
Homomorphic
encryption:
a mathematical survey
Craig Gentry

Abstract

If the first thing that comes to mind when you hear the word “encryption” is the Enigma
machine, you might think that encryption is complicated and mathematically uninter-
esting. In fact, many modern encryption systems are quite simple from a mathematical
point of view, especially encryption systems that are homomorphic. In these systems, the
starting point is a homomorphism that respects some binary operation(s), such asC or �.
Depicting this homomorphism with a rectangular commutative diagram, the objects on
the top level of the diagram are called ciphertexts, and the objects on the bottom level
are called messages or plaintexts. The downward arrows in the diagram are the homo-
morphism, which we call decryption. The rightward arrows are the operation(s). Decryp-
tion commutes with the operations. To the commutative diagram we add one extra ingre-
dient, computational complexity. Specifically, we need for it to be easy (in the sense of
polynomial-time) for anyone to compute the rightward arrows in the diagram, but hard
to learn how to compute the downward (decryption) arrows except with some special
information that we will call a “secret key.” In short, homomorphic encryption is simply
a homomorphism that has been “hardened” in the complexity-theoretic sense.
Homomorphic encryption allows anyone to compute on encrypted data, without needing
(or being able) to decrypt, has many exciting applications. Fully homomorphic encryption
(FHE) systems, which allow a rich (functionally complete) set of operations, were finally
discovered in 2009. But all of the FHE systems that we have discovered so far follow the
same blueprint, and we still wonder whether there are other ways to build FHE.
This survey presents homomorphic encryption from a mathematical point of view, illus-
trating with several examples how to start from a homomorphism and harden it to make it
suitable for cryptography, pointing out pitfalls and attacks to avoid, laying out the current
blueprint for FHE, and (I hope) serving as an inspiration and useful guide in the develop-
ment of new approaches to FHE.

Mathematics Subject Classification 2020

Primary 68P25; Secondary 68Q17, 14G50

Keywords

Homomorphism, cryptography, encryption, complexity theory

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 2, pp. 956–1006
DOI 10.4171/ICM2022/165

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/

1. Introduction

Let me sketch homomorphic encryption in two different ways, a cryptographic way
and a mathematical way.

Cryptographically, homomorphic encryption has the usual 3 algorithms of encryp-
tion—namely, key generation K, encryption E, and decryption D. Key generation K generates
a random key pair .ek; sk/, an encryption key and a secret decryption key. In a “symmet-
ric” encryption system, ek D sk; in an “asymmetric” encryption system, ek is public (not
secret) and does not equal sk. Encryption E is a randomized algorithm that maps a message
m 2M and some randomness to a ciphertext, c D E.ek; m; r/. Decryption D is a determin-
istic algorithm that recovers a message from a ciphertext, m D D.sk; c/. It should hold that
m D D.sk; E.ek; m; r// for all key pairs in the image of K, all m 2M, and all randomness
r . For the encryption system to be secure, for any two messages m0; m1 2 M chosen by
an adversary, it should be computationally “hard” for the adversary to distinguish encryp-
tions of m0 from encryptions of m1, even after seeing many encryptions of these and other
values. Homomorphic encryption also has a fourth procedure, V, for evaluation. This proce-
dure uses an additional evaluation key evk, which is public. Evaluation V allows anyone to
process encrypted data while it remains encrypted, without using the secret decryption key.
For example, one might be able to apply some binary operation � to two ciphertexts to pro-
duce a new ciphertext that encrypts the sum of the original two messages. Formally, for some
set of binary operations F associated to the system, the following is true: for any correctly
generated key tuple .ek; sk; evk/, and for any ciphertexts c1; c2 in the image of E under the
key tuple, as well as for any f 2 F , we have D.V.evk; f; c1; c2//D f .D.sk; c1/; D.sk; c2//,
that is, running V with the function f on two ciphertexts that happen to decrypt to m1 and m2

produces a new ciphertext that decrypts to f .m1; m2/. We say the system is “unbounded”
if operations can be applied repeatedly, indefinitely, not only on ciphertexts in the image
of E but also ciphertexts in the image of V. The set of ciphertexts should be finite. (Actually,
ciphertexts should be compactly expressible, for efficiency). Thus, homomorphic encryp-
tion, via the algorithm V, allows the processing of data without giving away access to the
data. The applications are numerous. For example, if the system is unbounded for operations
C and � (i.e., is fully homomorphic), you could give your encrypted financial information to
an online service, which could prepare a (encrypted) completed tax form for you (which you
could then decrypt), without the online service learning any of your private information.

The cryptographic way also emphasizes an approach called provable security. In this
approach, one invokes a well-established computational assumption, such as the assumption
that it is hard to factor large integers.1 Then, one constructs a cryptosystem, and proves that it
is secure if your computational assumption is true. Specifically, one shows that if there is an
efficient adversary that violates the security of the cryptosystem, then from that adversary one

1 We will discuss computational complexity and security in more detail later, but as a first
approximation one can view the notion of computational “hardness” here as requiring at
least that P¤ NP, i.e., that there exist problems for which one can verify a solution effi-
ciently if given a witness, but not find a solution efficiently.

957 Homomorphic encryption: a mathematical survey

can build an efficient algorithm to solve the assumedly hard problem. Provable security is an
elegant and necessary approach that puts cryptography on a firm and rigorous foundation:
anyway, about as firm as possible, given that we are not even certain that P ¤ NP. The
provable security approach performs the essential function of discouraging and weeding out
unproven cryptosystems that might look hard to break at first glance, but are usually broken
eventually.

Mathematically, the essence of unbounded homomorphic encryption is captured by
a commutative diagram

C2 C

M2 M:

�;�

D.sk;�;�/ D.sk;�/

C;�

In the diagram, M is the set of valid messages and C is the set of valid ciphertexts. The
downward arrows are decryption, which I have drawn as dashed since the arrows should be
“hard” to compute without the secret decryption key sk. The rightward arrows are binary
operations over M and C , which anyone can compute easily. To make the diagram cleaner,
I simply assumed that the binary operations over M areC and � (though other possibilities
are interesting), and I used � and �, instead of the more ponderous V.evk;C; �; �/ and
V.evk;�; �; �/. The diagram displays how decryption commutes with the binary operations:
starting from 2 ciphertexts in the upper-left corner, applying componentwise decryption and
thenC (for example) produces the same result as first applying � and then decryption. With
the dashed arrows, the diagram depicts homomorphic encryption as a rather straightforward
marriage of homomorphism and computational complexity.

The mathematical way does not avoid provable security (nor would we wish it to).
Also, the commutative diagram does not refer explicitly to K (key generation) or E (encryp-
tion). But the diagram, implicit in the dashed arrow, has a lot to say about provable security,
K and E. Ciphertexts are preimages of messages under the decryption map. For the system
to be secure, for any two messages m0; m1 2M chosen by an adversary, it should be com-
putationally “hard” for the adversary to distinguish preimages of m0 from preimages of m1,
even after seeing many (image, preimage) pairs. In particular, it should be hard to distinguish
samples from the kernel of the decryption map versus samples from all of C . Typically, one
proves the security of a homomorphic encryption system by reducing security to precisely
that assumption, namely that C and ker.D.sk; �// are hard to distinguish from samples. Sim-
ilarly, encryption of m, that is, sampling a random preimage of m, often proceeds by picking
some preimage c1 of m and then randomizing it by sampling random c2 ker.D.sk; �// and
setting c D c1 � c2.

There are already many surveys of homomorphic encryption that follow the cryp-
tographic way [1, 2, 7, 11,22,42,43,48,62,72, 74].2 This survey is aimed at mathematicians. So,

2 Silverberg’s survey [72] is aimed at mathematicians, but in a different way than I intend
here.

958 C. Gentry

our journey will follow the mathematical way, starting always with a homomorphism (rather
than a well-established cryptographic assumption), and then seeking ways to “harden” the
homomorphism to make it suitable for cryptography. My ulterior motive for following this
way is that I want to encourage mathematicians to be creative, to try to introduce new useful
algebraic structures into cryptography’s limited repertoire, and to invent new homomorphic
encryption systems (subject, eventually, to the constraints of provable security).

Accordingly, the plan of the survey is to be maximally accessible, useful and inspir-
ing to mathematicians, by presenting:

• Several examples of simple homomorphic encryption systems, starting from their
homomorphisms, showing how their homomorphisms are “hardened,” and giving
their proofs of security (after defining security);

• General results about homomorphic encryption—including “fully” homomorphic
encryption (FHE), which allows arbitrary computations to be performed on data
while it remains encrypted—most of which follow directly from the commutative
diagram defining the system’s correctness;

• Some discussion of why ring homomorphisms do not seem to give secure FHE
systems;

• A clear exposition of an actual FHE system, including how we start with a ring
homomorphism, how we harden the ring homomorphism by adding “noise,” and
how to base the security of the system on a “hard” problem over integer lattices;

• Some discussion of failed attempts to use different algebraic structures to build
fully homomorphic encryption systems in a way that falls outside of the current
blueprint;

• A mercifully concise discussion of practical matters, such as the performance
characteristics of FHE.

By the end, we will see that the algebraic structures underlying current fully homo-
morphic encryption (FHE) systems are rather bizarre. In known FHE systems, the set of
messages M is a ring with natural C and �. The set of ciphertexts C has analogous binary
operations � and �, but is not a ring, but rather a commutative “double magma”—in partic-
ular, the binary operations are not even associative. As an algebraic structure, the ciphertexts
are very unstructured. It is an intriguing question whether FHE can be built with a set of
ciphertexts that is more structured, e.g., a nonsolvable group.

In the next section, we review some simple early homomorphic encryption sys-
tems, their commutative diagrams, and their proofs of security. After these examples, we
present some general definitions and results about homomorphic encryption in Section 3,
most notably the bootstrapping theorems, which demonstrate that to get a homomorphic
encryption system capable of correctly evaluating any function on encrypted data (that is, an
FHE system), it is enough to get a homomorphic encryption system that can correctly eval-

959 Homomorphic encryption: a mathematical survey

uate a single special function. In Section 4, we describe in detail the construction of an FHE
system. The construction starts with a homomorphism that respects a rich set of operations—
such as a ring homomorphism—and hardens it by adding “noise” to it. The noise turns the
unbounded homomorphism into a bounded one, but the bounded homomorphism is “boot-
strappable,” as needed to obtain FHE. We show how to base the security of different versions
of the FHE system on different versions of the learning with errors (LWE) problem, whose
hardness in turn can be based on hard problems over integer lattices. Finally, in Section 5,
we suggest directions for future research.

2. Some simple homomorphic encryption systems

Here, as a (safely skippable) warm-up, we present some simple homomorphic
encryption systems, starting from their homomorphisms, showing how their homomor-
phisms are “hardened,” and giving their proofs of security (after defining security).

First, some history. Rivest, Adleman, and Dertouzos [67] proposed the notion of
homomorphic encryption in 1978—calling it a “privacy homomorphism.” They were in-
spired by a homomorphic property of the RSA encryption system, which Rivest, Shamir,
and Adleman [68] had proposed the previous year—namely, that if you multiply two cipher-
texts encrypted under the same key, it has the effect of multiplying the messages encrypted
inside. They wondered whether it was possible to take this further: to construct a privacy
homomorphism capable of general computation on encrypted data, not just multiplications
modulo an integer. In [67], they proposed several systems allowing general computation.
They knew these systems were insecure against realistic attacks—for example, in some of
the systems, if you obtain a few encryptions of 0, it becomes trivial to recover the secret
key. These systems were inspiring to later researchers, who eventually found ways to modify
them to make them secure—in particular, with “noise”—to construct the fully homomorphic
encryption systems that we have today.

Fortunately, for the purposes of this survey, we have some simple homomorphic
encryption systems that are also provably secure, based on natural computational assump-
tions, under the “right” model of security for an encryption system. For these examples, we
can start with a homomorphism, show how to “harden” it, and provide a proper proof of
security in the “right” model of security. In these examples, the proof of security in this
model makes heavy use of the homomorphism. In fact, the assumption used in the proof of
security is simply that it is computationally hard to distinguish samples from the kernel of
the homomorphism from random samples.

Our first example is the Goldwasser–Micali encryption system, described in 1982
[47]. Goldwasser and Micali were the first to prove an encryption system secure under a
natural computational assumption using the “right” model of security. Granted, they had an
advantage here, because they also defined the model of security. But, to their credit, this
model has stood the test of time and is still considered the right one.

960 C. Gentry

2.1. Goldwasser–Micali: HE starting from the Legendre symbol
For a fixed prime p, the Legendre symbol

�
�

p

�
W .Z=pZ/�!¹˙1º is a group homo-

morphism, mapping an element of .Z=pZ/� to 1 if it is a quadratic residue (square) modulo
p, and to �1 if it is a nonresidue. We have the following commutative diagram:

.Z=pZ/� � .Z=pZ/� .Z=pZ/�

¹˙1º � ¹˙1º ¹˙1º;

�

�
�
p

�
;
�
�
p

� �
�
p

�
�

where � denotes multiplication in ¹˙1º, and � denotes multiplication in .Z=pZ/�.
How can we “harden” the Legendre symbol homomorphism to build a homomor-

phic encryption system? The downward arrow, which will eventually become decryption,
currently requires only knowledge of p, so we must hide p in some way. A natural way to
hide p is to reveal only a composite integer N D p � q, where p and q are both large prime
integers; N hides p only if it is “hard” to recover p from N via factorization, so we will
at least need to assume that factorization is hard. We now have the following commutative
diagram:

.Z=N Z/� � .Z=N Z/� .Z=N Z/�

¹˙1º � ¹˙1º ¹˙1º;

�

�
�
p

�
;
�
�
p

� �
�
p

�
�

where now � is multiplication modulo N , and the downward arrows are dashed because (we
hope) it is hard to learn how to compute the Legendre symbol

�
�

p

�
without the secret p, even

after seeing many (image, preimage pairs).
For several reasons, it makes sense to use the subgroup of .Z=N Z/�, which we will

denote by JN , of elements with Jacobi symbol 1. First, the fact that the Jacobi symbol
�
�

N

�
is

efficiently computable even without the factorization of N makes cryptographers nervous.
We can make the Jacobi symbol useless to an attacker by using only elements that have
the same Jacobi symbol. Second, restricting to JN makes the system cleaner by removing
unneeded cosets from .Z=N Z/�. Third, using JN will make the computational assumption
easier to state. We now have the following commutative diagram:

JN � JN JN

¹˙1º � ¹˙1º ¹˙1º:

�

�
�
p

�
;
�
�
p

� �
�
p

�
�

The downward arrows are still surjective. Half of the elements of JN are squares in .Z=N Z/�

with Legendre symbol 1 for both p and q, and half are nonsquares with Legendre symbol
�1 for both p and q.

961 Homomorphic encryption: a mathematical survey

Now, let us build a homomorphic encryption system from the commutative diagram.
Our diagram indicates that our set of ciphertexts is JN , and that we decrypt a ciphertext c by
computing

�
c
p

�
. The diagram also depicts the homomorphism of our system—namely, that

by multiplying ciphertexts (modulo N), we implicitly multiply the underlying messages (in
¹˙1º). So, we have already built the decryption function D (which maps a ciphertext to a
message) and the evaluation function V (which uses the binary relation(s) over ciphertexts
to implicitly apply the analogous binary relation(s) to the messages that are encrypted).

All what remains is to build key generation K (which generates a random key pair
.ek; sk/, an encryption key and a secret decryption key) and encryption E (which maps a
message from M and some randomness to a ciphertext using the encryption key ek, i.e.,
c D E.ek; m; r/.) What do we need to put in the public encryption key to allow a user to
generate a random encryption of either ¹˙1º? Notice that the encryptions of 1, i.e., the subset
of JN that has Legendre symbol 1 for p, are precisely the quadratic residues (squares) in
.Z=N Z/�. So, given N , anybody can generate a random encryption of 1 easily by taking a
random element of .Z=N Z/� and squaring it. To generate a random encryption of �1, the
user needs some encryption u of�1, namely, a nonsquare in JN , which it can then randomize
via multiplication with a random square. Hence, it suffices to provide .N; u/ as the public
encryption key.3

Below is a cleaner presentation of the Goldwasser–Micali encryption system. Let
CompositeGen.�; r/ be a function that takes a security parameter � and some randomness r

as input, and which outputs integer primes p; q of size determined by � (they have a number
of bits polynomial in �) and their product N D p � q.

Goldwasser–Micali encryption system.

• Key Generation: K.�; r/ takes a security parameter � and some randomness r as
input. It outputs .p; q; N / CompositeGen.�; r/. Also, it uses the randomness
to generate random u 2 JN that is a nonsquare. The secret key sk is p. The public
encryption ek is .N;u/. The message set M is ¹�1;1º. The ciphertext set C is JN .

• Encryption: E.ek;m; r/ takes the encryption key ek, a message m 2M and some
randomness r as input. It generates random t 2 .Z=N Z/�. If m D 1, it outputs
ciphertext c t2 mod N , else it outputs c u � t2 mod N .

