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ABSTRACT

What lies at the heart of modern neural network-based machine learning is the ability to
approximate very high dimensional functions with good accuracy. This opens up two
major avenues of research. The first is to develop machine learning-based algorithms for
scientific problems that suffer from the curse of dimensionality. The second is to build a
theoretical framework that helps us to form a better foundation for machine learning. For
the latter, the most important questions that need to be addressed include: Why do neural
network models work so well in high dimension? Why does their performance depend so
sensitively on the choice of the hyperparameters? Can we develop more robust and equally
accurate new machine learning models and algorithms? In this article, we review some of
the major progresses made in these directions.
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1. INTRODUCTION
Supervised learning. We begin with the simplest task in machine learning (ML), super-
vised learning. The goal is to approximate an unknown target function from a finite train-
ing dataset. Denote by f* : X = [0, 1]¢ — R the target function. Let S = {(x iy =
f*(x;)),j € [n] ={1,2,...,n}} be the available dataset. Our objective is to approxi-
mate f* as accurately as we can. This usually means that we would like to minimize the
population risk in a given function class:

R(f) =E(f(x) - f*(x)* = /X(.f(X) — £ () d.

where (1 is a given probability distribution on X.
A typical supervised learning algorithm consists of the following three major com-
ponents:

e Defining a hypothesis space. This is a set of functions that we use to approxi-
mate f*. It is the analog of the finite element trial function space, except that in
modern ML, we typically use neural network functions as the trial functions. We
will use #, to denote the hypothesis space where m is roughly the dimension
of #,,. We denote the functions in #, generically as f(-, #) and we use 6 to
parametrize the functions in #,,.

e Setting up an optimization problem for finding the optimal parameters. Though
we are interested in minimizing the population risk, in practice we have to work
with the empirical risk (or its variants):

@) =+ (0510 =) = = Y (1.0 = )’
J J

or, more generally,

1
Ru(0) = — > 2 4;(0).
J

where the term £; is the loss for the jth data point. Regularization terms are
sometimes added to this expression. The population and empirical risks are more
commonly referred to as the training and testing errors, respectively.

The difference between the true objective, the population risk, and the objective
function that we work with in practice, the empirical risk, is an important issue
that differentiates the optimization problems in ML from those in other settings.

e Solving this optimization problem. The simplest idea is to use the gradient descent
algorithm (GD),

1
Oct1 = Ok = NV R (0h) = O —n— >V (0),
J

where 7 is called the learning rate. Since the full gradient is an average over all
training samples and is costly to evaluate, in practice, one often randomly selects
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one term in that average and uses it instead of the full gradient. This leads to the
stochastic gradient descent algorithm (SGD),

Ok+1 = Ok — VL, (Ok),

where ji, ja,... arei.i.d. random variables uniformly drawn from {1,2,...,n}.
One of the main mysteries in ML is that SGD is not only more efficient than GD,
it often leads to a smaller test error.

How do we choose the hypothesis space? In classical numerical algorithms, we
choose polynomials, piecewise polynomials, wavelets, and the like. In linear regression, we
choose functions of the form f(x) = 8- x + By, where § and S, are the parameters to be
found. Neural network models are the most popular choice in modern ML. A simple neural
network model takes the form f(x) = )", aro(wg - x + ¢x), where o is some scalar nonlin-
ear function, called the activation function. Popular choices of ¢ include o (x) = max(x, 0),
the ReLU (rectified linear units) function, and o (x) = (1 4+ e™*)™!, the sigmoid function.
This is called a two-layer neural network model since there are two affine transformations
(represented by the parameters {ay } and {wy }, respectively) involved. As is usually the case
in ML, we have neglected the constant terms in the affine transformations. To include them,
one can think of x as being (x”, 1)T and change the dimensionality accordingly. We will
adopt this convention throughout this report. Multilayer neural network models, or deep

neural networks (DNN), are formed by compositions of functions of the form above:

f(x,0)=Wioo(Wi_io0(---00(Wox))), 6= Wo,Wy,....,Wp).

@ 9

Here the W’s are vectors or matrices, “o” means that the scalar function is applied to each
component of the vector. In practice, it has been found that training such networks is often
quite hard when L is large due to the exploding or vanishing gradient problem [5e]: The
gradient with respect to the parameters either grows or diminishes fast as L, the number
of layers or the depth, increases. This problem is very much alleviated if one switches to a
residual form:
zo(x) = Vx,
zip1(x) = z;(x) + Ujo o (Wizi(x)), 1=0,1,....,L—1,

and f(x,0) = « -z (x) for some vector «. This is the residual neural network model, or

(1.1

the ResNet model [48]. The issue of exploding or vanishing gradients has been analyzed for
DNNSs in [47], but we still lack a rigorous mathematical analysis for ResNets.

In addition to supervised learning, there are two other major subjects in classical
machine learning:

e unsupervised learning, which is mainly concerned with finding some aspects of
an underlying probability distribution using a finite sample;

e reinforcement learning, which is about finding the optimal strategy for a Markov
decision process [93].

Deep neural network-based ML is commonly referred to as deep learning [62,85].
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Deep learning is a very powerful tool. In the last ten years or so, deep learning has achieved
tremendous success for a wide variety of problems. The most representative example is in
computer vision, e.g., the classification of images. Typically, the images are labeled into
several different categories according to the content of each image. Our task is to predict the
correct category for images of the same kind. This is a supervised learning problem where
the target function is the mapping from each image to its content, i.e., the category of that
image.!

Another example is generating extremely real-looking pictures of fake human
faces.” Using pictures of real human faces as samples, generative ML models can produce
new samples which are pictures of fake human faces. This is an example of unsupervised
learning. We can view pictures of human faces as being a random variable in the spaces of
images. The probability distribution of that random variable is unknown to us. But we do
know some samples of that probability distribution, namely the pictures of real human faces.
From that sample, one can approximate the underlying probability distribution sufficiently
accurately that one can produce new samples. These new samples are the pictures of fake
human faces.

The best known example of reinforcement learning is AlphaGo [9e]. Given the strat-
egy of the opponent, the Go game can be formulated as a Markov decision process whose
optimal strategy satisfies the underlying Bellman equation. What AlphaGo did was to solve
that Bellman equation approximately for an increasingly better opponent.

Approximating functions, probability distributions, and solutions of difference or
differential equations are among the most common tasks in computational mathematics. One
is naturally led to ask: What is different in the tasks described above from those that are
commonly done in mathematics? One most important difference is the dimensionality of the
problems. Take the CIFAR-10 dataset as an example. We can view each image as being a
point in a d = 32 x 32 x 3 = 3072-dimensional space, counting the number of pixels and
the dimensionality of the color space. Classical algorithms in computational mathematics
are not able to handle problems in such high dimension.

The curse of dimensionality. To see this more clearly, let us take a look at a typical result
in classical approximation theory, the approximation by piecewise linear functions over a
regular mesh. Let / be the typical size of the mesh. Then we have

fier};lgm = Flax) = Cah? 17 Va2 ey ~ Cam™2/4 17 2y

where || f* || g2(x) is the Sobolev norm of f™*. If we want to reduce the error by a factor of 10,
we need to reduce & by a factor of +/10 and increase m by a factor of 104/2. For d = 3072,
this is truly a huge number.

1 See, for example, https://www.cs.toronto.edu/~kriz/cifar.html.
2 See, for example, https://machinelearningmastery.com/resources-for-getting-started-with-
generative-adversarial-networks/.
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The problem described here is referred to as the curse of dimensionality (CoD):
As dimensionality grows, computational cost grows exponentially. This phenomenon is
common to all classical algorithms, such as algorithms based on fixed meshes and wavelets.

CoD has been a major obstacle for many problems in science and engineering,
including quantum and classical many-body problems, dynamic programming and control
problems, and nonparametric statistics. Before deep learning, many approximate algorithms
and models have been developed to bypass the CoD problems. The most well-known ones
include the Hartree and Hartree—Fock approximation in quantum mechanics, the generalized
linear models in statistics, and approximate dynamic programming models. Although these
models are heavily used in practice, we lack systematic ways to improve their accuracy. It
is fair to say that deep learning seems to be the first general methodology that is capable of
handling a large class of such problems with satisfactory accuracy.

2. DEEP LEARNING-BASED ALGORITHMS FOR PROBLEMS IN

SCIENTIFIC COMPUTING

Deep learning has been very successful for many high-dimensional problems in
computer vision and natural language processing [62]. It is natural to ask whether it can be
used to solve high-dimensional problems in other areas such as scientific computing and
computational science. This has indeed been a very active research area since 2016. Below
we briefly review some representative progresses in this direction.

