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1. Introduction

1.1. Langlands correspondence over functional fields
Let C be a smooth projective irreducible curve over a finite field Fq . One can con-

sider the global field F D Fq.C/ of rational functions on C and its adele ring A. Given
a split semisimple group G one can study automorphic forms on the adelic group G.A/

– these are (by definition) irreducible representations of G.A/ which appear in the space
of C-valued functions on G.A/=G.F/. For many purposes, it is important to consider dis-
crete automorphic representations – these are automorphic representations appearing in
L2.G.AF =G.F//.

In this introduction we restrict our attention to unramified automorphic representa-
tions, i.e., those which have a G.OF /-invariant vector where OF � A is the ring of integral
adeles. In other words, we consider functions on G.OF /nG.A/=G.F/ which are eigenfunc-
tions of certain commuting family of linear operators, called Hecke operators; for every place
c of F (which is the same as a point of C.Fq/ up to the action of Frobenius), one constructs
the algebra of Hecke operators which is isomorphic to the complexified Grothendieck ring of
finite-dimensional representations of the Langlands dual group G_ (and for different c these
algebras commute with each other). The weak form of the Langlands conjecture (now proved
by V. Lafforgue for global fields of positive characteristic) asserts that (after the replacement
of the coefficient field C by Q`) the common eigenvalues of all the Hecke operators come
from `-adic G_-local systems on C .

The quotient G.OF /nG.A/=G.F/ is canonically isomorphic to the set of Fq-points
of the moduli stack BunG.C/ of principal G-bundles on C . Thus Hecke eigenfunctions are
functions on BunG.C/.Fq/ and unramified discrete automorphic forms correspond to Hecke
eigenfunction lying in L2.BunG.C/.Fq// (with respect to the Tamagawa measure).

We fix a curve C and a group G, and will write Bun instead of BunG.C/ when it
does not lead to a confusion.

1.2. Hecke eigenfunctions on moduli spaces of bundles over local fields
This survey reports on an attempt to extend the above constructions and results to

the case when instead of a curve over Fq we start with a curve over a local field F . The idea
to consider Hecke eigenfunctions in this case was first formulated by Langlands in the case
F D C (cf. [25] and also [18]) several years ago. A systematic study of this question was
started in [9] in a slightly different framework. To simplify notations we often assume that G

is semisimple and the genus g of C is � 2.
Here several difficulties are present. First, since Bun is a stack, it is not clear what

space of functions on Bun.F / to consider. In fact, a big part of this paper is devoted to a
discussion of three different spaces with actions of Hecke algebras one can attach to stacks
over local fields and the relation between them (cf. Sections 2 and 3). In the first approach
(which follows the papers of P. Etingof, E. Frenkel, and D. Kazhdan), the action of the Hecke
algebra is defined on the Hilbert space L2.Bunst.F // of half-measures where Bunst � Bun is
the open Deligne–Mumford substack of stable bundles. In this case the space is familiar, but
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one has to justify the convergence of the integrals defining Hecke operators. In the second and
third approaches, the action of Hecke operators is well defined, but it is not easy to describe
spaces on which they act. Some of our conjectures are on the relation between these different
realizations.

In all three approaches the definition of Hecke operators, in fact, comes from [6]

where some version of Satake isomorphism for Hecke algebras over a local field F is studied
(formally, [6] only deals with non-archimedian fields, but the extension to archimedian case
is straightforward).

Remark 1.1. In [9] (which deals with the case F D C), the role of Hecke operators is played
by the algebra D of global differential operators on Bun.F / (and their complex conjugate).
In fact, as was observed in [3] there is no nontrivial regular differential operators acting on
functions, but there is a large algebra of differential operators on half-forms. This algebra D

is commutative and is equal to algebra of functions on the moduli space of certain special
G_-local systems on C called opers. This is another reason why half-forms are better suited
for this problem. One of the main purposes of [9] is a formulation of a conjectural description
of eigenvalues of the algebra A D D ˝ D in terms of certain G_-local systems on C (opers
with real monodromy). For G D SL.2/, a very close conjecture was formulated by J. Teschner
in [27].

A systematic study of Hecke operators as self-adjoint operators acting on a Hilbert
space started in [10] (in the case F D C). As was mentioned above, the definition of Hecke
operators is based on [6], and it again follows from [6] that in order to define Hecke operators
one must work with half-forms; in this case Hecke operators are given by certain integrals
(which are not guaranteed to converge). In [10] the authors conjectured that these integrals, in
fact, define compact self-adjoint operators on L2.Bun/.F / for any local field F (in particu-
lar, contrary to the case of finite fields, their common spectrum on L2.Bun.F // is discrete);
in the case F D C, it is expected that their eigenvectors are essentially the same as the
eigenvectors for the algebra A (we shall give a precise formulation in Section 6). It is also
explained in [10] (in the case F D C) how to produce Hecke eigenvalues from opers with
real monodromy (again, this is reviewed in Section 6). For non-archimedian fields F and
G D SL2, analogous conjectures were formulated earlier by M. Kontsevich in [22].

In Section 5 we propose two other constructions of modules over the Hecke algebra –
the last one only in the non-archimedian case. As was mentioned before, the space L2.Bun/ is
not the only choice of functional space one can work with. One can define another functional
space (still having to do with half-forms) on which the Hecke operators will automatically
act. The relationship between this space and L2.Bun/, in the case when G D SL2, is the
subject of a forthcoming paper by A. Braverman, D. Kazhdan, and A. Polishchuk. We review
the relevant definitions and statements in Sections 2 and 3.

As a byproduct, when F is non-archimedian and the curve C is defined over its
ring of integers OF (and has good reduction), we give a conjectural construction of finite-
dimensional spaces of cuspidal functions with an action of Hecke operators generalizing the
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space of cuspidal functions on Bun.Fq/, where Fq is the residue field of F (but in this way
one gets only a very small portion of Hecke eigen-functions).1 This is reviewed in Section 5.

In Sections 6 and 7, we formulate in the archimedian case a precise conjecture on
the interpretation of the spectrum of Hecke operators on L2.Bun.F // in terms of some kind
of Galois data (involving the dual group G_). It would be extremely interesting to find an
interpretation of the spectrum of Hecke operators to for the non-archimedian case.

1.3. Relation of the archimedian case to geometric Langlands correspondence
and conformal field theory
In the case when the field F is archimedian, our program is related to the quantum

gauge theory (see [19]).
In this case Beilinson and Drinfeld associate to every G_-oper o a certain algebraic

D-module Mo on Bun which is a Hecke eigenmodule which is equipped with a canonical
generator (here D stands for the sheaf of differential operators on Bun acting on half-forms).
This is an important part of a general geometric Langlands conjecture. The D-module Mo

can be thought of as a system of linear differential equations on Bunst. The corresponding
Hecke eigen-half-form (in the case when o has real monodromy) is a solution of both this
system of equations and its complex conjugate.

The difference between the traditional categorical Langlands correspondence and
the analytic Langlands correspondence for complex curves can be illustrated by an analogy
with the two-dimensional conformal field theory (CFT). In CFT, there are two types of cor-
relation functions. The first is chiral correlation functions, also known as conformal blocks.
They form a vector space for fixed values of the parameters of the CFT, so we obtain a vector
bundle of conformal blocks on the space of parameters, equipped with a projectively flat
connection (or more generally, a twisted D-module). Conformal blocks are its multivalued
horizontal sections. The second type is the “physical” correlation functions. They can be
expressed as sesquilinear combinations of conformal blocks and their complex conjugates
(anticonformal blocks), which is a single-valued function of the parameters.

The Hecke eigensheaves on Bun constructed in the categorical Langlands cor-
respondence may be viewed as sheaves of conformal blocks of a certain CFT. They are
parametrized by all G_-opers on the curve. It turns out that for special G_-opers (namely,
the real ones) there exists a sesquilinear linear combinations of these conformal blocks and
their complex conjugates which are single-valued functions (more precisely, 1=2-measures)
on Bun. These are the automorphic forms of the analytic theory. Thus, the objects of the
analytic theory of automorphic forms on Bun can be constructed from the objects of the
categorical theory in roughly the same way as the correlation functions of CFT are obtained
from conformal blocks (see [16] and the references therein for more details). An important
difference with traditional CFT is that while usually in CFT the monodromy of conformal
blocks is typically unitary, here the monodromy is expected to be in a split real group.

