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Abstract

The evolution of a gas can be described by different models depending on the observation
scale. A natural question, raised by Hilbert in his sixth problem, is whether these models
provide consistent predictions. In particular, for rarefied gases, it is expected that con-
tinuum laws of kinetic theory can be obtained directly from molecular dynamics governed
by the fundamental principles of mechanics.
In the case of hard sphere gases, Lanford [46] showed that the Boltzmann equation emerges
as the law of large numbers in the low density limit, at least for very short times. The goal
of this survey is to present recent progress in the understanding of this limiting process,
providing a complete statistical description.
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Figure 1

At time t , the hard-sphere system is described by the positions .x"
k
.t//k�N and the velocities .v"

k
.t//k�N of the

N particles. Particles move in straight lines and when two particles touch each other at distance " > 0 (the
diameter of the spheres), they are scattered according to elastic reflection laws. The scattering rules, mapping the
precollisional velocities .v"

i ; v"
j / to the postcollisional velocities .v"

i
0; v"

j
0/, are determined in terms of the relative

position ! D .x"
i .�/ � x"

i .�//=" of the particles at the collision time � . The collisions preserve the total
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1. Aim: providing a statistical picture of dilute gas

dynamics

1.1. A very simple physical model
Even though at the time Boltzmann published his famous paper [17], the atom-

istic theory was still dismissed by some scientists, it is now well established that matter
is composed of atoms, which are the elementary constituents of all solid, liquid, and gaseous
substances. The particularity of dilute gases is that their atoms are very weakly bound and
almost independent. In other words, there are very few constraints on their geometric arrange-
ment because their volume is negligible compared to the total volume occupied by the gas.

If we neglect the internal structure of atoms (consisting of a nucleus and electrons)
and their possible organization into molecules, we can represent a gas as a large system of
correlated interacting particles. We will also neglect the effect of long range interactions and
assume strong interatomic forces at very short distance. Each particle moves freely most of
the time and occasionally collides with some other particle leading to an almost instantaneous
scattering. The simplest example of such a model consists in assuming that the particles are
identical tiny balls of unit mass interacting only by contact (see Figure 1). We then speak of
a gas of hard spheres. All the results we will present should nevertheless extend to isotropic,
compactly supported stable interaction potentials [57,63].

This microscopic description of a gas is daunting because the number of particles
involved is extremely large, the individual size of these particles is tiny (of diameter " � 1)
and therefore positions are very sensitive to small spatial shifts (see Figure 2). In practice,
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Figure 2

Particles are very small (of diameter " � 1) and therefore the dynamics is very sensitive to small spatial shifts. In
the first case depicted above, two particles with initial positions x1; x2 and velocities v1; v2 collide and are
scattered. In the second case, by shifting the first particle by a distance " in the direction En, the two particles no
longer collide and they move in straight lines. Thus a perturbation of order " of the initial conditions can lead to
very different trajectories.

this model is not efficient for making theoretical predictions, and numerical methods are
often in favor of Monte Carlo simulations. The question we would like to address here is a
more fundamental one, namely the consistency of this (simplified) atomic description with
the kinetic or fluid models used in applications. This question was formalized by Hilbert
at the ICM in 1900, in his sixth problem: “Boltzmann’s work on the principles of mechan-
ics suggests the problem of developing mathematically the limiting processes, there merely
indicated, which lead from the atomistic view to the laws of motion of continua.”

The Boltzmann equation, mentioned by Hilbert and which we will present in more
detail later, expresses that the distribution of particles evolves under the combined effect of
free transport and collisions. For these two effects to be of the same order of magnitude,
a simple calculation shows that, in dimension d � 2, the number of particles N and their
diameter size " must satisfy the scaling relation N"d�1 D O.1/, the so-called Boltzmann–
Grad scaling [40]. Indeed, the regime described by the Boltzmann equation is such that the
mean free path, namely the average distance covered by a particle traveling in straight line
between two collisions, is of order 1. Thus a typical particle trajectory should span a tube
of volume 1 � "d�1 between two collisions. This means that, on average, this tube should
intersect the position of one of the other .N � 1/ particles (see Figure 3). Note that in this
regime the total volume occupied by the particles at a given time is proportional to N"d and
therefore is negligible compared to the total volume occupied by the gas. We speak then of
a dilute gas.
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Figure 3

Consider N spheres of diameter " uniformly distributed in a box. If the mean free path is equal to 1, then the grey
tube of length 1 and section area of order "d�1 represents the volume spanned by a typical particle between two
collisions. The Boltzmann–Grad scaling N"d�1 D 1 is tuned such that on average this tube intersects one particle.

1.2. Three levels of averaging
As already shown in the previous scaling argument, the equations that we want to

derive describe the behavior of “typical particles.” We therefore have to introduce several
averaging processes, and then to describe the average dynamics.

For a statistical description of a monoatomic gas, all particles are considered identi-
cal (same geometry, same mass, same interaction law, …). This is referred to as the exchange-
ability assumption. The empirical distribution of particles is defined as

�N
t .x; v/ D

1

N

NX
iD1

ıx�x"
i .t/ıv�v"

i .t/; (1.1)

where .x"
i .t/; v"

i .t//i�N stands for the positions and velocities of the N particles at time t

and ıx stands for the Dirac mass at x D 0. This measure is completely symmetric (i.e.,
invariant under any permutation of the particle labels) due to the exchangeability assumption.
However, this first averaging is not enough to obtain a simple description of the dynamics
when N is large because of the instabilities mentioned in the previous section (see Figure 2)
which lead to a strong dependency in " of the particle trajectories. We will therefore introduce
a second averaging with respect to initial configurations.

From the physical point of view, this averaging is natural as only fragmentary infor-
mation on the initial configuration is available. A natural starting point is the particle dis-
tribution f 0 D f 0.x; v/ which prescribes the probability for a particle to be at position x

with velocity v. As N is large, we assume that the initial data .XN ; VN / D .xi ; vi /1�i�N

are independent random variables identically distributed according to f 0. This assumption
has, however, to be slightly corrected in order to take into account the exclusion between
particles jxi � xj j > " for i ¤ j . This statistical framework is referred to as the canoni-
cal ensemble [63]. This is a simple framework to derive rigorous foundations for the kinetic
theory, i.e., to characterize, in the large N asymptotics, the average dynamics and more
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precisely the evolution equation governing the distribution f .t; x; v/ at time t of a typical
particle.

In this paper, our goal is actually to go beyond this average dynamics, and to under-
stand in a fine way the correlations arising dynamically inside the gas. Fixing a priori the
number N of particles induces additional correlations and thus technical difficulties. To
bypass them, we introduce a third level of averaging, by assuming that the number N of
particles is also a random variable, and that only its average tuned by �" D "�.d�1/ is deter-
mined according to the Boltzmann–Grad scaling. Roughly speaking, N is chosen according
to a Poisson law of mean close to �", and then for any fixed N , the variables .XN ; VN / are
identically distributed, and independent up to the spatial exclusion. More precisely, the vari-
ables .N; XN ; VN / are chosen jointly under the so-called grand canonical measure which
will be introduced later in (2.3). This is referred to as the grand canonical ensemble and from
now on, we will use this setting.

We therefore seek to understand the statistical behavior of the empirical measure

�"
t .x; v/ D

1

�"

NX
iD1

ıx�x"
i .t/ıv�v"

i .t/; (1.2)

where the initial configuration .N; .X"0
N ; V "0

N // is a random variable, but the microscopic
dynamics is completely deterministic (governed by the hard sphere equations represented in
Figure 1).

1.3. A probabilistic approach
The first question is to determine the law of large numbers, that is, the limiting

distribution of a typical particle when �" ! 1. In the case of N independent identically
distributed variables .�i /1�i�N , the law of large numbers implies in particular that the aver-
age converges in probability to its expectation

1

N

NX
iD1

�i ����!
N !1

E.�/:

For the interacting particle system, two difficulties arise. The first is that, even at time 0, the
variables .xi ;vi /1�i�N are weakly correlated due to the exclusion. In the low density regime,
this problem is well understood by classical methods of equilibrium statistical mechanics
(see, e.g., [63]). In particular, denoting the average of any continuous test function h under
the initial empirical measure by˝

�"
0; h

˛
D

1

�"

NX
iD1

h.x"0
i ; v"0

i /;

the following convergence in probability holds:˝
�"

0; h
˛
�

Z
f 0h.x; v/ dxdv �����!

�"!1
0 under the grand-canonical measure:

We stress the fact that, throughout this paper, the limit �" ! 1 implies that the sphere
diameter " tends also to 0 as both parameters are linked by the Boltzmann–Grad scaling
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�""d�1 D 1. The second difficulty, which is the main challenge, is to understand whether
the initial quasiindependence is propagated in time so that there exists a function f .t; x; v/

such that the following convergence in probability holds:˝
�"

t ; h
˛
�

Z
f .t/h dxdv �����!

�"!1
0 under the grand-canonical measure

on initial configurations; (1.3)

and whether f .t/ evolves according to a deterministic equation, namely the Boltzmann
equation. As we will see, this question is particularly delicate since the Boltzmann equa-
tion obtained in the limit is singular (see (2.1)). The major result proving this convergence
goes back to Lanford [46] and will be explained in Section 2.2.

The approximation (1.3) of the empirical measure neglects two types of errors. The
first is the fact that there are corrector terms which converge to 0 as �" ! C1. The second
is related to the vanishing probability of the initial configurations for which the convergence
does not hold. A classical question in statistical physics is to quantify more precisely these
errors, by studying fluctuations, i.e., deviations between the empirical measure and its expec-
tation. In the case of N independent and identically distributed random variables .�i /1�i�N ,
the central limit theorem implies that the fluctuations are of order O.1=

p
N / and the fol-

lowing convergence in law holds:

p
N

 
1

N

NX
iD1

�i � E.�/

!
.law/

����!
N !1

N
�
0; Var.�/

�
;

where N .0; Var.�// is the normal law of variance Var.�/ D E..� � E.�//2/. In particular,
at this scale, some randomness is retrieved. Investigating the same fluctuation regime for the
dynamics of hard sphere gases consists in considering the scaled fluctuation field �"

t defined
by duality ˝

�"
t ; h

˛
D

p
�"

�˝
�"

t ; h
˛
� E"

�˝
�"

t ; h
˛��

; (1.4)

where h is a continuous test function, and E" denotes the expectation on initial configurations
under the grand-canonical measure. A series of recent works [13–16] has allowed to charac-
terize these dynamical fluctuations, and to derive a stochastic evolution equation governing
the limiting process. These results will be presented in Sections 3.4 and 4.2.

The last question generally studied in a classical statistical approach is that of quanti-
fying rare events, i.e., of estimating the probability of observing an atypical behavior (which
deviates macroscopically from the average). For independent and identically distributed
random variables, this probability is exponentially small, and it is therefore natural to study
the asymptotics

I.m/ WD lim
ı!0

lim
N !1

�
1

N
log P

 ˇ̌̌̌
ˇ 1

N

NX
iD1

�i � m

ˇ̌̌̌
ˇ < ı

!
with m 6D E.�/: (1.5)

The limit I.m/ is called the large deviation function and it can be expressed as the Legendre
transform of the log-Laplace transform of a single variable u W R 7! log E.exp.u�// [23]. To
generalize this statement to correlated variables, it is necessary to compute a more global

755 Dynamics of dilute gases: a statistical approach



Laplace transform and this requires a control on the correlations with exponential accuracy.
The methods of dynamical cumulants introduced in [13,14] are a key tool to compute expo-
nential moments of the hard sphere distribution and, in this way, to control the measure of
events up to scales which are vanishing exponentially fast. We will give a flavor of those
techniques in Section 3.4.

Note that precise conjectures regarding those three questions are formulated by
Rezakhanlou in [62].

2. Typical dynamical behavior

2.1. Boltzmann’s great intuition
The equation which rules the typical evolution of a hard sphere gas was proposed

heuristically by Boltzmann [17] about one century before its rigorous derivation by Lan-
ford [46] as the “limit” of the particle system when �" ! C1. The revolutionary idea of
Boltzmann was to write an evolution equation for the probability density f D f .t; x; v/

giving the proportion of particles at position x with velocity v at time t . In the absence of
collisions and in a domain without boundary, this density f would be exactly transported
along the physical trajectories x.t/ D x.0/ C vt , meaning that f .t; x; v/ D f 0.x � vt; v/.
The difficulty consists then in taking into account the statistical effect of collisions. Insofar
as the size of the particles is negligible, one can consider that these collisions are pointwise
both in t and x. Boltzmann proposed therefore a rather intuitive counting:

• the number of particles with velocity v is increased when a particle of velocity v0

collides with a particle of velocity v0
1, and jumps to velocity v (see (2.2)). Notice

that here, the pair .v0; v0
1/ plays the role of precollisional velocities, while instead

in Figure 1 this notation was used for the postcollisional velocities in the particle
system;

• the number of particles with velocity v is decreased when a particle of velocity v

collides with a particle of velocity v1, and is deflected into another velocity.

