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Abstract

The uses of random matrix models have spread in many domains of mathematics, physics
and computer science. As a consequence, the theory of large random matrices has grown
into a diverse and mature field during the last 40 years, yielding answers to increasingly
sophisticated questions. In these proceedings, we discuss the applications of large devia-
tions techniques in random matrix theory.
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1. Introduction

Large random matrices appear in a wide variety of domains. They were first intro-
duced in statistics in the work of Wishart [183] to analyze a large array of noisy data, a point
of view that turns out to be particularly relevant and useful nowadays in principal component
analysis and statistical learning. Goldstine and von Neumann considered random matrices to
model the inevitable errors made in measurements [180]. Wigner [182] and Dyson [79] later
conjectured that the statistics of their eigenvalues model very well those of high energy levels
in heavy nuclei. Even more surprisingly, Montgomery [154] showed that random matrices are
intimately related to the zeroes of Riemann Zeta function, a conjecture which nowadays pro-
vides a great intuition for many mathematical results, see, e.g., [5,135]. Random matrices also
play a central role in operator algebra theory since Voiculescu [175,177] proved that they are
asymptotically free. Random matrices are, moreover, intimately related to integrable systems
to which they furnish key examples. The computation of the joint law of the eigenvalues of
invariant matrices goes back to Weyl [181] and Cartan [55]. They showed that this distribu-
tion is characterized by a density proportional to a power of the Vandermonde determinant
of the eigenvalues. As a consequence, the eigenvalues of random matrices furnish an exam-
ple of a strongly interacting particles system, in connection with many other models such as
Coulomb gases or random tilings. For all these reasons, the study of large random matrices
(LRM) has grown into a diverse and mature field during the last 40 years, yielding answers to
increasingly sophisticated questions. The most basic questions often involve the distribution
of the eigenvalues as the size of the matrix goes to infinity. Such a question was first tackled in
the breakthrough paper of Wigner [182] who showed that the distribution of the spectrum of a
self-adjoint matrix with independent entries (modulo the symmetry constraint) is described
by the semicircle law when the dimension goes to infinity. This article discusses how to esti-
mate the probability that the spectrum follows a different distribution in large dimensions.
More generally, we will investigate the probability of rare events, that is, of large deviations,
in the context of random matrices. In this introduction, we will first outline some of the main
results of random matrix theory for the famous Gaussian ensembles, placing the questions on
large deviations in the wider context of this theory. We will then motivate the study of large
deviations for large random matrices. An important aspect of random matrix theory lies in
its connection with the so-called Beta-ensembles, and we will sketch a few applications of
large deviations for Beta-ensembles beyond random matrix theory. This introduction is short
and therefore unfortunately bypasses many beautiful aspects of large random matrix theory:
we refer the interested reader to the introductory books [2,3,14,93,94,153,157] for more.

1.1. Introduction to random matrix theory
1.1.1. The Gaussian ensembles
The most famous model of random matrices is given by the Gaussian ensembles,

the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE). We
say that Gn follows the law of the GUE (resp. the GOE) if it is an n � n self-adjoint matrix
with independent centered complex (resp. real) Gaussian entries above the diagonal with
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independent real and imaginary parts with variance 1=.2n/ (resp. with variance 1=n), the
entries on the diagonal being centered real Gaussians with variance 1=n (resp. 2=n). Their
distribution is given by

dP n
ˇ .Gn/ D

1

Zn
ˇ

e�
ˇn
4 Tr..Gn/2/dGn; (1.1)

where ˇ D 1 for the GOE and ˇ D 2 for the GUE. The measure dGn denotes the Lebesgue
measure over the corresponding set of matrices (symmetric if ˇ D 1, Hermitian if ˇ D 2),
which is simply the product of the Lebesgue measure on the entries dGn D

Q
i�j dGn

ij if
ˇ D 1 and dGn D

Q
i�j d<.Gn

ij /
Q

i<j d=.Gn
ij / if ˇ D 2. The constant Zn

ˇ
is the normal-

izing constant such that P n
ˇ

is a probability measure. These ensembles have a remarkable
property: their distribution is invariant under conjugation Gn ! UGnU� by unitary (resp.
orthogonal) matrices if ˇ D 2 (resp. ˇ D 1). Because of this invariance, the eigenvectors
of Gn are uniformly distributed on the sphere and hence delocalized in the sense that their
entries are typically of order of the inverse of the square root of the dimension. Moreover,
a change of variables shows that the eigenvalues of Gn, E� D .�1; : : : ; �n/; �1 � �2 � � � � �n,
are distributed according to

dP n
ˇ .E�/ D

1

Zn
ˇ

�.E�/ˇ e�
ˇn
4

Pn
iD1.�i /2

Y
d�i ; (1.2)

where �.E�/ D
Q

i<j j�i � �j j is the modulus of the Vandermonde determinant. There exists
a third Gaussian ensemble, the Gaussian symplectic ensemble (GSE), with quaternionic
entries and which is invariant under conjugation by symplectic matrices. Its eigenvalues
are distributed according to P n