1 The construction itself is, in fact, not conjectural – we can do it rigorously. But at the
moment, we cannot prove that the resulting eigenfunctions are not equal to 0.
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1.4. Notations
We shall use the letter k to denote an arbitrary field (which could be finite) and the

letter F for local fields. For a variety (or stack) X over k, we denote by X.k/ the set of
k-points (for a stack we consider isomorphism classes of points). If F is non-archimedian,
we denote by OF its ring of integers. We shall also consider the field K D k..t// (or F..t//)
with ring of integers which we denote just by O.

For a split semisimple group G, we denote by G_ the Langlands dual group of
G considered as a group over C. We fix a Borel subgroup B D T U of G, where T is a
maximal torus and U is a maximal unipotent subgroup; similarly we have a Borel subgroup
B_ D T _U_ � G_.

We denote by ƒ and ƒ_ the lattices of coweights and of weights of T (so ƒ is also
the lattice of weights of T _) and by ƒC � ƒ the subset of dominant coweights.

1.5. Organization of the paper
In Section 2 we review some basic information about varieties and stacks over local

fields and various spaces of functions on them. In Section 3 we begin the discussion of the
moduli stack Bun of G-bundles on a curve C over a local field F and formulate some con-
jectures about the relation between various function spaces one attaches to Bun. In Section 4
we review the definition of Hecke operators and the formulation of the unramified Langlands
correspondence for curves over Fq . In Section 5 we explain the definition of Hecke operators
in the case of local fields, formulate our main conjectures and also discuss some construc-
tions specific for the non-archimedian case. Section 6 is dedicated to the case F D C and
Section 7 to the case F D R.

2. Smooth sections of line bundles on varieties and

stacks

2.1. Smooth sections on varieties
If X is an algebraic variety over a local field F (archimedian or not), the set X.F /

is endowed with a natural topology.

Definition 2.1. A function f W X.F / ! C is smooth if

(a) F is non-archimedian and f is locally constant;

(b) F is archimedian and (locally) there exists a closed embedding X ,! Y where
Y is a smooth variety over F and a C1-function Nf W Y.F / ! C such that
f D Nf jX.F /.

We denote by C1.X/ the space of smooth functions on X.F / and by �.X/ its
subspace of functions with compact support.
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For a line bundle L over X , we denote by L0 WD LnX the corresponding Gm-torsor
over X and set

jLj
�

D L0.F / �
F �

C� ;

where C� denotes the 1-dimensional space C on which F � acts by j � j� . Then jLj� is a com-
plex line bundle over X.F /. Since the bundle jLj� is locally trivial with respect to the natural
topology, we can define its space of smooth sections which we denote by C1.X; jLj�/.
Similarly, we denote by �.X; jLj�/ � C1.X; jLj�/ the subspace of sections with compact
support.

In the case when X is smooth we shall often take L D !X , where !X is the line
bundle of differential forms of top degree and write ��.X/ instead of �.X; j!j�/. The case
� D 1=2 is of special interest since the space �1=2.X/ is endowed with a natural Hermitian
product. We denote by L2.X/ its Hilbert space completion.

Remark 2.2. (1) If U � X is an open subset and Z D XnU then we have a short
exact sequence

0 ! �
�
U; jLj

�
U

�
! �

�
X; jLj

�
�

! �
�
Z; jLj

�
Z

�
! 0:

(2) More generally, instead of choosing L 2 Pic.X/ and � 2 C we can start with any
element of Pic.X/ ˝ C – all the above definitions make sense in this context.

2.2. Smooth sections on stacks
In this subsection we extend the above definitions to a class of algebraic stacks.

Definition 2.3. An algebraic stack Y is admissible if locally there exists a presentation of Y

as a quotient stack X=G where X is a smooth variety and G is an affine algebraic group. We
denote by p W X ! Y the projection.

A presentation of Y as a quotient Y D X=GLn is called an admissible presentation.2

Remark 2.4. (1) Any smooth admissible stack of finite type can be presented as a
quotient X=GLn for a smooth variety X (see [21]). As follows from the Hilbert’s
90, we have Y.F / D X.F /= GLn.F /.

(2) Any admissible stack is automatically locally of finite type.

(3) A line bundle on a quotient X=G is a G-equivariant line bundle on X .

Definition 2.5. (1) Assume that F is non-archimedian, Y is an admissible stack of
finite type over F . Choose an admissible presentation Y D X= GLn for some
variety X and set

�
�
Y; jLj

�
�

D �
�
X; jLX j

�
�

GL.n;F /
;

2 The definition of admissibility that we use here is close to the one introduced in [21] but
slightly different. It is easy to see that every admissible stack locally has an admissible pre-
sentation.
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where the latter space stands for the space of GL.n; F /-coinvariants on
�.X; jLX j�/.

(2) If F is non-archimedian and Y is only locally of finite type, then we can
write Y as a direct limit of open substacks Yi of finite type over F and define
�.Y; jLj�/ WD lim

!
�.Yi ; jLj�/.

(3) In the case when F is archimedian we make an analogous definition but take
coinvariants �.X; jLX j�/GL.n;F / in the category of topological spaces where
�.X; jLX j�/ is endowed with Fréchet topology.3

The above definition makes sense because of the following

Claim 2.6. If Y is an admissible stack of finite type then the space �.Y; jLj�/ does not
depend on a choice of an admissible presentation Y D X= GLn.

Remark 2.7. In the case when F is non-archimedian, L D !X , and � D 1, this claim is
proven in [21, Section 6]. The same arguments work in the general case.

2.3. Functoriality
If Y is an admissible stack and U is an open substack, we have a natural map

�.U; jLj�/ ! �.Y; jLj�/, which is not injective in general.
More generally, let f W Z ! Y be a smooth representable map of admissible stacks

and !Z=Y be the relative canonical bundle. Then we have a natural (“integration over the
fibers”) map

�
�
Z; jLj

�
˝ j!Z=Y j

�
! �

�
Y; jLj

�
�
:

2.4. An example: stacks over OF

In this subsection we consider the case when the field F is non-archimedian (with
residue field k) and construct some explicit elements in �.Y; jLj�/. Assume that Y D X=G

where both X and G are defined over OF and that XOF
is a regular scheme over OF such

that Y.F / D X.F /=G.F /. Assume also that the line bundle L is defined over OF . Then in
the same way as before we can define �.YOF

; jLj�/ with an obvious map �.YOF
; jLj�/ !

�.Y; jLj�/.
Consider now the case when L D !Y . Then the complex line bundle jLj has a

canonical trivialization on Y.OF /. Let �.Y.k// denote the space of C-valued functions
with finite support on Y.k/. Then the above trivialization gives rise to a map �.Y.k// !

�.YOF
; jLj�/. Composing it with the map �.YOF

; jLj�/ ! �.Y; jLj�/, we get a map EY;� W

�.Y.k// ! ��.Y/.

Remark 2.8. (1) This map is often not injective.

3 We define the space �.X; jLX j�/GL.n;F / as the quotient of �.X; jLX j�/ by the clo-
sure of the subset generated by elements of the form g.s/ � s where g 2 GLn.F / and
s 2 �.X; jLX j�/.
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(2) We will be mostly interested in the space �1=2.Y/ (for a particular choice of Y).
In the case when Y was a smooth scheme, this space had a canonical Hermitian
product. We do not expect to see a Hermitian product on �1=2.Y/ for general
admissible stacks Y but we define a class of excellent stacks when such a product
exists.

(3) We write M.Y/ WD �1=2.Y/.

2.5. Nice and excellent stacks
In this subsection we assume that Y is an admissible stack which contains an open

substack Yvs � Y such that Yvs D Yvs=Z where Yvs is a smooth scheme and Z is a finite
group acting trivially on Yvs.4

Remark 2.9. (1) To simplify the notations, let us assume that Z D ¹eº (but gener-
alization to arbitrary Z is straightforward).

(2) A choice of this open substack is not unique, and some of the definitions below
depend on this choice.

(3) Let L2.Yvs/ be the Hilbert space completion of the space of smooth half-
measures on Yvs.F / with compact support. It is easy to see that this space
is in fact independent of the choice of Yvs.

If Y is of finite type over F , we choose a presentation Y D X= GLn, denote by U

the preimage of Yvs in X and by p W U ! Yvs the quotient map.
Let s be a smooth section with compact support of the complex line bundle

p�j!Yvs j
� ˝ j!X=Y j. Then sjU is a section of p�j!Yvs j

� ˝ j!U=Y j. We can try to inte-
grate it over the fibers of p to get a section of j!Yvs j

� on Yvs. The problem is that these
integrals might not converge since the intersection of the support of s with the fibers of the
map p might not be compact.