The probability of these jumps is described by a transition rate, referred to as the collision
cross-section b. The function b.v; v1; !/ is nonnegative, depends only on the relative veloc-
ity jv � v1j and on the angle between .v � v1/ and !, a scattering vector which is distributed
uniformly in the unit sphere Sd�1 � Rd . For the hard sphere interactions, we shall see that !

keeps track of the way two hard spheres collide (see Figure 1) and that b.v � v1; !/ D

..v � v1/ � !/C. In particular, it is invariant under .v; v1/ 7! .v1; v/ (exchangeability) and
under .v; v1; !/ 7! .v0; v0

1; !/ (microscopic reversibility).
The fundamental assumption in Boltzmann’s theory is that, in a rarefied gas, the

correlations between two particles about to collide should be very weak. Therefore the joint
probability to have both precollisional particles of velocities v and v1 at position x at time t

should be well approximated by f .t; x; v/f .t; x; v1/. This independence property is called
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the molecular chaos assumption. The equation then states8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t f C v � rxf„ ƒ‚ …
transport

D C.f; f /„ ƒ‚ …
collision

C.f; f /.t; x; v/

D

“ �
f .t; x; v0/f .t; x; v0

1/„ ƒ‚ …
gain term

� f .t; x; v/f .t; x; v1/„ ƒ‚ …
loss term

�
b.v � v1; !/„ ƒ‚ …

cross section

dv1d!;

(2.1)

where the scattering rules

v0
D v �

�
.v � v1/ � !

�
!; v0

1 D v1 C
�
.v � v1/ � !

�
! (2.2)

are analogous to the microscopic collision rules introduced in Figure 1, with the important
difference that ! is now a random vector chosen uniformly in the unit sphere Sd�1 � Rd .
Indeed, the relative position of the colliding particles has been forgotten in the limit " ! 0.
As a consequence, the Boltzmann equation is singular as it involves a product of densities at
the same point x.

Boltzmann’s idea of reducing to a kinetic equation the Hamiltonian dynamics
describing the atomistic behavior was revolutionary and opened the way to the description
of nonequilibrium phenomena by mesoscopic equations. However, the Boltzmann equation
was first heavily criticized as it seems to violate some basic physical principles. Indeed, what
made Boltzmann’s theory such a breakthrough, but also made it unacceptable by many of his
contemporaries, is that it predicts a time irreversible evolution, providing actually a quantita-
tive formulation of the second principle of thermodynamics. The Boltzmann equation (2.1)
has indeed a Lyapunov functional defined by S.t/ D �

’
f log f .t; x; v/dxdv and referred

to as the entropy, which can only increase along the evolution d
dt

S.t/ � 0, with equality if
and only if the gas is at thermal equilibrium. At first sight, this irreversibility does not seem
to be compatible with the fact that the hard sphere dynamics is governed by a Hamiltonian
system, i.e., a system of ordinary differential equations which is completely time reversible.
Soon after Boltzmann postulated his equation, these two different behaviors were considered
by Loschmidt as a paradox and an obstruction to Boltzmann’s theory. A fully satisfactory
mathematical explanation of this issue remained open during almost one century, until the
role of probability was precisely identified: the underlying dynamics is reversible, but the
description which is given of this dynamics is only partial (obtained by averaging or looking
at the most probable path) and therefore is not reversible.

2.2. Lanford’s theorem
Lanford’s result [46] shows in which sense the Boltzmann equation (2.1) is a good

approximation of the hard sphere dynamics. Let us first define the initial distribution.

Initial data. Consider T d D Œ0; 1�d the unit domain with periodic boundary conditions
and f 0 D f 0.x; v/ a Lipschitz probability density in T d � Rd , with Gaussian tails at large
velocities. To define a system of hard spheres which are initially independent (up to the exclu-
sion) and identically distributed according to f 0, we introduce the grand canonical measure:
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the probability density of finding N particles with coordinates ZN D .xi ; vi /i�N is given
by

1

N Š
W "

N .ZN / D
1

Z"

�N
"

N Š

NY
iD1

f 0.xi ; vi /
Y
i¤j

1jxi �xj j>"; for N D 0; 1; 2; : : : ; (2.3)

where the constant Z" is the normalization factor of the probability measure. Once the
random initial configuration is chosen, the hard sphere dynamics evolve deterministically
and the corresponding probability and expectation on the particle trajectories will be
denoted by P" and E".

Lanford’s result can be stated as follows (this is not exactly the original formulation,
see in particular Section 2.5 below for comments).

Theorem 2.1 (Lanford). In the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1), the
empirical measure �"

t of the hard sphere system defined by (1.2) concentrates on the solution
of the Boltzmann equation (2.1), i.e., for any bounded and continuous function h,

8ı > 0; lim
�"!1

P"

�ˇ̌̌̌˝
�"

t ; h
˛
�

Z
f .t/hdxdv

ˇ̌̌̌
� ı

�
D 0;

on a time interval Œ0; TL� depending only on the initial distribution f 0.

Let us comment on the time of validity TL of the approximation. This time depends
on the initial data f 0 and turns out to be of the order of a fraction of the mean time between
two successive collisions for a typical particle. This time is large enough for the microscopic
system to undergo a large number of collisions (of the order O.�"/), and in particular irre-
versibility already shows up at this scale. But this time is (far) too small to see phenomena
such as relaxation towards (local) thermodynamic equilibrium, and a fortiori hydrodynamic
regimes. Physically we do not expect this time to be critical, in the sense that the dynam-
ics would change nature afterwards. Actually, in practice the Boltzmann equation is used in
many applications (such as calculations for the reentrance of spatial vehicles in the atmo-
sphere) without time restriction. However, it is important to note that a time restriction may
not be only technical: from the mathematical point of view, one cannot exclude that the Boltz-
mann equation exhibits singularities (typically, spatial concentrations which would prevent
making sense of the collision term, and which would also contradict locally the low density
assumption). In order to construct global in time solutions for the Boltzmann equation, one
actually has either to consider small fluctuations around some equilibrium, or to introduce
a renormalization procedure [28]. These two approaches rely strongly on entropy production
estimates, which do not have any counterpart at the microscopic level (i.e., for fixed �", "). In
the current state of our knowledge, the problem of extending Lanford’s convergence result to
longer times faces serious obstructions, even to the time of existence and uniqueness of the
solution to the Boltzmann equation. This will be discussed later on in Section 4.1 (see also
Section 5). In Section 4, we will also present some recent results in this direction, providing
a global in time convergence for the fluctuation field at equilibrium.
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2.3. Heuristics of the proof
Let us now explain informally how the Boltzmann equation (2.1) can be guessed

from the particle dynamics. The goal is to transport the initial grand-canonical measure,
defined in (2.3), along the dynamics and then to project this measure at time t on the 1-point
particle phase space. We therefore define by duality F "

1 .t; z/ the density of a typical particle
with respect to the test function h asZ

F "
1 .t; z/h.z/dz D E"

�˝
�"

t ; h
˛�

; (2.4)

where the empirical measure �"
t was introduced in (1.2). More generally, we are going to

introduce �"
k;t

, the natural extension of the empirical measure �"
t to k distinct particles. For

simplicity, the particle coordinates .x"
i .t/; v"

i .t// at time t will be denoted by z"
i .t/. For any

test function hk of k variables, we define˝
�"

k;t ; hk

˛
D

1

�k
"

X
.i1;:::;ik/

hk

�
z"

i1
.t/; : : : ; z"

ik
.t/
�

(2.5)

and the sum is over the k-tuples of indices among all the particles at time t . We stress the
fact that �"

k;t
differs from .�"

t /˝k as the variables are never repeated. We will study the k-
particle correlation functions F "

k
which are symmetric finite dimensional projections of the

probability measure Z
F "

k .t; Zk/hk.Zk/dZk D E"

�˝
�"

k;t ; hk

˛�
; (2.6)

denoting Zk D .xi ; vi /1�i�k . The correlation functions are key to describe the kinetic limit.
In particular, Theorem 2.1 shows that F "

1 .t; z/ converges to the solution of the Boltzmann
equation f .t/ in the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1). Let us explain
briefly why this holds.

Let h be a bounded smooth test function on T d � Rd . Consider the evolution of the
empirical measure during a short time interval Œt; t C ı� and split the different contributions
according to the number of collisions for each particle

E"

�˝
�"

tCı ; h
˛�

� E"

�˝
�"

t ; h
˛�

D E"

�
1

�"

X
j

no collision

�
h
�
z"
j .t C ı/

�
� h

�
z"
j .t/

���
C E"

�
1

2�"

X
.i;j /

with 1 collision

�
h
�
z"

i .t C ı/
�

C h
�
z"
j .t C ı/

�
� h

�
z"

i .t/
�

� h
�
z"
j .t/

���
C O

�
ı2
�
;

(2.7)

and we are going to argue that the error term ı2 takes into account all the groups of particles
undergoing at least 2 collisions in the short time interval ı.

The asymptotic behavior when ı tends to 0 will be analyzed now for each term
in (2.7). The transport contribution arises from the particles moving in straight line without
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Figure 4

Two particles collide in the time interval Œt; t C ı� according to the scattering rules of Figure 1. The collision
occurs at time � if x1 � x2 C .� � t /.v1 � v2/ D �"!. Therefore x2 has to be in a tube with axis v1 � v2 and the
coordinates z1; z2 at time t can be parametrized by .x1; v1; v2; �; !/. This change of variables has a Jacobian
dz1dz2 D "d�1..v1 � v2/ � !/Cd!d�dx1dv1dv2.

collisions; indeed, if the distribution F "
1 is smooth enough, one gets

E"

�
1

�"

X
j

no collision

�
h
�
z"
j .t C ı/

�
� h

�
z"
j .t/

���
D ı

Z
dz1F "

1 .t; z1/v1 � rxh.z1/ C o.ı/:

We turn next to the term involving one collision. Note first that two particles starting
at .x1; v1/ and .x2; v2/ at time t collide at a later time � � t C ı if the following geo-
metric condition holds (see Figure 4):

x1 � x2 C .� � t /.v1 � v2/ D �"!: (2.8)

This implies that their relative position must belong to a tube oriented in the direction v1 � v2

with length ıjv1 � v2j and width ". This set has a size proportional to ı"d�1jv2 � v1j with
respect to the Lebesgue measure. More generally, a series of k � 1 collisions between k

particles imposes k � 1 constraints of the previous form. Using the Boltzmann–Grad scaling
�""d�1 D 1 and neglecting the velocity contribution, one can show that this event has a
vanishing probability bounded from above by�

ı

�"

�k�1

: (2.9)

Since there are, on average, �k
" ways of choosing these k colliding particles, we deduce that

the occurrence of k � 1 collisions in (2.7) has a probability of order ık�1�". This explains
why in (2.7) the probability of the terms involving more than 1 collision, i.e., involving k � 3

colliding particles, has been estimated by O.ı2/.
This crude estimate is not sufficient to recover the collision operator C.f; f / of the

Boltzmann equation (2.1). We are going now to analyze more carefully the term with one
collision in (2.7) in order to identify C.f; f /. As the collision term involves 2 particles, it is
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no longer a function of the empirical measure. The correlation function F "
2 defined in (2.6)

will be needed to rewrite it :

Coll D E"

�
1

2�"

X
.i;j /

with 1 collision

�
h
�
z"

i .t C ı/
�

C h
�
z"
j .t C ı/

�
� h

�
z"

i .t/
�

� h
�
z"
j .t/

���
D

�"

2

Z
dz1dz2F "

2 .t; z1; z2/11 and 2 collide
�
h
�
z1.ı/

�
C h

�
z2.ı/

�
� h.z1/ � h.z2/

�
C o.ı/; (2.10)

where z1.ı/; z2.ı/ stands for the particle coordinates after a time ı. After the collision, the
velocities are scattered to v0

1; v0
2 according to the deflection parameter ! (see Figure 4), but

the positions are almost unchanged as ı � ". Since the function h is smooth, the last term
in (2.10) can be approximated by the velocity jump

�h.z1; z2; !/ D h
�
x1; v0

1

�
C h

�
x2; v0

2

�
� h.z1/ � h.z2/: (2.11)

By condition (2.8), it is equivalent to parametrize two colliding particles either by their coor-
dinates z1; z2 at time t or by their coordinates at the collision time � which are determined by
x1; v1; �;!; v2 (see Figure 4). This change of variables has a Jacobian "d�1..v1 � v2/ � !/C.
Since "d�1 D 1=�" and ı � ", we deduce from (2.11) that

Coll D
1

2

Z tCı

t

d�

Z
dz1dv2d!F "

2 .�; z1; z2/
�
.v1 � v2/ � !