• Decryption: D.sk; c/ takes the secret key sk and a ciphertext c 2 C as input. It
outputs m

�
c
p

�
2M.

• Homomorphic multiplication: it takes two ciphertexts c1; c2 2 C and outputs
c c1 � c2.

3 See Section 3.2 for a more generally applicable approach to key generation and encryption,
in which key generation involves populating the public key with encryptions (preimages
under the decryption map) of several known values, and encryption involves applying the
binary relation to the ciphertexts (preimages) in the public key to generate a random encryp-
tion (preimage) of the desired value.

962 C. Gentry

Now, let us turn to security. Goldwasser and Micali defined the security of an
encryption system using the following game [15,47].

Definition 1 (IND-CPA game). The IND-CPA game between a “challenger” and an “adver-
sary” is as follows:

• Key Generation: The challenger uses K and � to generate a key pair .sk; ek/. If
the encryption system is asymmetric (public-key), it sends ek to the adversary. It
keeps sk secret. The challenger samples a random bit b 2 ¹0; 1º.

• Training and Challenges: Repeatedly, the adversary selects some messages
mi;0; mi;1 2 M that it sends to the challenger. The challenger generates ran-
domness ri and sends ci E.ek; mi;b; ri / to the adversary. (If the adversary is
free to set mi;0 D mi;1 if it wants an encryption of a known message.)

• Guess: The adversary guesses a bit b0 2 ¹0; 1º. It wins if b0 D b.

Definition 2 (Adversary’s advantage). In a game against system E with security parameter �

in which an adversary is trying to guess a random bit b 2 ¹0; 1º, we define the adversary’s
advantage AdvE

A.�/ to be jPrŒA guesses b correctly� � 1
2
j.

Definition 3 (IND-CPA security of encryption). We say that an encryption system E is
IND-CPA-secure if, for all probabilistic polynomial time adversaries A (i.e., that run in time
polynomial in �), the adversary’s advantage AdvE

A.�/ in the IND-CPA game is negligible
(i.e., o.1=�c/ for all constants c).

See Appendix A for a discussion of why, for most settings, IND-CPA is a minimal
viable notion of security for encryption; here, we just make a few comments about it. In our
presentation of the IND-CPA game, we consider only fixed-length messages from the set M;
if queries with variable-length messages are allowed, the game requires mi;0; mi;1 to be the
same length.

In its attack, the adversary is, of course, free to use E.ek; �/ and/or V to produce
ciphertexts on its own if the system is asymmetric and/or homomorphic.

An encryption system can be secure under the IND-CPA game only if it is proba-
bilistic—that is, there are many ciphertexts for each message. If the system were determin-
istic, the adversary could easily win by obtaining an encryption of a known message m, and
then querying .mi;0 D m; mi;1/ for some mi;1 ¤ m.

The IND-CPA game and our commutative diagram imply that, in a secure encryp-
tion system, it is hard to distinguish samples of ker.D.sk; �// from samples of C . Making
the kernel of the decryption homomorphism indistinguishable from the entire set of cipher-
texts is the essence, and hardest part, of hardening a homomorphism to make it suitable for
cryptography.

It only remains to define a clear computational assumption, and prove the security
of Goldwasser–Micali based on the assumption. The computational assumption is that it is

963 Homomorphic encryption: a mathematical survey

hard to distinguish whether a randomly sampled element of JN is a square modulo N . This
assumption is formalized as follows:

Definition 4 (Quadratic Residuosity (QR) assumption). For security parameter � and ran-
domness r , compute .p; q; N / CompositeGen.�; r/. Sample v uniformly from JN . The
QR assumption is that given .N; v/ (but not p; q; r), all probabilistic polynomial time
(in �) adversaries A have negligible advantage in guessing whether v is a quadratic residue
modulo N . (The probability in the assumption is taken not just over the sampling of JN , but
also over the choice of N .)

In other words, the QR assumption is that samples from JN are indistinguishable
from samples from the subset of JN that is in ker

��
�

p

��
.

Note that the assumption (like all of the computational assumptions that we will
make) depends on how elements are presented. For example, if our presentation of an element
j 2 JN is “too revealing” in that we give j not just as element of .Z=N Z/� but also give
the value

�
j
p

�
, then clearly the assumption becomes false. Generally speaking, it will be clear

what “hardened” presentation the assumption is using.
How hard is the QR problem? We do not know of any algorithm for the QR problem

that is faster than factoring N . The fastest algorithm for integer factorization is currently the
number field sieve [57], which runs in time exp.O.logN /

1
3 .log logN /

2
3 /, i.e., subexponential

(but superpolynomial) time.
For fixed N , Goldwasser and Micali show how to amplify the success probabil-

ity of an QR algorithm—given an algorithm that guesses correctly with probability 1
2
C ",

one can construct an algorithm that uses about O."�1/ times the computation and guesses
with probability very close to 1. This follows from the fact that the QR problem is random
self-reducible, given a particular j 2 JN , we can run the initial algorithm on many random
j � r , where r is a random square, and aggregate the results. In other words, random self-
reducibility exploits the homomorphism to generate many samples that have the same preim-
age by multiplying an initial sample with many elements of the kernel.

Now, let us prove the security of the Goldwasser–Micali encryption system. The
proof is quite simple. Nonetheless, it is useful because it reduces the security of a com-
plex system (that allows the IND-CPA adversary to “train” and adapt by making interactive
dynamically-chosen queries) to a crisp and concise computational assumption.

Theorem 1. The Goldwasser–Micali encryption system is IND-CPA-secure based on the
QR assumption.

Proof. Suppose that there exists an efficient adversary A that wins the IND-CPA game with
probability 1

2
C ". Then, we claim that there exists an efficient algorithm B, running in about

the same time as A, that solves the QR problem with probability 1
2
C

"
2
. The theorem follows

from this claim.
Here is how algorithm B works: B is given an instance of the QR problem, namely

.N; v/ such that N is a composite number chosen according to the specified distribution and
v is sampled uniformly from JN . Here B’s task is to distinguish whether v is a quadratic

964 C. Gentry

residue modulo N . To solve its task, B assumes the role of the challenger in the IND-CPA
game with A. Then B gives ek .N; v/ to A as the public encryption key, and B sam-
ples a random b 2 ¹0; 1º. When A sends query .mi;0; mi;1/, B samples randomness ri for
encryption, sets ci E.ek; mi;b; ri /, and sends ci to A. Also A outputs a guess b0 2 ¹0; 1º.
If b0 D b, then B guesses that v is a quadratic nonresidue; otherwise, it guesses that u is
quadratic residue.

Now, we have two cases: either v is a nonresidue (as it should be in the real system),
or it is a residue. Each case happens with probability 1

2
. In the former case, the public key

ek and all of the ciphertexts generated by B have the same distribution as in the IND-CPA
game. Therefore, in this case, the adversary guesses correctly (b0D b) with probability 1

2
C "

by assumption. In the latter case (if v is a quadratic residue), then v and all of the ciphertexts
generated by B are uniformly random quadratic residues. In particular, the ciphertexts are
independent of the messages they are supposed to encrypt, and hence independent of b. In
this case, the adversary’s guess b0 is also independent of b. Thus, A’s success (or lack of it)
gives B a clue about whether or not v is a quadratic nonresidue (or residue). In detail, using
QR and QNR to denote the events that v is a quadratic residue or nonresidue, respectively,
we have:

PrŒB correct� D PrŒB correctjQR and A correct� � PrŒQR and A correct�

C PrŒB correctjQR and A incorrect� � PrŒQR and A incorrect�

C PrŒB correctjQNR and A correct� � PrŒQNR and A correct�

C PrŒB correctjQNR and A incorrect� � PrŒQNR and A incorrect�

D 0C 1 �
1

2
�

1

2
C 1 �

1

2

�
1

2
C "

�
C 0

D
1

2
C

"

2
:

2.2. ElGamal: HE starting from a linear homomorphism
We provide one more example of a simple homomorphic encryption system. The

ElGamal cryptosystem [35] was probably directly inspired by the Diffie–Hellman protocol
[31], but it could have been invented by starting from a linear homomorphism, and then
hardening the homomorphism, as follows.

Let q be a prime integer. For Es 2 .Z=qZ/n, the inner product hEs; �i W .Z=qZ/n !

Z=qZ is a linear homomorphism. We have the following commutative diagram:

.Z=qZ/n � .Z=qZ/n .Z=qZ/n

Z=qZ � Z=qZ Z=qZ;

�

hEs;�i;hEs;�i hEs;�i

C

where � is vector addition.
How can we “harden” the linear homomorphism to build a homomorphic encryption

system? The IND-CPA game (see Definition 1) allows an adversary to obtain many (message,

965 Homomorphic encryption: a mathematical survey

ciphertext) pairs. If such pairs have the form .m; Ec/ 2 .Z=qZ/nC1 such that m D hEs; Eci, the
adversary can efficiently solve for Es using linear algebra. One countermeasure to this linear
algebra attack is to put the elements of Z=qZ “in the exponent.” That is, let G be a cyclic
group of prime order q whose binary operation we denote multiplicatively. For example,
G could be a subgroup of the multiplicative group of a finite field, or of the group of points
of an elliptic curve group over a finite field. Let g be a generator of G. In such groups, given G

and g, recovering a 2 Z=qZ from ga is called the discrete logarithm (DL) problem, which
is believed to be hard for appropriate groups.4 We now have the following commutative
diagram:

Gn �Gn Gn

G �G G;

�

hEs;�i;hEs;�i hEs;�i

�

where now hEs; �i is applied “in the exponent,” i.e., for .g1; : : : ; gn/ 2 Gn, we have˝
Es; .g1; : : : ; gn/

˛
D

nY
iD1

g
si

i ;

and � is componentwise multiplication.
Now, let us build the Elgamal encryption system from the commutative diagram.

Elgamal uses a 2-dimensional secret key Es with the special form .�s; 1/. So, ciphertexts and
messages live in G2 and G, respectively. As depicted by the commutative diagram, decryp-
tion involves applying hEs; �i “in the exponent.” The diagram also specifies the multiplicative
homomorphism. Now, what do we need to put in the public key to allow anyone to gener-
ate a random encryption of any element of G? A random encryption of m 2 G is simply
some encryption of m multiplied (via �) by a random encryption of g0. Anybody can easily
compute some encryption of m as Ec D .g0; m/, since hEs; Eci D .g0/�s �m1 D m. A random
encryption of g0 has the form .gr ; gr �s/ for r sampled uniformly from Z=qZ. To enable gen-
eration of a random encryption of g0, the public encryption key needs only a some nontrivial
encryption of g0, in particular, .g; gs/ suffices.

ElGamal encryption system.

• Key Generation: K.�; r/ takes a security parameter � and some randomness r as
input. It uses � and the randomness to generate .G; g/, a group and generator of
order q D q.�/. (Alternatively, the group may be preset and common to many
users.) It generates a random s 2 Z=qZ and sets h gs . The secret key sk is s.
The public encryption ek is .G; g; h/. The message set M is G. The ciphertext
set C is G2.

4 The reverse problem of computing ga from g for a 2 Z=qZ can be solved efficiently using
only O.log q/ multiplications in G using the technique of “repeated squaring.”

966 C. Gentry

• Encryption: E.ek; m; r/ takes the encryption key ek, a message m 2 M and
some randomness as input. It generates random t 2 .Z=qZ/. It outputs
c .gt ; m � ht /.

• Decryption: D.sk; c/ takes the secret key sk and a ciphertext c D .c0; c1/ 2 C as
input. It outputs m c�s

0 � c1 2M.

• Homomorphic multiplication: it takes two ciphertexts c.1/; c.2/ 2 C and outputs
c c1 � c2.

The computational assumption underlying ElGamal is called the Diffie–Hellman assump-
tion.

Definition 5 (Diffie–Hellman (DH) assumption). Let G be a fixed group of order q (deter-
mined by security parameter �) with generator g. Sample a random bit ˇ 2 ¹0; 1º. If ˇ D 0,
sample x and y randomly from Z=qZ and set z D x � y. If ˇ D 1, sample x, y, and z ran-
domly from Z=qZ. Output .G; g; gx ; gy ; gz/. The DH assumption is that all probabilistic
polynomial time (in �) adversaries A have negligible advantage in guessing the bit ˇ.

Note that is easy to determine whether the discrete logarithms of a tuple satisfy a
given linear equation. The DH assumption is basically that it is hard to distinguish whether
the discrete logarithms satisfy a degree-2 equation. For some elliptic curve groups over
finite fields, the fastest algorithm for distinguishing Diffie–Hellman is to solve the discrete
logarithm problem by using the “baby-step giant-step” method, which takes roughly pq

computational steps.
Now, we prove the security of ElGamal based on the Diffie–Hellman (DH) assump-

tion.

Theorem 2. The Elgamal encryption system is IND-CPA secure under the DH assumption.

Proof. Let B be an algorithm that is given an instance of the DH problem, namely, .G;g;gx ;

gy ; gz/ such that if ˇ D 0 then z D x � y, but if ˇ D 1 then z is sampled uniformly and
independently modulo q. Here B’s task is to distinguish the bit ˇ while B and A play the
roles of the challenger and adversary in the IND-CPA game. Algorithm B gives .G; g; gx/

to A as the public encryption key. Then B chooses a random bit b 2 ¹0; 1º. When A

queries messages .mi;0; mi;1/, B samples randomness ri 2 Z=qZ, and sends the cipher-
text .g0; mi;b/ � ..gy/ri ; .gz/ri /. Adversary A outputs a guess b0 2 ¹0; 1º. If b0 D b, then
B guesses that ˇ D 0; otherwise it guesses that ˇ D 1.

One can check that B’s advantage in the DH game is "
2
, where " is A’s advantage in

the IND-CPA game. The idea, as in the security proof for Goldwasser–Micali system, is that
everything—namely the public key and ciphertexts—is distributed properly when ˇ D 0 and
z D x � y, and so A should have advantage " in that case. In particular, ..gy/ri ; .gz/ri / is a
random encryption of g0, and so the i th ciphertext is indeed a random encryption of mi;b .
However, when ˇ D 1, with high probability ..gy/ri ; .gz/ri / is an encryption of a random
value. Therefore the ciphertexts generated by B encrypt random values independent of b,

967 Homomorphic encryption: a mathematical survey

and A has no advantage in guessing b. So, A’s success (or lack of it) gives B a clue about
the value of ˇ.

3. General results about homomorphic encryption

Now that we have in mind some simple examples of homomorphic encryption
systems, let us provide a general definition of homomorphic encryption and some general
results.

3.1. Formal definition of HE
A homomorphic encryption system is, first of all, an encryption system:

Definition 6 (Encryption (syntax)). An encryption system consists of 3 functions: key gen-
eration K, encryption E, and decryption D:

• .sk;ek;params/ K.�;r/ takes the security parameter � and some randomness r

and outputs a secret decryption key sk, an encryption key ek, some parameters
params of the system, such as the message set M. In a symmetric system, the
encryption key ek equals sk and is kept secret. In an asymmetric (or public-key)
system, ek is public and does not equal sk. We omit mentioning params as an
input to the other functions.

• c E.ek; m; r/ takes the encryption key ek, a message m 2M, and some ran-
domness r and outputs a ciphertext. Encryption is probabilistic: new random-
ness r is sampled for each encryption.

• m D.sk; c/ takes a secret key and ciphertext and returns a message m 2M.

We write Ec E.ek; Em; Er/ and Em D.sk; Ec/ for vectors of messages and ciphertexts; K, E,
and D all can be computed in time polynomial in the security parameter �.

Definition 7 (Correctness of encryption). It must hold that m D D.sk; E.ek; m; r// for all
key tuples .sk; ek/ in the image of K, all m 2M, and all randomness r .

The IND-CPA security of encryption system is as described in Definition 3.
A homomorphic encryption system also has a fourth function V (evaluation). The

homomorphic property requires some tweaks to K as well. (The functions E and D are as
before.)

Definition 8 (Homomorphic encryption (syntax)). A homomorphic encryption system con-
sists of 4 functions: key generation K, encryption E, decryption D, and evaluation V:

• K: As in an encryption system, except that K also outputs a public evaluation key
evk, and params includes some description of a set F of functions, with input and
output over M, that the homomorphic encryption system is capable of evaluating
correctly (see below).

968 C. Gentry

• E: As in an encryption system.

• D: As in an encryption system.

• c V.evk;f;c1; : : : ; ct / takes evk, a function f 2F , and t ciphertexts c1; : : : ; ct ,
where t is the number of inputs to f . It outputs a ciphertext c.

The above K, E, D, and V all can be computed in time polynomial in the security parameter �,
though V’s complexity necessarily also depends (polynomially) on the complexity of the
function f being evaluated.

The security notion of homomorphic encryption remains IND-CPA security, with-
out reference to V. This is because V is a public function with no secrets. The adversary is,
of course, free to try to use V in its attack.