Definition 2.10. (1) The stack Y is �-bounded if there exists an open substack of
finite type Y0 � Y such that the map ��.Y0/ ! ��.Y/ is an isomorphism.

(2) A pair .Y;Yvs/ is �-nice if Y is �-bounded and for every s as above supported on
the preimage of Yvs the push-forward p�.s/ is well-defined (i.e., it is absolutely
convergent) and defines a smooth section of j!Yvs j

� on Yvs.

(3) A pair as above is excellent if it is nice for all � � 1=2 and for � D 1=2 we have
p�.s/ 2 L2.Yvs/ for every smooth section s with compact support.

When the substack Yvs � Y is fixed we refer to the stack Y as “nice” or “excellent.”

4 The subscript vs stands for “very stable.” The reason for this notation is that later when
we work with the stack Bun of G-bundles on a curve, we define Bunvs � Bun as the open
subset of very stable bundles.
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Remark 2.11. The convergence in the definition of �-niceness is automatically true for
� � 1.

If Y is �-nice, then the map s 7! p�.s/ descends to a map ��.Y/ ! C1.Yvs/. If Y

is excellent we get a map M.Y/ D �1=2.Y/ ! L2.Yvs/ D L2.Y/.

Example 2.12. Let X D .P 1/3, G D PGL2, and Y D X=G, where G acts diagonally; we
take U to be the complement to all diagonals in .P 1/3. Then G acts freely on U and we
set Yvs D U=G (note that Yvs is just Spec F ). In this case one can check that Y is nice for
� > 1=3 and the stack Y is excellent.

3. The case of BunG: preliminaries

We fix a split connected semisimple group G and denote by Z it center.
Let C be a smooth complete irreducible curve over a field k.

Definition 3.1. (1) BunG is the stack of the principal G-bundles on C and
BunG;st � BunG is the open substack of stable bundles.

(2) For a G-bundle F on C we denote by AdF the adjoint bundle to F associated
with the adjoint action of G on g.

(3) A G-bundle F is very stable if there is no nonzero section of �.C ; AdF / ˝ !C

whose values at all points of C are nilpotent.

(4) We denote by BunG;vs � BunG the substack of very stable bundles.

Remark 3.2. If C is of genus � 2 then:

(1) Every very stable bundle is stable.

(2) Bunst is a dense open subset of Bun of the form Y=Z where Y is a smooth
scheme of finite type over F and Z acts trivially on Y .

(3) Bunvs is a dense open subset of Bunst.

(4) When it does not lead to a confusion we shall drop the subscript G from the
notation (e.g., we shall write Bun for BunG).

Claim 3.3. The stack Bun is �-bounded for all �.

Remark 3.4. This statement is inspired by the proof of the main result of [7].

Conjecture 3.5. Assume that the genus g of C is � 2.

(1) Bun is �-nice for Re.�/ � 1=2. In particular, for � � 1=2, we get a map
�� W ��.Bun/ ! C1� .Bunvs/.

(2) For � � 1=2 any section in the image of the map �� extends to a continuous
section of j!Bunj� on Bunst.

(3) Bun is excellent.
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For G D PGL2, the first assertion of Conjecture 3.5 (as well as some special cases
of the second and third assertions) will appear in a forthcoming paper of A. Braverman,
D. Kazhdan, and A. Polishchuk. Let us note that (again for G D PGL2) the second assertion
can be reduced to the following purely algebro-geometric statement using [2] (we can prove
the conjecture for curves of genus 2 and 3).

Conjecture 3.6. Let E be a stable bundle on C of degree 2g � 1. Let FE denote the scheme
of pairs .L; s/ where L 2 Pic0.C/ and s 2 P .H 0.C ; L ˝ E//. Then

(1) FE is irreducible.

(2) dim FE D g.

(3) FE has rational singularities.

4. Affine Grassmannian and Hecke operators: the case of

finite field

In this section we collect some facts about the canonical class of certain Schubert
varieties that we shall need in the future. All the results of this section follow easily from
[12] and [3]. In what follows we a ground field k and set denote by O the ring functions on
the formal one-dimensional disc D over k and by K the field of functions on the punctured
disc D?. So O � kŒŒt �� and K � k..t//. We denote by !D the canonical bundle on D and
fix a square root !

1=2
D (unique up to an isomorphism; the isomorphism is unique up to ˙1).

4.1. The affine Grassmannian
Let G be a split semisimple group over k and GrG WD G.K/=G.O/. It is known

that GrG has a natural structure of a proper ind-scheme over k and the orbits of the group
G.O/ on GrG are parameterized by the elements of ƒC.

For each � 2 ƒC, we shall denote by Gr�
G the corresponding orbit and by Gr�

G the
closure of Gr�

G .

4.2. Satake isomorphism
In the rest of this section we assume that k is a finite field.
Let H .G; k/ be the algebra of compactly supported G.O/-biinvariant distributions

on G.K/ (by choosing a Haar measure on G.K/ such that G.O/ has volume 1, we can
identify these distributions with functions). Let G_ be the Langlands dual group, consid-
ered as a group over C. The Satake isomorphism identifies H .G; k/ with the complexified
Grothendieck ring of the category Rep.G_/ of finite-dimensional representations of G_. It
can also be identified with the algebra CŒT _�W of W -invariant polynomial functions on T _.

4.3. Hecke operators
Let now C be a smooth projective irreducible curve over k. As before we consider

the stack Bun WD BunG of principal G-bundles on C . Let c 2 C be a closed point with
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residue field k0 which is a finite extension of k. Choose of a local parameter near c,5 (in the
end nothing will depend on this choice) and consider the stack Heckec classifying triples
.E1; E2; �/ where every Ei is a principal G-bundle on C and � is an isomorphism between
E1 and E2 on Cn¹cº. We have canonical projections

Heckec

pr2
�����! Bun

pr1
??y

Bun :

(1)

Every fiber of the map pr2 is isomorphic to GrG and this isomorphism is canonical
up to the action of G.O/. Thus every h 2 H .G;k0/ defines a canonical function Qh on Heckec .
We can use it as a correspondence, and set

Th;c.f / D pr2;�

�
pr�1.f / � Qh

�
for any f W Bun.Fq/ ! C. This construction defines an action of the algebra H .G; k0/ on
the space of all functions on Bun.k/ (given a choice of c as above). For different choices
of c, these operators commute.

Claim 4.1. (1) The operators Th;c preserve the space �.Bun/ of functions with
finite support on Bun.k/.

(2) Let L2.Bun.k// be the L2-completion of the space �.Bun.k// with respect to
the standard L2-norm given by the measure on the (discrete) set Bun.k/ where
the volume of every E is equal to 1

# Aut.E/
. Then for every c the action of H .G;k/

extends to an action on L2.Bun.k// by bounded operators. If h is real-valued,
the operator Th;c is self-adjoint.

4.4. Langlands conjectures
In the theory of automorphic forms, we are usually interested in eigenfunctions of all

the operators Th;c . Let us replace the field of coefficients C by Q` where ` is a prime number
different from the characteristic of Fq . Then (the weak form) of the Langlands conjecture
states that if f is such an eigenfunction, then the eigenvalues of all the operators Th;c come
from a homomorphism � W W .C/ ! G_.Q`/ where W .C/ is the Weil group of C (a close
cousin of the fundamental group of C ). In fact, in this form the Langlands conjecture has
been proved by V. Lafforgue (cf. [24]).

Let us recall the connection between Hecke-eigenvalues and homomorphisms � as
above. First of all, any c defines a conjugacy class Frc � W .C/. For any V 2 Rep.G_/ the
by Satake isomorphism associates to V an element in H .G; k/, which we denote by hV . We
denote TV;c the corresponding Hecke operator. We say that the eigenvalue of an eigenfunc-
tion f comes from � if

TV;c.f / D Tr
�
�.Frc/; V

�
� f (2)

for all c and V .

5 That is an identification of the formal neighborhood of c with Spec k0ŒŒt ��.
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In general, Hecke eigenfunctions lie neither in �.Bun/ nor in L2.Bun/ (here we
come back to considering C-coefficients). Those which lie in the former are called cuspi-
dal, and those which lie in the latter are called discrete. The fact that not all eigenfunctions
are discrete is related to the fact that the operators Th have both discrete and continuous
spectrum.