�
C

�h.z1; z2; !/ C o.ı/;

(2.12)

with z2 D .x1 C "!; v2/, as both particles are next to each other at the collision time. The
cross-section b.v1 � v2; !/ D ..v1 � v2/ � !/C in the Boltzmann equation can be identified
from the equation above. From the previous heuristics, the relation (2.7) provides “almost”
a weak formulation of the collision operator in (2.1) in the limit ı ! 0,

@t

Z
dz1F "

1 .t; z1/h.z1/

D

Z
dz1F "

1 .t; z1/v1 � rh.z1/

C
1

2

Z
dz1 d! dv2ıx2�x1�"!F "

2 .t; z1; z2/
�
.v1 � v2/ � !

�
C

�h.z1; z2; !/; (2.13)

where we used the Dirac notation to stress that z2 D .x1 C "!; v2/. The key step to close
the equation is the molecular chaos assumption postulated by Boltzmann which asserts that
the precollisional particles remain independently distributed at any time so that

F "
2 .t; z1; z2/ ' F "

1 .t; z1/F "
1 .t; z2/: (2.14)

When the diameter of the spheres " tends to 0, the coordinates x1 and x2 coincide and the
scattering parameter ! becomes a random parameter. Assuming that F "

1 converges, its limit
has to satisfy the Boltzmann equation (2.1). Establishing rigorously the factorization (2.14)
requires implementing a different and more involved strategy which will be presented in
Section 2.4.
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2.4. Some elements of proof
Lanford’s proof [46] has been completed and improved over the years; we refer to the

monographs [21, 22, 67] for accounts of the related results. In the more recent years, several
quantitative convergence results were established, and the proofs extended to the case of
compactly supported potentials [37,57,58]. In the following, we sketch the main steps of the
proof for the hard sphere dynamics.

The proof of Lanford’s theorem relies on the study of the correlation functions F "
k

defined in (2.6), characterizing joint probabilities of k particles. In particular, we do not
consider directly the empirical measure, but only its average F "

1 under the grand-canonical
probability P". The starting point is the system of ordinary differential equations for the hard
sphere positions and velocities (see Figure 1), which provides, by applying Green’s formula
to the Liouville equation, the following equation on the first correlation function:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t F
"
1 C v � rxF "

1„ ƒ‚ …
transport

D C "
�
F "

2

�
;„ ƒ‚ …

collision at distance "

C "
�
F "

2

�
.t; x; v/

D

“ �
F "

2

�
t; x; v0; x C "!; v0

1

�„ ƒ‚ …
gain term

� F "
2 .t; x; v; x � "!; v1/„ ƒ‚ …

loss term

� �
.v � v1/ � !

�
C„ ƒ‚ …

cross-section

dv1d!:

(2.15)

A weak form of this equation has been stated in (2.13). In the limit �" ! 1, we expect that
it can be closed by the factorization F "

2 � F "
1 ˝ F "

1 , called the propagation of chaos (2.14).
We are unable to prove it directly, nor will it be shown directly from (2.15) that the limit F1

of F "
1 satisfies an infinitesimal evolution equation of the previous form. We will rather obtain

a series expansion of F1, which will be identified with the solution of the Boltzmann equation
by a uniqueness argument. The proof is therefore very different from the heuristics presented
in Section 2.3.

The proof can be divided into three steps. The first is to rewrite F "
1 .t; x; v/ as an

“average” (weighted with the initial correlation functions F
";0
k

) of all possible dynamics
such that at time t , a particle stands at position x with velocity v. The analytical way of
doing so is to derive evolution equations similar to (2.15) for all correlation functions F "

k
,

and then to write the iterated Duhamel formula for this hierarchy of equations, called the
BBGKY hierarchy after Bogoliubov–Born–Green–Kirkwood–Yvon (see [22] for an account
and references). We will not give the details of these technical computations here, but will
retrieve the final series expansion (formally) using a more probabilistic perspective based on
geometric representations in terms of pseudotrajectories.

The idea is to track back the history of the particle sitting at position x with velocity v

at time t , referred to as particle �, in order to characterize all initial configurations which
contribute to F "

1 .t; x; v/. We start by following (backward in time) this particle, which has a
uniform rectilinear motion x.t 0/ D x � v.t � t 0/ until it collides with another particle, called
particle 1, say at time t1. Note that this collision can actually be either a physical collision
(with scattering) or a mathematical artefact coming from the loss term of equation (2.15)
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Figure 5

The sequence of collisions in the backward history can be encoded in a tree with the root indexed by the particle �

and n branchings (here n D 4). At each creation time, the label of the particle colliding with the fresh particle is
indicated. For example, at time t3, the particle � collides with particle 3 so that a3 D �.

(particles touch each other but are not deflected). Thus in order to understand the history of
particle �, we need to track back the history of both particles � and 1 before time t1. From
time t1, both particles are then transported by the 2-particle backward flow until the next
collision, say with particle 2 at time t2, etc., and we iterate this procedure until time 0. Notice
that in between the creations of new particles, the particles may collide between themselves
as they are transported by the backward hard sphere flow: this will be called recollision. The
history of the particle � can be reconstructed (see Figure 5) by prescribing

• the total number of collisions n;

• the combinatorics of collisions, encoded in a tree a 2 A1;n with root indexed by
the label � and n branchings (ai 2 ¹�; 1; : : : ; i � 1º for 1 � i � n);

• the collision parameters .Tn; Vn; �n/ D .ti ; vi ; !i /1�i�n with 0 < tn < � � � <

t1 < t .

We then define the pseudotrajectory ‰"
1;n starting from z D .x; v/ at time t as follows:

• on �ti ; ti�1Œ, the group of i particles is transported by the backward flow;

• at time ti , particle i is added at position xai
.ti / C "!i , with velocity vi ;

• if the velocities .vi ; vai
.tC

i // are postcollisional, meaning that .vai
.tC

i / � vi / �

!i > 0, then they are instantaneously scattered as in Figure 1 (with deflection
angle !i ).

We stress the fact that pseudotrajectories are not particle trajectories of the physical system,
but a geometric interpretation of an iterated Duhamel expansion. In particular, pseudo-
trajectories do not involve a fixed number of particles, they are coded in terms of random
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trees (with creation of particles at random times as in Figure 5) and of signs associated with
the gain and loss terms of the collision operator.

Note that not all collision parameters .Tn; Vn; �n/ are admissible since particles
should never overlap. We denote by G " the set of admissible parameters. With these nota-
tions, we obtain the following representation of F "

1 :

F "
1 .t; x; v/ D

C1X
nD0

X
a2A1;n

Z
G "

dTndVnd�nC
�
‰"

1;n

�
F

";0
1Cn

�
‰"

1;n.0/
�
; (2.16)

where ‰"
1;n.0/ stands for the particle configuration at time 0 of the pseudotrajectory and the

term C.‰"
1;n/ comes from the collision cross-sections

C
�
‰"

1;n

�
D

nY
iD1

��
vi � vai

�
tC

i

��
� !i

�
:

The elementary factor indexed by i is positive if the addition of particle i corresponds to a
physical collision (with scattering), and negative if not.

Remark 2.2. A similar formula holds for the k point correlation function F "
k

, except that
collision trees a 2 Ak;n have k roots and n branchings.

Formula (2.16) for the first correlation function has been obtained in a rather formal
way. In order to study the convergence as �" tends to infinity, we need to establish the uniform
convergence of the series (2.16). We actually use very rough estimates (forgetting in partic-
ular the signs of the gain and loss terms in (2.15), although the cancelations between these
different contributions should improve the estimates) and prove that the series is absolutely
convergent for short times uniformly with respect to ". Note that this is the only argument in
the proof which requires a restriction on short kinetic times.

Let us now estimate the size of the term in (2.16) corresponding to n branchings.
The different contributions are:

• a combinatorial factor taking into account all the branching choices jA1;nj D nŠ;

• the volume tn=nŠ of the simplex in time ¹tn < � � � < t1 < tº;

• the L1-norm of F
";0
1Cn which grows like kf 0kn

1.

This leads to an upper bound of the form .C kf 0k1t /n which implies that the series is
absolutely convergent uniformly in " on a small time interval depending only on a (weighted)
L1-norm of f 0.

Remark 2.3. For the sake of simplicity, we do not discuss here the problem of large veloc-
ities which create a divergence in the collision cross-section C.‰"

1;n/. It can be dealt with
similar, but more technical arguments, introducing weighted functional spaces encoding the
exponential decay of correlation functions F

";0
1Cn at large energies.

The convergence of F "
1 , as �" tends to infinity, will then follow termwise. In this

third step of the proof, we therefore fix the number n of branchings, as well as the collision
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Figure 6

When two particles recollide in the backward flow for fixed ", their velocities are scattered and the resulting
pseudodynamics is quite different from the Boltzmann pseudodynamics. The sets OB"

n are the sets of integration
parameters leading to at least a recollision within a pseudotrajectory (as on the picture with n D 4).

tree a 2 A1;n. One goal is to understand the asymptotic behavior of the pseudotrajectories
‰"

1;n. Going back to their definition, we see that it is natural to define limit pseudotrajectories
‰1;n (when �" tends to 1) as follows:

• on �ti ; ti�1Œ, the group of i particles is transported by the backward free flow (since
the particles become pointwise in the limit, they cannot see each other);

• at time ti , particle i is added at position xai
.tC

i /, with velocity vi (the spatial shift
at the creation time disappears);

• if the velocities .vi ; vai
.tC

i // are postcollisional, then they are scattered (with
deflection angle !i ).

Note that in the limit, all collision parameters are admissible (since the non overlap condition
disappears). With this definition of ‰1;n, we see that there is a very natural coupling between
‰"

1;n and ‰1;n: in most cases, the velocities are exactly equal and the positions differ at most
by n". The only problem is when two particles of size " recollide (see Figure 6) in the back-
ward flow on some interval �ti ; ti�1Œ : in this case they are deflected, and the pseudotrajectory
‰"

1;n is no longer close to ‰1;n on Œ0; ti�1�. We therefore split the set of collision parameters
.Tn;Vn;�n/ into two parts (and correspondingly split each term in (2.16) into two integrals):
the first subset corresponds to admissible integration parameters such that there is no rec-
ollision in ‰"

1;n, and the second subset, denoted by OB"
n corresponds either to nonadmissible

integration parameters (leading to some overlap) or to integration parameters for which ‰"
1;n

has at least one recollision. Using the coupling between ‰"
1;n and ‰1;n and the regularity of

the initial limiting correlation functions (which are nothing else than .f 0/˝.1Cn/), we easily
obtain the convergence of the first integral. It remains then to prove that the set OB"

n has vanish-
ing measure so that the corresponding integral has a negligible contribution. The recollision
(or overlap) condition implies that the relative velocity between the two recolliding particles
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j1 and j2 has to be in a small cone, which imposes strong constraints on the last creation
involving either j1 or j2. We do not detail these geometric estimates here, but they are quite
explicit and provide the following rate of convergence for t sufficiently small (independently
of ") F "

1 .t/ � F1.t/


1
� C "˛ for any ˛ < 1;

provided that f 0 is Lipschitz. This concludes the proof, as the series expansion defining F1

turns out to be the (unique) solution of the Boltzmann equation with initial data f 0. Note
that the convergence still holds if f 0 is only continuous, but, in that case, we lose the explicit
rate of convergence.

Remark 2.4. Actually one can prove (see [12]) the following quantitative propagation of
chaos, where the sets B"

k
have vanishing measure:

sup
t�TL

sup
Zk 62B"

k

ˇ̌̌̌
ˇF "

k .t; Zk/ �

kY
iD1

f .t; zi /

ˇ̌̌̌
ˇ � C k"˛; (2.17)

for some ˛ > 0 and a constant C depending on the initial measure f 0. This is a much stronger
notion of convergence than the one stated in Theorem 2.1.

2.5. On the irreversibility
In this paragraph, we are going to argue that the answer to the irreversibility para-

dox is hidden in the chaos assumption (2.14) which holds only for specific configurations.
Understanding the range of validity of the chaos assumption will be the key to derive not
only the Boltzmann equation, but also the stochastic corrections.