2.1. Control problems
The first successful application of deep learning to problems in scientific computing
was presented in [43] for stochastic control problems. Consider the stochastic dynamic model

Zi41 =27 + gz, up) + &, 2.1

where z;, u;, & denotes the state of the system, the control, and the noise at step /, respec-
tively. Our objective is

T-1
min E{El}{z cl(zl,ul(zl)) +CT(ZT)}. 2.2)

{u; }[T:_()1 1=0
We are interested in looking for the feedback control (or closed-loop control)
up = u(z),

and we will approximate this function by some neural network model (the details of the
network model is not important for this discussion)

ul(z):xﬁl(zwl), l=0,...,T -1

With this approximation, the optimization problem becomes

T-1
min E{fl}{z Cl(zl,ﬁ1(21|91)) +CT(ZT)}. 2.3)

o= =0
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This was the first example on developing deep learning-based algorithms for prob-
lems in scientific computing. The motivation for using this as the first example was the close
similarity between stochastic control problems and ResNet-based deep learning: the dynamic
model (2.1) in the control problem plays the role of the ResNet, the objective function (2.2)
plays the role of the empirical risk and the random noise in (2.1) plays the role of the training
data. Using this analogy, Han and E developed an SGD and neural network-based algorithm
for the stochastic control problem and demonstrated that it can readily handle very high
dimensional problems [43]. The neural network model used was a composite network, with
the control at each step represented by a subnetwork.

Subsequently, there have been many developments on deep learning-based algo-
rithms for control problems. For a survey of the activities in this area, we refer to the UCLA
IPAM workshop in the Spring of 2020. We mention in particular the extension to determinis-
tic control problems in [77]. These developments have demonstrated adequately the potential
of deep learning-based algorithms for solving real world control problems. Yet there are still
serious work to be done to fully realize that potential in practice. There are two main obsta-
cles. The first is that we often lack reliable dynamic models for the practical problems we are
interested in. The second is the robustness of the deep learning-based algorithms in realistic
settings.

2.2. High-dimensional partial differential equations

Motivated by the success for control problems, E, Han, and Jentzen developed deep
learning-based algorithms for nonlinear parabolic partial differential equations (PDEs). The
idea is to use backward stochastic differential equations (BSDEs) to reformulate the nonlin-
ear PDE as a control-like problem, and then follow similar strategies for stochastic control
problems [26,44].

Consider the initial value problem

v 1

o = EUO'T V2 4+ u-Vo+ f(6"Vv), v(0,x) = g(x).

It is better to turn this into a terminal value problem by reversing the direction of time. Let
u(t,-) = v(T —t,-). Then the problem above becomes
ou 1
o + EO'UT Viu+pu-Vu+ f(0'Vu) =0, u(T,x) = g(x).
One can reformulate this as a stochastic optimization problem using BSDEs [78]:

2

inf  E|g(X7)-Yr|’, 2.4
vt le(Xr) = Y7 24)
t t
such that X; = X ~|—/ u(s, Xs) ds ~|—/ o(s, Xg)dWs, 2.5)
0 0
t t
vo=vo- [ fzoas+ [ zoraw. 2.6)
0 0

It can be shown that both problems have unique solutions and these solutions are related to
each other by [79]

Y, =u(t,X;) and Z, =0 (t,X,) Vu(t,X;). 2.7)
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Problem (2.4) is very much like a stochastic control problem and one can then
develop algorithms using ideas similar to those described above. The resulted algorithm,
the Deep BSDE method, has turned out to be an elegant and powerful tool for solving (non-
linear) Black—Scholes equations in finance, Hamilton—Jacobi—Bellman equations, as well as
BSDE:s. See [27] for a review.

In the Deep BSDE method, much effort has gone into the reformulation of the PDE
problem as a control-like problem, in order to explore the intrinsic structure of the underlying
problem. In the opposite direction, [82,91] developed strategies that are “foolproof.” The idea
is to use least squares and formulate the PDE and boundary condition as an optimization
problem, and then more or less blindly apply ML to that optimization problem [82,91]. This
has become quite popular in applied mathematics since it offers applied mathematicians a
way to gain experience in deep learning by playing with the problems they are familiar with.

2.3. Parametrizing solutions of differential equations

Another idea is to explore the representative power of deep neural network models
and parametrize solutions of PDEs as a functional of the coefficients and boundary data. This
was first demonstrated by Khoo, Lu, and Ying for the Schrodinger equation with random
potential [59]. For a more systematic development along this direction, we refer to [66].

In contrast to most other applications in which the object of interest is a function
(though maybe in high dimension), in this setting, the object of interest is an operator on
an infinite-dimensional space. This raises new mathematical issues beyond those discussed
below.

2.4. Molecular dynamics

In molecular dynamics, we model the dynamic trajectory of each atom in a material
or a molecule by solving the Newton’s equation

2,

mi% ==V.,V, V=V(x,x2....%,...,XN),

where m;, x; are the mass and position of the i th atom, respectively. The key question is how
to model the potential energy function V' that describes the interaction between the atoms.
Traditionally, this has been modeled either empirically or by solving quantum mechanics-
based models, such as density functional theory, on the fly computing the forces between
the atoms [12,22]. Neither is satisfactory: the empirical approach is unreliable; the on-the-fly
quantum mechanics-based approach is expensive and limited to systems with only hundreds
or thousands of atoms.

With the advent of ML, we can contemplate a new paradigm in which quantum
mechanics models are used to provide data, from which one can learn a highly accurate
potential energy function, which can then be used to perform molecular dynamics. Such a
paradigm was first proposed in [9]. One of the most successful examples of such a model is
the Deep Potential models developed in [45,110] (see Figure 1). Using high performance com-
puting resources, one can perform molecular dynamics calculation with ab initio accuracy
for systems with hundreds of millions atoms [54].
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FIGURE 1

Comparison of the accuracy of the energies predicted by the Deep Potential model and density functional theory
for different kinds of systems [110].

With the Deep Potential model, one can do many things that were either impossible
or very difficult before. Examples include complex reaction processes in combustion [189],
crystal nucleation of liquid silicon [1e], liquid—liquid phase transition of water [38], one-
dimensional cooperative diffusion in a three-dimensional crystal [98], structural order in
quasicrystal growth [42], and the phase diagram of water [112].

2.5. Multiscale modeling

It has long been recognized that multiscale modeling can be a very effective tool
in computational science and engineering (see Figure 2). However, its practical usage has
been hampered by our inadequate ability to analyze the data obtained from the underlying
microscopic model [22]. This is exactly where ML can help. Indeed ML-based ab initio
molecular dynamics is an example of the application of ML to multiscale modeling. Besides
molecular dynamics, ML-based multiscale models have been developed for density func-
tional theory, coarse-grained molecular dynamics, moment closure models for the kinetic
equations, hydrodynamic models for non-Newtonian fluids, etc. There is no doubt that this
will continue to be a very fruitful line of research.
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Most if not all existing applications of ML to multiscale modeling belong to the class

of sequential multiscale modeling [22], i.e., ML algorithms are used at the pre-computing

stage to obtain accurate coarse-grained models. One is naturally led to ask: How can we

develop reliable and interpretable new physical models using ML? There are three most

important issues involved here [28]:

922

e The first is how to collect the training data. The training dataset needs to be rep-

resentative enough of all the practical situations that the model is intended for,
yet at the same time, it needs to be as small as possible since each data point
usually involves solving the microscale model. For this purpose, Zhang et al.
developed the ELT (exploration—labeling—training) algorithm and it has been suc-
cessfully applied to molecular dynamics and coarse-grained molecular dynamics
[28,111,113].

The second issue is the starting point of the new physical model. To be inter-
pretable, it usually helps to formulate the new physical model as some kind of pro-
jection of the underlying microscale model. An example is the moment-closure
model for the kinetic equation. The projection scheme, or the coarse-grained
model, should not violate the physical conservation laws in the problem.

To formulate this projection scheme, one needs to know the set of coarse-grained
variables. In principle, ML can also be a very powerful tool for this purpose. In
practice, this is still a relatively unexplored area.

The projected model is usually not closed and involves terms that need to be mod-
eled. These terms are analogous to the constitutive relations in classical models
such as the Navier—Stokes equation. This situation is very similar to that of the
heterogeneous multiscale method [22,25]. The third issue is therefore to formulate



ML models for the unclosed terms in the coarse-grained model. To do so, one has
to take into account physical constraints such as the symmetries in the system.

For a discussion of these issues, we refer to [28].

