinite dimensional) cohomology of the affine variety (with cohomological
dimension zero) corresponding to the ordinary locus. Generalizing this to a totally real field,
one could then combine these ideas with the Taylor–Wiles method as modified in [38] to

55 George Boxer had also arrived at Chicago in 2015, and was collaborating with Gee on
companion form results for Siegel modular forms, with the hope (in part) of deducing the
modularity of abelian surfaces from Serre’s conjecture for GSp4 in a manner analogous
to the deduction by of the Artin conjecture from Serre’s conjecture for GL2 in [110, 114].
They usually worked together at Plein Air cafe. Since I had thought about similar questions
with Geraghty and frequently went to Plein Air for 6 oz cappuccinos, it was not entirely
surprising for us to start working together.
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prove the potential modularity of abelian surfaces over totally real fields [17]. This coinci-
dentally gives a second proof of the potential modularity of elliptic curves over CM fields
proven in [4]. (The papers [4] and [17] both were conceived of and completed within a week
or so of each other.)

12. The depths of our ignorance

Despite what can reasonably be considered significant progress in proving many
cases of modularity since 1993, it remains the case that many problems appear just as hope-
less as they did then.56 Perhaps most embarrassing is the case of even Galois represen-
tations GQ ! GL2.C/ with nonsolvable image (equivalently, projective image A5). For
example, we cannot establish the Artin conjecture for a single Galois representation whose
image is the binary icosahedral group SL2.F5/ of order 120. The key problem is that the
automorphic forms (Maass forms with eigenvalue � D 1=4 in this case) are very hard to
access—given an even (projective) A5 Galois representation, we do not even know how to
prove that there exists a corresponding Maass form with the right Laplacian eigenvalue, let
alone onewhose Hecke eigenvalues correspond to the Galois representation.57 Inmanyways,
we have made no real progress on this question. The case of curves of genus g > 2 whose
Jacobians have no extra endomorphisms seems equally hopeless. One can only take solace
in the fact that the Shimura–Taniyama conjecture seemed equally out of reach before Wiles’
announcement in Cambridge in 1993.
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