A homomorphic encryption system must satisfy not only the basic correctness of
encryption, but also correctness of evaluation. We will define the correctness of evaluation
with commutative diagrams. First, note that the images of E and of V need not be the same
in general (though they were the same for the simple homomorphic encryption systems we
presented in Section 2).

Definition 9 (Fresh and evaluated ciphertexts). We differentiate between two types of
ciphertexts:

• “Fresh ciphertexts” (denoted by CE): ciphertexts in the image of E,

• “Evaluated ciphertexts” (denoted by CV): a superset of CE that also includes
ciphertexts in the image of V when evaluated on a function f 2 F and cipher-
texts from CE.

Though the notation suppresses it, these sets depend on the particular encryption key ek and
evaluation evk being used.

Definition 10 (Correctness of evaluation (bounded homomorphic encryption)). A homo-
morphic encryption system correctly evaluates a set of functions F , and is called F -
homomorphic, if

D
�
sk; V.evk; f; c1; : : : ; ct /

�
D f

�
D.sk; c1/; : : : ; D.sk; ct /

�
for all .sk; ek; evk/ in the image of K, all fresh ciphertexts ¹ciº in CE (for key ek), and all
f 2 F . This correctness requirement is depicted by the commutative diagram for bounded
homomorphic encryption in Figure 1a.

Unless otherwise specified, a homomorphic encryption system is bounded, as
depicted in Figure 1a, since correctness of evaluation is a priori guaranteed to hold only
when the inputs are fresh ciphertexts come from CE, not necessarily from CV. Bounded
homomorphic encryption systems can be trivial and uninteresting—for example, when V
does nothing but output f and its input ciphertexts c1; : : : ; ct , leaving it to the decryption
function D to decrypt the ci ’s and apply f to the messages.

969 Homomorphic encryption: a mathematical survey

C�E CV

M� M

V.evk;f;�;:::;�/

D.sk;�;:::;�/ D.sk;�/

f

(a) Bounded HE.

C
.i/
V
�

C
.i�1/
V

M� M

V.evk.i�1/;f;�;:::;�/

D.sk.i/;�;:::;�/ D.sk.i�1/;�/

f

(b) Leveled HE.

C� C

M� M

V.evk;f;�;:::;�/

D.sk;�;:::;�/ D.sk;�/

f

(c) Unbounded HE.

Figure 1

Bounded, leveled, and unbounded systems with f 2 F for function set F . The notation M� indicates that the
number of copies of M depends on the number of inputs to f .

One property that can make a homomorphic encryption system nontrivial is if it is
unbounded.

Definition 11 (Unbounded homomorphic encryption). We say a homomorphic encryption
system is unbounded F -homomorphic if, for some set of ciphertexts C , the commutative
diagram in Figure 1c holds.

For an unbounded system, the functions in F can be applied repeatedly, indefi-
nitely. The size of the ciphertexts, and the cost of their decryption, does not depend on how
many homomorphic operations were performed. The simple homomorphic encryption sys-
tems discussed in Section 2 are unbounded with respect to a single binary operation.

In-between bounded and unbounded, we have a notion of leveled homomorphic
encryption.

Definition 12 (Leveled homomorphic encryption). We say a homomorphic encryption
system is leveled F -homomorphic if, for any number n 2 N (a parameter to be included in
params that indicates the number of levels), the commutative diagram in Figure 1b holds for
all i 2 ¹1; : : : ; nº. The functions K; E; D; V are required to be independent of n, aside from
the fact that K generates a key-tuple .sk.i/; ek.i/; evk.i// for each level.

Our definition of leveled homomorphic encryption here is strict; sometimes the def-
inition allows the complexity of the functions to grow polynomially in n. Note that, in the
leveled system, V converts ciphertexts under key ek.i/ to the next key ek.i�1/.

Now what about the set F ? The set F can be limited or powerful. The systems
considered in Section 2 are unbounded, but can perform only a single binary operation that

970 C. Gentry

is insufficient to perform arbitrary computations. In contrast, we say that F is functionally
complete if it contains a functionally complete (or universal) set of operations or “gates.”
Examples of a universal set of gates are ¹AND;NOTº and ¹NANDº. Boolean circuits composed
of a universal set of Boolean gates are very powerful: any problem that can be computed in
polynomial time by a deterministic Turing machine can also be computed by a polynomial-
size Boolean circuit family. That is, Boolean circuits can efficiently perform general efficient
computation (as classically defined with respect to Turing machines). Our ultimate goal is a
homomorphic encryption system that is unbounded for universal gates.

Definition 13 (Fully homomorphic encryption (FHE)). A homomorphic encryption system
is called fully homomorphic (resp. leveled fully homomorphic) if it is unbounded (resp.
leveled) and its F contains a functionally complete set of gates.

With a fully homomorphic encryption (FHE) system, we can do arbitrary computa-
tions on data while it remains encrypted. Most of the rest of this survey focuses on building
FHE.

3.2. General approach to key generation and encryption
Decryption D and evaluation V are the stars of our commutative diagrams, but let us

focus on key generation K and encryption E for a moment.
Encryption E is simply the inverse of D. Given m 2M, we encrypt m by sampling

from the preimage of m under the decryption map D.sk; �/. In an asymmetric (public-key)
system, such sampling must be possible only with the public encryption key ek, without
sk. Also, for the system to be IND-CPA secure, this sampling must be probabilistic. Can
we devise a simple, natural, secure way to encrypt, that is, to sample randomly from the
decryption-map preimage of a message?

For a homomorphic encryption system, a possible answer immediately presents
itself. Populate the encryption key ek with (image, preimage) pairs ¹.mi ; ci /º. Then, the
encrypter uses the homomorphism of the system to generate a random preimage of its m from
the given preimages of ¹miº in ek. That is, the encrypter finds a random function f 2 F

such that f .m1; : : : ; mt / D m, and then outputs the ciphertext c D V.ek; f; c1; : : : ; ct / as
its encryption of m.

But we need to be careful here. The ciphertext c certainly decrypts to the correct
message m. But how can we be sure that c does not retain some detectable residue of its
history? A homomorphic encryption system may be IND-CPA secure, yet still allow an
adversary to distinguish that a ciphertext c was produced by evaluating a particular func-
tion f on c1; : : : ; ct , which in this case would allow the adversary to recover m. In fact, the
“trivial” bounded HE system mentioned after Definition 10 (in Section 3.1) has exactly this
property. For the encryption procedure to be secure, we need to ensure that the encrypter’s
ciphertext c “forgets” how it was made.

Suppose that an evaluated ciphertext c is at most ` bits, i.e., c only “remembers” `

bits. And also suppose that we generate c as (say) a random linear combination of the ci ’s in
ek, subject to the same random linear combination of the mi ’s equaling m. If t (the number

971 Homomorphic encryption: a mathematical survey

of ciphertexts in ek) is very large, such that the entropy of the random linear combination
is much greater than `, then indeed (whp) c’s precise history will be very ambiguous given
only c itself.

Rothblum [69] formalizes this intuition for homomorphic encryption systems that
have sufficiently compact ciphertexts and a � operation that is additively homomorphic over
M D Z=2Z. Precisely, he proves:

Theorem 3 (Rothblum). Let Esym be an IND-CPA secure symmetric encryption system that
is homomorphic with respect to addition modulo 2. Suppose that there is a polynomial t

such that homomorphically adding t .�/ fresh ciphertexts results in a ciphertext of at most
t .�/=10 bits. Then from Esym one can build an IND-CPA secure asymmetric system Easym.

Rothblum presents the result somewhat differently as constructing asymmetric
encryption from homomorphic symmetric encryption. But the bottom line is the same:
the encryption algorithm practically writes itself as long as there is an efficient procedure
(using sk) to sample a handful of random (image, preimage) pairs of the decryption map to
put in ek, and we can evaluate homomorphic addition modulo 2 compactly.

In detail, Rothblum builds the asymmetric system as follows:

Rothblum’s asymmetric system Easym.

• Easym:K: Compute Esym:K to obtain sk. Use Esym:E.sk; �; �/ to generate X .0/ D

.X
.0/
1 ; : : : ; X

.0/
t / and X .1/ D .X

.1/
1 ; : : : ; X

.1/
t /, which are t D t .�/ encryptions

of 0 and t encryptions of 1, respectively. The secret decryption key is sk. The
public encryption key ek is .X .0/; X .1//.

• Easym:E: Let � denote Esym’s homomorphic addition mod 2 operation. To encrypt
m 2 ¹0;1º, sample a random vector r 2 ¹0;1ºt such that r1C � � � C rt Dm mod 2

and output the ciphertext c D X
.r1/
1 � � � �� X

.rt /

`
.

• Easym:D: Identical to Esym:D.

Correctness follows easily from the properties of Esym.
Rothblum’s proof of IND-CPA security comes in two parts. First, he proves that

if Esym is indeed IND-CPA secure, a polynomial-time adversary will not notice if X .1/ is
replaced by t more encryptions of 0. This follows immediately from the definition of IND-
CPA security (see Definition 3).

Second, assuming now that X .0/ and X .1/ are now 2t i.i.d. encryptions of 0, Roth-
blum shows that a ciphertext generated as c D X

.r1/
1 � � � � � X

.rt /
t “forgets” the value

r1 C � � � C rt mod 2 (the value that is supposed to be encrypted). Specifically, the possi-
ble preimages .r1; : : : ; rt / for c satisfy r1 C � � � C rt D 0 mod 2 with probability at most
1
2
C 2�0:2tC`C1, where ` is the number of bits in c (and similarly for the case of 1 mod 2).

As ` < t=10, this probability is negligibly close to 1
2
.

972 C. Gentry

3.3. Getting to functional completeness
Now, let us return to our main goal, which is constructing FHE. Suppose we have

an unbounded system E that is correct for a non-functionally-complete set F . Can we use E

to get an FHE system EFHE?
In some cases, yes. Here is a silly example. The arithmetic gates ¹C; �º are not

functionally complete over GF(2). In particular, any circuit composed of ¹C;�º gates can
only output 0 when the inputs are all 0 (and so such circuits cannot express functions that
output 1 when the inputs are all 0). But this technicality is not a real obstacle to constructing
FHE. As long as E is capable of producing a single encryption of 1 (e.g., via encryption) it
can evaluate NOT.x/ as 1C x. (And it can emulate AND.x; y/ as x � y.)

Here is a less trivial example. The gates ¹AND; ORº are not functionally complete.
Circuits composed of ¹AND; ORº gates can only compute monotone functions (not general
functions), where a function f is called monotone if f .x/� f .y/ whenever xi � yi for all i .
However, via De Morgan’s law, we can reexpress any Boolean circuit as a circuit that is mono-
tone except at the input level, which is allowed to have NOT gates. Applying De Morgan’s law,
given an unbounded ¹AND; ORº-homomorphic system E , we can construct an FHE system
EFHE as follows. An EFHE ciphertext encrypting “1” consists of an ordered pair of two E

ciphertexts encrypting 1 and 0, respectively. An EFHE ciphertext encrypting “0” consists of
an ordered pair of two E ciphertexts encrypting 0 and 1, respectively. Performing a NOT gate
in EFHE is simple: just swap the E ciphertexts in the ordered pair. To perform an AND gate
in EFHE, take the E-AND of the first E ciphertexts in each pair, and the E-OR of the second
E ciphertexts in each pair.

3.4. Homomorphic encryption unbound: Recryption and bootstrapping
Suppose we have a bounded system E that is F -homomorphic. Can we use E to get

an FHE system EFHE? Is there some “special” function f such that, if f 2 F , we automat-
ically get FHE?

Here is a crazy idea for the “special” function f : the system’s own decryption func-
tion D! D is a function, expressible as a circuit, that takes a secret key sk and ciphertext c as
input, and outputs a message m. So, can D be in F ? Does this sort of self-embedding lead to
impossibilities, as in Gödel’s Incompleteness Theorem and Turing’s Halting Problem? Or,
does the self-embedding actually work, and what are the consequences? We will see that, if
a homomorphic encryption system can evaluate its own decryption function, plus “a little
bit more,” we can bootstrap the system to obtain a fully homomorphic system.

First, let us work out what happens when D 2 F , and we evaluate D “inside” V. We
start with the commutative diagram in Figure 1a for a bounded homomorphic encryption
system. In the diagram, CE denotes the image of the encryption algorithm E—i.e., “fresh”
ciphertexts—and CV denotes the superset of CE of “evaluated” ciphertexts. The commuta-
tive diagram captures the correctness requirement on V with respect to functions from F .
Assuming D 2 F , we are interested in what happens when we start with some value in the
upper-left corner, and apply D homomorphically (inside V). Since the diagram is commuta-

973 Homomorphic encryption: a mathematical survey

Figure 2

Recryption: Evaluating decryption homomorphically.

tive, we can gain useful information about what happens by also considering the lower path
through the diagram.

Accordingly, now let us assign the bottom rightward arrow f to be D.�; �/ and see
what happens as we complete the diagram. Follow along in Figure 2. Though the input to
f D D.�; �/ could be arbitrary, the natural input to D is a pair .sk0; c0/ such that sk0 is a
secret key and c0 is a ciphertext with m D D.sk0; c0/. (Note that sk0 might, or might not,
equal the key sk that is already in the diagram.) We put those values in the lower-left and
lower-right. For this to make sense in the diagram, sk0 and c0 must be expressible as strings
over the message set M. So, suppose that they can be expressed as strings in Mk and M`,
respectively, and let us write them as vectors, Esk0 and Ec0. (This reexpression is especially
straightforward when M is simply Z=2Z, i.e., when messages are bits.) We abuse notation
by using D even when the domain is MkC`. Continuing to complete the diagram, for the left
downward arrow to hold, we need the upper-left to be fresh encryptions of the secret key and
ciphertext “bits.” So, we will assume for now that ek is public, and we set ES D E.ek; Esk0/ and
EX D E.ek; Ec0/. (We have omitted the randomness of encryption.) Finally, in the top right-

ward arrow, we apply V with f D D.�; �/ to the freshly encrypted bits of the secret key sk0 and
ciphertext c0, to obtain a ciphertext c in the upper-right corner. Recall that D 2 F by assump-
tion, so V is guaranteed to satisfy the correctness requirement. So, what does c encrypt? By
the commutativity of the diagram, it must encrypt m, just like the original ciphertext c0! If
D 2 F , then given an initial ciphertext c0 that encrypts m under sk0, we can produce a new
ciphertext c that encrypts m under sk, by running decryption homomorphically (inside V)
using encryptions of bits of the secret key sk0 and the ciphertext c0. This process is called
recryption.

Interestingly, EX D E.ek; Ec0/ is a “double encryption” of m, with the inner encryption
under ek0, and the outer encryption under ek. Starting with EX and then taking the down-then-
right path through the diagram, we remove the outer encryption first (as you would expect),
then the inner encryption, to recover m. Taking the right-then-down path, we remove the
inner encryption under ek0 first, then the outer encryption!

974 C. Gentry

Figure 3

Recryption-then-NAND and Bootstrappable Homomorphic Encryption.

You may be underwhelmed. What have we gained by recryption? The homomor-
phic encryption system probably already provides us with much simpler ways to obtain an
encryption of the same message, such as applying homomorphic addition � with an encryp-
tion of 0, or homomorphic multiplication � with an encryption of 1. Why bother with the
more complex process?

First, notice that we do not have any guarantee that c0 can participate correctly in
even simple operations such as � and �. The ciphertext c0 is not necessarily a fresh encryp-
tion. On the other hand, recryption does not perform additional operations on c0. Instead,
it performs operations on fresh encryptions from CE that encrypt the bits of sk0 and c0.
Recryption is guaranteed to work correctly assuming D 2 F .

Second, as hinted above, a good motivation for getting a new encryption of the
same message would be if the new ciphertext is “refreshed,” i.e., it can participate correctly
in more operations, guaranteed. Trivially, we could refresh c0 by decrypting it then applying E
to obtain a fresh encryption of the same message. But this process requires sk0, which we
want to keep secret. So we arrive at the real motivation for considering recryption: maybe
it can refresh a ciphertext by decrypting it homomorphically, requiring only an encrypted
secret key.

If a recrypted ciphertext c is indeed refreshed, it means we should be able to apply
some additional operation after recryption, such as a NAND gate (if the messages are bits). So,
assume that the messages are bits and that the function f D NAND.D.�; �/; D.�; �// is in F .
This function f takes as input a secret key sk0 and two ciphertexts c0

.1/
; c0

.2/, decrypts
the two ciphertexts with the secret key, and applies the NAND gate to the two messages.
Since this f is in F by assumption, we have the guarantee that if m.1/ D D.sk0; c0

.1/
/ and

m.2/ D D.sk0; c0
.2/

/, then going clockwise through the commutative diagram in Figure 3
gives us a ciphertext c such that NAND.m.1/; m.2// D D.sk; c/. By using this process for
every NAND gate, we can evaluate an arbitrary circuit of NAND gates. Recall that NAND is,
by itself, a functionally complete gate, enabling general computation. Therefore, we obtain
a fully homomorphic encryption system.