2.6. The many-electron Schrodinger equation

The many-electron Schrédinger equation in quantum mechanics is a notoriously
hard problem not only due to its high dimensionality but also the fact that its solution must
satisfy the Pauli exclusion principle, i.e., the wave-function must be antisymmetric. It is also
arguably the most fundamental problem in computational science since it represents the true
first principle. This latter feature is becoming increasingly more clear due to the advance of
ML-based algorithms and the Schrodinger equation is the ultimate provider of the data that
we use to train more coarse-grained models, particularly density functional theory models.

For the spin Schrédinger equation, Carleo and Troyer developed an algorithm using
the restricted Boltzmann machine and the least squares formulation [13]. Deep learning-
based algorithm for the many-electron Schrodinger equation was first developed in [46]. More
sophisticated ansatz for the antisymmetric part of the wave-function was developed in [49,80].
A spectral projection algorithm was proposed in [182] to fully take advantage of the linear
character of the Schrodinger equation. It is fair to say that at this stage, deep learning-based
algorithm still remains an experimental effort and has not outperformed traditional quantum
chemistry methods.

2.7. Purely data-driven methods

The most remarkable example of the purely data-driven method is AlphaFold?2 [58].
By using only the structures in the protein data bank and protein sequence data, AlphaFold2
is able to predict the native structure of proteins to experimental accuracy. This was quite
unexpected and has changed the way things are done in structural biology.

As a structural optimization problem, protein folding can be considered as a (classi-
cal) many-body problem. This is NOT how AlphaFold2 solved the problem. AlphaFold2 did
not try to find the native structure by exploring the high-dimensional configuration space of
the protein of some energy function. Instead, it took an interpolation viewpoint: Given the
structures we know in the protein data bank, try to find the unknown structures by exploring
the similarity between the given protein sequence and the sequences in the protein data bank.
For this purpose, one needs to explore the structure of the sequence space. This is done by
pushing multiple sequence alignment to a limit [58].

3. MATHEMATICAL THEORY OF NEURAL NETWORK-BASED MACHINE

LEARNING MODELS

At this point, the objective of a mathematical theory for deep learning is not to
explain in detail everything we see in practice, but rather to formulate general principles that
can help organize our thoughts and guide future work.
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The two most important puzzles in deep learning are:

e Why do deep learning models work so well on such seemingly very complicated
tasks?

e Why does the performance of deep learning models depend so sensitively on the
choice of the hyper-parameters, such as the network size, architecture, and the
learning rate in the optimization algorithm?

A more advanced question is whether we can come up with new formulations of ML models
that are both accurate and robust.

There are many different ways of looking at these issues, ranging from classical
learning theory [94], statistical physics perspective [108], to information theory perspec-
tive [1]. We will take the viewpoint of classical numerical analysis (approximation theory,
convergence of training algorithms, convergence rates, etc.) but put emphasis on the feature
of high dimensionality. For a review along this line of thoughts, we refer to [34].

Before proceeding further, let us note that we will use the terminology “norm” in a
loose way, in the sense that the triangle inequality is not necessarily satisfied.

3.1. An overview of approximation theory

Approximation theory is concerned with the question whether a given hypothesis
space can efficiently approximate the target functions we are interested in. In this direction,
there are three kinds of results.

The first is the so-called Universal Approximation Theorem (UAT), which, roughly
speaking, asserts that under mild conditions, one can use neural network functions to approx-
imate arbitrary continuous functions uniformly on compact domains [18]. Such results are of
course important, without them the whole foundation of neural network models would be in
doubt, but they do not explain why neural network models are so much better than classi-
cal polynomial approximations. After all, as we know from the Weierstrass theorem, UAT
also holds for polynomial approximations, which we know is a bad idea in high dimension.
To see the difference between the two kinds of approximations, we must study the rate of
convergence.

The second kind of results are convergence rates of neural network approximations
for functions with certain regularity conditions. A typical result states that if a function has
derivatives of order up to k, then it can be approximated by neural networks with an error of
O(m™*/?) where m is the total number of parameters. The first systematic result of this type
can be found in [1e7]. The most recent and sharpest results can be found in [7e]. These results
do suffer from CoD. But they are useful for analyzing neural network-based algorithms for
low dimensional problems.

The third kind of results are convergence rates for neural network approximations
that do not suffer from CoD. This line of research began with the pioneering work of Barron
[7,8,11,57]. We will focus on this type of results.
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3.2. General remarks about high-dimensional problems

Before continuing, let us recap the important parameters that we have: m is the
dimensionality of the hypothesis space; n is the size of the training sample; d is the dimen-
sionality of the input variable to the ML model. We are interested in the case when d > 1.

The one high-dimensional problem that has been very well studied is high dimen-
sional numerical integration. We are interested in approximating the following integral:

I(g) = /X g(x)dx

byasum /,,(g) = % Z_/ g(x;).If we use grid-based quadrature rules such as the Trapezoidal
Rule, then the error behaves like

C(g)
me/d

I1(g) — Im(g) ~

for some fixed constant ¢, indicating CoD. If instead we use Monte Carlo integration, say by
taking {x;, j € [m]} to be independent, uniformly distributed in X, then we have

2
B~ 1)’ = " varte) = [ s ( [ ewax)

The O(1/./m) rate is (almost) the best we can hope for, and is independent of d: Improve-

ments on the convergence rate, say using quasi-Monte Carlo or other lattices, diminish
quickly as d becomes large [20].

The variance var(g) can be very large in high dimension. For this reason many
variance-reduction algorithms have been developed. These ideas allow physicists to study
statistical physical models in very high dimension.

Function approximation is a harder problem than numerical integration. In light of
the discussion above, the best we can hope for function approximation in high dimension are
results of the following type:

) ) 2 rof-
Jnt RO = inf | =S [agg < s
The questions that we need we address are: Can this be true? Given a neural network model,
say two-layer neural networks or ResNets, for what class of functions is this true? If true,
what should the quantity I'( f*) be?

3.3. Approximation theory for the random feature model

To explain the general philosophy, we will use the random feature model [81] as an
illustration. Let ¢ (-; w) denote some feature function parametrized by w, e.g., ¢(x, w) =
o(w” x). A random feature model is defined by

l m
Sm(xi@) = — Taj(xiw)), 3.1

j=1
where {w?};”zl are i.i.d. samples drawn from a prefixed distribution 9. Once drawn,
{w;’};":l are fixed; @ = (ay,...,a,)T € R™ are the trainable parameters. For simplic-
ity, we assume 2 := supp(mro) is compact. Denote W% = (w9, ..., wl)T e R™*¢_Note

that random feature models are linear models.
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If the inner parameters {w?} are also allowed to change, then this becomes a (gen-
eralized) two-layer neural network model. For this reason, the random feature model can
be considered as a simplified two-layer neural network model in which the inner parame-
ters are frozen at some random initial value. This connection has proven to be important for
understanding the two-layer neural network model.

We are interested in identifying the function class and the functional I'(-) for this
model. To this end, consider the reproducing kernel Hilbert space (RKHS) [2] induced by
the kernel k(x, x’) = Eyp~n,[¢ (x; w)¢ (x’; w)]. Denote by H}, this RKHS. Then for any
f € Hy, there exists a(-) € L?(mg) such that

1) = [ awx: widnow) (32)
and
£, = [ @ @)dnow) (33)
Theorem 1 (Direct Approximation Theorem). For any f* € Hy, let
7@ = [ @ @gxiw)dnow), (3.4)
Then we have )
112,

Ewol| fu(:a* (W) = f*[7, <

where a*(W %) = (a*(wY),...,a*(w?))T.

m

Theorem 2 (Inverse Approximation Theorem). Let (w?);’io be a realization of the sequence

of i.i.d. random samples drawn from my. Let * be a continuous function on X = [0, 1]¢.

Assume that there exists a constant C and a sequence (a; );-”;0 satisfying sup; |aj| < C, such

that
lim li:a'qf)(x'w(-’) = f*(x) (3.5)
m—>00 M — J ’ J ) .
forall x € X. Then with probability 1, there exists a function a*(-) : Q + R such that
1@ = [ @@ sw)dmw)

Moreover, ||a*|leo < C.