Actually, the notion of convergence which appears in the statement of Theorem 2.1
differs slightly from the one used in the proof (see Section 2.4): Theorem 2.1 states the
convergence of observables h�"

t ; hi, that is, a convergence in the sense of measures since
the test function h has to be continuous. This convergence is rather weak and is actually
not enough to ensure the stability of the collision term in the Boltzmann equation since
this term involves traces. In the proof of Lanford’s theorem, one actually considers all the
correlation functions F "

k
introduced in (2.6), and one shows that each one of these correlation

functions converges uniformly outside a set B"
k

of vanishing measure when �" tends to
infinity (see Remark 2.4). Moreover, the set B"

k
of bad microscopic configurations .t;Zk/ (on

which F "
k

is not converging) is somehow transverse to the set of precollisional configurations
(as can be seen in Figure 7, two particles in B"

2 tend to move far apart so that they are
unlikely to collide). The convergence defect is therefore not an obstacle to taking limits in
the collision term, however, these singular sets B"

k
carry important information on the time

correlations: in particular, they encode the memory of the evolution and by neglecting them
it is no longer possible to reverse time and to retrace the dynamics backwards. Thus by
discarding the microscopic information encoded in B"

k
, one can only recover an irreversible

kinetic description which is far from describing the complete microscopic dynamics. The
singular sets B"

k
have been described in [12,24,68] and their complex structure has been made

more precise in [14] by means of the cumulants which will be introduced in Section 3.3.
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Figure 7

(Left) Particles 1 and 2 will encounter in the future so they are likely not to have collided in the past, and we
expect that the correlation function F "

2 factorizes in the limit �" ! 1. (Right) The particle coordinates belong to
the bad set B"

2, meaning that they have met in the past. In this case, microscopic correlations have been built
dynamically and the factorization (2.14) should not be valid.
The sets leading to a forward or a backward collision have a similar geometric structure and a similar size which
vanishes with respect to the Lebesgue measure when " tends to 0. However, they play different roles: the memory
of the system is encoded in the sets B"

2; on the other hand, the forward sets are the only ones relevant for the
chaos assumption. The sets B"

k
are built similarly in terms of the backward flow of k particles (see [12]).

3. Correlations and fluctuations

3.1. From instability to stochasticity
In order to understand the specific features of the hard sphere dynamics in the low

density regime (dilute Boltzmann–Grad limit), it is worthwhile to compare its behavior to the
mean field dynamics. For this, let us consider more general microscopic dynamics interpo-
lating between the short range and the mean field regimes. For a given number N of particles,
we set

8i � N;
d

dt
xi D vi ;

d

dt
vi D �

1

N �d

X
j

rˆ

�
xi � xj

�

�
;

for some smooth repulsive (radial decreasing) potential ˆ W Œ0; 1�d ! RC and a fixed param-
eter � 2 .0; 1�. This dynamics is Hamiltonian and by choosing � D " (with N"d�1 D 1),
one recovers dynamics with a short range potential which behaves qualitatively as the hard
sphere gas and which follows a Boltzmann equation in the limit [37,57]. For fixed �, however,
say � D 1, the limiting behavior is mean field like and the typical density follows the Vlasov
equation [20]

@t f .t; x; v/ C v � rxf .t; x; v/ D

�Z
dydwf .t; y; w/rˆ.x � y/

�
� rvf .t; x; v/:

The Vlasov equation has very different properties from the Boltzmann equation, in partic-
ular it is reversible, as the microscopic dynamics. Furthermore, contrary to the hard sphere
dynamics, the precise structure of the initial data plays no role in the limiting behavior and it
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has even been shown in [20] that the fluctuations of the initial data are simply transported by
the linearized Vlasov equation. Finally, we stress the fact that the chaos assumption (2.14)
is known to be propagated in a very strong sense for the mean field dynamics [38,42].

A drastic difference between the two regimes comes from the fact that the mean
field dynamics is not sensitive to a small shift of the coordinates, as the function ˆ is smooth
for fixed �. This is not the case for the choice � D " in the Boltzmann–Grad limit. Indeed, in
the latter situation the scattering behaves qualitatively as in Figure 2, where asymptotically
for " small the deflection parameter decouples completely from the positions and becomes
random (cf. Section 2.3). This gives a probabilistic flavor to the surface integral in Boltz-
mann’s collision operator. As we shall see in Theorem 3.4, the corrections to the limiting
Boltzmann equation are driven by a stochastic noise which is also generated by the dynami-
cal instabilities. Thus the limiting structure of the hard sphere dynamics behaves qualitatively
as a stochastic process, combining free transport and a random jump process in the velocity
space. Notice that in the mean field regime, some instability remains for large times O.�"/

and this is expected to lead to the Lenard–Balescu stochastic correction [30,52].
The crucial role of randomness in the low density limit was understood by Mark

Kac. He devised a purely stochastic process [43] whose limiting distribution is a solution to
the homogeneous Boltzmann equation. Mathematically, at the microscopic level, this model
has a very different structure from the Hamiltonian dynamics previously mentioned. Indeed,
it is a Markov chain restricted only to particle velocities and the collisions are modeled by
a jump process with a random deflection parameter. For Kac’s model, the chaos assumption
has been derived in a very strong sense [51].

In the following sections, we are going to argue that the hard sphere dynamics shares,
however, many similarities with Kac’s model, not only at the typical level, but also at the level
of the fluctuations and of the large deviations. In this respect, random modeling is an excellent
approximation of the hard sphere dynamics. The key step to accessing this refined statistical
information will be to understand more precisely the chaos assumption (2.14).

3.2. Defects in the chaos assumption
Going back to the equation (2.15) on F "

1 , one can see that up to the small spatial
shifts in the collision term (known as Enskog corrections to the Boltzmann equation), devia-
tions from the Boltzmann dynamics are due to the defect of factorization F "

2 � F "
1 ˝ F "

1 , the
so-called second order cumulant. In terms of our geometric interpretation, this corresponds
to pseudotrajectories which are correlated. Recall that F "

2 can be described by interact-
ing collision trees with two roots, say labeled by 1� and 2�, and n1 C n2 branchings (see
Remark 2.2), while the tensor product is described by two independent collision trees each
with one root, and n1, n2 branchings, respectively. The main difference when building the
pseudodynamics corresponding to F "

2 is that particles from tree 1� and 2� may (or may not)
interact. We start by extracting the pseudotrajectories of F "

2 having at least one interaction
between the two trees, which will be called an external recollision (see Figure 8) in contrast
with a recollision inside a collision tree which will be called internal.
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Figure 8

Among the pseudodynamics describing F "
2 , we separate those having a recollision between trees 1� and 2�, and

those where particles from tree 1� and particles from tree 2� remain at a distance greater than ", which will be
denoted by 6�. In this picture, n1 D n2 D 1.

Figure 9

Expanding the dynamical exclusion condition leads to the definition of overlaps.

We stress that pseudodynamics without external recollision are not independent
since they satisfy a dynamical exclusion condition. We therefore decompose the exclusion
condition 11� 6�2� D 1 � 11��2� (see Figure 9).

Note that this decomposition is a pure mathematical artefact to compare pseudo-
dynamics without external recollision with independent pseudodynamics. In particular, the
overlapping condition 1� � 2� does not affect the dynamics itself (overlapping particles
are not scattered!). If we ignore the correlation encoded in the initial data, we then end up
with a representation of the second order cumulant by trees which are coupled by external
recollisions or overlaps (see Figure 10).

Remark 3.1. Recall that the initial measure does not factorize exactly F
";0
2 ¤ F

";0
1 ˝ F

";0
1

due to the exclusion condition. Thus the initial data induces also a small correlation which
is actually much smaller than the dynamical correlations (by a factor "), so we will neglect
it in the following.

Recolliding and overlapping pseudotrajectories should provide a contribution of
order 1 in L1 to F "

2 � F "
1 ˝ F "

1 . For n1 D n2 D 0, i.e., for collision trees without branchings,
this defines the bad set of configurations B"

2 (mentioned in Sections 2.4–2.5) encoding the
collisions between two particles in the backward flow (see Figure 7). In particular, by choos-
ing z1� and z2� at time t such that jx1� � x2� � .v1� � v2�/.t � s/j � " for some s � t ,
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Figure 10

The second order cumulant corresponds to pseudotrajectories with at least one external recollision or overlap.

the contribution to the cumulant of the pseudodynamics with n1 D n2 D 0 is expected to
be nonzero (except at equilibrium when recollisions and overlaps almost compensate). The
smallness of the second cumulant F "

2 � F "
1 ˝ F "

1 actually comes from the size of its sup-
port. The right norm to measure the smallness of correlations is thus the L1-norm and the
quantity to be studied asymptotically is the rescaled second-order cumulant

f "
2 D �"

�
F "

2 � F "
1 ˝ F "

1

�
: (3.1)

With this scaling, we expect that f "
2 has a limit f2 in the sense of measures. The set sup-

porting the function f "
2 records the correlation between two pseudotrajectories (rooted in 1�

and 2�) via a recollision or an overlap. On the other hand, once the two pseudotrajectories are
correlated by a recollision or an overlap then any additional recollision, overlap or internal
recollision will impose stronger geometric constraints and they can be discarded in the limit
as in Lanford’s proof (see Figure 6). Therefore the limit f2 corresponds to pseudotrajectories
with exactly one (external) recollision or overlap on Œ0; t �.

In order to understand fluctuations with respect to the Boltzmann dynamics, we
also need to understand time correlations. To characterize these time correlations, one can
proceed exactly in the same way, using a kind of duality method with weighted pseudo-
trajectories. Recall that F "

2 is by definitionZ
F "

2 .t; z1� ; z2�/h1.z1�/h2.z2�/dz1�dz2� D E"

�
1

�2
"

X
.i1;i2/

h1

�
z"

i1
.t/
�
h2

�
z"

i2
.t/
��

;

meaning that there is a weight h1.z1�/h2.z2�/ at time t in the geometric representation. The
counterpart for the time correlations

F "
2

�
.hi ; �i /i�2

�
D E"

�
1

�2
"

X
.i1;i2/

h1

�
z"

i1
.�1/

�
h2

�
z"

i2
.�2/

��
(3.2)

is to construct the same pseudotrajectories ‰"
2;n starting from some �2 > �1, and to evaluate

the weight h1 on the resulting configuration of particle 1� at time �1 and the weight h2 on
the resulting configuration of particle 2� at time �2 (see Figure 11).

We then define the rescaled weighted second order cumulant

f "
2

�
.hi ; �i /i�2

�
D �"

�
F "

2

�
.hi ; �i /i�2

�
� F "

1 Œh1; �1�F "
1 Œh2; �2�

�
; (3.3)
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Figure 11

Time correlations (3.2) can be computed by introducing weights along the pseudotrajectories.

and performing the same geometric analysis as before, the cumulant f "
2 Œ.hi ; �i /i�2� at dif-

ferent times converges also to a limit f2Œ.hi ; �i /i�2� as �" diverges.

3.3. Higher-order correlations and exponential moments
For a Gaussian process, the first two correlation functions F "

1 , F "
2 determine com-

pletely all other correlation functions F "
k

, but in general part of the information is encoded
in the (scaled) cumulants of higher order defined by (restricting here for simplicity to only
one time)

f "
k .t; Zk/ D �k�1

"

kX
`D1

X
�2P `

k

.�1/`�1.` � 1/Š
Ỳ
iD1

F "
j�i j

.t; Z�i
/;

where P `
k

is the set of partitions of ¹1; : : : ; kº in ` parts with � D ¹�1; : : : ; �`º, j�i j stands
for the cardinality of the set �i and Z�i

D .zj /j 2�i
. Each cumulant encodes finer and finer

correlations. Contrary to correlation functions F "
k

, they do not duplicate the information
which is already encoded at lower orders.

From the geometric point of view, one can extend the analysis of the previous
paragraph and show that the cumulant of order k can be represented by k pseudotrajec-
tories which are completely connected either by external recollisions or by overlaps (see
Figure 12).

One can classify these completely connected pseudotrajectories by associating them
with a dynamical graph G with k vertices representing the different trees encoding the exter-
nal recollisions (edge with a C sign) and the overlaps (edges with a � sign). Furthermore, one
can define a systematic procedure to extract from this connected graph G a minimally con-
nected graph T by identifying k � 1 “clustering recollisions” or “clustering overlaps” (see
Figure 13). Here we use a cluster expansion reminiscent of the method originally developed
by Penrose to deal with correlations in the grand canonical Gibbs measure [54,55].