975 Homomorphic encryption: a mathematical survey

Figure 4

Recryption variant: Evaluating decryption homomorphically with ciphertext prewired.

To get FHE, all we need is a bounded homomorphic encryption system such that
this weird function NAND.D.�; �/; D.�; �// is in F ! We call such a bounded homomorphic
encryption system bootstrappable, and call this process bootstrapping.

In retrospect, bootstrapping seems like the almost inevitable answer for how to
refresh a ciphertext generically. Generically, if all we are given is the commutative diagram of
a bounded homomorphic encryption system (with its function set F) and a ciphertext c in CV

but not CE that we want to refresh, the only possible way to refresh it is to somehow use V. We
cannot input c as a ciphertext directly into V, since it is not in CE. Yet, we must give V some
inputs that retain the information in c, and that V can operate on correctly. We have only two
choices: either c must be embedded in fresh ciphertexts input to V (e.g., encrypted bitwise,
as above) or c must be embedded in the function f that we give to V to evaluate. In either
case, since the only useful thing we know about c is that it is in CV and encrypts some m, it
seems that the only meaningful functions we can evaluate on c are functions that first decrypt
c (and thereafter perform some operations on m). And so we arrive at bootstrapping. (This
reasoning does not preclude nongeneric techniques for refreshing ciphertexts.)

Embedding the ciphertext(s) to be refreshed in the function to be evaluated—as
opposed to encrypting the bits of these ciphertexts—is actually preferable. If we do not
encrypt the bits of ciphertext(s), we do not need ek to be public (the encryption system
can be symmetric). Also, we do not need to reexpress ciphertexts in terms of message
“bits.” In detail, in this approach, instead of evaluating D.�; �/, we can evaluate the function
Dc0 D D.�; c0/, where c0 comes “prewired.” Similarly, we can replace NAND.D.�; �/; D.�; �//

with NAND ı D
c0.1/;c0.2/.�/, a function that when given sk0 as input, decrypts ciphertexts c0

.1/

and c0
.2/ and then NANDs their respective messages. We provide revised versions of recryp-

tion and recrypt-then-NAND in Figures 4 and 5.
Now, let us state our FHE result a bit more formally.

Definition 14 (Bootstrappable homomorphic encryption). A (possibly bounded) homomor-
phic encryption system E with function set F is bootstrappable if there is a functionally
complete set of binary gates � , such that for all g 2 � , and all ciphertexts c.1/; c.2/ 2 CV,
g ı Dc.1/;c.2/.�/ 2 F .

976 C. Gentry

Figure 5

Recryption-then-NAND and Bootstrappable Homomorphic Encryption, with two ciphertexts prewired;
NAND ı D

c0.1/;c0.2/ .�/ is a function that, when given sk0 as input, decrypts ciphertexts c0
.1/ and c0

.2/ and then
NANDs their respective messages.

We limited the above definition to binary gates for convenience, and because it usu-
ally seems to suffice in practice. Figure 5 depicts a bootstrappable homomorphic encryption
system where � includes NAND, which is functionally complete by itself.

Theorem 4 (Bootstrapping to leveled FHE [40, 41]). If E is a bootstrappable system that
is IND-CPA secure, then it can be transformed into a leveled FHE system ELFHE that is
IND-CPA secure.

Theorem 4 gives us leveled FHE, not unbounded FHE. For unbounded FHE, there
is an issue in the proof of IND-CPA security. Specifically, to obtain unbounded FHE, we
need for it to be secure to encrypt E’s secret key sk under its companion encryption key ek.
We call this property circular security. (For leveled FHE, we can avoid the circular security
issue by encrypting each sk.i/ under the next encryption key ek.i�1/, so that the encrypted
secret keys form an acyclic chain.)

Definition 15 (Circular security). A encryption system E is circular secure if it is IND-CPA
secure even when ¹ ES D E.ek; Esk/º is public, where Esk 2 Mk are the “bits” of the secret
key sk.

Theorem 5 (Bootstrapping to unbounded FHE [40,41]). If E is a bootstrappable system that
is circular secure, then it can be transformed into an unbounded FHE system EFHE that is
circular secure.

Let us prove Theorem 5 first, because it is simpler.

Proof of Theorem 5. The construction of EFHE is given below; EFHE is unbounded, since
EFHE:V outputs a ciphertext in CV (the set of evaluated ciphertexts of E) whenever the input
ciphertexts are in CV. It correctly evaluates any gate g in the functionally complete set � (in
time polynomial in the security parameter). Therefore, it is fully homomorphic.

977 Homomorphic encryption: a mathematical survey

The circular security of EFHE follows directly from that of E , since the K, E, and D
functions of the two systems are the same, the IND-CPA game makes no reference to the V
function, and the encrypted secret key ES is the same in the two systems.

Unbounded FHE construction. Let E D .E:K; E:E; E:D; E:V/ be a circular-secure boot-
strappable homomorphic encryption system. We construct a circular-secure FHE system
EFHE D .EFHE:K; EFHE:E; EFHE:D; EFHE:V/ as follows. (Below, we will omit the randomness
of the encryptions.)

• EFHE:K: Identical to E:K. Note that E publishes ES D E.ek; Esk/, which we call part
of the evaluation key evk.

• EFHE:E: Identical to E:E.

• EFHE:D: Identical to E:D.

• EFHE:V.evk; g; c.1/; c.2//: output E:V.evk; g ı Dc.1/;c.2/.�/; ES/.

So, we have a very clean construction of unbounded circular-secure FHE from
circular-secure bootstrappable encryption. Unfortunately, we do not understand circular
security very well. Indeed, we can construct encryption systems that are IND-CPA secure
(under natural assumptions), but which break completely when an encryption of the secret
key is published. These systems tend to be contrived (specifically designed to break), but
still these counterexamples are sobering. Also, encryption systems that are provably circu-
lar secure (based on natural assumptions) are rare compared to provably IND-CPA secure
systems. More to the point, and looking ahead, we know how to build IND-CPA secure
bootstrappable encryption based on well-studied assumptions about the hardness of compu-
tational problems over integer lattices, while the assumptions underlying current unbounded
FHE systems are less well-understood.

With that motivation, let us now prove Theorem 4, which says that we can get IND-
CPA secure leveled FHE from IND-CPA secure bootstrappable encryption.

The proof uses a common technique in cryptographic security proofs called a hybrid
argument. In a hybrid argument, in each step we change what one ciphertext encrypts—e.g.,
from encrypting a secret key to encrypting 0—and prove that if E is IND-CPA secure then an
adversary should not notice the difference. By the end of the hybrid argument, all purported
encrypted secret keys are in fact encryptions of 0, and are therefore useless to the adversary.
The hybrid argument works for a leveled system because the encrypted secret keys ES .i/ form
an acyclic chain: the secret key at level i is encrypted under the encryption key at level
i � 1. If the encrypted secret keys form a loop, the hybrid argument does not go through.
In particular, the first time we replace an encrypted secret key with an encryption of 0, we
break the key loop, and this change may be efficiently distinguishable if the system is not
circular secure.

Proof of Theorem 4. The construction of ELFHE is given below. By Lemma 1, ELFHE is a
leveled FHE system. The IND-CPA security of ELFHE follows from Lemma 7, which says

978 C. Gentry

that if there is an adversary A in the IND-CPA game against ELFHE with n levels that has
advantage ", then there is an adversary B in the IND-CPA game against E that has advantage
at least "=2.nC 1/, and runs in about the same time as A.

Leveled FHE construction. Let E D .E:K; E:E; E:D; E:V/ be the bootstrappable system
with function set F including functionally complete gates � . We construct a leveled FHE
system

ELFHE D .ELFHE:K; ELFHE:E; ELFHE:D; ELFHE:V/

as follows. (Below, we will omit the randomness of the key generations and encryptions.)

• ELFHE:K: Let n2N be the number of levels specified in params. For i 2 ¹0; : : : ;nº,
compute key tuples .sk.i/; ek.i/; evk.i// E:K.�; i/. For i 2 ¹1; : : : ; nº, set
ES .i/ D E.ek.i�1/; Esk

.i/
/. For i 2 ¹1; : : : ; nº, set evk0

.i�1/
D .evk.i�1/; ES .i//.

• ELFHE:E: Identical to E:E using ek.n/ and attaching the label n to the ciphertext.

• ELFHE:D: The ciphertext c comes with a label in i 2 ¹0; : : : ; nº. Output
E:D.sk.i/; c/.

• ELFHE:V: Given gate g and two ciphertexts c.1/; c.2/ with label i , output

ELFHE:V.evk0
.i�1/

; g; c.1/; c.2// D E:V
�
evk.i�1/; g ı Dc.1/;c.2/.�/; ES

.i/
�
;

and set the label of the ciphertext to i � 1.

Lemma 1. If E is bootstrappable, the system ELFHE described above is leveled fully homo-
morphic.

Proof of Lemma 1. Recall that C
.i/
E is the image of E:E with encryption key ek.i/ and C

.i/
V

is the superset of C
.i/
E that also includes ciphertexts in the image of E:V under evk.i/ with

functions from F and ciphertexts from C
.i/
E . ELFHE is leveled, as depicted in Figure 1b, since

ELFHE:V outputs a ciphertext in C
.i�1/
V whenever the input ciphertexts are in C

.i/
V .

Moreover, ELFHE:V correctly evaluates any gate g in the functionally complete set �

(in time polynomial in the security parameter). So, it is a leveled FHE system. (Note that the
system must perform some bookkeeping relating to the labels of the ciphertexts, but this
is not part of the actual functions ELFHE:K, ELFHE:E, ELFHE:D, and ELFHE:V, and does not
contribute to their complexity.)

We provide Lemma 7 and its proof in Appendix B.

3.5. Computational hardness, cryptanalysis, and learning
The aspect of homomorphic encryption (and cryptography in general) that is prob-

ably hardest to understand is computational hardness.
Computational hardness is often described in terms of the P vs. NP question.

Roughly speaking, P consists of problems that can be solved (on a Turing machine) in time

979 Homomorphic encryption: a mathematical survey

polynomial in the size of the problem instance. For example, two � bit numbers can be mul-
tiplied together in time O.�2/ using grade-school multiplication, or even time O.� � log �/

using more sophisticated techniques [49]. NP consists of problems for which a solution
(together with a “witness” or proof) can be verified in polynomial time. For example, integer
factorization is in NP, since given a nontrivial factorization .p; q/ of integer N , one can
verify in polynomial time that N D p � q via multiplication (which is polynomial time).
On the other hand, integer factorization is not known to be in P, since there are no known
polynomial-time algorithms for finding p and q.

We have no proof that P¤ NP, and therefore nobody knows whether computational
hardness (of the type needed for the security of public-key encryption systems) even exists.
Certainly if P D NP, public-key encryption systems are insecure. In this case, one could
efficiently find the randomness r used in key generation, since one can efficiently verify
running K with randomness r indeed generates the targeted key pair. Even if we assume P¤
NP, this assumption provides little support for public-key encryption systems, which rely on
the hardness of problems that are unlikely to be NP-complete.

In the absence of helpful lower bounds, we are forced to turn to upper bounds.
That is, we consider well-studied problems—such as integer factorization, the discrete log-
arithm problem, and finding short vectors in integer lattices—for which the fastest known
algorithms run in time superpolynomial (preferably exponential) in the size of the prob-
lem instance. Then, we assume that the best known algorithms are not much worse than
the best possible algorithms, and base the security of our cryptosystem on the assumed
hardness of the well-studied problem. Even for well-studied problems, this approach can
be precarious. For example, although the integer factorization problem has been consid-
ered for centuries, a dramatic algorithmic improvement came in 1990 with the inven-
tion of the number field sieve [57], which factors �-bit integers in subexponential time
exp.O.log N /

1
3 .log log N /

2
3 /, considerably faster than the previous quadratic sieve algo-

rithm, which takes time exp.O.log N /
1
2 .log log N /

1
2 /.

Another surprise has been quantum computation. In 1994, Shor [71] made quantum
computation famous by discovering an efficient quantum algorithm for problems includ-
ing integer factorization and discrete logarithm. More generally, we now have the following
result by Watrous [78]:

Theorem 6 (Watrous). Let G be a solvable (e.g., abelian) group, given by generators. There
is a polynomial-time quantum algorithm to compute jGj (with small error probability).

Corollary 1 (Armknecht et al. [10]). Group homomorphic encryption systems in which the
ciphertext set is a finite solvable group and decryption is a group homomorphism cannot be
IND-CPA secure against a quantum adversary.

The corollary follows because Watrous’ algorithm allows one to distinguish between
the entire group G of ciphertexts and the proper subgroup H of encryptions of 1 (the kernel
of the decryption map). The attack also applies when the ciphertext set is a finite ring and

980 C. Gentry

decryption is a ring homomorphism, since the encryptions of 0 form an ideal that is an
abelian additive subgroup of the ciphertext set.

There are also efficient quantum attacks [77] (and subexponential classical attacks
[18]) on FHE systems that have a zero oracle—that is, an efficient method to distinguish when
a ciphertext encrypts 0. But we are anyway only interested in IND-CPA secure systems, for
which no such oracle can exist.

Currently there are no general attacks on homomorphic encryption systems based
on nonsolvable groups, but there are also no known plausibly-secure constructions. Again,
for the construction to be secure, one must ensure that the ciphertext group G and the proper
subgroup H of encryptions of 1 are hard to distinguish. A homomorphic encryption system
using nonsolvable groups must avoid at least the following attacks:

• Solvability of H : If H is solvable and G is not, they can be distinguished easily
by computing their respective derived series.

• Watrous’ order finding algorithm: Even if G and H are both nonsolvable, Watrous’
algorithm can distinguish them if the cyclic subgroups generated by randomly
sampled elements g G and h H have distinguishably different distribu-
tions of orders.

• Linear representations: If one can efficiently compute (or one is given) linear rep-
resentations of G and H , one may be able to distinguish G and H using linear
algebra.

It may seem obvious, but it is an essential point: in a secure encryption system, the
decryption function cannot be linear, since linear decryption leads to a trivial linear algebra
attack (e.g., Gaussian elimination).5

More generally, the decryption function cannot be learnable, in the sense of Valiant’s
“probabilistically approximately correct” (PAC) learning model [75].6 In the PAC learning
model, one is given samples .x; f .x// with x coming from a training set X , and the goal is
to learn f well-enough to output f .x/ with high probability on a new sample x. This model
is nearly identical to the IND-CPA game, where we use f D D.sk; �/.

Since the models are so similar, we can look to learning theory to help us design a
decryption function for an IND-CPA secure system [16]. For example, Linial, Mansour, and
Nisan [58] give an algorithm to learn a function expressible as an AC circuit of size s, depth d ,
and n inputs with accuracy parameter " in time nO.log s="/d . (AC circuits are Boolean circuits
that have AND and OR gates with arbitrarily many inputs, as well as NOT gates.) So, we
cannot have decryption be a constant depth AC circuit if we want (as we usually do) it to take
time exponential (or at least subexponential) in the security parameter � for an adversary to
break our system.

5 There are a surprising number of FHE proposals without proofs of security, and they are
almost always insecure for the simple reason that decryption is linear.

6 Interestingly, the decryption function of a secure bootstrappable encryption system must
satisfy an interesting dichotomy: it must be simultaneously unlearnable (complex) and
evaluatable (not too complex).

981 Homomorphic encryption: a mathematical survey

On the other hand, learning theory suggests that it can be difficult to learn functions
from samples that are noisy, i.e., from samples .x; f .x/ C e/, where e is some error or
noise. Accordingly, two learning problems that have become useful to cryptography are the
learning with errors (LWE) problem [65], and the learning parity with noise (LPN) problem,
where one is tasked with distinguishing whether given samples are completely random or
have the form . Eai ; h Eai ; Esi C ei /, where Es is a secret vector and the ei ’s are random noise
values. In LWE the vectors are over Z=qZ and jei j � q, while in LPN the vectors are over
Z=2Z and the ei ’s are Bernoulli random variables that are usually 0 but sometimes 1. While
the inner product is linear, the noise introduces nonlinearity, in particular, it defeats linear
algebra. As far as we know, these learning problems are hard even for quantum adversaries.
The security of all current FHE constructions relies on the hardness of such learning with
noise problems.

4. Noisy constructions of fully homomorphic encryption

The simple FHE systems in Section 2 are unbounded, but only for a single operation
that is not functionally complete. How can we construct an unbounded system capable of
evaluating, say, ¹C;�º?

For evaluating ¹C;�º, a natural approach to try is a ring homomorphism. However,
as we saw in Section 3.5, a system in which decryption is a ring homomorphism can be
broken efficiently by a quantum adversary. Moreover, ring homomorphisms have a linearity
that may be exploited even by classical adversaries.