Remark 4.2. Note that the operators Th;c would be compact, if the stack Bun were of finite
type over k (in fact, L2.Bun.k// would be finite-dimensional in this case), and so in that their
common spectrum would be discrete. So, the existence of continuous spectrum of Hecke
operators is related to the fact that Bun is not of finite type over k.

5. The affine Grassmannian and Hecke operators: the case

of local field

5.1. More on formal discs
We are going to make a very mild change of notation (compared to the previous

section). Namely, let F be a field (very soon we shall assume that F is a local field). In what
follows we denote by O some discrete valuation ring over F which (as a discrete valuation
ring) is isomorphic to F ŒŒt �� (the point is that we do not want to fix this isomorphism). We
let K be the field of fractions of O. We set D D Spec.O/, D� D Spec.K/. We shall denote
by 0 the canonical F -point of D.

We let !D be canonical sheaf of D and let !D;0 be its fiber at 0. This is a vector
space over F .

5.2. Line bundles on GrG

It is well-known (cf. [3] and [12]) that every finite-dimensional representation V of
G gives rise to a (determinant) line bundle LV on GrG ; the fiber of this bundle over a point
g 2 G.K/=G.O/ is equal to the determinant of the vector space g.V.O//=g.V .O// \ V.O/.
In particular, we let Lg denote the line bundle corresponding to the adjoint representation
of G. The line bundle L�1

g has a square root (unique up to isomorphism) which we denote
by Lcrit.

The following result from [3] is crucial for us:

Theorem 5.1. For every � 2 ƒC, there is a canonical isomorphism

LcritjGr�G
' !Gr�G

˝ !
�h�;�_i
D;0 :

(Here, as before, !Gr�G
denotes the canonical bundle of on Gr�

G).6

6 The formulation of the theorem requires a clarification when G is not simply connected,
since in this case h�; �_i might be a half-integer (and not an integer). It is sufficient for
our purposes to say that we choose a square root of !D;0 and that the isomorphism above
is canonical up to ˙1. This potential sign will disappear when we apply j � j to both sides
which we shall do in applications.
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We need more information about the structure of the varieties Gr�

G . The following
result is proved in [12] (cf. also [23] and [26] for the corresponding result in characteristic 0).

Theorem 5.2. (1) Each Gr�

G is a normal and Cohen–Macaulay projective variety
over F .

(2) Each Gr�

G has a resolution of singularities7 and, for every such resolution
�� W eGr�

G ! Gr�

G , one has

R��
� .OeGr�G

/ D O
Gr�G

:

(in other words, Gr�

G has rational singularities).

The next result is an easy corollary of Theorems 5.2 and 5.1 (cf. [6] for a proof):

Theorem 5.3. (1) For every � 2 ƒC, the variety Gr�

G is Gorenstein. Moreover,
the canonical sheaf of Gr�

G is isomorphic to LcritjGr�G
˝ !

h�;�_i
D;0 . Abusing the

notation, we shall denote this sheaf by !
Gr�G

.

(2) For any � 2 ƒC, let �� W eGr�
G ! Gr�

G be any resolution of singularities. Then
the identification between .��/�!

Gr�G
and !eGr�G

that one has at the generic point
of eGr�

G comes from an embedding�
��

��
!

Gr�G
,! !eGr�G

:

(In the case char k D 0, this implies that Gr�

G has canonical singularities).

5.3. Hecke algebra over local field
In this subsection F can be any local field.
Let us now work over a local field F instead of k with the corresponding ring O and

its field of fractions K .8 Then we would like to define the Hecke algebra H .G; F /. First we
consider the space

C11=2.GrG/ D lim
 

�
�
Gr�

.F /; jLcritj
�
:

Assume first that F is non-archimedian. Then we define H .G;F / to be the space of
all G.O/-invariant linear functionals on C1

1=2
.GrG/ with compact support. The latter condi-

tion means that we consider functionals ı W C1
1=2

.GrG/ ! C which factorize through a map

C1
1=2

.GrG/ ! �.Gr�
.F /; jLcritj/ for some �. It is easy to see that H .G; F / is an algebra

with respect to convolution.
It turns our that Theorems 5.1, 5.2, and 5.3 allow one to construct a lot of elements

in H .G; F / (what follows is essentially equivalent to the main result of [6]). Namely, let
� be as above and let � 2 C1

1=2
.GrG/. Let us first trivialize the space !D;0. Then �jGr�G

7 Of course, this statement is not a priori clear only if char F > 0.
8 In the case when F is non-archimedian the reader should not confuse O D F ŒŒt �� with OF

which is the ring of integers of F .
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is a distribution on Gr�.F / and we can try to consider its integral. A priori it might not
be well defined since Gr�

G.F / is not compact, but it is explained in [6] that Theorems 5.2
and 5.3 imply that in fact this integral is absolutely convergent and thus defines an element
h� 2 H .G; F /. These elements have the property that for any dominant � and � we have

h� ? h� D h�C�:

In other words, we get an embedding CŒƒC� ,! H .G; F /. It is easy to see that it is actually
an isomorphism.

If we do not want to trivialize the space !D;0 then canonically h� is a map from
j!D;0j�h�;�_i ! H .G; F /, and we get an isomorphismM

�2ƒC

j!D;0j
h�;�_i

' H .G; F /

(the left-hand side has an obvious algebra structure).

5.4. Hecke operators for curves over local fields: the first approach
We would like to define Hecke operators in some space of actual functions on Bun

(or, rather, sections of j!Bunj1=2), or maybe some open subset of it. Let us assume that the
genus of C is � 2. Then, as we have discussed before, Bun contains a dense open sub-
stack Bunst of stable bundles which is a Deligne–Mumford stack. So, one can try to start
with a smooth section � of j!Bunj1=2 on Bunst.F / and apply the operator T�;c using the
diagram (1).9

In this case the definition will involve integration over Gr�
G , and we are not guaran-

teed that the corresponding integral is convergent. The trouble is caused by the following:
take some E 2 Bun.F / (which one can assume to be stable or even very stable) and con-
sider pr�1

2 .E/. Let us identify it with GrG and consider the corresponding G.O/-invariant
subset Gr�

G in it. Let S be a compact subset of Bunst.F /. Then typically pr�1
1 .S/ \ Gr�

G is
not compact.

We say that � 2 C1
1=2

.Bunvs/ is good if the integral defining T�;c.�/ is absolutely
convergent and the result is again an element of C1

1=2
.Bunvs/. The following result is easy:

Claim 5.4. Assume the validity of Conjecture 3.5(1). Then the image of the map �1=2 consists
of good sections and the map �1=2 commutes with the operator T�;c .

Note that the image of �1=2 obviously contains �1=2.Bunvs/. Thus Conjecture 3.5(1)
implies that any � 2 �1=2.Bunvs/ is good. On the other hand, without assuming Conjec-
ture 3.5(1) we cannot a priori construct any good element of C1

1=2
.Bunvs/.

We now proceed to the discussion of the action of the Hecke operators on L2.Bun/.
The main expectation is the following:

9 We are slightly abusing the notation here: namely, we are going to denote by T�;c both the
operator on M.Bun/ and on some space of sections of j!Bunj1=2 which we are going to
discuss below. We hope that it does not lead to a confusion.
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Conjecture 5.5. The operators T�;c on L2.Bun/ are bounded, compact, and self-adjoint.
In particular, their common spectrum is discrete.

Philosophically, the reason for the fact that in the case of local fields the operators
T�;c have discrete spectrum (as opposed to the case of finite fields) is that in the case of local
fields we always work only with some open subset of Bun of finite type (cf. also Claim 3.3),
and as was noted in Remark 4.2, the source for noncompactness of the Hecke operators in
the case of finite fields has to do with the fact that the stack Bun is not globally of finite type
(and in particular, not quasicompact).

5.5. Hecke operators for curves over local fields: the second approach
We now go back to the setup of Section 3. We would like to define Hecke operators

in this context. First, we need to decide on what space they are going to act. The first (and the
easiest) choice is to work with the space M.Bun/ D �1=2.Bun/ (another choice is discussed
in the next subsection). In what follows it will be convenient (but not necessary) to choose
a particular square root !