We then expect the scaled cumulant f "
k

to decompose in a sum of 2k�1kk�2 terms
obtained by grouping all pseudotrajectories compatible with each one of the signed mini-
mally connected graphs T (recall that kk�2 is the number of trees on k labeled vertices,
known as Cayley’s formula). For each given signed minimally connected graph, the recol-
lision/overlap conditions can be written as k � 1 “independent” constraints on the config-
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Figure 12

The cumulant of order k corresponds to pseudotrajectories issued from z1� ; : : : ; zk� completely connected by
external recollisions or overlaps.

Figure 13

All recollisions and overlaps from the pseudotrajectories depicted in Figure 12 are encoded in the graph G. Only
recollisions/overlaps which do not create a cycle (going backward in time) are kept in the tree T .

uration z1� ; : : : ; zk� at time t . Therefore, neglecting the velocity dependence as in (2.9),
this contribution to the cumulant f "

k
has a support of size O..t=�"/k�1/ with respect to

Lebesgue measure and from this we deduce the expected L1 estimatef "
k


L1 � �k�1

"„ƒ‚…
scaling

� 2k�1kk�2„ ƒ‚ …
number of signed trees

�

�
C t

�"

�k�1

„ ƒ‚ …
support size

� kŠ.C t/k�1: (3.4)

Furthermore, a geometric argument similar to the one developed in Lanford’s proof (see
Section 2.4) and already used in the study of the second order cumulant allows showing
that f "

k
converges to some limiting cumulant fk and that only the pseudotrajectories having

exactly k � 1 recollisions or overlaps (and no cycle) contribute in the limit.
This geometric approach allows characterizing all corrections to the chaos assump-

tion, up to exponential order, at least for times of the same order as TL [13, 14]. Actually,
a classical and rather straightforward computation (based on the series expansions of the
exponential and logarithm) shows that cumulants are nothing else than the coefficients of
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the series expansion of the exponential moment

I"
t .h/ D

1

�"

log E"

�
exp

�
�"

˝
�"

t ; h
˛��

D
1

�"

log E"

�
exp

�X
i

h
�
z"

i .t/
���

(3.5)

D

1X
kD1

1

kŠ

Z
f "

k .t; Zk/

kY
iD1

�
eh.zi /

� 1
�
dZk :

The quantity I"
t .h/ is referred to as the cumulant generating function. Estimate (3.4) provides

the analyticity of I"
t .h/ as a functional of eh, and this uniformly with respect to " (small

enough). The limit It of I"
t can then be determined as a series in terms of the limiting

cumulants fk .
Instead of using the cumulant expansion, we present a heuristic approach to char-

acterize the limit It as the solution of the Hamilton–Jacobi equation (3.8). At first reading,
this formal derivation can be skipped and the reading can be resumed at Equation (3.8). We
proceed as in Section 2.3 for the Boltzmann equation (2.1) and write the formal equation
satisfied by I"

t .h/ for fixed ". Considering an evolution for a short time ı as in (2.7) and then
taking a formal limit ı ! 0, we get

E"

h
exp

�X
i

h.z"
i .t//

�i
@t I

"
t .h/

D E"

��
1

�"

X
j

dx"
j

dt
� rxh

�
z"
j .t/

��
exp

�X
i

h
�
z"

i .t/
���

C

Z
d!E"

24 1

�2
"

X
j1¤j2

ıx"
j2

.t/�x"
j1

.t/�"!

��
v"

j2
.t/ � v"

j1
.t/
�

� !
�

C

�
�
e

h.z"
j1

.tC//Ch.z"
j2

.tC//
� e

h.z"
j1

.t�//Ch.z"
j2

.t�//� exp
� X

i 6Dj1;j2

h
�
z"

i .t/
��35 ;

where ! becomes a random parameter after changing variables at the collision time as
in (2.12). We used the Dirac notation as in (2.13) to stress that x"

j2
.t/ D x"

j1
.t/ C "! at the

collision. Denoting by �"
2;t the generalized empirical measure depending on 2 arguments

(see (2.6)), we get

E"

h
exp

�
�"h�"

t ; hi
�i

@t I
"
t .h/ D E"

�
�"

t ¹v � rxhº exp
�
�"

˝
�"

t ; h
˛��

C
1

2

Z
d!E"

�
�"

2;t

®
ıx2�x1�"!

�
e�h.z1;z2;!/

� 1
�¯

exp
�
�"

˝
�"

t ; h
˛��

;

(3.6)

where �h.z1; z2; !/ D h.x1; v0
1/ C h.x2; v0

2/ � h.z1/ � h.z2/ was already introduced
in (2.11). To obtain a closed equation, it remains to find the counterparts of the correla-
tion functions F "

1 and F "
2 which describe the distribution under the measure tilted by the

exponential weight h�"
t ; hi.
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Differentiating the exponential moment (3.5) at h in the direction ', we recover the
quantity h�"

t ; 'i�
@I"

t

@h
.h/; '

�
D lim

ı!0

1

ı

�
I"

t .h C ı'/ � I"
t .h/

�
D

1

E"Œexp.�"h�"
t ; hi/�

E"

�˝
�"

t ; '
˛
exp

�
�"

˝
�"

t ; h
˛��

:

Thus the transport term has the form h
@I"

t

@h
.h/; v � rxhi. By taking a second derivative, the

tilted distribution of the two-point correlations can be identified in terms of

1

�"

@2I"
t

@h2
.h/ C

@I"
t

@h
.h/ ˝

@I"
t

@h
.h/:

The collision term is singular, but formally the right-hand side of (3.6) can be rewritten as

@t I
"
t .h/ D

1
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.h/ ˝
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Z
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�
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�
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�
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� 1
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C
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2�"

�
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@h2
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�
C

ıx2�x1�"!

�
e�h.z1;z2;!/

� 1
��

C

�
@I"

t

@h
.h/; v � rxh

�
:

(3.7)
We recognize here a kind of Hamilton–Jacobi equation, with a small “viscous” term (involv-
ing derivatives of order 2 with respect to h, but without a definite sign). Thus the limiting
functional It has to satisfy the following Hamilton–Jacobi equation obtained by formally
taking the limit �" ! 1,

@t It .h/ D
1

2

�
@It

@h
.h/ ˝

@It

@h
.h/;

Z
d!
�
.v2 � v1/ � !

�
C

ıx2�x1

�
e�h.z1;z2;!/

� 1
��

C

�
@

@h
It .h/; v � rxh

�
:

(3.8)

The structure of this Hamilton–Jacobi equation is reminiscent of the Boltzmann equa-
tion (3.8), with a collision term and a transport term. However, it encodes a much more
complete description of the hard sphere dynamics, including in particular the structure of
the exponentially small correlations and of the large deviations (see Theorem 3.5).

As in (3.2), further information on the correlations in a time interval Œ0; t � can be
obtained by generalizing (3.5)

I"
Œ0;t�.H/ D

1

�"

log E"

�
exp

�X
i

H
�
z"

i

�
Œ0; t �

����
; (3.9)

for functions H depending on the trajectory of a particle in Œ0; t �. For example, a sampling at
different times �1 < �2 < � � � < �k � t by test functions .h`/`�k is obtained by considering

H
�
z
�
Œ0; t �

��
D

kX
`D1

h`

�
z.�`/

�
: (3.10)

Remark 3.2. The procedure described here allows to obtain easily the limiting equa-
tion (3.8) without having to guess how to combine the different cumulant terms (which
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happens to be quite technical). However, the weak understanding we have on this equation
does not allow to use it to justify the limit as �" ! 1 (without going through the cumulant
analysis of [14]).

Remark 3.3. In the absence of spatial inhomogeneities, one can discard the transport term
and retrieve asymptotically the same cumulant generating function as for the Kac model, i.e.,
the dynamics in which collisions are given by a random jump process [4,41,47,60]. This indi-
cates that in the limit �" ! 1, both models are indistinguishable (up to exponentially small
corrections). In other words, the Hamilton–Jacobi equation (3.8) conserves the stochastic
reversibility, but not the deterministic reversibility: one cannot hope for any strong conver-
gence result.

3.4. A complete statistical picture for short times
As mentioned in the previous paragraph, the cumulant generating function provides

a complete statistical picture of the hard sphere dynamics. We now explain how it can be
used to answer the main questions raised in Section 1.3 (on a short time T ?, of the same
order as Lanford’s time TL in Theorem 2.1).

As a first consequence of the uniform estimates on the cumulant generating func-
tion I"

Œ0;t�
, the convergence of the fluctuation field, defined by (1.4) and recalled below˝

�"
t ; h

˛
D

p
�"

�˝
�"

t ; h
˛
� E"

�˝
�"

t ; h
˛��

;

can be obtained.
At time 0, it is known that, under the grand-canonical measure introduced on

page 757, the fluctuation field �"
0 converges in the Boltzmann–Grad limit to a Gaussian

field �0 with covariance

E
�
�0.h/�0.g/

�
D

Z
dzf 0.z/h.z/g.z/: (3.11)

The following theorem controls the dynamical fluctuations.

Theorem 3.4 (Bodineau, Gallagher, Saint-Raymond, Simonella [15]). Under the assump-
tions on the initial data stated on page 757, the fluctuation field �"

t of the hard sphere system
converges, in the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1), on a time interval
Œ0; T ?� towards a process �t , solution to the fluctuating Boltzmann equation8̂̂̂̂

<̂
ˆ̂̂:

d�t D Lt �t dt„ ƒ‚ …
linearized Boltzmann operator

C d�t„ƒ‚…
Gaussian noise

Lt h D �v � rxh„ ƒ‚ …
transport

C C.ft ; h/ C C.h; ft /„ ƒ‚ …
linearized collision operator

(3.12)

where ft denotes the solution at time t to the Boltzmann equation (2.1) with initial data f 0,
and d�t is a centered Gaussian noise delta-correlated in t; x with covariance

Covt .h1; h2/ D
1

2

Z
dz1dz2d!

�
.v2 � v1/ � !

�
C

ıx2�x1f .t; z1/f .t; z2/�h1�h2.z1; z2; !/

with �h.z1; z2; !/ D h.z0
1/ C h.z0

2/ � h.z1/ � h.z2/ as in (2.11).
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As hinted in Section 3.2, the limiting noise is a consequence of the asymptotically
unstable structure of the microscopic dynamics (see Figure 2). The randomness of the initial
configuration is transported deterministically by the dynamics and generates a white noise
in space and time through a particular class of collisions. The velocity scattering mechanism
is coded in the covariance of the noise.

If the system starts initially from an equilibrium measure, i.e., with particle positions
spatially independent (up to the exclusion) and velocities identically distributed according
to the Maxwell–Boltzmann equilibrium distribution

f 0.x; v/ D M.v/ D
1

.2�/d=2
exp

�
�

jvj2

2

�
; (3.13)

then ft D f 0 so that the linearized operator is time independent and it will be denoted
by Leq. The limiting stochastic partial differential equation d�t D Leq�t C d�t satisfies the
fluctuation/dissipation relation: the dissipation from the linearized operator Leq is exactly
compensated by the noise �t . As the equilibrium measure is time invariant, it was expected
on physical grounds that a stochastic correction should emerge in order to keep this invari-
ance in time. In fact, the equation governing the covariance of the limiting process Cov.�t /

away from equilibrium was obtained, and the full fluctuating equation for .�t /t�0 conjec-
tured, in the pioneering works by Spohn [65–67]. In particular, it was already understood in
[65] that out of equilibrium, a nontrivial contribution to Cov.�t / is provided by the second-
order cumulant (3.1). Note that the predictions on the stochastic corrections from the Kac
model [49, 50, 59] fully agree with the stochastic equation emerging from the determinis-
tic hard sphere dynamics. Thus from a phenomenological point of view, it is equivalent to
consider a stochastic model (including as well the positions as in [59]) or a deterministic evo-
lution. We refer also to the work by Ernst and Cohen [34] for further discussion on the time
correlations and the fluctuations.

Note that equilibrium fluctuations for a microscopic evolution with spatial coordi-
nates and stochastic collisions have been derived in [59] for arbitrary long times. We will see
in Theorem 4.2 that the convergence time of the previous theorem can be greatly improved
at equilibrium.

Out of equilibrium, although the solution f to the Boltzmann equation (describing
the averaged dynamics) is very smooth on Œ0; T ?�, the fluctuating Boltzmann equation is
quite singular: the linearized operator Lt is nonautonomous, non-self-adjoint, and the cor-
responding semigroup is not a contraction. Thus we consider a very weak notion of solution
of (3.12), requiring only that

• the process �t is Gaussian;

• its covariance defined, for test functions h1; h2 and times �1; �2, as

C.�1; h1; �2; h2/ D lim
"!0

E"

�˝
�"

�1
; h1

˛˝
�"

�2
; h2

˛�
(3.14)

satisfies a set of equations governed by the linearized Boltzmann equation.