This pair of direct and inverse theorems are not exactly converses of each other since
different norms (L2 and L) are used. But they do tell us that the associated RKHS is the
appropriate function space to study in connection with the random feature model. These
results are not new, but it seems difficult to identify the origin of these results.
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3.4. Approximation theory for two-layer neural networks
We will restrict our attention to the case when ReLLU is used as the activation func-
tion. The hypothesis space for two-layer neural networks is defined by

Hon = {fm(x) = %Zaja(wfx)}
J

A good candidate for the associated function space for this model is the Barron space [30,33]
(see also [s,7,35,68]). To define the Barron space, consider functions f : X = [0, l]d — R
of the following form:

f(x) = Laa(wa)p(da,dw) = Ep[ao(wa)], x €X,

where @ = R! x R*! and p is a probability distribution on 2. The “Barron norm” is
defined by

. 1/
I1£l5, = inf (B,[a” fwlf])"".

where Py :={p: f(x) =E,lac(wTx)]}.Let B, = {f € C°: [ fll8, <oc}. Functions in

B, are called Barron functions. As was shown in [33], we actually have | - | g, = || - || 8, for
any 1 < p < g < oo. Hence, we will use | - || g and 8 denote the Barron norm and Barron
space.

One immediate question is: What kinds of function are Barron functions? In this
direction, a general result is given by:

Theorem 3 ([se]). Let y>(f) = [pa |l ||%|f~(a))|da) < 00, where f is the Fourier transform
of f, then f can be represented as

f(x) =/;2aa(wa)p(da,dw).

Moreover, || f |8 < 2y2(f) + 2[V f(O)[ls +2[f(0)].

Remark 4. One should note the difference between the Barron norm and the quantities
like Y, which were originally introduced by Barron [7]. The Barron norm is defined using a
probabilistic setting. The quantity y,( f) and the like are defined using the Fourier transform
which is related to the regularity property of f. We believe that the probabilistic setup is the
right direction to go and this is partly confirmed by subsequent results on continuous ResNets
(see below) and multilayer neural networks. To avoid further confusion, we propose to call
quantities y, and the like Barron’s spectral norm. For further results in this direction, as well
as some interesting analysis on the relationship between these spaces, we refer to [88, 89].

An interesting structural theorem about Barron functions is proved in [35].

Theorem 5. Let f be in Barron space. Then f =Y i, f; where f;i € C1(X \ V;) where
V; is a k-dimensional affine subspace of X for some 0 < k <d — 1.

As an immediate corollary, we see that the distance to the unit sphere is not a Barron
function.
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The claim that Barron space is the natural space associated with two-layer networks
is justified by the following series of results [3e].

Theorem 6 (Direct Approximation Theorem). Forany f € B and m € N7, there exists a
two-layer neural network fr, with m neurons {(a;, w;)} such that

[PAIF:
T

If = fullLzcpy <

Theorem 7 (Inverse Approximation Theorem). Let

m m
def 1 T 1 +
Ne = — ago(w, x): — arl||lw <C,meNT}.
c {m];k(k)m];|k|” kll <

Let ™ be a continuous function. Assume there exist a constant C and a sequence of functions
{fm} C Nc such that
Jm(x) = f*(x)

forall x € X, then there exists a probability distribution p* on Q such that
7*@) = [ a0 x)p"(da. dw),
forall x € X. Moreover, || f*||la < C.

3.5. Approximation theory for residual neural networks
Consider a residual network model

zo(x) = Vx,
zi1(x) = z;(x) + %Ula o(Wizi(x)), 1=0,1,....L—1,
f(x.0) =a-zp(x),

where x € RY is the input, V € RP*d D >d W, e R™P U e RP*™ o € RP and we

use © :={V,Uy,..., UL, W;,..., Wr,a} to denote all the parameters to be learned from
data. Without loss of generality, we will fix V to be
1
y=| 4 . (3.6)
0(p—ayxd

To look for the appropriate associated function space, let us consider the following flow-
based representation of functions (see next section):

z(x,0) = Vx,
Z(x,t) = IE(U’W)NMUG(WZ(x, t)),
Fadoy () = az(x,1).
For p > 1, consider the following linear ODEs associated with the representation above:
Np(0) =e,
Np(6) = (E,, ((UIIW))") 7 N, (@),
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where e is a column vector with every component equal to 1, |A| and A? are elementwise
operations for the matrix A and a positive number g. The following function spaces and
“norms” were introduced in [33].

Definition 8. Let f be a function that satisfies f = f, 1,,} for a pair of («, {p;}). Define

1 1Dy @toyy = lel” Np(1) (3.7

to be the O, norm of f with respect to the pair («, {p;}), where |«| is a vector obtained from
o by taking elementwise absolute values. We define

Illo, =, _inf | " N (1) (3.8)

=Ja{ps}

to be the Dy, norm of f, and let D, = {f : || f |0, < 00}

Definition 9. Let f be a function that satisfies f = f, (,,} for a pair of («, {p;}). Define

115, @ oy = el Np(D) + [ Np(D)]; = D 3.9)
to be the :ljp norm of f with respect to the pair («, {p;}). We define
Iflg = inf |e|"Ny(1) + [ Ny(D)], = D (3.10)
v = e

to be the Jép norm of f. The space 351, is defined as the set of functions that admit the
representation f (,,) with finite O, norm.

These two kinds of “norms” appear to be similar but different. These function spaces
were introduced in [33] and are named flow-induced function spaces.

For the approximation theorems, we will make use of the following “Lipschitz con-
tinuity” condition for {p; }.

Definition 10. Given a family of probability distributions {p;, ¢ € [0, 1]}, the “Lipschitz
coefficient” of {p,}, denoted by Lipy, , is defined as the infimum of all the numbers that

satisfy
|]E,,,U0(Wz) — ]EpSUG(Wz)| < Lipy,,31t — slz| (3.11)
and
oUWy = (oUW, | < Lipgoyle = s1. (3.12)
for any ¢, s € [0, 1], where | - ||1,1 is the sum of the absolute values of all the entries in a

matrix. The “Lipschitz norm” of {p;} is defined as

“{pf}HLip = ||EPO|U||W|H1,1 + Lipgy,)- (3.13)

Finally, we define a discrete “path norm” for residual networks.

Definition 11. For a residual network defined by (3.6) with parameters ® = {«, U;, W}, =
0,1,..., L — 1}, we define the /; path norm of ® to be

L
1
1llp = |a|T1'[(1 " ZIUIIIWzl)e- (3.14)
=1
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With the definitions above, we are ready to state the direct and inverse approximation
theorems in the flow-induced function spaces [33].

Theorem 12 (Direct Approximation Theorem). Let f € Dy, 8 € (0, 1). Assume there exists
a constant lo such that, for any & > 0, there exists (&, {p;}) that satisfies [ = fo(p, and
”f”:bl(a,{p,)) < ||f||°131 + & [[{ps}ILip < lo. Then there exists an Lo, depending polynomi-
ally on D, m, ly, and ||f||:51, such that for any L > Ly, there exists an L-layer residual
network fi(-; ®) that satisfies

2
A1,

| f - GO < = (3.15)

and
1©llp <91 fllg,- (3.16)

Theorem 13 (Inverse Approximation Theorem). Let f* be a function defined on X =
[0, 1]9. Assume that there exists a sequence of residual networks { fr (:; ©1)}7% such that
|f*(x)— fo(x;0)| > 0as L — oo for all x € X. Assume further that the parameters
in{ fL(- ©)}92 | are (entrywise) bounded by cq. Then, we have [* € Doo and || [ * || 9, <
M(Cg;&. Moreover, if there exists a constant ¢y such that || fi||o, < c1 holds for any
L > 0, then we have | f*| o, < c1.

A natural question is how big the flow-induced norms are compared with the Barron
norm. In this direction, we have [33]

Theorem 14. For any function f € B, and D > d + 2, m > 1, we have f € Dy and

1flls, =21/ 1s. (3.17)

In this sense, going from two-layer neural networks to ResNets is like variance
reduction in Monte Carlo methods.

3.6. The generalization gap

The second main issue in theoretical machine learning is the difference between
training and test accuracy, in other words, the difference between the empirical and popula-
tion risk. Estimating the difference between these two quantities is complicated by the fact
that the parameters obtained from the training process are highly correlated with the data.
There are many ways to bypass this difficulty. The simplest idea is to use the trivial bound

|R() = Ru(H)] = sup [R() = Ru(F)| = sup |1(g) — Lu(g)
fedn fedny

, (3.18)

where f € H, is the function in the hypothesis space obtained from training, g = (f —
f*)2. One of the most effective ways of estimating the right-hand side is to use the notion
of Rademacher complexity.
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Definition 15. Let J be a set of functions, and S = (x1,x2,. .., x,) be a set of data points.
The Rademacher complexity of # with respect to S is defined as

1 n
Rads(#) = ~E¢| sup > &h(x;) |. (3.19)
n hed ;=
where {§;}7_, are i.i.d. random variables taking values £1 with equal probability.

Rademacher complexity is useful since it bounds the quantity of interest,
suppege | 1(h) — I, (h)|, from above and below.