How can we defeat linear algebra attacks? As we saw in Section 2.2, one answer
is to put values “in the exponent.” Unfortunately, in groups for which the Diffie–Hellman
assumption holds, values in the exponent can be added efficiently but not multiplied.7

As we saw in Section 3.5, another way to defeat linear algebra is to add “noise” or
“errors” to the linear equations. Linear algebra is notoriously brittle against noise. As we will
see, while adding noise “hardens” the homomorphism, this security comes at a cost: the noise
turns our unbounded ring homomorphism into a bounded one. Fortunately, by calibrating the
noise level, we can make the bounded homomorphism bootstrappable to achieve FHE while
basing security on reasonable hardness assumptions.

4.1. Overview of the noisy approach
Virtually all known constructions of FHE follow essentially the same blueprint:8

(1) construct bootstrappable encryption by (perhaps implicitly) starting from an insecure

7 Some groups for which the discrete logarithm is hard feature a bilinear map—such as a Weil
or Tate pairing—that effectively allows one multiplication “in the exponent” (see [17,54]).
Cryptographically-secure multilinear maps are an ongoing area of research [19,38].

8 Some constructions avoid this blueprint by constructing FHE from cryptographic program
obfuscation [14,26,31,39,53]. While much progress has been made on basing obfuscation
systems on well-established computational assumptions [53], all current constructions of
obfuscation still rely on the hardness of learning with noise problems, and are less efficient
and more complicated than more “direct” constructions of FHE.

982 C. Gentry

unbounded homomorphism that respects some functionally complete set of gates and then
“hardening” the homomorphism with noise, and (2) invoke the bootstrapping theorems (The-
orems 4 and 5) to get FHE from bootstrappable encryption. Here we sketch a fairly general
technique for hardening a homomorphism with noise.

For convenience, let us fix our message space to MDZ=2Z and our gates to ¹C;�º.
We start with an unbounded homomorphism that respects ¹C;�º:

C � C C

Z=2Z � Z=2Z Z=2Z:

�;�

ısk.�/;ısk.�/ ısk.�/

C;�

For example, C might be ZŒx�, and ısk.�/ could be evaluation of the ciphertext polynomial
at the secret key sk 2 ¹0; 1ºn modulo 2. As another example, C could be a set of integer
matrices that all have sk as an eigenvector with integer eigenvalue, � and � could be matrix
addition and multiplication, and decryption could be recovering the eigenvalue modulo 2.

In these examples, the homomorphism is unbounded but unsuitable for cryptog-
raphy. For the polynomial evaluation homomorphism, one problem is that as we apply �,
the degree increases and the number of monomials can increase exponentially.9 To con-
trol the number of monomials, one approach is to publish a Gröbner basis G for the ideal
I.sk/ D ¹p.x/ W p.sk/ D 0º of polynomials that evaluate to 0 at sk. But while keeping the
monomial basis small helps efficiency, it opens up a trivial linear algebra attack to recover
sk. The matrix-based system is also breakable via linear algebra.

To harden these homomorphisms, we add noise. Here is one way to do it. First,
we make a trivial observation: if we replace ısk with bıske in the above diagram, nothing
changes since ısk is already integral over C . But now let us expand the set of ciphertexts
so that ısk.c/ is not necessarily integral. Rather we let ciphertexts be noisy. We refer to the
value ısk.c/ � bısk.c/e as the noise of the ciphertext c. Now decryption involves applying
ısk.c/, removing the noise to obtain bısk.c/e, and then reducing modulo 2. But now we must
ask: do the �; � operations “play well” with the noise? Starting from fresh ciphertexts in
CE, which presumably have a small amount of noise, how many (possibly modified) �; �
operations can we apply with the guarantee that the following diagram commutes?

C�E CV

Z=2Z � Z=2Z Z=2Z

bounded number of tweaked �;�

bısk.�/e;bısk.�/e bısk.�/e

bounded number ofC;�

9 Fellows and Koblitz [37] described an encryption system where decryption involves eval-
uating a ciphertext polynomial at a secret point Es. However, it is not practically usable as a
homomorphic encryption system due to this explosion of monomials.

983 Homomorphic encryption: a mathematical survey

The diagram will commute for function f if evaluating f on fresh ciphertexts—say, cipher-
texts of noise at most some "0—always results in ciphertexts with noise bounded comfortably
below 1/2 that is, the noise is guaranteed not to wrap modulo 1 and result in a possible decryp-
tion error. The hope is that �; �, or tweaked versions of them, play well with the noise and
do not amplify it too much, so that if we choose "0 well, we can get the diagram to commute
for (say) the recrypt-then-NAND function while achieving IND-CPA security based on a
reasonable hardness assumption.

Below, we will discuss an instantiation of this framework in detail. Before we
describe this construction, we introduce some hardness assumptions related to learning
with noise, and show how to construct a symmetric encryption system from one of these
assumptions.

4.2. Learning with noise problems
Suppose that p is a large integer. Whenever you press a button, you get an approxi-

mate multiple of p, that is, a random integer of the form xi D qi �pC ri . Can you recover p?
If ri is always 0, then you can recover p efficiently using the Euclidean algorithm (as soon
as you have samples for which the qi ’s are relatively prime). But if the “noise” ri (and other
values) are sampled from well-chosen distributions, this problem, called the approximate
GCD problem, appears hard.

Definition 16 (Approximate GCD problem [52,76]). Let � be a security parameter. Let ˛ D

˛.�/, ˇ D ˇ.�/, and D .�/ be parameters. Fix integer p, sampled as a random integer of
ˇ bits. Given arbitrarily many samples xi D qi � p C ri , sampled as random -bit integers
subject to the constraint that xi � pbxi =pe is at most ˛ bits, output p.

Another learning with noise problem is learning parity with noise.

Definition 17 (Learning Parity with Noise (LPN) problem). Let � be a security parameter.
Let nD n.�/ be an integer, and �D �.�/ a Bernoulli distribution. Fix a vector Es 2 .Z=2Z/n

sampled according to �n. Given arbitrarily many samples . Eai ; bi / where Eai is sampled uni-
formly from .Z=2Z/n, ei is sampled from �, and bi h Eai ; Esi C ei mod 2, output Es.

(There is some abuse of terms in this description—with mixing of Z, Z=2Z, and
mod 2—but it will be understood that we are really working over Z and then reducing modulo
2 to representatives of Z=2Z.)

The LPN problem is easy if the noise ei is always 0, in which case we can solve
for Es using linear algebra, but the problem appears to be hard for an appropriate choice of
parameters. In the normal formulation of LPN, Es is sampled uniformly from ¹0; 1ºn, but
Applebaum et al. [9] showed that the problem is just as hard when Es is sampled from the
noise distribution �.

Finally, we come to the learning with errors problem.

Definition 18 (Learning with Errors (LWE) problem [65]). Let � be a security parameter.
Let n D n.�/ and q D q.�/ be integers, and � D �.�/ a distribution over Z. Fix a vector

984 C. Gentry

Es 2Zn sampled according to �n. Given arbitrarily many samples . Eai ; bi / where Eai is sampled
uniformly from .Z=qZ/n, ei is sampled from �, and bi h Eai ; Esi C ei mod q, output Es.

Again, if the noise ei is always 0, we can solve for Es using linear algebra given enough
samples, but the presence of appropriate noise seems to make the problem hard. Typically,
� is taken to be a discrete Gaussian distribution over Z, with deviation � � q. Note that Es
is chosen according to �, as Applebaum et al.’s result [9] (mentioned above) applies in this
context as well. Rather than referring explicitly to the noise distribution �, sometimes it is
convenient to refer to a bound " on the size of the noise.

Definition 19 ("-bounded distributions). A distribution ensemble ¹�nºn2N , supported over
the integers, is called "-bounded if Pre �n Œjej > "� is negligible in n.

All of these learning with noise problems are useful for cryptography. As far as we
know, they are hard even for quantum adversaries. We have constructions of leveled FHE
based on approximate GCD [28,46,76] and LWE [23,24,46], while constructing FHE based on
LPN appears to be more difficult (see [21,53]). In this paper, we will focus mainly on LWE,
and describe a construction of leveled FHE based on LWE.

Since IND-CPA security is about distinguishing between two distributions, it is
helpful to define a decision version of LWE which is also about distinguishing between two
distributions.

Definition 20 (Decision LWE). As in Definition 18, except that the challenger sets a random
bit ˇ 2 ¹0; 1º, and outputs samples according to one of two distributions:

(1) If ˇ D 0, it outputs . Eai ; bi / as uniform samples from .Z=qZ/nC1.

(2) If ˇ D 1, it samples them according to the distribution in Definition 18.

The problem is to guess ˇ (with nonnegligible advantage). The LWEn;q;� assumption is that
this decision LWEn;q;� problem is hard.

What do we know about the hardness of LWE? For n and q that are polynomial
in �, Regev gave a polynomial-time reduction from search LWE to decision LWE. When
the noise is extremely small or has some structure, there are subexponential algorithms to
solve LWE [12]. For example, when ei 2 ¹0; 1º for all i , solving LWE is easy given O.n2/

samples, since one can compute Es � Es as the solution to the O.n2/-dimensional system of
linear equations given by the equalities h Eai ; Esi � .h Eai ; Esi � 1/. However, for discrete Gaussian
error distributions with � polynomial in n, the hardness of LWE appears to depend solely
on the ratio q=".

In particular, the LWE problem has been shown to be as hard on average (for random
instances) as certain lattice problems in the worst-case (the hardest instances) [3, 4, 65]. An
n-dimensional lattice is a (full-rank) additive subgroup of Rn. For lattice dimension param-
eter n and number d , the shortest vector problem GapSVP is the problem of distinguishing
whether an n-dimensional lattice has a nonzero vector of Euclidean norm less than d or no
nonzero vector shorter than .n/ � d . The gist of the theorem below is that if there is a quan-

985 Homomorphic encryption: a mathematical survey

tum algorithm for average-case n-dimensional LWE for ratio q=", then there is a quantum
algorithm for worst-case n-dimensional GAPSVP for just a little larger than q=".

Theorem 7 (Regev [65]). Let n;q be integers and ˛ 2 .0;q/ be such that ˛ > 2
p

n. Let � be a
discrete Gaussian distribution over Z with deviation ˛. If there exists an efficient algorithm
that solves LWEn;q;�, then there exists an efficient quantum algorithm that approximates
the decision version of the shortest vector problem (GAPSVP) and the shortest independent
vectors problem (SIVP) to within QO.n � q

˛
/ in the worst case.

A discrete Gaussian with deviation ˛ will be "-bounded for " D ˛ � QO.
p

n/. Again,
as long as the deviation of discrete Gaussian noise exceeds a certain lower bound, the hard-
ness of LWE appears to depend only on the ratio between q and the size of the noise.

GAPSVP is NP-hard for any constant , but, unfortunately, in cryptography we
need to be larger (at least n in the theorem above). For D poly.n/, the fastest algorithm
to solve GAPSVP takes time 2O.n/. As a crude rule of thumb, the fastest known algorithm to
solve GAPSVP2k takes roughly 2n=k time [70]. Interestingly, there are no quantum algorithms
for GAPSVP that perform significantly better than classical algorithms.

Looking ahead to the construction of FHE, some reformulations and variants of
LWE will be useful. Sometimes, we prefer to view LWE samples as polynomials.

Fact 1. A sample .Ea; b/ such that b D hEa; Esi C e can be viewed as a degree-1 polynomial
c.Ex/ D b �

P
j aj � xj such that c.Es/ D e.

Homomorphic multiplication of ciphertexts related to LWE samples becomes more
natural when the ciphertexts are viewed as polynomials. The reformulation in Fact 1 suggests
a generalization of LWE to higher-degree polynomials.

Definition 21 (LWE with higher degree polynomials). The values �; n; �; Es are as in Def-
inition 18. There is also a poly.�/-size set of polynomials P � ZŒx1; : : : ; xn� that is fixed
independently of Es. As in LWE (as reformulated in Fact 1), we are given an arbitrary number
of degree-1 polynomials c.Ex/ such that c.Es/ mod q has distribution �. In addition, for each
p.Ex/ 2 P , we are given a degree-1 polynomial c.Ex/ such that c.Es/� p.Es/ mod q has distri-
bution �.

That is, instead of getting just degree-1 polynomials c.Ex/ that always evaluate
to something small at Es, we can now also obtain potentially higher-degree polynomials
c.Ex/ � p.Ex/ that always evaluate to something small at Es. This problem is related to the
circular security of some LWE-based systems.

4.3. Encryption based on LWE
Regev [65] built an IND-CPA asymmetric encryption system based on decision

LWE. Below, we describe a symmetric version of Regev’s encryption system. Since the sym-
metric system is additively homomorphic modulo 2 (and satisfies other conditions), we can
apply Rothblum’s theorem (Theorem 3) to get an asymmetric system that looks similar to
Regev’s.

986 C. Gentry

The idea of the system is simple. Suppose that we want to encrypt m 2 ¹0; 1º under
secret Es 2 .Z=qZ/n. Generate an LWE sample .Ea; b/ such that b D hEa; Esi C e. The LWE
assumption says that it is hard, without Es, to tell whether b � hEa; Esi is actually distributed
according to � (with small deviation) or uniformly. In the latter case, b is like a one-time pad,
even given Ea. Accordingly, to encrypt m, we mask it with b—specifically, we encrypt m as
.Ea; bCm � bq=2e/. The key-holder knows a good approximation of b—namely, hEa; Esi—and
therefore can remove b, up to small “noise.” Thereafter, it can recover m, whose value is
preserved (despite the small noise) in the most significant bit by multiplying it bq=2e.

More formally, the LWE-based encryption system is as follows.

Symmetric encryption system ELWE.

• K: takes security parameter � and randomness r and generates parameters
n D n.�/, q D q.�/, and � D �.�/. It generates secret key sk D ek D Es �n.

• E: takes ek, a message m 2 ¹0; 1º, and randomness r . It generates a random
LWE sample .Ea; b/. (That is, it generates random Ea 2 .Z=qZ/n, e � and sets
bD hEa; EsiC e.) It outputs ciphertext cD .Ea;u/, where uD bCm � bq=2e mod q.

• D: takes sk and a ciphertext c. It computes m0 u � hEa; Esi mod q. Depending
on whether m0 is close to 0 or bq=2e, output m D 0 or m D 1.

Regarding correctness, for a well-formed ciphertext we have m0 D bCm � bq=2e � hEa; Esi D

e Cm � bq=2e, which is close to 0 when m D 0, and to bq=2e when m D 1.

Theorem 8. ELWE is IND-CPA secure based on LWE.

The proof of security follows the usual format of having an IND-CPA adversary A,
an LWE adversary B who plays the role of the challenger in the IND-CPA game, and an
LWE challenger, with B mostly forwarding slightly modified transmissions between A and
the challenger. If the LWE samples are uniform, the ciphertexts that B sends to A will also be
uniform, and A can have no advantage guessing which bit is encrypted. If the LWE samples
are well formed, the ciphertexts that B sends to A are well formed and A should have
its assumed advantage ". B guesses that the LWE samples are well formed if A guesses
correctly, and B wins with advantage at least "=2. (The calculation is as in the proof of
Theorem 1.)

4.4. Bootstrappable encryption construction
Here we present a bootstrappable encryption system. Historically, the first bootstrap-

pable system was rather complex [41]. But after a sequence of works [6,20,23,24], bootstrap-
pable encryption became simple enough to describe in a blog post [13]. We mostly follow
Barak and Brakerski’s excellent exposition [13] here.

We start with the LWE-based encryption system ELWE of Section 4.3, but we make
some cosmetic changes. First, we view ciphertexts as degree-1 polynomials (see Fact 1).
This viewpoint will make multiplication of ciphertexts somewhat more natural than if we

987 Homomorphic encryption: a mathematical survey

viewed them as vectors. Second, we basically divide ciphertexts by q=2, allowing them to
be fractional. Recall that in ELWE, a ciphertext c (which we will view now as a polynomial)
has the property that c.Es/ is close to m � bq=2cmodulo q. If we divide the ciphertext by q=2,
we get something more natural—namely, c.Es/ is close to m modulo 2, or in other words
bc.Es/e Dm mod 2. This change allows for a simple description of decryption. It also allows
for a simple definition of the “noise” of a ciphertext—namely c.Es/� bc.Es/e, the distance of
c.Es/ to the nearest integer. We write

c.Es/ D" m mod 2

to indicate that ciphertext c has noise of magnitude at most " � 0 and bc.Es/e D m mod 2.
This notation will simplify the tracking and bounding of ciphertext noise as we apply homo-
morphic operations �; �. We will use "0 to denote the noise bound on fresh ciphertexts
output by E. We write the system Eboot below.

Bootstrappable encryption system Eboot.

• K: As in ELWE, except that we calibrate the parameters q D q.�/ and �D �.�/ to
achieve bootstrapping, and we set q D 2�C1 for some �. Also, we set evaluation
key evk as described below.