4 . However, we shall not highlight this case in the sequel. The
Gaussian ensembles are also called the GˇE’s with ˇ D 1; 2; 4 for the GOE, GUE, and
GSE, respectively. Remarkably, for any ˇ > 0, P n

ˇ
was shown [77] to describe the law of

the eigenvalues of the n � n self-adjoint tridiagonal matrix
p

ˇn
�1

Xn
ˇ

where the diagonal
entries ¹Xn

ˇ
.i; i/; 1 � i � nº are independent centered Gaussian variables with variance 2,

independent of the off-diagonal entries ¹Xn
ˇ

.i; i C 1/; 1 � i � n � 1º which are independent
and such that Xn

ˇ
.i; i C 1/ is a chi-distributed variable with ˇ.n � i/ degrees of freedom for

i 2 ¹1; : : : ; n � 1º. Thanks to formula (1.2), the Gaussian ensembles were studied in detail.
We next review a few classical results involving these random matrices. We will see in the
core of the text that some of these results generalize to other random matrices, for instance,
the Wigner matrices which are similar to the Gaussian ensembles but with entries that are not
necessarily Gaussian, namely symmetric or Hermitian matrices with independent centered
entries and with variance 1=n.

1.1.2. Typical events
The celebrated law of large numbers states that the sum of independent identically

distributed variables, once properly renormalized, converges almost surely towards its mean.
More precisely, if x D .x1; : : : ; xn; : : :/ is a sequence of independent real random variables
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Figure 1

The semicircle law and the asymptotic distribution of the spectrum

with the same distribution � such that
R

jxjd�.x/ is finite, the empirical mean

mn.x/ WD
1

n

nX
iD1

xi (1.3)

converges almost surely towards the mean when n goes to infinity:

lim
n!1

mn.x/ D

Z
xd�.x/ a.s.

Historically the first, and particularly simple, application of this theorem applied to coin
tossing. The distribution of one toss can be modeled by the Bernoulli law � D �p D pı1 C

.1 � p/ı0 if the coin has probability p to show heads, which is represented by the value ¹1º.
The law of large numbers shows that if one flips a coin many times independently, one should
see heads approximately a proportion p of the times. There are many proofs of the law of
large numbers, and in simple cases like coin tossing, it follows from counting the number of
ways to see a given number of heads out of n flips.

The emergence of an almost sure deterministic phenomenon from many indepen-
dent random events is a usual feature in probability theory or statistical mechanics. In the
latter, many random particles collaborate to give a deterministic macroscopic behavior. In
random matrix theory (RMT), Wigner [182] showed that the distribution of the eigenvalues
of Gaussian ensembles converges almost surely towards a deterministic limit given by the
semicircle law.

Theorem 1.1 ([182]). Let �1 � �2 � � � � � �n be the eigenvalues of the GˇE for ˇ D 1; 2,
or 4. Then, for any a < b,

lim
n!1

1

n
#
®
i W �i 2 Œa; b�

¯
D �

�
Œa; b�

�
almost surely; (1.4)

where � is the semicircle law,

�.dx/ D
1

2�

p

4 � x21jxj�2dx: (1.5)

Equation (1.4) can be seen as the almost sure weak convergence of the empirical
measure O�n D

1
n

Pn
iD1 ı�i

of the eigenvalues in the sense that it is equivalent to the conver-
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gence, for any bounded continuous function f , of

lim
n!1

1

n

nX
iD1

f .�i / D

Z
f .x/d�.x/ a.s. (1.6)

This result was proved by Wigner for matrices Xn with independent centered entries (modulo
the symmetry constraint) with variance 1=n and finite moments and not only for Gaussian
entries. However, the proof of Wigner’s theorem is much less obvious than that of the clas-
sical law of large numbers because the spectrum is a complicated function of the entries of
the matrix. The key point of Wigner was to observe that moments of the empirical measure
of the eigenvalues are more explicit functions of the entries than indicator functions since,
for any integer number k,

1

n

nX
iD1

�k
i D

1

n
Tr
�
.Gn/k

�
D

1

n

nX
i1;:::;ikD1

Gn
i1i2

� � � Gn
ik i1

: (1.7)

The expectation and variance of the right-hand side of (1.7) can be estimated, yielding by
Borel–Cantelli’s lemma the almost sure convergence of traces of moments. Moreover, by
the Weierstrass approximation theorem, the almost sure convergence of the moments (1.7)
implies (1.6) and then (1.4) because the semicircle law is compactly supported and has no
atoms.

We are also interested in more detailed convergence of the spectrum, for instance,
convergence of the largest eigenvalue �1. Fűredi and Komlós [95] show that it sticks to the
bulk in the sense that the largest eigenvalue converges almost surely towards 2, the bound-
ary of the support of the semicircle law (strictly speaking, [95] assumes that the entries are
bounded, but the proof easily generalizes to sub-Gaussian entries, see, e.g., [3]). This is anal-
ogous to the statement from classical probability theory that the supremum of independent
variables with law � converges almost surely towards the upper boundary of the support
of �, except that this is infinite if the variables are unbounded like the Gaussians.