Theorem 16 ([86, THEOREM 26.5]). For any § € (0, 1), with probability at least 1 — § over the
random samples S = (x1,...,X,), we have

1 < log(2/68
sup [E[h(6)] ~ = > h(x)| = 2Rads () + sup e | 25,
hek n hede n

l 1 log(2/6)
sup |Ex|h(x)|—— ) h(x;)| > = Radgs(H) — sup ||/]| —,
hedt [h)] "; l 2 ekt 2n

Roughly speaking, Rademacher complexity quantifies the degree to which functions
in the hypothesis space can approximate random noise on a given dataset. The larger the
hypothesis space, the larger the Rademacher complexity.

As example, if J is the unit ball in the space of continuous functions, then we
obviously have Radg (#) = O(1). If if F# is the unit ball in the space of Lipschitz continuous
functions, then it can be shown that [96]

Radg(#) = O(n~"%).

This signals another potential source of CoD, namely that the training sample size needed
grows exponentially as d grows.

Fortunately, for the function spaces we identified earlier, their Rademacher com-
plexity has roughly the optimal scaling. For Barron space, we have

Theorem 17 ([6]). Let Fp ={f € B.||flla < Q}andlet S = (x1,...,x,). Then we have

21n(2d
Rads(Fp) <20 L
n
The n~1/2 scaling at the right-hand side is consistent with the Monte Carlo scaling
that one would expect at a first sight.
The Rademacher complexity estimate is only established for a family of modified
flow-induced function norms || - || P, (note the factor 2 in the definition below). It is not clear

at this stage whether this is only a technical issue.
Let

171, =, inf Jl"Np(1) + [8p (], = D+ o} |y (3.20)

=Ja{pt
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where ]\71, () is given by
N,(0) = 2e,
Nyp() = 2(E,, (U[W ") Ky (o).
Denote by 13 the space of functions with finite Jép norm. Then, we have

Theorem 18 ([33]). Let DL = {f € D, 1/ llp, < Qbandlet S = (x1,.... xy). Then

we have
, 210g(2d
Radg (D2) < 18Q‘/£. 3.21)
n

3.7. A priori estimates of the population risk for regularized models
Our objective is to show that one can find accurate approximations of the target
function using a finite training sample. Ideally, we would like to have the following kind of

C(f*) n La(f™)

For appropriately regularized models, results of this kind have been established for the

results:

R(f) <

(3.22)

random feature model, the two-layer neural network model, and ResNets.
For the random feature model, consider the regularized model

llell

xn,k(a) J‘Q ( )+ \/_\/_

and define the regularized estimator
a, ; = argmin £, ) (a).
Theorem 19. Fix any A > 0. For any § € (0, 1), with probability 1 — §, we have

2(n/8
Rian) = oo 0z /0)| 115, + 02 )

L () log(1/8)\"*,
+W(Hf ”Jf’k+(¥) la*] o + log(Z/S)). (3.23)

Such results should be standard. But a complete proof seems to be only found in [34].
In the same way, for the two-layer neural network model, one can consider the reg-
ularized model

log(2d

£a(0) = Ru(0) + Ay ——||0]|p. b, = argmin £, (6),

where the path norm is defined by
1 m
181l = — > la 1w, 1.
j=1

and let §, = argmin £, (0).

932 W. E



Theorem 20 ([30]). Assume f* : X +— [0, 1] € B. There exists an absolute constant C
such that if A > Cy then for any § > 0, with probability at least 1 — § over the choice of the
training set, we have

R(b,) < I/ IIB s Hﬂ\/logfd)_i_\/log(n/z?).

n

For ResNets, instead of the path norm (3.14), we have to consider a weighted path
norm

L
2
fotiwr = ol TT(1 + F10i191 ). (.24

which assigns larger weights to paths that pass through more nonlinearities. Consider the

min 4(9) = R(6) + 3410 wp | 2L, (3.25)

Theorem 21 ([29]). Let f* : X — [0, 1]. Assume that O isan optimal solution of the regu-
larized model (3.25). Let A > 4 + 2/[34/210g(2d)]. Then for any § € (0, 1), with probability

at least 1 — § over the random training samples, the population risk satisfies

2
2@ < s ||f|| (4”f||$+1)3(4“)\/\2/‘”3g(2d)+2+4,/w. (3.26)

One unsatisfactory aspect of this result is that it is proved for a Barron function, not

regularized model

functions in the flow-induced space.

3.8. The loss function and the loss landscape

The a priori estimates for the regularized models establish the existence of accurate
approximations to the target function in the hypothesis space. The next question is how to
find them. At this point, there is a vast amount of experience suggesting that one can find
accurate solutions using simple gradient-based algorithms, without any explicit regulariza-
tion, but the result may depend sensitively on the choice of the hyperparameters, such as the
network parameters, the initialization of the training algorithms, the learning rate, etc. Sen-
sitive dependence on the network parameters suggests that the landscape of the loss function
changes qualitatively as these parameters change.

At a first sight, it is quite surprising that simple gradient-based algorithms such as
the gradient descent can work at all. After all, the loss function, say the empirical risk, is a
nonconvex function of many variables with potentially very complicated landscape. In the
case of molecular structural optimization such as protein folding, gradient descent would
get stuck very quickly at a bad local minima. In the case of training neural network models,
one can often avoid this by tuning the hyperparameters in the training algorithm. Obviously,
this means that the landscape of the molecular structural optimization and the landscape
for training neural network models are qualitatively very different. Therefore one first issue
might be to understand how the landscape looks. In this direction, one important result is
that of Cooper who considered overparametrized neural networks with a smooth activation
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function and characterized the structure of the set of global minima [17]. Cooper proved that
the locus of the global minima is generically (i.e., possibly after an arbitrarily small change
to the data set) a smooth (m — n)-dimensional submanifold of R” where m is the number
of free parameters in the neural network model and # is the training data size.

3.9. Training dynamics
Two-layer neural networks with mean-field scaling. ‘“Mean-field” is a notion in statistical
physics that describes a particular form of the interaction between particles. In the mean-field
situation, particles interact with each other only through a mean-field formed through the
collective effort of all the particles. The most elegant mean-field picture in machine learning
is found in the case of two-layer neural networks: If one views the neurons as interacting
particles, then these particles only interact with each other through the function represented
by the neural network, which is the mean-field in this case. This observation was first made in
[15,75,84,92]. By taking the hydrodynamic limit for the gradient flow of finite neuron systems,
these authors obtained a continuous integral differential equation that describes the evolution
of the probability measure for the weights associated with the neurons.

Given the two-layer neural network model

fnl) = - Y a0 (w]x),
J

let
I(ulvvum)zﬂ(fm)’ u] :(al’w])

Consider the gradient descent dynamics
du j
dr

Lemma 22. Let

=-mVy I(uy.....up). u;0)=uj, jelml (3.27)

1
pldu,t) = - ZSu,(t).
J

Then the gradient descent dynamics (3.27) can be expressed equivalently as
SR,

Sp
Equation (3.28) is the mean-field equation that describes the evolution of the prob-

dp=V(VV), V= (3.28)

ability distribution for the weights associated with each neuron. The lemma above simply
states that (3.28) is satisfied for the finite neuron system without the need to take the infinite
particle limit.

It is well known that (3.28) is the gradient flow of &R under the Wasserstein metric.
This brings the hope that the mathematical tools developed in the theory of optimal transport
can be brought to bear for the analysis of (3.28) [95]. In particular, we would like to use these
tools to study the qualitative behavior of the solutions of (3.28) as ¢ — co. Unfortunately,
straightforward application of the results from optimal transport theory requires that the risk
functional be displacement convex [74], a property that rarely holds in ML. As a result, less
than expected has been achieved using the optimal transport theory.
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The one important result, due originally to Chizat and Bach [15], is the following. We
will state the result for the population risk. Again we consider the ReLLU activation function.

Theorem 23 ([15,16,99]). Let {p;} be a solution of the Wasserstein gradient flow such that
e o is a probability distribution on the cone ® := {|a|* < |w|?}.
e Every open cone in ® has positive measure with respect to py.
Then the following are equivalent:
o The velocity potentials ‘ig—‘?(pt, -) converge to a unique limit as t — oo.
o R(p;) decays to the global infimum value as t — oo.

If either condition is met, the unique limit of R (p;) is zero. If py also converges in the Wasser-
stein metric, then the limit pso is a minimizer.