• E: Generate c as in ELWE. Write c as a polynomial c.Ex/ 2 ZŒx1; : : : ; xn� (as
described in Fact 1). Divide c by 2� , i.e., c.Ex/ c.Ex/=2� , a polynomial in
RŒx1; : : : ; xn�. Output c.Ex/.

• D: Remove as much precision as possible in the coefficients of c.Ex/ while main-
taining correctness before “actual” decryption. Then output bc.Es/e mod 2.

• V: Apply homomorphic operations ¹�; �º for ¹C; �º modulo 2, as described
below.

Notice that we have split decryption into two phases, namely a preprocessing phase where
we drop unneeded precision, and a second phase where we do the “actual” decryption. The
purpose of the preprocessing is to facilitate bootstrapping: it is important to minimize the
complexity of “actual” decryption as much as possible to get recrypt-then-NAND function
inside the function set F that the system can correctly evaluate.

Before we consider �; �, it will be useful to specify the proper form of ciphertext
polynomials in this system, an invariant that we will maintain while performing homomor-
phic operations.

Definition 22 (Proper form of ciphertexts in Eboot). A ciphertext c.Ex/ is in proper form if
it is a degree-1 polynomial with coefficients that are in .�1; 1� with � bits of precision.

Toward maintaining the proper form invariant, observe that reducing a ciphertext
polynomial c modulo 2, that is, adjusting c’s coefficients by even integers into the range
.�1;1�, does not change the ciphertext’s noise or the bit that it decrypts to, since Es is integral.

988 C. Gentry

So, after we add or multiply ciphertext polynomials, we will always reduce the coefficients
modulo 2 back into the range .�1; 1�, perhaps without mentioning this explicitly.

Now, let us add and multiply ciphertext polynomials! Suppose we add ciphertexts:

c D
X

i

c.i/:

Then,

c.i/.Es/ D"i
m.i/ mod 2 H) c.Es/ DP

i "i
m mod 2;

where m D
P

i m.i/. If the original ciphertexts are in the proper form, then so is c. The
ciphertext c has noise bounded by the sum of the noises of the original ciphertexts. It will
decrypt to the “right” value—in particular, the noise will not “wrap” and overwhelm the
“signal”—as long as

P
i "i < 1=2.

Lemma 2 (Addition �). Let c.i/.Es/ D"i
m.i/ mod 2 for all i . Let c D

P
i c.i/ mod 2 and

m D
P

i m.i/ mod 2. Then c.Es/ DP
i "i

m mod 2.

Suppose we multiply two ciphertexts over RŒEx�:

c D c.1/
� c.2/:

Then, c is a degree-2 polynomial. Regarding the noise, we have:

c.i/.Es/ D"i
m.i/ mod 2

D m.i/
C 2k.i/

C e.i/; m.i/
2 ¹0; 1º; k.i/

2 Z;
ˇ̌
e.i/

ˇ̌
� "i :

And so
c.1/.Es/ � c.2/.Es/

D .m.1/
C 2k.1/

C e.1// � .m.2/
C 2k.2/

C e.2//

D m.1/
�m.2/

C 2k C e.1/.m.2/
C 2k.2//C e.2/.m.1/

C 2k.1//C e.1/
� e.2/; k 2 Z

D" m.1/
�m.2/ mod 2; " D ."1 C "2/ � .jEsj1 C 1/;

where jEsj1 is the `1 norm of Es. The new noise is bounded by ", because if we let B be an
upper bound on jc.i/.Es/j, then " is at most ."1 C "2/ � B , and B is at most jEsj1 C 1 since the
coefficients of c.i/ are in .�1; 1�.

But c D c.1/ � c.2/ is not in the proper form. We can easily reduce its coefficients
modulo 2 into the range .�1; 1� and drop precision beyond � bits. Dropping precision costs
us an addition noise term of at most 2�� � jEsj21. But the biggest issue is that c is degree-2. We
need to somehow relinearize c so that it is degree-1, as required.

To relinearize, we publish some polynomials in the evaluation key evk that will help
us reduce the degree. You can think of these relinearization polynomials as a “noisy Gröbner
basis” (using the term loosely): they allow us to reduce degree-2 polynomials to degree-1,
but this reduction introduces additional noise.

Definition 23 (Evaluation key for Eboot (version 1)). As evk, publish polynomials
P D ¹pi;j;k.Ex/º that are:

989 Homomorphic encryption: a mathematical survey

• “Pseudoencryptions” of 0: We have pi;j;k.Es/ D"0 0 mod 2, where "0 is the noise
of fresh ciphertexts,

• Slightly quadratic: We have pi;j;k.Ex/ D 2�k � xi � xj C `i;j;k.Ex/ where
k 2 ¹0; : : : ; �º for precision parameter �, and `i;j;k.Ex/ is a degree-1 polyno-
mial.

With this evaluation key evk in hand to facilitate relinearization, here is the entire
� procedure.

� for Eboot.

• Compute c D c.1/ � c.2/ over RŒx�.

• Reduce c modulo 2 into the range .�1; 1�.

• Drop precision beyond � bits.

• Relinearize using polynomials P : Call the polynomial so far c.Ex/. Write each
coefficient ci;j (of monomial xi xj) in terms of its binary decomposition:
ci;j D

P�
kD0 ci;j;k2�k with each ci;j;k 2 ¹0; 1º. Next, subtract off a subset sum

of the pi;j;k’s to obtain a linear polynomial

relinearizeP

�
c.Ex/

�
D c.Ex/ �

X
i�j;k

ci;j;k � pi;j;k.Ex/:

• Reduce the resulting polynomial modulo 2 into the range .�1; 1�.

The ciphertext polynomial output by � is in the proper form. Relinearization introduces
noise of magnitude at most n2 � .� C 1/ � "0. Now, let us bound how � affects the noise
overall.

Lemma 3 (Multiplication �). Let c.1/.Es/D"1 m.1/ mod 2 for i 2 ¹1;2º. Let c D c.1/ � c.2/

and mDm.1/ �m.2/. Then c.Es/D"�
m mod 2, for "�D ."1C "2/ � .jEsj1C 1/C 2�� � jEsj21C

n2 � .�C 1/ � "0. For reasonable parameter settings, � multiplies the noise by an O.poly.n//

factor.

Proof. The exact expression for the noise comes from the bounds above on the noise added
by individual steps of �. Now, take " to be the maximum of "1; "2, both of which are at
least "0, the latter being the noise of fresh ciphertexts. Recall that we can choose Es from
the noise distribution (except that, unlike the noise and ciphertexts, we have not divided Es
by 2�). So, the coefficients of Es are bounded by 2� � "0, and the middle term 2�� � jEsj21 is at
most n � jEsj1 � "0. We satisfy the conditions of Theorem 7 as long as the noise distribution
(according to which the coefficients of Es are also chosen) has deviation 2

p
n, so we can take

jEsj1 D poly.n/. We will also take � D poly.n/. Then, we have that the new noise is bounded
by " � poly.n/.

990 C. Gentry

We have established that (for reasonable parameter settings), a single � or � oper-
ation increases the noise by at most a factor of p.n/ for some polynomial p. (See Lemmas 2
and 3.) This result gives us the following commutative diagram:

C" � C" C"�p.n/

Z=2Z � Z=2Z Z=2Z;

�;�

bevEs.�/e mod 2 bevEs.�/e mod 2

C;�

where C" denotes ciphertexts with noise bounded by ", and evEs.�/ denotes evaluation of a
polynomial at Es.

Now, let us extend this observation to evaluation of an arithmetic circuit C of ¹C;�º

gates. Recall that the depth d of the circuit C is the length of the longest path from an input
gate to the output gate, considering the circuit as a directed acyclic graph.

Lemma 4. Let p.x/ be a polynomial such that � and � multiply the noise of input cipher-
texts by at most p.n/. Given input ciphertexts of noise at most "0, the above system can
evaluate any arithmetic circuit of depth d with noise at most "0 � p.n/d .

For example, if we want to evaluate a d -depth circuit so that the noise of the final
ciphertext is at most (say) 1=4, it suffices to take "0 � .1=4/ � p.n/�d .

As we are aiming for a bootstrappable encryption system, we are especially inter-
ested in the depth of the decryption circuit (and the recrypt-then-NAND circuit, which has
depth 2 more than the decryption circuit). Recall that we drop unneeded precision before
“actual” decryption. Importantly, after dropping precision, the complexity of decryption
does not depend on "0 at all. Indeed, "0 becomes a free parameter that we can eventually
set as small as needed to allow us to evaluate the decryption circuit.

Lemma 5. Let c be a ciphertext such that c.Es/D1=4 m mod 2. For any �0 such that 2�0 > 4 �

.jEsj1C 1/, we can drop to �0 bits of precision in c while preserving correctness of decryption
(to the message m).

Proof. Dropping to �0 bits of precision adds at most 2��0 � .jEsj1C 1/ to the noise. By assump-
tion, 2��0 � .jEsj1 C 1/ < 1=4, so that the total noise remains < 1=2, and correctness of
decryption is preserved.

Now we bound the arithmetic circuit depth of “actual” decryption (after dropping
to dlog.4 � .jEsj1 C 1//e bits of precision in c).

Lemma 6. For reasonable parameters, the decryption circuit has depth

O.log nC log log jEsj1/ D O.log n/:

Proof. The computation of the inner product of two vectors—represented in the natural way,
with coefficients in binary representation—is in NC1 (see Section 4 of [56]), meaning that
it can be computed in circuit depth proportional to the logarithm of the description length

991 Homomorphic encryption: a mathematical survey

of the vectors. Decryption is an inner product of vectors of dimension n with coefficients of
O.log kEs1k/ bits. Therefore, it can be computed in depth O.log nC log log jEsj1/. Regarding
kEs1k, we can satisfy the conditions of Theorem 7 as long as the noise distribution (accord-
ing to which the coefficients of Es are also chosen) has deviation 2

p
n, and so we can take

jEsj1 D poly.n/. The result follows.

Theorem 9. Eboot is bootstrappable for some "0 (the noise bound of fresh ciphertexts) that
is n�O.log n/.

Proof. By Lemma 6, the “actual” decryption circuit (hence recrypt-then-NAND) applied
to ciphertexts with dropped precision has depth O.log n/. By Lemmas 4 and 5, for some
"0 D n�O.log n/, we can apply recrypt-then-NAND and drop precision while keeping the
noise below 1=2.

Theorem 10. Eboot is IND-CPA secure based on the LWE with higher degree polynomials
assumption (Definition 21) for some q D nO.log n/ and some poly.n/-bounded distribution �.

Proof. The proof is similar to the proof of IND-CPA security for the basic symmetric encryp-
tion system based on LWE (see Theorem 8), except that we use LWE with higher degree
polynomials (versus regular LWE) to sample the “slightly quadratic” polynomials P used
for relinearization in �.

By Theorem 4, we get leveled FHE based on this assumption. In fact, we can get
circular-secure FHE based on variants of the LWE with higher degree polynomials assump-
tion, e.g., where we still only use linear and “slightly quadratic” polynomials, but allow the
secret Es to come from ¹0; 1ºn rather than �n. We elaborate on this observation in Section 4.5.

But our underlying encryption system ELWE is based on the LWE assumption. How
can we get a bootstrappable encryption system also based on LWE assumption, rather than
the less well-established LWE with higher degree polynomials assumption? Clearly, the issue
originates with the current version of Eboot, which requires publication of “slightly quadratic”
polynomials that are used in relinearization. Can we publish a different set of polynomials
to facilitate relinearization, and somehow base security on LWE?

The trick to get security based on LWE is similar to the trick that we used to get
IND-CPA secure leveled FHE from IND-CPA secure bootstrappable encryption—namely, to
avoid a circular security issue, we use an acyclic chain of encrypted secret keys. The slightly
quadratic relinearization polynomials used in the above version of Eboot can be viewed as an
encryption of the secret key under itself. Specifically, we have:

p
.`/

i;j;k
.Es/ D 2�k

� xi � xj C `i;j;k.Es/ D"0 0 mod 2

H) `i;j;k.Es/ D"0 �2�k
� si � sj :

That is, the linear polynomial `i;j;k.Ex/, which has the proper form of a ciphertext, encrypts
(in some sense) the value �2�k � si � sj , a quadratic monomial of the secret key itself. In
version 2 of Eboot, we modify the relinearization polynomials so that each one is, in effect,

992 C. Gentry

an encryption of a quadratic monomial over some Es.`/ under the next secret Es.`�1/, so that
we have an acyclic chain of encrypted secret keys. In detail:

Definition 24 (Evaluation key for Eboot (version 2)). Publish polynomials P D¹p
.`/

i;j;k
.Ex; Ey/º

that are:

• “Pseudoencryptions” of 0: We have p
.`/

i;j;k
.Es.`/; Es.`�1// D"0 0 mod 2, where "0 is

the noise of fresh ciphertexts,

• Slightly quadratic (and some linear): We have

p
.`/

i;j;k
.Ex; Ey/ D 2�k

� xi � xj C `i;j;k. Ey/

where k 2 ¹0; : : : ; �º for precision parameter �, and `i;j;k. Ey/ is a degree-1 poly-
nomial. For i D 0, we have linear polynomials p

.`/

i;j;k
.Ex; Ey/D 2�k � xj C `i;j;k. Ey/.

Unlike version 1, we need linear polynomials in addition to the slightly quadratic
ones, because we are using the polynomials not only to relinearize but simultaneously to
transfer the ciphertexts from one key (Es.`/) to the next (Es.`�1/). In the system, we can apply
� or � to two ciphertexts under Es.`/, with the result under � being under the next key Es.`�1/.
The noise analysis is identical to version 1.

Theorem 11. Eboot (version 2) is IND-CPA secure based on the LWE assumption (Defini-
tion 18) for some q D nO.log n/ and some poly.n/-bounded distribution �.

Proof. (Sketch) The proof is similar to that of Lemma 7, where we proved the IND-CPA
security of a leveled FHE system that uses an acyclic chain of encrypted secret keys, using
a so-called hybrid argument where in a sequence of steps we replace encrypted secret keys
with encryptions of 0. The main idea in this proof is that each relinearization polynomial
p

.`/

i;j;k
.Ex; Ey/, whose special property is that it evaluates to a small value at .Es.`/; Es.`�1//,

looks indistinguishable from random to an adversary that does not know Es.`�1/, even if it
knows Es.`/.

Recall from Section 4.2 that, as far as we know, LWE is hard even if the ratio of q

to the noise is subexponential in n, so Theorem 11 provides a strong security guarantee. It
is possible to base the security of leveled FHE on LWE even for factors that are polynomial
in n [25].

4.5. Reflections on the overall FHE system
Now that we have completed our modular description of the FHE system, it is inter-

esting to demodularize the system to see what is happening overall. To simplify the overall
picture for the moment, let us imagine that the secret Es is in ¹0; 1ºn, so that the “bits” of Es are
in fact the coefficients of Es. We operate on linear ciphertext polynomials c.Ex/ that have small
noise when evaluated at Es. When we multiply polynomials, we use a noisy partial Gröbner
basis to reduce the resulting polynomial back to linear while changing the evaluation at Es
by only small noise. As we apply � and �, the noisiness increases until we have a c.Ex/

993 Homomorphic encryption: a mathematical survey

whose noise at Es is nearly 1/2, so that it can no longer participate safely in operations. But
now imagine that the underlying polynomial that we are evaluating with these �’s and �’s
is f .Ex/D Dc.Ex/. It holds that f .Es/Dm, the message encrypted by c, but we do not know Es.
Instead, we start evaluating f .Ex/ as a formal polynomial, except that we reduce the degree
using our noisy Gröbner basis. This noisy basis allows us to reduce the degree to linear,
while preserving (up to small noise) the evaluation at Es (which is what we care about). At the
end, we get a linear polynomial whose evaluation at Es equals (up to small noise) the value
f .Es/ D m. Hence, this linear polynomial is a new encryption of m. This new encryption
has noise that depends only on the complexity of Dc and the noisiness of our noisy Gröbner
basis, not on the noisiness of c as a ciphertext, and therefore it can (if we calibrate our noise
appropriately) participate in more operations.

It is also interesting to consider what our ciphertext set looks like as an algebraic
structure. Our unbounded system has a clean commutative diagram

C � C C

Z=2Z � Z=2Z Z=2Z;

�;�

bevEs.�/e mod 2 bevEs.�/e mod 2

C;�

but now � and � hide a lot of complexity, e.g., � is in fact � ı Dc.1/;c.2/.�/. The operations
�; � are not even associative: C is a magma under both operations. In fact, these operations
are so unstructured that it is almost as if they select a pseudorandom ciphertext that encrypts
the appropriate value. While this intuition may not be entirely accurate, Ducas and Stehlé
[34] show that starting with any c that encrypts m, successive alternations of recryption and
small injections of noise converge to a canonical distribution over ciphertexts that encrypt
m, effectively erasing the ciphertext’s history.