1=2
Bun of !Bun (this is always possible, but the choice is slightly not

canonical).
Let us also choose a closed point c of the scheme C with residue field F 0 which is a

finite unramified extension of F ; we shall take O to be the local ring of c (so, it is a discrete
valuation ring over F 0 noncanonically isomorphic to F 0ŒŒt ��). To emphasize the dependence
on c, we denote the corresponding Hecke algebra by Hc.G/ (instead of H .G; F 0/).

Then we again can consider the diagram (1) as in Section 4.3. Then since the line
bundle Lcrit on GrG is G.O/-equivariant, we can define a line bundle eLcrit on Heckec whose
restriction to every fiber of pr2 is canonically isomorphic to Lcrit (this property makes sense
since every fiber is canonically isomorphic to GrG up to the action of G.O/).

Lemma 5.6. We have
pr�1 !

1=2
Bun ' pr�2 !

1=2
Bun ˝ eLcrit: (3)

The isomorphism (3) easily allows one to define action of H .G; F 0/ ' CŒƒC�

on M.Bun/. We denote by T�;c the operator corresponding to h�;c (more generally, we
denote by Th;c the operator corresponding to any h 2 H .G; F 0/). For different choices of c,
these actions commute. Therefore, one can try to study eigenvectors of all these operators in
M.Bun/.

Remark 5.7. Recall that the operators T�;c are canonically defined only up to a scalar;
canonically each T�;c is an operator from M.Bun/ to M.Bun/ ˝ j!C ;c jh�;�_i. Therefore
when we vary c each eigenvalue gives rise to a section of j!C j�h�;�_i. This will not be
important for us until the end of Section 6 (where it will in fact become quite crucial).

Note that M.Bun/ is an analog of the space of functions with finite support on
Bun.k/ (where k is a finite field). But unlike in the case of finite fields, we expect the fol-
lowing (some philosophical reasons for this difference are discussed in the next subsection):
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Conjecture 5.8. Assume that F is non-archimedian. Then the space M.Bun/ has a basis of
Hecke eigenvectors. Similarly, in the archimedian case, the space M.Bun/ has a topological
basis of Hecke eigenvectors.

Before we try to say something about the eigenvalues, let us discuss a slightly dif-
ferent version of Hecke operators.

5.6. Example
We now want to explain how to produce some Hecke eigenfunction using the con-

struction of Section 2.4.
In the case when F is non-archimedian and that C is defined over OF , i.e., we

choose a model COF
of C over OF . We assume that COF

is a regular scheme and we denote
by Ck the corresponding curve over k. Then the stack Bun is canonically defined over OF ,
and we have the map EBun;1=2 W �.Bun.k// ! M.Bun/ (see Section 2.4).

We claim that this map commutes with the Hecke operators in the appropriate sense.
Namely, let F 0 be a finite Galois extension of F with ring of integers OF 0 and residue field k0.
Then one can construct a homomorphism 
F 0 W H .G; F 0/ ! H .G; k0/ with the following
property. Let c be a closed point of C whose residue field is F 0. Note that C.F 0/ D C.OF 0/,
so c has canonical reduction Nc which is a closed point of Ck with residue field k0. Then for
any h 2 H .F; F 0/ and for any � 2 �.Bun.k// we have

EBun;1=2.T
F 0 .h/.�// D Th

�
EBun;1=2.�/

�
: (4)

Remark 5.9. We do not know how to describe the map 
F 0 in general. It is easy to see that

F 0.h�/ is supported on Gr�

G.k0/ (when viewed as a function on GrG.k0/). But this informa-
tion is sufficient only in the case when G D PGLn when minuscule coweights generate ƒ.

Equation (4) implies that EBun;1=2 sends Hecke eigenfunctions to Hecke eigenfunc-
tions. This operator is certainly not injective, but we expect it to be injective on cuspidal
functions. More precisely (assuming the validity of Conjecture 3.5), we formulate the fol-
lowing

Conjecture 5.10. Assume the validity of Conjecture 3.5. Then the composition of �1=2 ı

EBun;1=2 is unitary on cuspidal functions.

Conjecture 5.10 implies that we can attach a nonzero Hecke eigenvector in L2.Bun/

to any cuspidal Hecke eigenfunction in �.Bun.k//. On the other hand, we expect that the map
EBun;1=2 is highly noninjective on noncuspidal functions. For example, let G D PGL2 and let
�.Bun.k//?cusp denote the space of functions with finite support which are orthogonal to all
cuspidal functions (with respect to the standard Hermitian product). This space is infinite-
dimensional, but we expect that

dim EBun;1=2

�
�

�
Bun.k/

�?
cusp

�
D 1:

Note that equation (4) implies that the action of any T�;c on any section in the image
of EBun;1=2 depends only on Nc (and not on c). This is certainly a very restrictive condition.
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Also, one should think about EBun;1=2 as some kind of Eisenstein series operator between
the group G.k/ and the group G.F / (with G.OF / playing the role of a parabolic subgroup).
This is in fact the source for our notation.

5.7. Parabolic bundles
We would like to introduce a generalization of the above setup, which allows in

particular, to consider the case of curves of genus � 1 when we may analyze some explicit
nontrivial examples.

Definition 5.11. (1) Let us denote by Fl the variety of Borel subgroups of G.

(2) For a G-bundles F on C , we denote by FlF the associated Fl-bundle over C .

(3) For a divisor D � C defined over k, we denote by BunD the stack of G-bundles
F on C with a section a of FlF over D.

It is easy to extend the definition of the Hecke operators T�;c for c … D. All our
constructions and conjectures can be extended to this case. As was noted above, considering
parabolic points allows one to consider explicit examples. For example, in the case when
C D P 1, D consists of at least 3 points and G is of rank 1, Conjecture 5.5 is proved in [8]

(Proposition 3.13).

5.8. More spaces with Hecke action
5.8.1. The map EY ;�;n

Here we would like to discuss how to generalize the construction of Sections 2.4
and 5.6. Namely, let Y be as in Section 2.4. Let An D OF =mn

F . Let Yn denote the reduction
of YOF

modulo mn
F . This is a regular stack over An. We consider the set Yn.An/ and we

set �.Yn.An// to be the vector space of C-valued functions on Yn.An/ with finite support.
Then for any � 2 C, we have the obvious map

�
�
Yn.An/

�
! �.YOF

/ ' �
�
YOF

; j!�
Y j

�
:

Composing it with the natural map �.YOF
; j!�

Y
j/ ! ��.Y/, we get a map

EY;�;n W �
�
Yn.An/

�
! ��.Y/:

It is easy to see that this map is surjective if the map Y.O/ ! Y.F / is surjective; in particular,
this is true for Y D BunG for a reductive group G.

In fact, when G is a reductive but not semisimple group, we also need the following
variant of the definition of ��.Y / for Y D BunG .

Definition 5.12. Let G be a reductive group and Z the connected component of the center of
G (so Z is a torus). For a character �n W BunZ;n.An/ ! C�, we denote by ��n.BunG;n.An//

the vector the space of .BunZ;n.An/; �n/-coinvariants in �.BunG;n.An//. Similarly, for
� W BunZ.F / D BunZ.O/ ! C�, we denote by ��.BunG/� the space of .BunZ.F /;�/-
coinvariants in ��.BunG/.
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As before we have a map EBunG ;�;n;� W ��n.BunG;n.An// ! ��;�.BunG/ provided
that � is equal to the pullback of �n under the natural map BunZ.F / D BunZ.O/ !

BunZ;n.An/.

5.8.2. Commutation with Hecke operators
We now want to specialize to the case Y D BunG and � D 1=2. We claim that in

this case the map EBun;1=2;n commutes with the Hecke operators in the sense similar to (4).
To explain the formulation we first need to discuss an analog of the homomorphism 
F ; this
is a local question.

Namely, let us consider the ring Kn D An..t//. This is a locally compact topological
ring; its subring On D AnŒŒt �� is open and compact. Thus the group G.Kn/ is a totally
disconnected locally compact topological group with an open compact subgroup G.On/.
Hence, we may consider the corresponding Hecke algebra

Hn.G/ D H
�
G.Kn/; G.On/

�
:

Here is a variant. Let C be a smooth projective curve over OF . We denote by Cn its
reduction mod mn

F . Let F 0 be a finite unramified extension of F and let c be an F 0-point
of C . As before we can also view it as an OF 0 -point of C and we denote by cn its reduction
modulo mn

F 0 . This is an A0n-point of Cn. Then we might consider the corresponding Hecke
algebra Hcn.G/. It is noncanonically isomorphic to Hn.G/.