A few remarks are in order:

There are further technical conditions for the theorem to hold.

e Convergence of subsequences of %—f(pt, -) is guaranteed by compactness.

e The first assumption on pg is a smoothness assumption needed for the existence
of the gradient flow.

e The second assumption on pyg is called omnidirectionality. It ensures that p can
shift mass in any direction which reduces risk. The requirement that the support
of the initial distribution be sufficiently large seems to be confirmed by practical
experience.

Two-layer neural networks with conventional scaling. In practice, people often use the
scaling (instead of the mean-field scaling)

m
fn(x:a, W) = Zaja(wfx) =alo(Wx).
j=1
A popular initialization [48, 63] is as follows:
aj(0) ~ N (0, %), w;(0) ~N(0,1/d),
where B = 0 or 1//m. We define the Gram matrix K = (Kjj) € R™" as
1
Ki; = ;IEZ,,,N,,O [a(wai)o(waj)].

In this case, a lot is known in the so-called highly overparametrized regime. In this
part, for simplicity, we will assume that the domain of interest is the unit ball 4~ instead
of the unit cube.

There is both good and bad news. The good news is that one can prove exponential
convergence to global minima of the empirical risk.
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Theorem 24 ([21]). Let A, = Anin(K) and assume § = 0. For any § € (0, 1), assume that
m 2 n?X, 487 In(n?8~"). Then with probability at least 1 — 68, we have

Ra(a(t), W (1)) < e R, (a(0), W (0)). (3.29)

Now the bad news: the generalization property of the converged solution is no better
than that of the associated random feature model, defined by freezing {w;} = {w;(0)} and
only training {a; }.

The first piece of insight that the underlying dynamics in this regime is effectively
linear is given in [19]. Jacot et al. [53] termed the effective kernel the “neural tangent kernel”
and this terminology has got a lot of popularity. Later it was proved rigorously that in this
regime, the entire gradient descent path for the two-layer neural network model is uniformly
close to that of the associated random feature model [3,31].

Theorem 25 ([31]). Let Wy = W (0). Denote by f,(-; @, Wy) the solution of the gradient
descent dynamics for the random feature model. Under the same setting as in Theorem 24,

we have

Sup. | fun(£:0 (1) W) — fn(: 1) Wo)| < T

xeSd-1

(3.30)

VIn(1/8))%2,!
T :

This can also be seen from the (72, n) hyperparameter space. Shown in Figure 3 are
the heat maps of the test errors under the conventional and mean-field scaling, respectively.
We see that the test error changes smoothly as m changes for the mean-field scaling. In
contrast, there is a clear “phase transition” in the heat map for the conventional scaling where
we see the coexistence of a good (darker region) phase with small test error and a bad (lighter

Test errors Test errors
-0.6
2.6 -1.2
-1.8
2.4
-2.4
< 30 =
S 22 g
g -36 o
2.0 —4:2
-4.8
1.8 -5.4
T T : T T T —-6.0 T T T T T T
20 25 30 35 40 45 2.0 2.5 3.0 3.5 4.0 4.5
log1o(m) logio(m)

FIGURE 3

How the network width affects the test error of gradient descent solutions. The test errors are given in logarithmic
scale. These experiments are conducted for the single-neuron target function with d = 20 and learning rate

n = 0.0005. The two dashed lines correspond to m = n/(d + 1) (left) and m = n (right), respectively. (Left)
Conventional scaling. (Right) Mean-field scaling. For more details, see [72].
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region) phase where the test error is much larger. This means that, in practice, one has to tune
the network parameters so that they fall into the good phase. For the details of this study, we
refer to [72].

From this, it is natural to speculate that the sensitive dependence of the performance
on the hyperparameters is a consequence of this kinds of phase transition. For two layer
neural networks, the phase diagram in the hyperparameter space is relatively simple. For
more complicated neural network models, the phase diagram should be more complicated
and tuning the parameters becomes a much harder task.

Hardness of training. In high dimensions, a “dynamic curse of dimensionality” may affect
gradient descent training if the target function is not in Barron space.

Theorem 26 ([100]). There exists [ * with Lipschitz constant and L°°-norm bounded by 1
such that the parameter measures {p;} defined by the 2-Wasserstein gradient flow of either
R or R satisfy
limsup[t” R(p;)] = oo
t—>00

forally > ﬁ.

What makes matters worse is that even for functions in the Barron space, a dynamic
CoD might also happen. Livni et al. [67] show that learning Barron functions is equivalent to
solving some well-known hard problems in cryptography. This means that learning Barron
functions is computationally as hard as breaking a cryptosystem. Such results are powerful
but abstract. In the following, we provide an explicit understanding from the perspective of
learning orthonormal classes, which is a reinterpretation of the results in [73,87].

Consider a subset of the Barron space over X = [0, 1]%: ¥ = { f = 2sinQrwT"):
Z?:l w; < d,w; € Ni}. Note that the following statements hold: (1) || > exp(d); (2)
(fw> fw) = Sww: B) || flla < Cd?, Vf € F. Statements (1) and (2) are quite obvious
and a proof can be found in [7]. Statement (3) directly follows from Theorem 3. Consider
learning the function in & using the parametric model %(-; ) that includes, but is not lim-
ited to, the two-layer neural network model. Let R/ (6) = Ex[(h(x;6) — f(x))?]. Notice
that Vo R/ (0) = 2B [(h(x;0) — f(x))Veh(x:6)] = C(0) —2(Vgh(-;0), f). Let v be the
uniform distribution over ¥ . Then,

var., (VRY (9)) < 4B ;o (Voh(:0). f) = % Y (Veh(:0), )
feF
_ 4B [Voh(x: 0)|2
B 7]

, (3.31)

where the last inequality uses the fact that the functions in ¥ are orthonormal.

Since |F | = exp(d), the variance of the gradient with respect to different target
function is exponentially small as d increases. This means that the gradient can barely dis-
tinguish different target functions. As a result, gradient-based optimizations algorithms are
unlikely to succeed.
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These hardness results suggest that the Barron space is likely to be too large for
studying the training of two-layer neural networks. It is an important open problem to identify
the right function space, in which the functions can be learned in polynomial time by two-
layer neural networks.

3.10. Other results
Classification problems. A binary classification problem can be approached as a regression
problem with the additional knowledge that the target function only takes the values +1.
This a priori knowledge gives us different mathematical means, and we commonly choose to
interpret { f > 0} as { f &~ 1} and similarly for negative values. It is therefore not necessary
that f should take a particular value, but only that f have the correct sign (and possibly
be bounded away from zero). This is encoded in the common hinge loss and logistic loss
functions
log(1 + exp(—hy))

log2

s

zhinge(h» y) = maX{O? 1- hy}’ ZIOg(}L y) =

which primarily force alignment between the classifier # and the label y € {—1, 1}. Both the
hinge loss and the logistic loss differ from the £2-loss geometrically from the optimization
perspective: While the £2-loss vanishes at exactly one point, hinge-loss vanishes whenever
the classifier has the correct sign and magnitude > 1, whereas the logistic loss never vanishes.
The risk functional therefore has a much larger set of minimizers or none at all in typical
classification problems.

Another key difference is the fact that we are minimizing a surrogate loss. While
our goal is to minimize the measure of the misclassified set E(x, )~ [1{r(x)-y<0}], We use
convex loss functions £ which bound the zero—one loss function from above:

L(h,y) = Liny<oy-

The bounds on the true risk functional to minimize are therefore coarser by nature.

The nonexistence of minimizers for logistic loss has interesting implications from
the optimization perspective. It was shown in [16] that as the risk decays to zero along a
gradient flow trajectory, the geometry of a two-layer neural network adapts not only to correct
classification, but also a higher-order optimality condition (maximum margin classification),
where the “confidence” (or margin)

(x,yr)rélsrzlnt(u) hee)-y
becomes as large as possible. The notion of margin is easiest to interpret for linear classifiers,
where it corresponds to the distance to the decision boundary, and harder to interpret in
classes of nonlinear functions such as neural networks.

In multiclass classification, a similar philosophy holds, but the classifier has to align
with the vectors ey, ..., e corresponding to the k classes, rather than the directions £1.
The most popular loss functional in this case is the cross-entropy loss, which generalizes
the logistic loss. Just as the logistic loss, the cross-entropy loss function does not admit
minimizers either.
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The frequency principle. One of the most interesting observations for training dynamics is
the so-called “frequency principle”: During training, the low frequency components in the
target function tend to be recovered earlier than the high ones [1e3]. This is opposite to the
situation we usually see in numerical analysis, for example, the numerical solution of elliptic
PDE:s. It is well known that when using iterative algorithms to solve the algebraic equations
obtained from the numerical discretization of elliptic PDEs, it takes longer to remove the low
frequency errors than the high frequency errors. This is why multi-grid methods are useful
there. In ML, the opposite seems to be true.