5. New directions in homomorphic encryption

Many questions about FHE remain unresolved. Below, we discuss a few of these
questions—in particular, questions about improving efficiency, handling the circular security
issue, avoiding bootstrapping, building noise-free FHE, and exploring quantum FHE.

Some of these questions can be answered (not entirely satisfactorily) with the ulti-
mate cryptographic hammer: cryptographic program obfuscation [14, 31, 39, 53]. Informally,
program obfuscation takes a program P and produces an obfuscated program O.P / that
has the same input/output functionality, but where O.P / is otherwise “unintelligible.” Pro-
gram obfuscation was proven impossible to achieve for a certain “virtual black box” notion of
unintelligibility [14]. However, there are now constructions of program obfuscation [39], even
based on well-established computational assumptions [53], for a notion of unintelligibility
based on indistinguishability.10 Namely, an indistinguishability obfuscator iO offers the fol-

10 Say it 10 times fast!

994 C. Gentry

lowing guarantee: if there are two circuits C0;C1 of the same size and equivalent input/output
functionality and iO obfuscates one of them (Cb for random b 2 ¹0; 1º/ to produce O.Cb/,
it is computationally hard to distinguish b. (Notice the similarity to IND-CPA security for
encryption.) Obfuscation is even more powerful than FHE—in particular, you can build FHE
from versions of it [26]—but it is currently also computationally much more expensive than
FHE. A crucial difference between an obfuscated program and an FHE-encrypted program
is that the obfuscated program has unencrypted output.

How practical can we make the current noisy FHE systems? Since the first construction
of FHE in 2009 [40,41] there have been four generations of FHE systems, with the second,
third, and fourth generations each offering significant performance gains. Currently, efforts
are underway to standardize homomorphic encryption systems [51].

The second generation of FHE systems simultaneously improved security and effi-
ciency by basing security on LWE [24], and then using variants of LWE over polynomial
rings, such as ring-LWE [60] and the NTRU problem [50,59]. Polynomial rings naturally facil-
itate batching or SIMD operations on encrypted data [73]—that is, via the Chinese Remainder
Theorem, they allow many individual messages to be packed in single ciphertexts, and for
many messages to be (implicitly) operated on through a single ciphertext operation. Auto-
morphisms of the polynomial rings allow message slots to be permuted within a ciphertext.
These optimizations, together with better techniques to control the growth of the noise in
ciphertexts [23], reduced the overhead of FHE—that is, multiplicative factor of how much
processing it takes to operated on FHE-encrypted data versus unencrypted data—to only
polylogarithmic in the security parameter � [45].

The third generation [8,25,29,30,33,46] introduced techniques for fast bootstrapping,
reducing bootstrapping time to tens of milliseconds. However, so far, these techniques are
incompatible with the batching techniques of the second generation.

The fourth generation systems [27] are optimized for operating on floating-point
data, making it more friendly for real-world applications such as logistic regression and
neural nets. Current estimates are that, depending on the type of computation, the over-
head of fourth generation systems is as low as 10000�, and this overhead can be further
reduced with customized hardware [36,55,64].

An inherent limitation of FHE systems is that they do not support certain types of
computation, such as RAM (random access model) computations. FHE computations are
inherently input-oblivious, i.e., the structure of the computation cannot depend on the input,
since IND-CPA security implies no information about the input is disclosed. This limita-
tion can be overcome by using heavier machinery—in particular, cryptographic program
obfuscation [44]—since obfuscated programs can disclose unencrypted information.

Can we base unbounded FHE on a well-established computational hardness assump-
tion? Current unbounded (versus leveled) FHE systems require a circular security assump-
tion—namely, that it is secure to encrypt the secret decryption key under its companion
encryption key. For the noisy FHE system presented in Section 4, the encryption of the
secret key manifests as a collection of nonlinear polynomials that evaluate to some small

995 Homomorphic encryption: a mathematical survey

(noise) value at the secret key Es. Can we reduce the LWE with higher degree polynomi-
als assumption to a more well-established assumption, such as the hardness of problems
over integer lattices? Can we somehow avoid nonlinear polynomials altogether, and build
unbounded FHE based on LWE?

Can we get unbounded FHE without bootstrapping or recryption? In Section 3.4, we
saw that bootstrapping seems unavoidable as a generic technique to convert a bounded homo-
morphic encryption system to an unbounded one. The one FHE system based on well-
established assumptions that does not use bootstrapping [53] instead uses program obfus-
cation, which currently is less practical than more direct constructions of FHE. Moreover,
the technique to build FHE [26] from obfuscation uses obfuscation to decrypt ciphertexts,
perform an operation on them, and then encrypt the result—a process that (like bootstrap-
ping) still involves computing the decryption function. Can we get unbounded FHE while
avoiding expensive repeated computation of the decryption function? Note that we can get
leveled FHE without bootstrapping [23] for a relaxed definition of leveled that allows the
parameters to grow with the number of levels. (Our Definition 12 for leveled systems is not
relaxed.)

Can we build “noise-free” FHE?. So far, all constructions of FHE use “noise,” even the
obfuscation-based solution [53]. For building bootstrappable encryption, noise has the nice
feature that we can calibrate the noise level, decreasing it until the system becomes bootstrap-
pable. For the system in Section 4.4, this calibration was especially easy because adjusting
the noise level did not affect decryption complexity at all (though it affects the computational
assumption). While noise has these nice features, it also introduces complexities, and one
wonders whether it is possible to construct noise-free FHE.

Mathematically, perhaps the cleanest approach to noise-free FHE would be to con-
struct a multilinear map with suitable cryptographic properties [19]. We have cryptographic
bilinear maps from Weil and Tate pairings over abelian varieties, which have proven to be
enormously useful. We can obtain FHE (and obfuscation) from cryptographic multilinear
maps of higher degree, but so far we have no viable noise-free constructions.

Nuida [63] proposed a construction of noise-free FHE using nonsolvable groups
with certain properties, but groups with these properties are not known to exist. As discussed
in Section 3.5, there are many obstacles to constructing a secure homomorphic encryption
based on nonsolvable groups.

Are fundamentally new constructions possible in the quantum setting? The FHE system
presented here works for a computation expressible as a polynomial-size circuit with clas-
sical gates, like ¹C;�º. What if we want to privately delegate a computation not known to
be in P, but which is easy for a quantum computer, like factoring an encrypted integer? For
that, we need an FHE system capable of evaluating quantum gates. Mahadev [61] resolved the
question of quantum (leveled) FHE, showing that a classical client can privately outsource
a quantum computation to a quantum server, under the surprisingly minimal assumption
that LWE is hard for quantum computers. One wonders whether this result, and the sugges-

996 C. Gentry

tive similarities between quantum error correction and managing ciphertext noise in FHE
systems, will lead to new techniques even for classical FHE systems. The question of quan-
tum obfuscation is not resolved. While preliminary results [5] indicate that virtual black box
obfuscation of quantum circuits is impossible, they leave open the question of indistinguisha-
bility obfuscation for quantum circuits.

Acknowledgments

I would like to give special thanks to Dan Boneh for his encouragement to work on this
problem, and to Shai Halevi for such fruitful collaboration. I would also like to thank the
many others who have made this area so exciting to work in.

A. What does it mean for an encryption system to be

secure?

This section provides informal philosophical discussion about what it means for an
encryption system to be secure—in particular, about why IND-CPA security (see Defini-
tions 1 through 3) is the “right” minimal notion of security for an encryption system.

To see why, let us try to reinvent the security model ourselves. We have an “adver-
sary” that is trying to “break” the encryption system. In general, we can model the security
of encryption as a game between a “challenger” and the adversary that the adversary is trying
to “win.” To specify the game, there are 3 aspects to consider:

(1) Adversary’s power inside the system: How can the adversary interact with the
encryption system? Does the adversary know how the algorithms (key gener-
ation, encryption, decryption) work, is it allowed to see many ciphertexts, on
messages of its choice, can it ask for ciphertexts to be decrypted, can it see how
transmitted and decrypted messages affect peoples’ “behavior,” can it ask for
bits of the secret key or functions of the secret key?

(2) Adversary’s power outside the system: Is the adversary limited to running poly-
nomial time algorithms, polynomial time quantum computation, polynomial
time nondeterministic computation, is its computational power unbounded?

(3) Object of the game: Is the object to recover the secret key, to recover the mes-
sage encrypted by a ciphertext, to merely distinguish which of two messages a
ciphertext encrypts, to produce a new ciphertext that encrypts a message related
to a message encrypted by a given ciphertext?

Now, let us start to prune the numerous possibilities given above.
First, as a theoretical matter, we can assume without loss of generality that adver-

sary knows how the system works. We simply label what the adversary does not know as the
secret key. The secret key may include hidden aspects of how key generation, encryption,
and decryption operate, but really this is just a matter of semantics, and these algorithms
can always be redefined so that secret information is localized to the secret key, and the

997 Homomorphic encryption: a mathematical survey

algorithms themselves are public. Also, as a practical matter, we have Kerckhoff’s princi-
ple, which (as reformulated by Claude Shannon) simply states that “the enemy knows the
system.” The practical justification for this principle is that “security by obscurity” rarely
works. Rather, empirically, one is more likely to obtain a secure system by making it com-
prehensible to friendly cryptanalysts. (Provable security, à la Goldwasser and Micali, is an
extreme version of Kerckhoff’s principle, in which we proudly display a concise clearly-
specified mathematical problem on which the cryptosystem’s security is based.) So, we take
the algorithms of encryption—key generation K, encryption E, decryption D, and evalua-
tion V (if applicable)—as known.

Object of the game. The purpose of an encryption system is to hide a message. Clearly, we
should not require the adversary to recover the secret key, since it might be able to recover
information about an encrypted message without it. From a ciphertext, the adversary will
trivially know an upper bound on the message length, but it should not be able to determine
anything else. (Lacking a general way to characterize what is important in a message, we
should require that the adversary cannot distinguish anything nontrivial.) Goldwasser and
Micali capture this intuition with their definition of semantic security: “Informally, a system
is semantically secure if whatever an eavesdropper can compute about the cleartext given the
cyphertext, he can also compute without the cyphertext” [47]. In particular, given a ciphertext
encrypting a message, the a priori and a posteriori distributions of the message should be
identical (up to a negligible factor) from the perspective of the adversary. Goldwasser and
Micali proved that this notion of semantic security is modeled well by the IND-CPA game,
which allows the adversary to choose message pairs ¹mi;0;mi;1ºwhose encryptions it thinks
it is most able to distinguish.

To make things even easier on the adversary, we could require only that it produce a
new ciphertext (not given to it by the challenger) that encrypts a message related to (e.g., the
same as) in the challenge ciphertext. A system that prevents this attack is called nonmalleable
[32]. We do not consider nonmalleability to be part of a minimal viable notion of security
for encryption for two reasons. First, we are considering homomorphic encryption, which
is inherently malleable; the whole point is to produce new ciphertexts that encrypt values
meaningfully related to those of previous ciphertexts. Second, there are general techniques
(that we will not review here) that prevent malleability. To a large extent, nonmalleability
can be “added on” to an IND-CPA secure encryption system after the fact.

Adversary’s power outside the system. Aside from interacting with the system, the adver-
sary’s power (outside of the system) comes down to its computational power. Claude Shan-
non resolved the case of a computationally unbounded adversary. He showed that one can
perfectly hide a message (except for an upper bound on its length) by encrypting it with a
one-time pad (a perfectly random key as long as the message). In some settings, such as mili-
tary or diplomatic settings that demand absolute eternal secrecy, a one-time pad might be the
right solution. However, we are also interested in many other (most) settings, where distribut-
ing a one-time pad is not practical. Accordingly, to allow more practical systems, we permit
computational assumptions—that is, we only require our encryption systems to be secure

998 C. Gentry

against probabilistic polynomial-time adversaries, and assume that some problems in NP
are hard to solve in probabilistic polynomial time. (Of course, even this seemingly minimal
assumption may turn out to be false, as currently we are not even certain that P¤ NP.)

Adversary’s power inside the system. As mentioned before, we must allow the adversary
to “know the system.” Moreover, as we are not in the setting of the one-time-pad, the adver-
sary should be able to see many ciphertexts encrypted under the same key. Furthermore,
since the adversary in real life might be able to influence what the encrypter encrypts, the
game should allow the adversary to choose what messages are encrypted, or even have all
of the messages depend on some bit that it is trying to guess. The IND-CPA game gives the
adversary this power.

But why not give the adversary even more power in our minimal notion of secu-
rity? For example, why not allow the adversary to choose ciphertexts to be decrypted by
the challenger, or to receive some (not-completely-revealing) function of the secret key?
Indeed, these forms of security are important. The IND-CCA (indistinguishability of cipher-
texts against a chosen ciphertext attack) game allows the adversary to query the decryption
of ciphertexts, a model that is actually quite realistic in real life, because adversaries can
potentially break cryptosystems by observing how keyholders react after decrypting their
ciphertexts, even (or perhaps especially) if those ciphertexts are malformed. Key “leakage”
and “side channel” attacks, in which the adversary obtains some limited information about
the secret key, are also quite realistic, because (unless special care is taken) even the amount
of time the keyholder takes to decrypt can leak information about the secret key.

The reason why we consider IND-CPA still to be acceptable minimal notion of secu-
rity is that there are techniques for achieving IND-CCA and security against side channel
attacks that are mostly orthogonal to IND-CPA security—that is, they can, to a large extent,
be applied to an IND-CPA secure system after the fact. Even for homomorphic encryption,
which is inherently malleable, one can use so-called noninteractive zero-knowledge argu-
ments to ensure that the keyholder decrypts only after verifying a cryptographic proof that
the ciphertext is well formed and resulted from a “permitted” evaluation over valid cipher-
texts. In the real world, combining homomorphic encryption systems with proof systems in
this way is actually important for preventing devastating attacks. But, again, these consider-
ations are largely orthogonal to the security of the underlying homomorphic system, and we
therefore do not consider them to be part of the minimal notion of security.

Conclusion. Out of many possible security notions, we pruned the possibilities to land on
IND-CPA security as the “right” minimal notion of security for a homomorphic encryp-
tion system. Weaker notions may not provide much security at all in realistic contexts, and
stronger notions typically can be achieved by using an IND-CPA-secure system in combina-
tion with orthogonal techniques.

999 Homomorphic encryption: a mathematical survey

B. Hybrid argument for leveled FHE

Lemma 7. Let E be an IND-CPA secure encryption system such that any secret key sk can
be expressed as a vector Esk 2 Mk , where M is the message set of the system. Let ELFHE

be a system in which we publish encrypted secret keys ES .i/ D E:E.ek.i�1/; Esk
.i/

/, where
.sk.i/; ek.i// for i 2 ¹0; : : : ; nº is an E key pair. Suppose that ELFHE:E is the same as E:E,
using encryption key ek.n/. Then ELFHE is also IND-CPA secure in the following sense. Sup-
pose that there is an adversary A in the IND-CPA game against ELFHE that has advantage ".
Then there is an adversary B in the IND-CPA game against E that has advantage at least
"=2.nC 1/, and that runs in about the same time as A.

Proof of Lemma 7. We consider A’s behavior in a sequence of games: Game 0, Game 1,
: : : ; Game n. Game 0 is identical to the IND-CPA game for ELFHE. Game i is identical,
except that the values ES .iC1/; : : : ; ES .n/ are constructed correctly (as in the system), but the
values ES .1/; : : : ; ES .i/ are all encryptions of 0. Whatever game we are in, the ELFHE-IND-
CPA-challenger samples a random bit b 2 ¹0; 1º. When A queries messages .mj;0; mj;1/,
the challenger encrypts mj;b under ek.n/.

Let "i be A’s advantage in guessing b in Game i . Since Game 0 is the true IND-CPA
game for ELFHE as given in Definition 3, we have "0 D ". Therefore either "n or "i � "iC1 for
some i 2 ¹0; : : : ; n � 1º must exceed "=.nC 1/ in magnitude. Set i� so that the magnitude
of "i� � "i�C1 is maximized (or set i� D n if "n it is the biggest contributor).

Then B attacks E by using A as follows: B participates in an IND-CPA game with
an E-challenger who flips a bit ˇ 2 ¹0; 1º. This game is associated to some key pair, which
B will label formally as .sk.i�/; ek.i�//. If the system is asymmetric, it will receive ek.i�/

from the challenger. Also B assumes the role of the challenger in the ELFHE game and flips
a bit b 2 ¹0; 1º.

Then B uses E:K to generate key tuples .sk.i/; ek.i// for all i ¤ i�. Here is how
B generates the ES .i/ values for i 2 ¹1; : : : ; nº. For all i � i� C 2, it generates each ES .i/

correctly (as in the system) as an encryption of Esk
.i/

under ek.i�1/. For i � i�, it generates
each ES .i/ as an encryption of 0 under ek.i�1/.