The convergence of the process .�"
t /t�T ? can be derived in 3 steps:
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• The convergence of the time marginals to a Gaussian process
The characteristic function of the process tested at times �1 < � � � < �k � T ?

by functions .h`/`�k is encoded by the exponential moment (3.9) by choos-
ing H.z.Œ0; T ?�// D

ip
�"

Pk
`D1 h`.z.�`// as in (3.10)

log E"

"
exp

 
i

kX
`D1

�˝
�"

�`
; h`

˛
C

p
�"E"

�˝
�"

�`
; h`

˛��!#
D �"I"

Œ0;T ?�.H/: (3.15)

The cumulant expansion (3.5) combined with sharp controls on the cumulants
ensure that I"

Œ0;T ?�
.H/ is an analytic function of H in a neighborhood of 0 so that

complex values can also be handled. Furthermore, in the scaling considered for
the fluctuations, H is of order 1p

�"
. Thus in the cumulant expansion (3.5), the

term of order n scales as

f "
n

��
eH

� 1
�˝n�

'
1

�
n=2
"

;

so that the asymptotics of the characteristic function (3.15) is only determined
by the cumulants of order less than 2. This implies that the Wick rule holds and
therefore the limiting variables are Gaussian.

• The characterization of the limit covariance
The evolution equation of the covariance C.�1; h1; �2; h2/ can be recovered from
the equations satisfied by the first two cumulants. As already pointed out in [65],
we stress that the behavior of the covariance C.�1; h1; �2; h2/ is determined by
means of a careful analysis of the second cumulant f "

2 Œ.h`; �`/`�2� introduced
in (3.3). Out of equilibrium, the cumulant of order 2 takes into account the contri-
bution of one external recollision or of one overlap (as explained in Section 3.2).
Even though the contribution of the recollisions vanishes when deriving the Boltz-
mann equation (recall the chaos assumption (2.14)), it plays an important role in
the stochastic corrections.

• The tightness of the sequence .�"
t /">0

This is the most technical part of the proof as it requires to control uniform esti-
mates in time for a wide class of test functions h,

E"

h
sup

js�s0j�ı

ˇ̌˝
�"

s ; h
˛
�
˝
�"

s0 ; h
˛ˇ̌i

:

We will not discuss further this point and refer to [14] for details.

Note that Theorem 3.4, which is a kind of central limit theorem, does not use the fine structure
of cumulants: a sufficient decay of the correlations is enough to control the typical fluctua-
tions (which are of size O.1=

p
�"/).

The strength of the cumulant generating function appears at the level of large devi-
ations, i.e., for very unlikely trajectories which are at a “distance” O.1/ from the averaged
dynamics. The counterpart of the large deviation statement (1.5) for independent variables
can be rephrased, in a loose way, as follows: observing an empirical particle distribution
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close to the density '.t; x; v/ during the time interval Œ0; T ?� decays exponentially fast with
a rate quantified by the large deviation functional F ,

P"

�
�"

t ' 't ; 8t � T ?
�

� exp
�
��"F .'/

�
:

Notice that at time 0, under the grand-canonical measure introduced on page 757, it is known
that the large deviations around a density '0 can be informally stated as follows:

P"

�
�"

0 ' '0
�

� exp
�
��"H

�
'0

jf 0
��

;

with a static large deviation functional given by the relative entropy

H
�
'0

jf 0
�

D

Z �
'0 log

'0

f 0
�
�
'0

� f 0
��

dz:

More precisely, the distance between �" and ' is measured with respect to a weak
topology on the Skorokhod space of measure valued functions. This topology is used in the
theorem below.

Theorem 3.5 (Bodineau, Gallagher, Saint-Raymond, Simonella [14]). Under the assump-
tions on the initial data stated on page 757, there is a time T ? > 0 such that the empirical
measure .�"

t /t�T ? satisfies, in the Boltzmann–Grad limit �" ! 1 (�""d�1 D 1), the fol-
lowing large deviation estimates:8̂̂<̂

:̂
lim sup
�"!1

1

�"

log P"

�
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2 K compact
�
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'2K

F .'/;
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�"!1

1

�"

log P"

�
�"

2 O open
�

� � inf
'2O\R

F .'/;

for some (nontrivial) restricted set R.
The large deviation functional F is defined by convex duality from the cumulant

generating function IŒ0;T ?� (obtained as the limit of (3.9)). It coincides on the restricted
set R with8̂̂̂̂
<̂̂
ˆ̂̂̂:

QF .'/ D H
�
'0

jf 0
�„ ƒ‚ …

relative entropy of the initial data

C sup
p

Z T ?

0

�˝
p; .@t C v � rx/'

˛
� H .'; p/

�
„ ƒ‚ …

Legendre transform of the Hamiltonian

;

H .'; p/ D
1

2

Z
dz1dz2 d!

�
.v2 � v1/ � !

�
C

ıx2�x1'.z1/'.z2/
�
e�p.z1;z2;!/

� 1
�
;

(3.16)

with �p.z1; z2; !/ D p.z0
1/ C p.z0

2/ � p.z1/ � p.z2/ as in (2.11).

All the functionals appearing in the above statement are quite singular (notice that
the Hamiltonian is defined by an integral over a manifold of codimension d with a weight
growing for large velocities) and our method is restricted to considering very smooth and suf-
ficiently decaying test functions. These restrictions on the functional spaces are the reason
why we are not able to obtain a more precise large deviation principle, or to identify clearly
the large deviation functional. We refer to [14] for the proof which follows a quite standard
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path, once the limiting cumulant generating function IŒ0;T ?� has been constructed. The iden-
tification between F and QF relies on the limiting Hamilton–Jacobi equation (3.8).

Remark 3.6. Note that the large deviation functional QF defined by (3.16) was conjectured in
[62] and [19]. As already mentioned, it actually corresponds to the large deviation functional
for stochastic microscopic processes, such as the Kac model (in the absence of transport)
[41,47], or intermediate models (with transport and stochastic collisions) introduced by Reza-
khanlou [60].

4. Beyond Lanford’s time

Up to a short time, Theorems 3.4 and 3.5 provide a good statistical description of
the hard sphere dynamics in the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1). The
stochastic corrections to the Boltzmann equation emerge from the complex interplay between
the random initial data and the asymptotic instability of the dynamics.

However, these results are still far from being satisfactory as the time restriction is
not expected from physics: it does not allow understanding the relaxation toward equilib-
rium (and the corresponding entropy cascades between cumulants), or deriving fluid limits.
This question remains quite open, and the goal of this last section is to discuss theoreti-
cal obstructions and methodological difficulties, as well as some recent progress close to
equilibrium.

4.1. Main difficulties
A natural way to address this problem is trying to understand what kind of conver-

gence one can hope for beyond Lanford’s time TL. Recall that Lanford’s theorem describes
the approximation of a reversible system by an irreversible system, where a macroscopic part
of the information is missing. This excludes any kind of “strong” convergence in terms of
relative entropy. This implies in particular that one will hardly use the fine knowledge one
might have on the solution to the Boltzmann equation to obtain a robust notion of stability
which would be as well compatible with the microscopic system.

Remark 4.1. In the framework of fluid limits, modulated energy or modulated entropy meth-
ods are among the most powerful to prove convergence theorems [39,64,71] since they require
very few properties on the original system, typically

• an energy/entropy inequality satisfied by weak solutions;

• the consistency of the approximation (meaning that the limiting equations are
those inferred from the formal asymptotics);

• some bootstrap estimates controlling (nonlinear) fluxes in terms of the modulated
energy/entropy.

An alternative would be to establish some weak convergence F "
1 * f , which para-

doxically requires better compactness estimates on the sequence .F "
1 /". In this framework,
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the best one can do in general is to retrieve the structure of the limiting equation and its good
(weak) stability properties from the solutions F "

1 for fixed ", and this uniformly in ". The
problem here, as mentioned in Section 2.2, is that the Boltzmann equation does not have
such a weak stability. Two ingredients are necessary to construct solutions satisfying only
physical bounds (mass, energy, and entropy estimates):

• a renormalization procedure to tame the possible singularity (concentration in x)
in the loss collision term f .t; x; v/ �

R
f .t; x; v1/b.v � v1; !/d!dv1;

• a bound on the entropy dissipation to control the gain term by the loss term.

These ingredients have been used in [61] to recover the Boltzmann equation from a micro-
scopic dynamics with stochastic collisions, but they do not seem to have a clear counterpart
for a deterministic microscopic evolution.

The Hamilton–Jacobi equation (3.7) retains much more information on the system,
thus the convergence of I"

t to It , in a sense to be understood, could provide a more stable
framework to study the kinetic limit for large times. This would then imply the convergence
to the Boltzmann equation.

4.2. Close to equilibrium
An easier setting to control the long-time evolution is to consider a perturbation of

an equilibrium measure. Here the stationarity of the equilibrium becomes a key tool in order
to provide uniform estimates in time and to control the pathological behaviors previously
mentioned. In a series of recent works [15,16], we took advantage of the equilibrium structure
to extend Theorem 3.4 to arbitrarily long kinetic times, and even slowly diffusive times.

Theorem 4.2 (Bodineau, Gallagher, Saint-Raymond, Simonella [15,16]). Consider a system
of hard spheres initially at equilibrium, i.e., with a spatially uniform distribution and with a
Maxwell–Boltzmann distribution M in velocities as in (3.13) (Gibbs grand-canonical ensem-
ble, f 0 D M in (2.3)).

Then, in the Boltzmann–Grad limit �" ! 1 (�""d�1 D 1), the fluctuation field
.�"

t /t�0 of the hard sphere system converges on any time interval Œ0; T"�, with
T" D O.log log log �"/, towards the process .�t /t�0, solution to the fluctuating Boltzmann
equation 8̂̂̂̂

<̂
ˆ̂̂:

d�t D Leq�t dt„ ƒ‚ …
linearized Boltzmann operator

C d�t„ƒ‚…
Gaussian noise

Leqh D �v � rxh„ ƒ‚ …
transport

C C.h; M/ C C.M; h/„ ƒ‚ …
linearized collision operator

(4.1)

where the linearized operator Leq is time independent and � is a Gaussian noise delta-
correlated in t; x with a time independent covariance

Cov.h1; h2/ D
1

2

Z
dz1dz2d!

�
.v2 � v1/ � !

�
C

ıx2�x1M.v1/M.v2/�h1�h2.z1; z2; !/;

with �h.z1; z2; !/ D h.z0
1/ C h.z0

2/ � h.z1/ � h.z2/ as in (2.11).
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Since the approximation holds true for very long times compared to the mean free
time (diverging to infinity as log log log �"), it makes sense to look at fluid limits, i.e., at
regimes when the collision process is much faster than the transport (density is still low but
makes the collisions a bit more likely) �""d�1 D ˛�1 with ˛ � ", ˛ ! 0. Starting from the
scaled linearized Boltzmann equation

@t h C v � rxh D
1

˛

�
C.h; M/ C C.M; h/

�
;

it is well known [3] that, in the limit ˛ ! 0, the gas will be close to a local thermodynamic
equilibrium, with density, bulk velocity, and temperature satisfying the acoustic equations.
Zooming out on longer times O.1=˛/, these acoustic waves become fast oscillating and thus
converge weakly to 0, but the incompressible component has a diffusive behavior, satisfying
the Stokes–Fourier equations. This by now classical asymptotic analysis can be actually com-
bined with Theorem 4.2 to derive directly the Stokes–Fourier equations from the dynamics of
hard spheres as in [11]. In a work in progress, we also take into account the noise, and get the
corresponding fluctuating hydrodynamics (satisfying the fluctuation-dissipation principle).

4.3. Some elements of the proof of Theorem 4.2
As in the previous sections, we will not enter into the technicalities of the proof,

which is actually quite involved. We will just focus here on some key arguments, provid-
ing a better understanding of large time asymptotics. We work directly on moments of the
fluctuation field, defined for any collection of times �1 < � � � < �p by

E"

�˝
�"

�1
; h1

˛
� � �
˝
�"

�p
; hp

˛�
; (4.2)

and we are going to prove their convergence to the moments of the field in the stochastic
equation d�t D Leq�t dt C d�t . Combined with the tightness results from [14], this fully
characterizes the convergence of the microscopic fluctuation field.