This Hecke algebra is quite bad: it is not commutative for n > 1 and apparently
it does not have any reasonable description. However, it has the following two important
features:

(1) Let C above and let c be a point of C defined over a finite unramified extension
F 0 of F . Then the (noncommutative) algebra Hcn.G/ acts on �.Bunn/. Given
h 2 Hcn.G/, we denote by Th;n the corresponding operator on �.Bunn/.

(2) We have a canonical homomorphism 
c;n W Hc.G/ ! Hcn.G/.

(3) For any h 2 Hc.G/ and � 2 �.Bunn/, we have

EBun;1=2;n

�

c;n.Th;c/.�/

�
D Th;c

�
EBun;1=2;n.�/

�
: (5)

5.8.3. Eigenfunctions and cuspidal functions: the idea
Definition 5.13. Let � be a unitary character of BunZ.An/.

(1) A function � 2 �.BunG;n/� is cuspidal if the span of ¹Th;n.�/º; h 2 Hc.G/,
c 2 Cn is finite dimensional.

(2) �cusp.BunG;n/� � �.Bunn/� is the subspace of cuspidal functions.

Conjecture 5.14. �cusp.Bunn/� is finite dimensional for any n and dim.�cusp.Bunn/�/ �

qn dim.BunG=Z/ for q � 1.
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Remark 5.15. Such that Hecke operators 
c;n.Th;c/ are self-adjoint with respect to the nat-
ural Hermitian form on �cusp.Bunn/�.

Since BunG.O/ maps surjectively to BunG.F /, it follows from the statement at the
end of Section 5.8.1 that

��.BunG/ D

[
n

EBunG ;�;n.�
�
BunG;n.An/

��
(and a similar statement holds for the space ��;�.BunG/). We can now define

��;cusp.BunG/ D

[
n

EBunG ;�;n.�cusp
�
BunG;n.An/

��
(and again similarly for ��;�;cusp.BunG//. Note that for � D 1=2 this space is locally finite
dimensional with respect to the Hecke operators.

5.9. The case of G D GL2

The proof of Conjecture 5.14 in the case G D GL2 will appear in a forthcoming
publication by A. Braverman, D. Kazhdan, and A. Polishchuk. In this subsection we outline
a notion of the constant term used in our proof Conjecture 5.14 (again in the case in the case
when G D GL2; for simplicity, we shall also restrict ourselves to the case n D 2). This notion
is used for a different (but equivalent) definition of cuspidality.

5.9.1. The constant term in the usual case
Recall that the usual constant term operator (for n D 1) is defined as follows. Let

P be a parabolic subgroup of G; it has a natural homomorphism to M – the Levi factor.
Consider the diagram

BunP .k/
p

�����! BunG.k/

q

??y
BunM .k/:

(6)

Then the constant term cG;P is equal to qŠ ı p� (when k is a finite field).

Claim 5.16. A function � on BunG.k/ is cuspidal in the sense of Definition 5.13 if and only
if cG;P .�/ D 0 for all parabolic subgroups P of G; let �cusp.BunG.k// be the space of all
cuspidal functions.

The following facts are well known and are easy to prove:

(1) �cusp.BunG.k// is invariant under the Hecke operators.

(2) �cusp.BunG.k// consists of functions with finite support.

(3) dim �cusp.BunG.k// < 1 if G is semisimple. More generally,
dim �cusp;�.BunG.k// < 1 if G is reductive and � is a character of BunZ0

where Z0 is the connected componenent of identity of the center of G.
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We expect that for a proof of Conjecture 5.14, one has to extend the definition of a
constant term onto the space �.Bunn/�.

The definition is not completely straightforward; as was mentioned above, we shall
only discuss the case G D GL2 and n D 2. So, we shall now assume that G D GL2 and again
just write Bun instead of BunGL2 . Also in this case the only proper parabolic subgroup up
to conjugacy is the Borel subgroup; we shall also denote the corresponding constant term
operator (that we are going to define) simply by c.2/.

In this case T D Gm � Gm, so BunT .C2/ D Pic.C2/ � Pic.C2/, so it would be
natural to expect that our constant term operator c.2/ maps functions on Bun.C2/ to functions
on Pic.C2/ � Pic.C2/. However, we do not know how to define such an operator if we want
it to commute with the Hecke operators in some reasonable sense. Instead, let us do the
following. Consider the semigroup Pic02 (which contains the Picard group Pic2 of C2). By
definition, Pic02 consists of coherent sheaves M on C such that tM ¤ 0 and there exists an
imbedding M ,! L where L is a line bundle on C . The tensor product defines the semigroup
structure on Pic02.

Example 5.17. Let C D Spec.A2Œx�/, J � A2Œx� be the maximal ideal generated by .x; t/,
and J the corresponding sheaf on C . Then J ˝ J D I where I � xA2Œx� is generated by
.x2; tx/.

We would like now to define an analog of the diagram (6). Namely, we consider the
diagram

Bun0B.C2/
p2

�����! Bun2

q2

??y
Pic02 � Pic02;

(7)

where Bun0B.C2/ consists of all short exact sequences

0 ! L1 ! F ! L2 ! 0;

where F 2 Bun2; L1, L2 2 Pic02. It is easy to see that in this case we have Li D

Hom.Lj ; det.F // for i; j D 1; 2 and i ¤ j . So if we fix det.F / and one of the bundles L1

of L2, this determines the isomorphism class of the other.

Theorem 5.18. (1) The space �cusp.Bun2/ of Conjecture 5.14 is the space of func-
tions � 2 �.Bun2/ such that .q2/Šp

�
2 .�/ D 0.

(2) dim �cusp;�.Bun2/ < 1 for any unitary character � W Pic2 ! C�. In fact, Con-
jecture 5.14 holds in this case.

The proof will be discussed in another publication. Let us note that it is not difficult
to deduce the second assertion of Theorem 5.18 from the first.

5.10. Main question
Assuming the above conjectures, one can ask how to describe the Hecke eigenval-

ues. It would be extremely interesting to relate them to some kind of Galois data (involving
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the dual group G_). At the moment, we do not know how to do it in the non-archimedian
case even for G D GL2 when we defined an action of these operators of finite-dimensional
spaces EBun;1=2;n.�cusp;�.Bunn//.

In the archimedian case, a precise conjecture of this sort is formulated in [9] and
[10]. We discuss it in the next section.

6. The case F D C

6.1. From Hecke operators to differential operators: the idea
In this section we specialize to the case F D C. In this case, in addition to Hecke

operators, one can introduce another player, namely the algebra of twisted (polynomial) dif-
ferential operators on Bun, which will, roughly speaking, act on the same space as the Hecke
operators and the two actions will commute. This will allow us to formulate a variant of
Langlands conjecture in this case. More precisely, we are going to relate the Hecke eigenval-
ues to some particular G_-local systems on C – opers with real monodromy. Let us begin
by recalling basic information about opers and differential operators on Bun.

6.2. Opers
For a principal G_-bundle G on C , we denote by FlG the associated Fl-bundle on

C where Fl is the variety of Borel subgroups of G_.

Definition 6.1. (1) A G_-oper on C is a triple .G ; r; s/, where G is a principal
G_-bundle on C , r is a connection on G , and s is a section of FlG satisfying
an analog of the Griffiths-type condition with respect to r (see [4]). We denote
by OperG_.C/ the variety of opers.10

(2) For an oper o D .F ; r; s/, we denote by �o W �1.C / ! G_.C/ the mor-
phism defined by the connection r. We denote by Oper_G.C/R � Oper_G.C/ the
subset of opers o such that the homomorphisms �o and �o are conjugate, where
� W G_.C/ ! G_.C/ is the complex conjugation corresponding to a choice of
a split real form of G_.