If i� D n, then this is a complete set of ES .i/’s, and B sends the complete ELFHE

public key to A. When A queries messages .mj;0;mj;1/, B forwards these messages to the E-
challenger as queries. The E-challenger encrypts mj;ˇ under ek.n/, and sends the ciphertext
to B, which forwards the ciphertext to A. Then A submits a guess and B forwards that guess
to the E-challenger. Now B’s advantage is the same as A’s. Since the distribution seen by
A is precisely as in Game n, A’s advantage is "n.

If i� ¤ n, then B generates ES .i�C1/ as follows. It submits E0 and Esk
.i�C1/

to the E-
challenger. If ˇ D 0, the challenger sends to B the ciphertexts E:E.ek.i�/; E0/, else it sends
the ciphertexts E:E.ek.i�/; Esk

.i�C1/
/. Then B labels the ciphertext from the E-challenger

as ES .i�C1/ and sends the complete ELFHE public key to A. When A queries messages
.mj;0; mj;1/, B encrypts mj;b under ek.n/. Notice that from A’s perspective, if ˇ D 0

then its view is as in Game i� C 1, and if ˇ D 1 its view is as in Game i�. Therefore, A’s
advantage is "i�C1 if ˇ D 0 and "i� if ˇ D 1. Also B guesses that ˇ D 1 if A guesses b

1000 C. Gentry

correctly, otherwise it guesses that ˇ D 0. Now B’s success probability is

PrŒB correct� D PrŒB correctjˇ D 0 and A correct� � PrŒˇ D 0 and A correct�

C PrŒB correctjˇ D 0 and A incorrect� � PrŒˇ D 0 and A incorrect�

C PrŒB correctjˇ D 1 and A correct� � PrŒˇ D 1 and A correct�

C PrŒB correctjˇ D 1 and A incorrect� � PrŒˇ D 1 and A incorrect�

D 0 �
�
.1=2/.1=2C "i�C1/

�
C 1 �

�
.1=2/.1=2 � "i�C1/

�
C 1 �

�
.1=2/.1=2C "i�/

�
C 0 �

�
.1=2/.1=2 � "i�/

�
D 1=2C ."i� � "i�C1/=2:

References

[1] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, A survey on homomorphic
encryption schemes: Theory and implementation. ACM Comput. Surv. 51 (2018),
no. 4, 1–35.

[2] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey, Recent
advances in homomorphic encryption: a possible future for signal processing in
the encrypted domain. IEEE Signal Process. Mag. 30 (2013), no. 2, 108–117.

[3] M. Ajtai, Generating hard instances of lattice problems. In Proceedings of the
twenty-eighth annual ACM symposium on theory of computing, pp. 99–108, ACM,
1996.

[4] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-
case equivalence. In Proceedings of the twenty-ninth annual ACM symposium on
theory of computing, pp. 284–293, ACM, 1997.

[5] G. Alagic, Z. Brakerski, Y. Dulek, and C. Schaffner, Impossibility of quantum
virtual black-box obfuscation of classical circuits. 2020, arXiv:2005.06432.

[6] M. R. Albrecht, P. Farshim, J.-C. Faugere, and L. Perret, Polly cracker, revisited.
In International conference on the theory and application of cryptology and infor-
mation security, pp. 179–196, Springer, 2011.

[7] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi,
J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. M. T. Morrison,
A. Sahai, and V. Vaikuntanathan, Homomorphic encryption standard. Available at
http://homomorphicencryption.org/, accessed February 2019, November 2018.

[8] J. Alperin-Sheriff and C. Peikert, Faster bootstrapping with polynomial error.
In Advances in cryptology—CRYPTO 2014, Part I, edited by J. A. Garay and
R. Gennaro, pp. 297–314, Springer, 2014.

[9] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Advances
in cryptology—CRYPTO 2009, 29th annual international cryptology confer-
ence, Santa Barbara, CA, USA, August 16–20, 2009. Proceedings, pp. 595–618,
Springer, 2009.

1001 Homomorphic encryption: a mathematical survey

https://arxiv.org/abs/2005.06432
http://homomorphicencryption.org/

[10] F. Armknecht, T. Gagliardoni, S. Katzenbeisser, and A. Peter, General impossi-
bility of group homomorphic encryption in the quantum world. In International
workshop on public key cryptography, pp. 556–573, Springer, 2014.

[11] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter, and
M. Strand, A guide to fully homomorphic encryption. IACR Cryptol. ePrint Arch.
2015 (2015), 1192.

[12] S. Arora and R. Ge, New algorithms for learning in presence of errors. In ICALP
(1), pp. 403–415, Lecture Notes in Comput. Sci. 6755, Springer, 2011.

[13] B. Barak and Z. Brakerski, Building the Swiss Army Knife.
https://windowsontheory.org/2012/05/02/building-the-swiss-army-knife/, May 2,
2012.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.
Yang, On the (im) possibility of obfuscating programs. In Annual international
cryptology conference, pp. 1–18, Springer, 2001.

[15] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, A concrete security treatment of
symmetric encryption. In Proceedings 38th annual symposium on foundations of
computer science, pp. 394–403, IEEE, 1997.

[16] A. Blum, M. Furst, M. Kearns, and R. J. Lipton, Cryptographic primitives based
on hard learning problems. In Annual international cryptology conference,
pp. 278–291, Springer, 1993.

[17] D. Boneh and M. Franklin, Identity-based encryption from the weil pairing. In
Annual international cryptology conference, pp. 213–229, Springer, 2001.

[18] D. Boneh and R. J. Lipton, Algorithms for black-box fields and their application
to cryptography. In Annual international cryptology conference, pp. 283–297,
Springer, 1996.

[19] D. Boneh and A. Silverberg, Applications of multilinear forms to cryptography.
Contemp. Math. 324 (2003), no. 1, 71–90.

[20] Z. Brakerski, Fully homomorphic encryption without modulus switching from
classical GapSVP. In Annual cryptology conference, pp. 868–886, Springer, 2012.

[21] Z. Brakerski, When homomorphism becomes a liability. In Theory of cryptog-
raphy conference, pp. 143–161, Springer, 2013.

[22] Z. Brakerski, Fundamentals of fully homomorphic encryption. In Providing sound
foundations for cryptography: on the work of Shafi Goldwasser and Silvio Micali,
pp. 543–563, ACM, 2019.

[23] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6 (2014), no. 3,
13.

[24] Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from
(standard) lwe. SIAM J. Comput. 43 (2014), no. 2, 831–871.

[25] Z. Brakerski and V. Vaikuntanathan, Lattice-based FHE as secure as PKE.
In Innovations in theoretical computer science, ITCS’14, edited by M. Naor,
pp. 1–12, ACM, 2014.

1002 C. Gentry

https://windowsontheory.org/2012/05/02/building-the-swiss-army-knife/

[26] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan, Obfuscation of proba-
bilistic circuits and applications. In Theory of cryptography conference,
pp. 468–497, Springer, 2015.

[27] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, Homomorphic encryption for
arithmetic of approximate numbers. In ASIACRYPT (1), pp. 409–437, Lecture
Notes in Comput. Sci. 10624, Springer, 2017.

[28] J. H. Cheon and D. Stehlé, Fully homomophic encryption over the integers revis-
ited. In Annual international conference on the theory and applications of crypto-
graphic techniques, pp. 513–536, Springer, 2015.

[29] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, Faster fully homo-
morphic encryption: bootstrapping in less than 0.1 seconds. In Advances in
cryptology–ASIACRYPT 2016. ASIACRYPT 2016, pp. 3–33, Lecture Notes in
Comput. Sci. 10031, Springer, 2016.

[30] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, Faster packed homomor-
phic operations and efficient circuit bootstrapping for TFHE. In ASIACRYPT (1),
pp. 377–408, Lecture Notes in Comput. Sci. 10624, Springer, 2017.

[31] W. Diffie and M. Hellman, New directions in cryptography. IEEE Trans. Inf.
Theory 22 (1976), no. 6, 644–654.

[32] D. Dolev, C. Dwork, and M. Naor, Nonmalleable cryptography. SIAM Rev. 45
(2003), no. 4, 727–784.

[33] L. Ducas and D. M. FHEW, bootstrapping homomorphic encryption in less than
a second. In EUROCRYPT (1), pp. 617–640, Lecture Notes in Comput. Sci. 9056,
Springer, 2015.

[34] L. Ducas and D. Stehlé, Sanitization of fhe ciphertexts. In Proceedings, Part
I, of the 35th annual international conference on advances in cryptology—
EUROCRYPT 2016, pp. 294–310, Lecture Notes in Comput. Sci. 9665, Springer,
2016.

[35] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31 (1985), no. 4, 469–472.

[36] A. Feldmann, N. Samardzic, A. Krastev, S. Devadas, R. Dreslinski, K. Eldefrawy,
N. Genise, C. Peikert, and D. Sanchez, F1: A fast and programmable accelerator
for fully homomorphic encryption (extended version). 2021, arXiv:2109.05371.

[37] M. Fellows and N. Koblitz, Combinatorial cryptosystems galore! Contemp. Math.
168 (1994), 51–51.

[38] S. Garg, C. Gentry, and S. Halevi, Candidate multilinear maps from ideal lattices.
In Annual international conference on the theory and applications of crypto-
graphic techniques, pp. 1–17, Springer, 2013.

[39] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45 (2016), no. 3, 882–929.

[40] C. Gentry, A fully homomorphic encryption scheme. Stanford university, 2009.

1003 Homomorphic encryption: a mathematical survey

https://arxiv.org/abs/2109.05371

[41] C. Gentry, Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st ACM symposium on theory of computing—STOC 2009, pp. 169–178,
ACM, 2009.

[42] C. Gentry, Computing arbitrary functions of encrypted data. Commun. ACM 53
(2010), no. 3, 97–105.

[43] C. Gentry, Computing on the edge of chaos: Structure and randomness in
encrypted computation. In Proceedings of the international congress of math-
ematicians (ICM), pp. 609–632, Kyung Moon SA, Seoul, 2014.

[44] C. Gentry, S. Halevi, M. Raykova, and D. Wichs, Outsourcing private RAM com-
putation. In 2014 IEEE 55th annual symposium on foundations of computer sci-
ence, pp. 404–413, IEEE, 2014.

[45] C. Gentry, S. Halevi, and N. Smart, Fully homomorphic encryption with polylog
overhead. In Advances in cryptology—EUROCRYPT 2012, pp. 465–482, Lecture
Notes in Comput. Sci. 7237, Springer, 2012. Full version at http://eprint.iacr.org/
2011/566.

[46] C. Gentry, A. Sahai, and B. Waters, Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster. In Advances in cryptology—
CRYPTO 2013, Part I, edited by R. Canetti, and J. A. Garay, pp. 75–92, Springer,
2013.

[47] S. Goldwasser and S. Micali, Probabilistic encryption. J. Comput. System Sci. 28
(1984), no. 2, 270–299.

[48] S. Halevi, Homomorphic encryption. In Tutorials on the foundations of cryptog-
raphy, pp. 219–276, Springer, 2017.

[49] D. Harvey and J. Van Der Hoeven, Integer multiplication in time o.n log n/. Ann.
of Math. 193 (2021), no. 2, 563–617.

[50] J. Hoffstein, J. Pipher, and J. H. Silverman NTRU, A ring-based public key cryp-
tosystem. In ANTS, edited by J. Buhler, pp. 267–288, Lecture Notes in Comput.
Sci. 1423, Springer, 1998.

[51] Homomorphic Encryption Standardization. 2021, https://homomorphicencryption.
org.

[52] N. Howgrave-Graham, Approximate integer common divisors. In International
cryptography and lattices conference, pp. 51–66, Springer, 2001.

[53] A. Jain, H. Lin, and A. Sahai, Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd annual ACM SIGACT symposium on
theory of computing, pp. 60–73, ACM, 2021.

[54] A. Joux, A one round protocol for tripartite Diffie–Hellman. In International algo-
rithmic number theory symposium, pp. 385–393, Springer, 2000.

[55] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, Over 100� faster bootstrap-
ping in fully homomorphic encryption through memory-centric optimization with
gpus. IACR Cryptol. ePrint Arch. 2021 (2021), 508.

[56] R. M. Karp and V. Ramachandran, A survey of parallel algorithms for shared-
memory machines. United States: N. p., 1989.

1004 C. Gentry

http://eprint.iacr.org/2011/566
http://eprint.iacr.org/2011/566
https://homomorphicencryption.org
https://homomorphicencryption.org

[57] A. K. Lenstra, H. W. Jr. Lenstra, M. S. Manasse, and J. M. Pollard, The number
field sieve. In Proceedings of the twenty-second annual ACM symposium on
theory of computing, pp. 564–572, ACM, 1990.

[58] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform,
and learnability. J. ACM 40 (1993), no. 3, 607–620.

[59] A. López-Alt, E. Tromer, and V. Vaikuntanathan, On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In STOC,
pp. 1219–1234, ACM, 2012.

[60] V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with
errors over rings. In Advances in cryptology—EUROCRYPT’10, edited by H.
Gilbert, pp. 1–23, Lecture Notes in Comput. Sci. 6110, Springer, 2010.

[61] U. Mahadev, Classical homomorphic encryption for quantum circuits. SIAM J.
Comput. (0):FOCS18–189 (2020).

[62] P. Martins, L. Sousa, and A. Mariano, A survey on fully homomorphic encryp-
tion: an engineering perspective. ACM Comput. Surv. 50 (2017), no. 6, 1–33.

[63] K. Nuida, Towards constructing fully homomorphic encryption without ciphertext
noise from group theory. In International symposium on mathematics, quantum
theory, and cryptography, pp. 57–78, Springer, Singapore, 2021.

[64] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei, and
D. B. Cheetah, Optimizing and accelerating homomorphic encryption for pri-
vate inference. In IEEE international symposium on high-performance computer
architecture (HPCA), pp. 26–39, IEEE, 2021.

[65] O. Regev, On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Proceedings of the thirty-seventh annual ACM symposium on theory of
computing, pp. 84–93, ACM, 2005. Full version in [66].

[66] O. Regev, On lattices, learning with errors, random linear codes, and cryptog-
raphy. J. ACM 56 (2009), no. 6, 34:1–34:40.

[67] R. Rivest, L. Adleman, and M. Dertouzos, On data banks and privacy homomor-
phisms. In Foundations of secure computation, pp. 169–177, Academic Press,
1978.

[68] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM 21 (1978), no. 2, 120–126.

[69] R. Rothblum, Homomorphic encryption: from private-key to public-key. In
Theory of cryptography conference, pp. 219–234, Springer, 2011.

[70] C.-P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms.
Theoret. Comput. Sci. 53 (1987), no. 2–3, 201–224.

[71] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41 (1999), no. 2, 303–332.

[72] A. Silverberg, Fully homomorphic encryption for mathematicians. In Women in
numbers 2: research directions in number theory, p. 111, Contemp. Math. 606,
AMS, 2013.

1005 Homomorphic encryption: a mathematical survey

[73] N. P. Smart and F. Vercauteren, Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71 (2014), no. 1, 57–81. Early version at http://eprint.iacr.org/2011/133.

[74] V. Vaikuntanathan, Computing blindfolded: new developments in fully homo-
morphic encryption. In 2011 IEEE 52nd annual symposium on foundations of
computer science, pp. 5–16, IEEE, 2011.

[75] L. G. Valiant, A theory of the learnable. Commun. ACM 27 (1984), no. 11,
1134–1142.

[76] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully homomorphic
encryption over the integers. In Advances in cryptology—EUROCRYPT 2010,
29th annual international conference on the theory and applications of cryp-
tographic techniques, French Riviera, May 30—June 3, 2010. Proceedings,
pp. 24–43, Springer, 2010.

[77] W. Van Dam, S. Hallgren, and L. Ip, Quantum algorithms for some hidden shift
problems. SIAM J. Comput. 36 (2006), no. 3, 763–778.

[78] J. Watrous, Quantum algorithms for solvable groups. In Proceedings of the thirty-
third annual ACM symposium on theory of computing, pp. 60–67, ACM, 2001.

Craig Gentry

Algorand Foundation, New York, NY, USA, craigbgentry@gmail.com

1006 C. Gentry

http://eprint.iacr.org/2011/133
mailto:craigbgentry@gmail.com

	1. Introduction
	2. Some simple homomorphic encryption systems
	2.1. Goldwasser–Micali: HE starting from the Legendre symbol
	2.2. ElGamal: HE starting from a linear homomorphism

	3. General results about homomorphic encryption
	3.1. Formal definition of HE
	3.2. General approach to key generation and encryption
	3.3. Getting to functional completeness
	3.4. Homomorphic encryption unbound: Recryption and bootstrapping
	3.5. Computational hardness, cryptanalysis, and learning

	4. Noisy constructions of fully homomorphic encryption
	4.1. Overview of the noisy approach
	4.2. Learning with noise problems
	4.3. Encryption based on LWE
	4.4. Bootstrappable encryption construction
	4.5. Reflections on the overall FHE system

	5. New directions in homomorphic encryption
	A. What does it mean for an encryption system to be secure?
	B. Hybrid argument for leveled FHE
	References