Let us start with p D 2 and compute the covariance E"Œ�"
�1

.h1/�"
�2

.h2/�. The idea is
to pull back the observable h2 from time �2 to �1 in order to reduce the estimates at a single
time �1. A similar strategy was presented in Sections 2.4 and 3.2 to transport the correlation
up to time 0 for which the distribution was known. In particular, we have seen that the cor-
relation functions at a time �2 can be represented by backward pseudotrajectories involving
collision trees with a number m of additional particles encoding the dynamical history during
the time interval Œ�1; �2�. The time restriction TL for the convergence to Boltzmann equation
in Theorem 2.1 was due to the lack of control on the growth of the tree sizes m at large times.
Indeed, dynamical correlations may develop and form giant components of correlated par-
ticles for very pathological trajectories. In order to reach larger time scales, one has to show
that the contribution of these bad trajectories with large m remains negligible. For this we
perform a time sampling. The idea is to build the pseudotrajectories iteratively from �2 to �1

on time steps of length � � 1 and to neglect the collision trees with a fast (superexponen-
tial) growth during a time � (see Figure 14). The large collision trees are therefore discarded
before they reach the time �1, i.e., before their sizes become uncontrollable. This can be
achieved by using the time invariance property of the equilibrium measure which provides
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Figure 14

Pseudotrajectories are build iteratively on short time intervals of length � starting from �2. The procedure stops
before reaching time �1 if superexponential branchings occur in a time interval of length � . The corresponding
pseudotrajectories stop at time �stop and are then discarded. A double sampling at scales ı � � � 1, depicted on
the right figure, is implemented to control the recollisions.

a priori controls on the statistics. This kind of sampling was introduced for the first time in
the context of the Boltzmann–Grad limit in [10, 11], but it is also an important ingredient in
the weak coupling limit for quantum systems leading to quantum diffusion [32,33].

Another key ingredient, to derive the convergence to the Boltzmann equation, is the
procedure to neglect the “bad” trajectories involving recollisions (see Section 2.4). Control-
ling the growth of the collision trees is also essential to discard recollisions. The idea is to
introduce a double sampling in time (with time scales ı � � � 1, see Figure 14) which
takes care simultaneously of the recollisions and of the collision tree growth. The backward
iteration is stopped and the corresponding pseudotrajectories are discarded as soon as one
of the following conditions is violated:

• there is at least one recollision on the last very small interval of size ı D O."1� 1
2d /;

• on the last small interval of size � D .log log �"/�1=2, the number of particles has
been multiplied at least by 2.

Note that both conditions are entangled. On the one hand, the bigger the size of the system,
the easier for recollisions to occur. On the other hand, it is rather difficult to control the
growth of the system if there are recollisions.

Assuming that the pseudotrajectories can be controlled by the previous time sam-
pling, let us now explain the weak convergence method for computing the covariance. The
two-time correlation E"Œh�"

�1
; h1ih�"

�2
; h2i� can be rephrased as the expectation of two fluc-
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Figure 15

Starting from z1� at time �2, the blue pseudotrajectory is built backward and leads to a configuration Zm at time
�1 (with m D 3 on the picture). The dual procedure goes forward, starting from Zm in order to reconstruct z1� as
a function of Zm at time �2. Following the forward flow, a tree is built by removing one of the particles at each
encounter between two particles. Notice that one has to choose which particle will be removed and if a scattering
occurs. Thus there are potentially several ways to build forward trajectories, but their combinatorics is well under
control. This is no longer the case when recollisions can occur. Indeed, this adds the possibility that when two
particles encounter in the forward flow, none of them disappears (see the dotted path on the figure) so when the
number of recollisions is not bounded the combinatorics diverges.

tuation fields at the same time �1

E"

�˝
�"

�1
; h1

˛˝
�"

�2
; h2

˛�
“D”

X
m

E"

�˝
�"

�1
; h1

˛˝
�"

m;�1
; ��2��1

˛�
; (4.3)

where the new test function ��2��1
.Zm/ is obtained from h2 by considering all possible

forward flows starting from Zm at time �1 and having only one particle left at time �2 (see
Figure 15). In this sense, (4.3) is dual to the backward representation of the correlation func-
tions (2.16). The price to pay, to reduce the expectation at a single time, is that the new test
function ��2��1

depends on m particles (a parameter related to the size of the collision trees
in the time interval Œ�1; �2�) so that the fluctuation field �"

m;�1
has the form˝

�"
m;�1

; ��2��1

˛
D

p
�"

�
1

�m
"

X
.i1;:::;im/

��2��1

�
z"

i1
.�1/; : : : ; z"

im
.�1/

�
� E".��2��1

/

�
;

which is related to the generalized empirical measure defined in (2.6), with the abbreviation

E".��2��1
/ D E"

�˝
�"

m;�1
; ��2��1

˛�
:

In the following, we will abusively forget the subscript m.
The difficulty to make sense of the pullback in (4.3) is that the forward flow is not

a priori well defined. Indeed, different backward pseudotrajectories may end up at time �1

with the same particle configuration Zm. Thus starting from Zm, there are many possibilities
to build the forward flow from �1 to �2: when two particles touch each other, we need to
prescribe whether one of them will be deleted (corresponding to a creation in the backward
flow) or not (corresponding to a recollision), and in the case of deletion whether there is
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scattering of the remaining particle (see Figure 15). The combinatorics of these choices is
diverging very fast if the number of recollisions is not under control. The very short time
sampling ı is introduced so that the number of recollisions during a time ı is controlled with
high probability under the equilibrium measure.

Then the pullback relation (4.3) is obtained by successive iterations of the sampling
time ı. After the first elementary time step in the time interval Œ�2 � ı; �2�, the patholog-
ical events are discarded and then the elementary pullback can be iterated. This means
that, at each time �2 � rı, remainder terms due to recollisions are neglected, and that, at
each time �2 � k� , remainder terms due to superexponential growth can also be discarded.
Let �stop 2 Œ�1; �2� be the first time at which a pseudotrajectory becomes pathological (see
Figure 14). The corresponding terms obtained by forward transport from the time �stop are
generically denoted by �bad

�stop
and are proved to be small by using the time invariance of the

equilibirum measure. Indeed, the time decoupling follows from a Cauchy–Schwarz estimateˇ̌
E"

�˝
�"

�1
; h1

˛˝
�"

�stop
; �bad

�stop

˛�ˇ̌
� E"

�˝
�"

�1
; h1

˛2�1=2
E"

�˝
�"

�stop
; �bad

�stop

˛2�1=2
; (4.4)

and from the strong geometric constraints on the corresponding pathological pseudotrajec-
tories which can be estimated under the equilibrium measure on can deduce that

E"

�˝
�"

�stop
; �bad

�stop

˛2�
! 0 as �" ! 1:

The last important step to prove that the limiting process is Gaussian boils down to
showing that, asymptotically when �" ! 1, the moments, defined in (4.2), are determined
by the covariances according to Wick’s rule

lim
�"!1

ˇ̌̌̌
E"

�˝
�"

�1
; h1

˛
� � �
˝
�"

�p
; hp

˛�
�

X
�2S

pairs
p

Y
¹i;j º2�

E"

�˝
�"

�i
; hi

˛˝
�"

�j
; hj

˛�ˇ̌̌̌
D 0; (4.5)

where S
pairs
p is the set of partitions of ¹1; : : : ; pº made only of pairs. Notice that if p is odd

then S
pairs
p is empty and the product of the moments is asymptotically 0.

To understand this pairing mechanism, let us start with a simpler example for which
explicit computations can be achieved. Consider the moments of the fluctuation field at
time 0, under the equilibrium measure with independently distributed particles. This reduces
to the case " D 0 and �1 D � � � D �p D 0. Assuming furthermore that the test functions are
of mean E0.hi / D 0 (we abusively write here E0 for this iid case, not to be confused with
E" for " D 0), we get

E0

"
pY

`D1

˝
�"

0; h`

˛#
D

1

�
p=2
"

E0

"
pY

`D1

�X
i`

h`.zi`/

�#
D

1

�
p=2
"

E0

" X
i1;:::;ip

pY
`D1

h`.zi`/

#
; (4.6)

where the sum is over all the possible choices (with repetition) among N particles (with
N ' �" under the grand-canonical measure). As the mean of the test functions is assumed
to be 0, each particle has to be chosen at least twice, otherwise by the independence of the
variables the expectation is equal to 0. Thus in the sum over i1; : : : ; ip , the number k of
different particles is such that k � p=2. Choosing k different particles gives a combinatorial
factor �k

" so that only the pairings with k D p=2 and p even contribute to the limiting
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moment. In this way, one recovers the Wick decomposition (4.5) in terms of pairings. Note
that for " > 0, a similar result holds (at time zero) in the Boltzmann–Grad limit, but a cluster
expansion of the equilibrium measure is necessary to control the (weak) correlations of the
Gibbs measure.

For time-dependent fluctuation fields, the pairing cannot be achieved in one step as
in the previous example. One has instead to proceed iteratively. Let us revisit the computation
above to explain the idea first in this simple setting. We start by focusing on the product of
two fields and decompose it as follows:˝

�"
0; hp

˛˝
�"

0; hp�1

˛
D

1

�"

X
i

hp.zi /hp�1.zi /„ ƒ‚ …
D‰

C
1

�"

X
i 6Dj

hp.zi /hp�1.zj /„ ƒ‚ …
Dh�"

0 ;hpi˝h�"
0 ;hp�1i

: (4.7)

The pairing between h�"
0; hpi and h�"

0; hp�1i is coded by the function ‰ which is called
a contracted product as the variables are repeated. As the variables are independent, the
covariance between hp and hp�1 is given by

E0

�˝
�"

0; hp

˛˝
�"

0; hp�1

˛�
D E0Œ‰�: (4.8)

From the central limit theorem, ‰ can be interpreted as a small fluctuation around the covari-
ance

‰ D E0Œ‰� C
1

p
�"

b‰ with b‰ D
1

p
�"

�X
i

hp.zi /hp�1.zi / � �"E0Œhphp�1�

�
; (4.9)

where b‰ behaves as a random variable with finite covariance (uniformly in "). The second
term in (4.7) will be called a ˝-product and denoted by h�"

0; hpi ˝ h�"
0; hp�1i. It behaves

qualitatively as a fluctuation field as the variables are not repeated.
Returning to (4.6), to extract the pairing between h�"

0; hpi and h�"
0; hp�1i, we write

E0

"
pY

`D1

˝
�"

0; h`

˛#
D E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!
‰

#
„ ƒ‚ …

pairing of hp ; hp�1

C E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!�˝
�"

0; hp

˛
˝
˝
�"

0; hp�1

˛�#
„ ƒ‚ …

product of p � 1 fields

:

(4.10)
The second term can be seen as a product of p � 1 fields which will be treated recursively
at the next step. The pairing between h�"

0; hpi and h�"
0; hp�1i can be extracted from the first

term as follows. Using the decomposition (4.9), we get

E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!
‰

#
D E0

"
p�2Y
`D1

˝
�"

0; h`

˛#
E0Œ‰� C

1
p

�"

E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!b‰#

D E0

"
p�2Y
`D1

˝
�"

0; h`

˛#
E0

�˝
�"

0; hp

˛˝
�"

0; hp�1

˛�
C O

�
1

p
�"

�
;

where the smallness of the last term follows from Hölder’s inequalityˇ̌̌̌
ˇE0

" 
p�2Y
`D1

˝
�"

0; h`

˛!b‰#ˇ̌̌̌ˇ � E0

�b‰2
� 1

2

p�2Y
`D1

E0

�˝
�"

0; h`

˛2.p�2/� 1
2.p�2/ ; (4.11)
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provided bounds on the moments of single fields can be obtained. For independent variables,
this procedure is far from optimal; however, it will be extremely useful to decouple fields at
different times. In this way, the pairing between h�"

0; hpi and h�"
0; hp�1i can be extracted

without investigating the correlations between these two fields and the p � 2 other fields.
Note that a time decoupling inequality similar to (4.11) was used in the computation of the
covariance (4.4) to neglect bad pseudotrajectories. Finally, it remains to iterate this procedure
with E0Œ

Qp�2

`D1
h�"

0; h`i� and the second term in (4.10) which involves a product of at most
p � 1 fluctuation fields.