The reason behind this is as follows. Roughly speaking, when solving PDEs, the high
frequency components correspond roughly to large eigenvalues of the underlying algebraic
system. As we have seen earlier, the training dynamics in machine learning is more like
solving some integral equation, therefore the high frequency components correspond roughly
to small eigenvalues. This should be an important avenue for understanding the training
dynamics.

Generative models. Generative models are ways of approximating probability distributions
using finite samples. One of the most well-known generative models is the generative adver-
sarial network, or GAN. Given a sample set S, the empirical distribution formed from S,
85, can be considered as an approximation to the underlying probability distribution. This
approximation is unsatisfactory since it cannot provide any new samples. However, it can
be shown, or at least argued, that without any explicit regularization, generative models will
always converge to the empirical distribution (see, for example, [39,104]). Therefore the merit
of a generative model must be that during training, it can produce better approximations to
the underlying probability distribution before ultimately converges to the empirical distribu-
tion. Theoretically, this means that one has to study the situation with “early stopping,” not
the ultimate convergence, and analyze whether the statement above really holds.

Results of this type have been proved for the so-called “bias potential” model [1e4].
However, it is fair to say that there are more open questions for the theoretical understanding
of generative models than for the case of supervised learning. One of the difficulty is that
generative models are not variational problems but rather game theory problems.

Machine learning of dynamical systems. Given a sample of time series, one would like
to learn the underlying dynamical system that produced the time series. For these problems,
besides CoD, there is also the issue of curse of memory [65]: The cost increases exponen-
tially as memory increases. For linear dynamical systems, this issue has been analyzed quite
thoroughly in [65].

Reinforcement learning. Reinforcement learning (RL) is an area of machine learning that
is concerned with how an agent should interact with an unknown environment in order to
maximize the expected cumulative reward [93]. To deal with practical problems that involve
a large number of states or in high dimensions, one needs to introduce function approxi-
mation for the value or policy functions. Indeed, RL has had remarkable success in Atari
games [76], Go [9e], and robotics [61] using deep neural network approximations. Despite the
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practical success of RL with function approximation, most existing theoretical results is only
applicable to the tabular setting [4,5,55], in which both the state and action spaces are finite
and no function approximation is involved. Relatively simple function approximation meth-
ods, such as the linear model [56,105], have been studied recently. RL with kernel function
approximation has been studied in [37,68,69,186], and RL with neural network approximation
has been studied in [36,69,97]. These results require the existence of a reference distribution
such that all possible state—action distributions under the admissible policies are close to in
a certain sense, and [68] shows the necessity of this type of assumptions.

In a way, the mathematical issues for RL are a lot like those for supervised learning,
but more complicated. Specifically,

e For the approximation error: Analyze the conditions on the reward function and
transition probability under which the value or policy functions can be effi-
ciently approximated by neural networks. Since the value and policy functions are
obtained from the Bellman equation, this question is related to the new regularity
theory for PDEs discussed below.

e For the generalization error: This is the sample complexity problem. It is similar
in spirit to the Rademacher complexity except that there is an additional dynamic
component.

e For the optimization error: Again the dynamic component complicates things.
This is dynamics within dynamics: The optimization algorithm involves dynam-
ics. Within that there is the dynamics of the underlying problem such as the
dynamics of the Go game.

New regularity theory of PDEs. The approximation theory discussed earlier suggests that
in high dimension, the classical smoothness-based function spaces such as Sobolev spaces
should be replaced by new spaces such as the Barron space or Barron’s spectral space. It is
natural to ask whether the solutions of prototypical PDEs lies in these new spaces or whether
one can develop a regularity theory for the relevant PDEs in these new spaces. This issue is
of practical significance because of the success of ML-based algorithms for solving PDEs
in high dimension (see Section 2). In this direction, [1e1] considered the simplest PDEs such
as the Poisson equation, heat equation, and Hamilton—Jacobi equation, and studied whether
the solutions lie in Barron space if the data does. Lu et al. [71] carried out a more thorough
analysis and developed a regularity theory for Barron’s spectral space. Also of relevance is
the work in [4e,52].

4. MACHINE LEARNING FROM A CONTINUOUS VIEWPOINT

To define a machine learning model, one only needs two things: A way of represent-
ing functions and a way of finding the parameters in the representation. The latter is usually
formulated as an optimization problem. Neural networks are special classes of functions. In
contrast to piecewise polynomials, they can be defined without using a mesh. This “contin-
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uous” nature is quite helpful when constructing numerical algorithms. One is naturally led
to ask: Can we push this continuous nature further?

One interesting idea proposed in [23,41] is to use the solutions of ordinary differential
equations (ODEs) to represent trial functions. This proposal is now made popular through
the name of neural ODEs [14]. ResNets can be viewed as discretizations of neural ODEs,
and the back-propagation algorithm can be viewed as a particular way of solving the adjoint
equation for the gradients of the solutions [14,23].

A more systematic presentation of the continuous formulation is found in [32]. The
framework suggested there consists of the following main components:

e representation of functions;
o the variational problem for minimizing the population risk;
e gradient flow for the variational problem.

Since we are aiming at high-dimensional problems, the function representation should be of a
probabilistic nature. E et al. [32] suggested two classes of representations, integral transform-
based and flow-based.

Once we have a continuous formulation, one can then discretize the continuous for-
mulation to obtain concrete algorithms. Again, since we are aiming at high dimension, the
particle method is the most natural algorithm for discretizing the dynamic equations. We
will see that some of the most popular neural network-based ML algorithms can be derived
this way. At the same time, one can also come up with new algorithms.

4.1. Integral transform-based representation
Consider the (parametric) representation

f(x;a,m) = /Rd a(w)o(wT x)7(dw) = Eyra(w)o(wx), 4.1

or
f(x;p) = ]E(a,w)Npao(wa). “4.2)

Given a target function f*, the variational problem for minimizing the population
risk is given by
. 2
min R(6), R(P) = Exnp(f(x:0) = f*(x))",

where 6 denotes abstract parameters. For (4.1), 8 = (a, 7); for (4.2), 8 = p. These two ingre-
dients together form the variational problem we are interested in. We can either discretize
this variational problem and then solve the resulted discretized optimization problem, or for-
mulate an optimization problem at the continuous level and then discretize. We will discuss
the latter approach.

To define the gradient flow, we borrow ideas from nonequilibrium statistical physics
[51]. We regard the population risk as the free energy, and the parameter 6 as the “order
parameter”. As in [51], we can divide the order parameters into two different classes, the

941 MATHEMATICAL MACHINE LEARNING



conserved and nonconserved ones. For example, as a probability measure, 7 and p are con-
served order parameters. In contrast, the coefficient a is nonconserved.
For nonconserved order parameters, we use the so-called “model A” gradient flow,

e.g.,
da _ SR
9 Sa’
For conserved order parameters, we use “model B” gradient flow, e.g.,
d
T ivy=o,
ot
where SR
J=nv, v=-VV, V=—.
o

It is instructive to look at some specific examples. For the first example, we use the
representation (4.1). We fix 7 and optimize over a. The gradient flow in this case is given by

da(w,t) = —Ssi:(w,t) = —/a(ﬁ),t)K(w,zi))n(diz) + f(w), 4.3)

where
Kw,w) =Ei[o(w x)o@"x)], f(w)=E:[f*x)o@wx)]

This is an integral equation with a symmetric positive definite kernel.
As an example of the conservative gradient flow, let us consider the representation

f(x) = Euvpd(x,u),

where ¢ is some general feature function. One example is u = (a, w), ¢(x,u) = aoc(wT x).
Let

) - ~
V(u) = %(u) = Ex[(f(x) = f"(0)¢p(x.u)] = / K(u.w)p(du) — f(u)

be the potential with a kernel K defined similarly to K, then the model B gradient flow
dynamics is given by
d:p = V(pVV). (4.4)

This is the same as the mean-field equation derived in [75,84,92]. For an interesting modifi-
cation of this model to improve convergence, we refer to [83].

Next, we turn to the discretization of the continuous formulation. There are several
levels of discretization to consider:

e Discretizing the variational problem. In the current setting, this is straightforward:
By using data, we discretize the population risk into the empirical risk.

e Discretizing the function representation and the gradient flow. This can be done
using a number of different numerical methods. In low dimensions, the spectral
method can be a powerful tool. In high dimensions, the most obvious choice is
the particle method since this is the dynamic version of Monte Carlo. One can
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also use the smoothed particle method which has shown better performance at
least on low dimensional problems.