Let us make several comments. First, it is known (cf. [3]) that given just a pair .G ;r/,
the B structure s is unique if it exists. Thus OperG_.C/ is actually a closed subset of the
moduli stack of G_-bundles with a connection (in other words, for such a local system to be
an oper is a property rather than a structure). Second, let us comment on the reality condition
in (2). Obviously, one way to guarantee this condition is to require that the monodromy
representation of �1.C/ corresponding to .G ; r/ is conjugate to a homomorphism going

10 If G_ is adjoint then the moduli stack of opers is, in fact, an algebraic variety (which is
isomorphic to an affine space of dimension rk.G/). If G_ is not adjoint then formally one
needs to consider the coarse moduli space here, since the center Z of G_ is equal to the
group of automorphisms of every oper. We shall ignore this subtlety for the rest of this
section.
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into G_.R/ for a real split form of G_. We expect that the converse is also true, and this
is proved for G_ D SL.2/ in [10] (Remark 1.8), but we do not know how to prove this in
general. However, it is not hard to see (cf. again [10]) that up to conjugation the image of
the monodromy homomorphism �1.C/ ! G_ lies in some inner form of the split real form
of G_. When we are in the setup of Section 5.7 and jDj � 1 it is also shown in [10] that the
monodromy is lies in the split real form of G_.

6.3. Opers and differential operators
Let D be the algebra of global sections of the sheaf D1=2.Bun/ of regular differential

operators on !
1=2
Bun . We denote by � W D ! D the involution on D induced by the Cartan

involution of G.
The following statement is one of the main results of [3] (a local version of this result

appears in [13]).

Theorem 6.2. (1) The algebra D is commutative.

(2) Spec.D/ D OperG_.C/.

(3) Let o 2 OperG_.C/ and let �o W D ! C be the corresponding homomorphism.
Let also Io � D1=2.Bun/ be the sheaf of ideals of D1=2.Bun/ generated ele-
ments of the form d � �o.d/ where d 2 D . Then the D1=2.Bun/-module Mo WD

D1=2.Bun/=Io is OBun-coherent when restricted to Bunvs.11

6.4. Differential operators and Hecke operators
Recall that we denote by C1

1=2
.Bunvs/ the space of smooth 1=2-forms on Bunvs. The

algebra A WD D ˝ D acts naturally on C1
1=2

.Bunvs/. We denote by O� the involution on A

such that O�.d1 ˝ Nd2/ D d �
2 ˝ d �

1 and define AR � A as the subalgebra of O� -fixed points.
We would like to claim that the action of the algebra A on 1=2-forms commutes with

the action of the Hecke operators. Here we must be careful, as a priori it is not clear how to
construct one vector space on which both algebras will act. For this, we need to formulate
one more definition.

Let us define a space �ch.Bun/ – “the Schwartz space of Bun.” Namely, we set

�ch.Bun/ D
®
� 2 C11=2.Bunvs/j a.�/ 2 L2.Bun/ for any a 2 A

¯
: (8)

For a 2 A, we denote by Oa the induced endomorphism of �ch.Bun/.
Note that by definition �ch.Bun/ � L2.Bun/ and also �.Bunvs/ � �ch.Bun/. The

reader might ask why we start with C1-forms on Bunvs rather than on Bunst. The reason
is that below we want to study eigenvectors of A on �ch.Bun/, and it follows easily from
Theorem 6.2(3) that any such eigenvector is automatically smooth on Bunvs (but there is no
reason for it to be smooth on Bunst).

11 Part (3) of this theorem explains the reason for our belief in Conjecture 3.5(2).
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Conjecture 6.3. (1) Any a 2 AR extends to an (unbounded) self-adjoint operator
on L2.Bun/.

(2) The space �ch.Bun/ is stable under the action of all Hecke operators.

(3) �ch.Bun/ D �1=2.�1=2.Bun//.12

(4) The action of A on �ch.Bun/ commutes with the action of Hecke operators.

(5) There exists a dense (in the L2-sense) subspace �ch.Bun/0 of �ch.Bun/ which
is stable under A and the Hecke operators and such that �ch.Bun/0 is a direct
sum of 1-dimensional eigenspaces for A (in other words, the space �ch.Bun/0

is locally finite dimensional for A and every generalized eigenvalue has multi-
plicity 1).

Let us comment on the multiplicity 1 statement. A 1/2-form is actually an eigen-
vector if it satisfies a certain system of linear differential equations. Locally on Bunvs.C/,
the space of solutions is finite dimensional but certainly not one dimensional (this has to do
with the fact the D-module Mo has high rank on Bunvs; for example, for SL2 this rank is
23g�3). However, globally most of these solutions become multivalued, so the multiplicity-
one conjecture says that only one-dimensional space of solutions is single-valued globally.
This, in fact, would follow if we knew that the D-module Mo was irreducible and had regular
singularities. For G D PGL2, this can be deduced from [20] (and probably similar analysis
can be carried over for PGLn).

Conjecture 6.3 implies that L2.Bun/ is a (completed) direct sum of eigenspaces
for A and eigenvalues have multiplicity 1. A priori any such eigenvalue is given by a pair
of opers .o; o0/, but part .1/ of Conjecture 6.3 implies that o0 D o� , so we are supposed to
attach an eigenspace to a single oper o. It is also not difficult to see that o 2 OperG_.C/R.
We denote the corresponding eigenspace by L2.Bun/o. Note that Conjecture 6.3 implies that
L2.Bun/o � �ch.Bun/.

Conjecture 6.4. We have L2.Bun/o ¤ 0 if and only if o 2 OperG_.C/R.

Remark 6.5. As was remarked above, the “only if” direction is easy. What is hard is to prove
existence of eigenvectors for A which lie in L2.

Note that Conjectures 5.5, 6.3, and 6.4 together imply the following

Corollary 6.6. Let W denote the set of Hecke eigenvalues on L2.Bun/. Then there exists a
surjective map � W OperG_.C/R ! W such that for any c 2 C and any h 2 H .G; C/ the
operator Th;c acts on L2.Bun/0 by �.o/.h/.

Let us comment on the connection between Corollary 6.6 and Conjecture 5.5. We
actually expect the map � to be finite-to-one (and in many cases it should be an isomorphism),
so Conjecture 5.5 should imply that OperG_.C/R should be a discrete subset of OperG_.C/.

12 Note that if we assume the validity of Conjecture 3.5 for F D C, then (3) implies (2).
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This assertion is not obvious, and at the moment we do not know how to prove it in general,
but let us note that for G_ D PGL2 it was proven by G. Faltings in [11].

6.5. Eigenvalues of Hecke operators
We conclude this section by describing a conjectural formula for the map � (the

contents of this subsection is described in more detail in [10]). More precisely, we are going
to do the following. We would like to understand the scalar by which the operator T�;c acts in
L2.Bun/o. We can actually regard c as a variable here. In view of Remark 5.7, this eigenvalue
is, in fact, a section ˆ�;o of j!C ;c j�h�;�_i (recall that �_ denotes the half-sum of positive
coroots of G).

For � 2 ƒC, let V� be the corresponding irreducible finite-dimensional representa-
tion of G_. Choose an o D .F ; r; s/ 2 OperG_.C/. Moreover, the Griffiths transversality
condition implies that the T _-bundle induced from the B_-structure s by means of the homo-
morphism B_ ! T _ is induced from !C by means of the cocharacter �_ W Gm ! T _.13

Therefore if we denote by .Vo;�; ro;�/ the vector bundle on C associated to F via the rep-
resentation V� (with the corresponding flat connection), then s defines an embedding

!
h�;�_i
C ,! Vo;�

and hence a morphism
OC ,! !

�h�;�_i
C ˝ Vo;�:

We let �� be the image of 1 under this morphism.
Let now o 2 OperG_.C /R. Then we have isomorphism of Vo;� and Vo;� as flat

C1-bundles (and this isomorphism is canonical up to the action of the center of G_).
Since V �

�
' V�w0.�/, we get a pairing .�; �/� between C1-sections of Vo;� and of Vo;�.

Since h�w0.�/; �_i D h�; �_i, we can regard ��w0.�/ as a section of !
�h�;�_i

C
˝ V

�

�. Since
!
�h�;�_i

C
˝ !

�h�;�_i

C
D j!C j�h�;�_i, we can formulate the following Conjecture (cf. [10]):

Conjecture 6.7.
ˆ�;o D .��; ��w0.�//� 2 C1

�
C ; j!C j

�h�;�_i
�
:

6.6. Parabolic bundles: results
All the conjectures of this section can be easily generalized to the setup of Sec-

tion 5.7. In the case when C is P 1 and the cardinality of the divisor D is 3, 4, or 5, they are
proven in [8] (and most of them are proven in [8] even for jDj > 5).

13 Strictly speaking, this makes sense only if G_ is simply connected since �_ is a well-
defined cocharacter of T _ only in that case. For general G, the corresponding T _-bundle is
induced from !