We turn now to the time dependent case (4.5) and proceed backward in time to
achieve the pairing step by step. First, the fluctuation at time �p is pulled back at time �p�1

as a sum of (more complicated) fluctuations by the same duality method as for the covari-
ance (4.3). Using analogous notation as in (4.3), the test function hp is transformed into a
function �

.p/

�p��p�1
with m variables. Forgetting for a moment the product

Qp�2

`D1
h�"

�`
; h`i, we

focus on the product of the fields at time �p�1,˝
�"

�p�1
; hp�1

˛˝
�"

m;�p�1
; �

.p/

�p��p�1

˛
(4.12)

and decompose it as in (4.7) according to the repeated indices in the spirit of the example
above. This leads to two types of contribution:

• a “contracted product” (by analogy with the function ‰) which records all the
repeated indices in the product (4.12) at time �p�1. By Hölder’s inequality as
in (4.11), this term can be decoupled from the rest of the weight formed by the
moments

Qp�2

`D1
h�"

�`
; h`i. This strategy is particularly relevant for time-dependent

fields as it reduces the estimates to computing moments of fields at a single time.
In an equilibrium regime, the moments of the field at a single time can be easily
analyzed as the distribution is time invariant. In this way, the moments at �p and
�p�1 are paired and their covariance E"Œh�"

�p�1
; hp�1ih�"

�p
; hpi� is recovered. It

remains then to study the remaining moments E"Œ
Qp�2

`D1
h�"

�`
; h`i�.

• a “˝-product”, which by definition takes into account the nonrepeated indices,
and which can be interpreted as a product of two independent fluctuations at time
�p�1. In a very loose way, we have to evaluate now the following structure:

E"

" 
p�2Y
`D1

˝
�"

0; h`

˛!˝
�"

�p�1
; hp�1

˛
˝
˝
�"

m;�p�1
; �

.p/

�p��p�1

˛#
;

with a more complicated fluctuation field at time �p�1.

The key point here is that using the cumulant techniques introduced in Section 3.3, one
can then prove that the tensorized structure ˝ is essentially preserved by the pullback of
test functions: the configurations for which the ˝-product breaks can be neglected. Thus
with high probability the fields h�"

�p�1
; hp�1i ˝ h�"

m;�p�1
; �

.p/

�p��p�1
i can be pulled back up to

time �p�2 as if they were independent. Then we apply the pairing procedure at time �p�2.
This leads to new pairings between h�"

�p�2
; hp�2i and the pulled-back fields. In particular, the
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covariances E"Œh�"
�p�2

; hp�2ih�"
�p

; hpi� and E"Œh�"
�p�2

; hp�2ih�"
�p�1

; hp�1i� can be identified.
The nonrepeated variables at time �p�2 build new ˝-products involving the fluctuation fields
(or their pullbacks) from times �p�2, �p�1 and �p .

Iterating this procedure up to time �1, all the pairings can be recovered and the
Wick’s decomposition (4.5) is obtained in the limit �" ! 1. This shows that the limiting
process is Gaussian, thus achieving the proof of Theorem 4.2.

5. Open problems and perspectives

The research program that we conducted during this last decade and which is pre-
sented in this survey has led to two important breakthroughs compared to the state-of-the-art
after Lanford’s theorem:

• an extended statistical picture of the dynamics of hard-sphere gases for short
times, including fluctuations and large deviations;

• a complete answer to Hilbert’s sixth problem connecting the three levels of mod-
eling (atomistic, kinetic, and fluid) for linear equations of dilute hard-sphere gases
close to equilibrium.

Nevertheless, the problem of the axiomatization of gas dynamics remains largely open, even
in dilute regimes. We propose in this final section to review some important directions to be
explored in the future. We choose to discuss here only kinetic limits, involving a separation
of scales, for which an enterprise in the spirit of those discussed above is conceivable (albeit
possibly hard).

5.1. Long time behavior for dilute gases
The only case in which we have a complete picture of the transition from the atom-

istic description to fluid models is the equilibrium case. Nevertheless, the diffusive scaling
considered in these linear regimes is sublogarithmic (see, e.g., [10,15]). It would be interest-
ing to reach more relevant physical scales, for which we expect the limiting picture to remain
unchanged.

The law of large numbers in the equilibrium case is trivial, and the fluctuations are
governed by linear models. In order to extend this analysis to gases which are initially out
of equilibrium, a major obstruction is to define a good notion of stability for the nonlinear
Boltzmann equation, which plays the role of pivot between the microscopic and macroscopic
scales. In other words, this requires designing a good notion of convergence. The weak con-
vergence method developed in the equilibrium case uses a topology which is a priori too
weak to make sense of the nonlinear collision operator. Based on our analysis, we believe
that stronger convergence methods require a rather precise understanding of the mechanisms
responsible for the entropy cascade through the cumulants, retaining enough information in
the limiting system. Note that this information is encoded in the supports of the cumulants,
which have a finer and finer structure as the order of the cumulant increases. This structure

787 Dynamics of dilute gases: a statistical approach



might well be a key ingredient, as entropy and entropy dissipation play a crucial role in the
stability of the Boltzmann equation.

Beyond the law of large numbers, it would be also natural to extend the analy-
sis of fluctuations and large deviations for long kinetic times, and even diffusive times.
This would allow deriving the fluctuating hydrodynamics (typically, the fluctuating Navier–
Stokes–Fourier equations). A fine understanding of the Hamilton–Jacobi equations and of
the associated gradient structure would be certainly a major step in this direction.

5.2. The role of microscopic interactions
Our study is focused on the case of hard-sphere gases, for which the interaction is

pointwise in time and the scattering law is very simple. The papers [37, 45, 57] have shown
that, despite technical complications, the same average behavior, in the low density limit,
is obtained for compactly-supported potentials satisfying some suitable lower bound (ther-
modynamic stability). Only the collision cross-section (i.e., the transition rate of the jump
process in the velocity space) and, consequently, the hydrodynamic transport coefficients are
modified. One expects, and can prove for short times [45], that multiple collisions (three or
more particles simultaneously interacting at a given time) are a correlation of higher order
with respect to the dynamical correlations determining the fluctuation theory. It is then very
likely that the description of fluctuations and large deviations for short times can be also
extended to this short-range case. Notice that the absence of monotonicity of the potential
would require a more delicate treatment, as some trajectories can be trapped for a very long
time [57].

A problem of a much higher level of difficulty is to deal with long-range interactions.
We know that, as soon as the potential is not compactly supported, the collision cross-section
(which can be computed by solving the two-body problem) has a nonintegrable divergence
at grazing angles. It is therefore impossible to define solutions of the Boltzmann equation
without taking into account the cancelations between the gain and loss terms in the collision
operator, which would imply to find new ideas (in our methods dealing with microscopic
systems, such cancelations are never used). Close to equilibrium, using a sampling to discard
superexponential growth (as in Section 4 above), N. Ayi [2] has proved a convergence result
for very fast decaying potentials, but the method does not seem robust enough to deal with
weaker decays or systems out of equilibrium.

A natural idea, often used by physicists, would be to decouple the short range part
(acting as “collisions”), and the long range part of the interaction potential (to be dealt with
by mean field methods). However, from the mathematical point of view, this leads to a major
issue: no analysis method is available so far, as the techniques used for the low density limit
and for the mean field limit are completely different and apparently incompatible. This prob-
lem is investigated in [27], where a linear Boltzmann–Vlasov equation is derived rigorously
for a simple (Lorentz gas) model system (see also [26]).

A related issue is how to precisely identify and separate the long range and the colli-
sional part for a given potential law, capturing the good scaling for both parts. There are some
delicate aspects here involving the details of the potential and the dimension of the problem
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[52, 53]. Formal considerations as in [7] indicate that, in case of power law potentials 1=xs ,
the low density scaling should lead to a Boltmann equation for s > d � 1, to a Boltzmann–
Vlasov equation for s D d � 1, and to a Vlasov equation (with Boltzmann’s operator still
describing the collisions as a long time correction) for s 2 .d � 2; d � 1/. For the Coulomb
potential (and for smaller values of s), the Boltzmann operator has to be replaced by a dif-
fusive variant of it (Landau, or Lenard–Balescu operator; see also Section 5.4). We refer to
[52] for details.

We remark that the combination of mean-field and collisions has an interest in con-
nection with the problem of binary mixtures exhibiting phase segregation [5] (see also [1] on
a derivation result for mixtures).

5.3. Nonequilibrium stationary states
For short times, Lanford’s theorem allows considering particle systems which are

initially put out of equilibrium, provided that their distribution is controlled in some sense
by an equilibrium state. This assumption is a key argument to get uniform bounds (even for
short times when the relaxation phenomenon cannot be observed). In this situation, one can
use a comparison principle because nothing forces the system to stay out of equilibrium, and
the invariant measure is well known.

A natural extension is to deal with a gas evolving in a domain with boundary con-
ditions, rather than the whole space or the periodic setting as considered previously. In the
case of boundary conditions ensuring conservation of energy, we still have a control by the
invariant measure, and the main extra difficulty caused by the presence of boundaries lies in
the geometric analysis of recollisions. This has been discussed so far in the case of simple
geometries [29,48] (see also [35] for the case of external forces).

A much more delicate situation is when the system of interacting particles is main-
tained out of equilibrium by a forcing or a boundary condition (reservoir, thermostat, …).
One would like to derive, in this nonequilibrium framework, the Boltzmann equation and
more generally the properties of the steady states. As exposed in [18], this question is a “chal-
lenge to theorists,” and few quantitative results are known either for gas dynamics or for other
mechanical systems such as chains of anharmonic oscillators. Even though, under reason-
able assumptions on the nonequilibrium forces, the existence of a stationary measure of the
microscopic dynamics is expected, one does not know how to construct such a measure or
any exact solution which would play the role of supersolution for the actual distribution of
particles. In particular, a good starting point for the analysis of the low density limit seems to
be missing at present. Finally, it is worth mentioning that the theory of stationary solutions
for the Boltzmann equation with thermal reservoirs is still far from mature, see [36] for a
recent review.

Beyond the derivation of the Boltzmann equation for boundary driven systems, it
would be interesting to investigate the large deviations as they can provide some knowledge
on the invariant measure [6, 25]. Also it is conjectured [9, 18] that the Fourier law should be
valid for a dilute gas maintained out of equilibrium by reservoirs. To prove its validity would
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require an analysis beyond the kinetic time scale in order to derive fluid equations out of
equilibrium.

5.4. A realm of kinetic limits
Besides the low density (Boltzmann–Grad) scaling discussed so far, there is a vari-

ety of interacting particle models admitting a kinetic limit and sharing many similarities with
the classical Boltzmann gas [67]. We shall only mention here the two main obvious modifi-
cations of our assumptions (which are reviewed in detail in [56]): (i) start from a microscopic
description based on quantum mechanics instead of classical mechanics, namely replace the
Newton equations by the N -body Schrödinger equation, including additional symmetry/anti-
symmetry constraints which take into account the specificity of bosons/fermions; (ii) perform
a high-density, weak-coupling scaling with potential "˛�.x="/, where ˛ 2 Œ0; 1� and the par-
ticle density is correspondingly tuned as �d C 1 � 2˛. For ˛ 2 .0; 1/, the latter scaling
should lead to the diffusive Landau equation in the case of classical systems, and is suited
to a description of collisions in plasmas. The diffusion emerges from a central limit type
effect on an accumulation of many weak collisions. The limiting point ˛ D 1 is expected to
capture the famous Lenard–Balescu correction. Conversely, in the case of quantum systems,
each value of ˛ should lead to a quantum version of the Boltzmann equation. The amount
and quality of quantum features surviving in the limit depends on the particular value of
˛. For ˛ D 0, the collision operator contains the full quantum cross-section. On the other
hand, for ˛ D 1=2 (when only the first term of the Born series survives), one expects to
get additional cubic terms in the collision operator, expressing the inclination of particles to
aggregate (Bose–Einstein condensation) or to repel each other (Pauli’s exclusion principle).

For such a variety of situations, no rigorous full derivation result is available at
present, not even for short kinetic times; see however [8,56,69,70] for consistency results and
attempts in this direction (full results are instead available for Lorentz type (linear) models,
see [31,44] for the classical case and [32] for a review in the quantum case). When trying to
reproduce Lanford’s strategy, one stumbles indeed upon many difficulties. The construction
of the equilibrium measure is delicate, and it is not completely clear how to identify the
suitable functional spaces for the study of the limit. The Wigner transform, which allows
computing observables, is nonpositive and quadratic with respect to the wave function: this
implies that the combinatorics associated with the Duhamel series, which can be represented
by Feynman diagrams is much worse than the combinatorics of collision trees. In general,
these formal series are never absolutely convergent.

All the open questions regarding the long-time behavior, the structure of correlations
and the deviations from the average dynamics, the role of microscopic interactions or the
stationary nonequilibrium case remain, also in these different settings, as challenges for the
future.
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