As an example, consider (4.1). If we use
m(dw) ~ ,%Z‘Sw;’ a(wj.1) ~a;(1)
J
to discretize (4.3), we obtain
%aj(f) = —% Xk: K(wj. wo)ar(t) + f(w)).

This is exactly the gradient descent dynamics for the random feature model.
Next, consider the integral differential equation (4.4). If we use the particle method
discretization, we have

1 1
p(da,dw,t) ~ - ZS(a,-(z),w,-(t)) = ZSuj(z)
J J

and the discretized problem becomes
du

d_t] =—Vu I(uy,... . um),

where

1
Iy, ..., um) = R(fm), wj=(a;,w;), fm(x)= aZaja(wJTx).
J

This is exactly the gradient descent dynamics for two-layer neural networks under the mean-
field scaling.

4.2. Flow-based representation
Consider the following flow-based representation:

75 = Vx,
dz¥
T =Ey~p,¢d(z,w), Vrel01], 4.5)

f(x:0) =1"z7,

where w € 2 and ¢ : R? x Q@+ RP, Visa D x d matrix. For simplicity, we will fix V.
The parameters are then 8 = p = (0c)¢[0,1], @ Sequence of probability measures.

The form of the right-hand side in (4.5) is chosen because of the following two
considerations. The first is that it is an integral transformation-based representation that we
just discussed. More importantly, it arises as the natural continuum limit of a suitable ResNet
model with random parameters [33].

Minimizing the population risk using this flow-based representation is then a control
problem where the population risk serves as the objective function, and the parameters p =
(pz)zefo,1] serve as the control. One useful tool from the control perspective is Pontryagin’s
maximum principle. To state this maximum principle, denote by X := {p : [0, 1] > $»(2)},
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the space of all feasible controls, and define the Hamiltonian H : R x R? x £,(Q) :— R
as

H(z, p.j) = Euer[ pTp(z,w)].

Here z, p € RP and u € $5(Q). p is the costate that corresponds to the state z.
Pontryagin’s maximum principle states that the solutions of this control problem
must satisfy

p; = argmax, Ex[H (z}. p¥.p)]. Vr €[0.1], (4.6)
and for each x, (z¥, p¥) are defined by the forward/backward equations:
dz¥
drt = VpH =Eup;[$(z7.u)].
d p* 4.7
d_; =—V:H =Eyp; [Vszb(z:’”)Pf]’
with the boundary conditions:
5 =X, (4.8)
pi =2f(x:p] = fT(0))L (4.9)

With this, one can then construct maximum principle-based algorithms. This was
first done in [64] and it was based on an extension of the method of successive approximation
(MSA). This is an iterative algorithm that alternates between solving the Hamiltonian system
for the states and costates and finding the optimal parameters at each step. Symbolically, one
can write it as, at the step k:

e Solve gk
e V(e gt o). b=V
e Solve
d pk
—E=-VaH(ELPL0), P =2(f 05 - fr )L

e Set 0¥+ = argmaxy.q H(z¥, p¥, 0), for each t € [0, 1].

Compared with the usual gradient descent-based algorithms, the advantage is that the opti-
mization problems are decoupled for different values of t. Li et al. [64] presented numerical
evidence which suggests that an extended version of this algorithm is quite competitive,
compared with several different versions of SGD.

The gradient flow for this model was derived in [32]. For any p!, p? € X, consider
the following metric:

1
D2(p', p?) = /0 W5 (o7 p2)d,

where W, (-, ) is the 2-Wasserstein distance.
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Proposition 27. The gradient flow in the metric space (X, D) for the population risk is

given by
0;0:(w, 1) = Vy - (,otIEx [v(z’:, DY, w)]) vVt €[0,1], (4.10)
where SH
v(z,p,w) = Vwm = ngb(z,w)p,

X

and for each x, (z¥, p¥) satisfies (4.7) and (4.8) with p* replaced by p at time t.

This is a one parameter family of coupled flows. For this flow, the energy dissipation
relation is given by
dR ! 2
- = —/O Ew~p i) [ | Ex V& (2%, w)p¥ | ]d. (4.11)
Consider now the discretization of the flow using the particle method. Letting
p(, 1) = % Z;';l 8(wl(t) —-), the discretized gradient flow is given by

dz¥ 1 Z’” x

dr ;’j=1¢(zr’wr)’ v €[0.1],

dpy 1 ¢ ) o 4.12)
= mjélvzd)(zr,wt)pr, T €[0,1],

dw?’ ; .

Ve B Vg wl) pE] =L

Upon further discretizing the flow-based representation, one essentially recovers the gradient
descent algorithm for ResNets together with back-propagation (for more details, see [32]).

The gradient descent-based algorithm and the maximum principle-based algorithms
are two representative classes of training algorithms for deep neural networks. There are two
major components in these algorithms: the propagation and back-propagation of the states
and the costates, and the optimization of the parameters. In gradient-descent algorithms,
for each iteration of the gradient descent, one performs a full cycle of forward and backward
propagation. In maximum principle-based algorithms, for each cycle of the forward and back-
ward propagation, one performs the full optimization. These two classes of algorithms stand
at the opposite extreme as far as the balance of these two components are concerned. Obvi-
ously, the most efficient algorithm should lie somewhere in-between.

Another interesting question is the comparison between the mean field and the con-
tinuous philosophies. In the simplest setting, the mean-field and the continuous formulation
give rise to the same continuous model. However, one should note that their starting point is
quite different:

e For the mean field approach: discrete — continuous by taking the hydrodynamic
limit, as in the study of interacting particle systems in statistical physics.

e For the continuous formulation: continuous — discrete by discretization. This
viewpoint is more like the one in classical numerical analysis where one starts
from continuous problems and then discretize.
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Continuous formulation allows us to think about machine learning “outside the box”
of neural network models. It also seems to be a “double-sided sword”: While the continu-
ous formulation seems to be quite attractive, it is difficult to initialize. In practice, it seems
that initializing using i.i.d. random samples under the conventional scaling leads to better
performance. This is still a puzzle that needs to be resolved.

5. SOME PERSPECTIVES AND CONCLUDING REMARKS

What have we really learned? Perhaps the single most important thing is that neural
network-based machine learning is a very powerful tool for overcoming the CoD, or for
discrete problems, the combinatorial explosion. This should be the most important guiding
principle for designing new algorithms, trying new applications, or developing the theory.
Neural networks might also be useful for problems with very few degrees of freedom, but at
the moment, we still lack convincing evidence in this regard.

One of the most exciting recent development is the application of machine learn-
ing to science. AlphaFold2 and DeePMP are two of the most representative examples. The
former is a powerful solution of a fundamental problem in science using data-driven meth-
ods. The latter is a powerful extension of a classical theoretical tool, namely molecular
dynamics, that substantially advanced its realm of applicability. As we discussed in Section
2, machine learning seems to provide the missing tool for realizing the goals put forward in
the multiscale modeling program. In addition, using machine learning to improve the effi-
ciency of experimental work is also an area with a lot of promise. Indeed, one can argue
that Al for Science has been the most exciting development in Al or science during the last
couple of years, and it is changing the paradigm with which we do science.

On the theoretical side, even though we are still quite far from having a satisfactory
theory for neural network-based machine learning, the roadmap to such a theory is emerg-
ing. This roadmap includes understanding the approximation theory, generalization gap, the
landscape for the training problem, dynamical path during training, the difference between
the landscape for the empirical and population risks, and so on. Perhaps more importantly, a
consensus is starting to emerge regarding what the right questions are. One such consensus is
that what is important is not the specific values of the neural network parameters, but rather
their probability distribution. This underlies most of the theoretical advances discussed here.

Besides these abstract studies, there is also the need to study in more detail the struc-
ture of practical datasets. The fact that one can perform classification of images using neural
network models suggests that the task itself is not so complicated, at least when represented
using multilayer neural networks. It is worthwhile to look into the details of the structures
of such a representation.

In addition to supervised learning, there is also the need to build some theoretical
understanding of unsupervised learning, learning dynamical systems, reinforcement learn-
ing, as well as the new tasks that have emerged in the application of machine learning to
scientific computing. The efforts to develop such an understanding is likely going to lead us
to a new subject in mathematics, namely high-dimensional analysis.
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Regarding the impact that machine learning will have on applied mathematics as a
whole, we refer the readers to the article [24].

Finally, machine learning is not the ultimate solution of AL It has a lot of problems,
including the difficulties with interpretability, the need for a large training dataset, the vul-
nerability to adversarial attacks, and so on. Traditional rule-based methods are much better
on these issues. Naturally one should ask whether it is possible to combine rule-based and
learning-based approaches to build better Al algorithms.
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