1=2
C

by the character 2�_ for some choice of !
1=2
C

. To simplify the notation,
we are going to write the answer in the case when G_ is simply connected – the generaliza-
tion to any G is straightforward.
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7. The case F D R

In this section we would like to describe the conjectural picture of the analytic Lang-
lands correspondence in the case F D R. This picture has been developed by P. Etingof,
E. Frenkel, D. Gaiotto, D. Kazhdan, and E. Witten, and is discussed in [19, Section 6].

Warning. Some of the letters used in the previous section (such as � or � ) will have a
different meaning in this section.

7.1. Real groups, L-groups, and all that
Let G be a connected complex semisimple group. Recall that a real structure on G

is defined by an antiholomorphic involution � W G ! G. The corresponding group of real
points is G� (it may be disconnected). The inner class of � gives rise to a based root datum
involution s D s� for G which is also one for G_. If G is semisimple, this is just a Dynkin
diagram automorphism.

Recall [1] that to G, s we may attach the Langlands L-group LG D LGs , the semidi-
rect product of Z=2 D Gal.C=R/ by G_, with the action of Z=2 defined by 
 ı s, where 


is the Cartan involution.

7.2. L-systems
Let C be a compact complex Riemann surface of genus g � 2. Let � W C ! C be an

antiholomorphic involution. Given a holomorphic principal G-bundle E on C , we can define
the antiholomorphic bundle �.E/, hence a holomorphic bundle ��.E/. Let us say that E is
real under � if there exists an isomorphism A W E ! ��.E/ such that

��.A/ ı A D 1: (9)

This isomorphism A is unique if it exists, and (9) is automatic if Aut.E/ D 1, which happens
generically for stable bundles if G is adjoint. In this case, gA W E ! g��.E/ has the same
property for � 0 D g� , where g 2 G and g�.g/ D 1. Thus the moduli space of such stable
bundles depends only on s [5, Proposition 3.8]. We will denote it by BunG;s .

Consider the simplest case when � has no fixed points, i.e., C.R/ D ;. Let � be a
local system on the nonorientable surface C=� with structure group LG. Let us say that �

is an L-system if it attaches to every orientation-reversing path in C=� a conjugacy class in
LG that maps to the nontrivial element in Z=2. The following conjecture is formulated in
[19, Section 6] (in the case of the compact inner class).

Conjecture 7.1. The spectrum of Hecke operators on L2.Bun/ is parametrized by L-
systems on C=� with values in LG D LGs whose pullback to C has a structure of a G-oper.

Example 7.2. Let s D 
 . Then LG D Z=2 � G_, so an L-system is the same thing as a G_-
local system on C=� . So in this case the condition on the G_-local system on C to occur in
the spectrum is (conjecturally) that it extends to the 3-manifold M WD .C � Œ�1;1�/=.�;�Id/

whose boundary is C (and this extension is a part of the data).
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Namely, in this case the spectral local systems are � which are isomorphic to �� and
such that � is an oper (hence also an anti-oper), so � is a real oper “with real coefficients.”
But among these we should only choose those that extend to C=� (and then the multiplicity
of eigenvalue may be related to the number of such extensions). This agrees with the picture
[19, Section 6.2] coming from 4-dimensional supersymmetric gauge theory.14 More precisely,
recall that by a result of Beilinson and Drinfeld [3], opers for adjoint groups have no nontrivial
automorphisms. So for any connected semisimple G, we get an obstruction for such � to
extend to C=� which lies in Z=Z2 D H 2.Z=2;Z/, where Z is the center of G_.15 Moreover,
if this obstruction vanishes then the freedom for choosing the extension is in a torsor over
H 1.Z=2; Z/ D Z2, the 2-torsion subgroup in Z.

Example 7.3. Let G D K � K for some complex group K, and s be the permutation of
components (the only real form in this inner class is K regarded as a real group). This is
equivalent to the case F D C considered above (for C defined over R). Then LGs D LG
ıs D

Z=2 Ë .K_ � K_/, where Z=2 acts by permutation. So an L-system is a K_ � K_ local
system on C of the form .�; �� /. Thus the spectrum is parametrized by � such that both � and
�� are opers, i.e., � is both an oper and an anti-oper, i.e. a real oper, which agrees with the
conjecture for F D C. (Note that in this case H i .Z=2; Z/ D 1 so there is no obstructions
or freedom for extensions).

Remark 7.4. If C.R/ ¤ ;, the story gets more complicated, and we will not discuss the
details here. Let us just indicate that, as explained in [19, Section 6], to define the appropriate
moduli space and the spectral problem on it, we need to fix a real form Gi of G in the inner
class s for each component (oval) Ci of C.R/, and the eigenvalues of Hecke operators are
conjecturally parametrized by a certain kind of “real” opers corresponding to this data, i.e.,
opers with real coefficients satisfying appropriate reality conditions on the monodromy of
the corresponding G_-connection. Furthermore, in the tamely ramified case, when we also
have a collection of marked points D on C defined over R, to define the most general version
of our spectral problem, we need to fix a unitary representation �i of the real group Gi for
every marked point c 2 D on Ci and a unitary representation of the complex group GC

for every pair of complex conjugate marked points c; Nc 2 D not belonging to C.R/. For
example, the case of parabolic structures corresponds to taking s to be the split inner class,
Gi the split forms, and �i the unitary principal series representations. In the genus zero case,

14 More precisely, as was explained to us by E. Witten, what comes from ordinary gauge
theory is this picture for the compact inner class s. To obtain other inner classes, one needs
to consider twisted gauge theory where the twisting is by a Dynkin diagram automorphism
of G. Namely, gauge fields in this theory are invariant under complex conjugation � up to
such an automorphism.

15 Indeed, �1.C=�/ is generated by �1.C/ and an element t such that tbt�1 D ˇ.b/ for some
automorphism ˇ of �1.C/, and t2 D c 2 �1.C/, so that ˇ2.b/ D cbc�1. So given a
representation � W �1.C/ ! G_, an L-system would be given by an assignment �.t/ D T 2

G_ such that (1) T 2 D �.c/ and (2) T �.a/T �1 D �.ˇ.a//. If � Š � ı ˇ then T satisfying
(2) is unique up to multiplying by u 2 Z, and T 2 D �.c/z, z 2 Z. Moreover, if T is replaced
by T u then z is replaced by zu2, hence the obstruction to satisfying (1) lies in Z=Z2.
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this was discussed in detail in [8], and it was shown that this problem leads to appearance of
T -systems.

7.3. Connection to Gaudin model
Recall that the Gaudin model for a simple complex Lie algebra g is the problem of

diagonalization of the Gaudin hamiltonians

Hi WD

X
1�j�N;j¤i

�ij

zi � zj

on the space .V1 ˝ � � � ˝ VN /g, where Vi are finite-dimensional g-modules, zi 2 C are
distinct points, � 2 .S2g/g is the Casimir tensor dual to the Killing form, and �ij denotes
the action of � in the i th and j th factor. These operators commute, and if g ¤ sl2 then
there are also higher Gaudin hamiltonians associated to the Feigin–Frenkel higher Sugawara
central elements at the critical level (see [14]), which commute with each other and with Hi ,
and the problem is to simultaneously diagonalize all these operators.

It turns out that this problem (for real zi ) is a special case of the spectral problem
considered in this paper, in the case F D R. Namely, let us take C D P 1 with the usual
real structure and fix the compact inner class s of the complex simply connected group G

with Lie.G/ D g. As explained in the previous remark, on the real locus P 1.R/, we are
supposed to fix a real form of G in this inner class, and we fix the compact form Gc . Further,
consider marked points z1; : : : ; zN on the real locus (the tamely ramified case). Then we are
supposed to fix a unitary representation of Gc at every zi , and we take it to be Vi . Then the
Hilbert space of the analytic Langlands theory is H D .V1 ˝ � � � ˝ Vn/Gc (so in this case it
is finite dimensional), and the quantum Hitchin system comprises the Gaudin hamiltonians
(including the higher ones), cf. [14].

As is explained in [15, 17], the Bethe ansatz method shows that the eigenvectors of
the Gaudin hamiltonians are labeled by monodromy-free G_-opers on P 1 with first-order
poles at zi and residues in the conjugacy class of ��i � �, where �i is the highest weight
of Vi . These are exactly the “real opers” for this situation. Thus the results of [15, 17] may
be considered as a finite-dimensional instance of the tamely ramified analytic Langlands
correspondence for genus zero and F D R.
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