1.1.3. Fluctuations
The probability to make a small error in the law of large numbers is specified by the

well-known central limit theorem. It asserts that errors are of the order of the square root of
the dimension and fluctuations are Gaussian. More precisely, coming back to the example of
the empirical mean (1.3) of independent variables, it states that, if

R
jxj2d�.x/ is finite and

we set �.�/ D .
R

x2d�.x/ � .
R

xd�.x//2/1=2, then
p

n.mn.x/ �
R

xd�.x// converges in
distribution towards a centered Gaussian variable with variance �.�/, so that for every real
number t ,

lim
n!1

P

�
p

n

�
mn.x/ �

Z
xd�.x/

�
� t�.�/

�
D

Z t

�1

e� x2

2
dx

p
2�

:

In the context of random matrices, the fluctuations of the eigenvalues are much smaller,
see Figure 2. The fluctuations of the empirical measure were first studied in [134, 137]. We
describe below the result obtained by Johansson [131] in the case of the Gaussian ensembles.
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Figure 2

Fluctuations of the spectrum. Courtesy of D. Coulette

He showed that for every sufficiently smooth test function f ,
nX

iD1

f .�i / � n

Z
f .x/d�.x/ (1.8)

converges in distribution towards a Gaussian variable. This Gaussian variable is not centered
in general when ˇ ¤ 2, but both its mean and variance are explicit. The original proof [131]

relies on the explicit joint law of the eigenvalues (1.2) and is far from obvious because of the
strong correlations between the eigenvalues due to the Vandermonde determinant. This result
was generalized to the case of Wigner matrices by using moment estimates [4,146], resulting
in the universality of the fluctuations within the class of entries with four first moments equal
to the Gaussian ones.

Remarkably, the fluctuations are of order 1 over the dimension (since the conver-
gence of (1.8) holds without any normalization): this indicates that the eigenvalues fluctuate
much less than independent variables. This phenomenon was quantified by the so-called local
law [84,85] which asserts that the convergence in Wigner’s theorem (1.4) can be refined into
a quantitative estimate to showing that the number of eigenvalues in a set Œa; b� � .�2; 2/

such that b � a � 1=n is still of the order of n�.Œa; b�/. This can often be improved to get
the rigidity property [88], namely that the eigenvalues in the bulk stay at a distance of order
n�1Co.1/ from their deterministic limit.

Fluctuations are not always described by the Gaussian distribution: for instance,
the maximum of independent variables with fast decaying tails follows a limiting Gumbel
distribution. In a breakthrough paper [170], the largest eigenvalue of Gaussian ensembles was
shown to fluctuate on the scale n�2=3 and the fluctuations to be distributed according to the
Tracy–Widom laws. The fluctuations of the eigenvalues inside the bulk are also known and
are in the scale n�1 (see [151] for ˇ D 1; 2). These remarkable results were derived thanks to
the explicit joint distribution of the eigenvalues (1.2). In particular, the case where ˇ D 2 was
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analyzed thanks to the fact that the density is the square of a determinant, allowing for the use
of orthogonal polynomials and integrable system theory. In a series of major contributions,
these results were shown to hold for Wigner matrices with entries with finite second and
fourth moments, respectively [86, 87, 169]. The proofs of these results are sophisticated and
build on comparison with the Gaussian case.

1.1.4. Rare events
The interest in estimating the probability of rare events goes back to Boltzmann,

Gibbs, and Shannon who defined the entropy as the logarithm of the volume of configurations
(or microstates) achieving a given macrostate. Going back to the coin tossing example, with
a probability p to show heads, a macrostate was defined as the set of configurations such that
n tosses give approximately �n heads, namely the event that mn.x/ is approximately equal
to � for independent equidistributed xi with law �p . The volume, or probability, of such a
macrostate is easily seen to be given by

lim
ı#0

lim
n!1

1

n
ln P

�
x W
ˇ̌
mn.x/ � �

ˇ̌
� ı

�
D �Sp.�/ D �� ln.�=p/ � .1 � �/ ln

�
1 � �

1 � p

�
;

(1.9)

where �Sp.�/ is the entropy of �. This result can be inferred from counting the configura-
tions and using Stirling’s formula. Large deviations theory is the art of estimating such rare
events in a general framework [73, 75, 78, 174] by proving large deviation principles (LDPs)
that we now define. We will hereafter consider a sequence of probability measures .�n/n�0

on a Polish space E. In this article, we will mainly consider the case where E is the real
line or the set of probability measures on the real line equipped with its weak topology. Let
.an/n2N be a sequence of nonnegative real numbers going to infinity as n goes to infinity.
We say that .�n/n�0 satisfies an LDP with speed an and good rate function I , denoted in
short by LDP.an; I /, if and only if

• I W E ! RC has compact level sets ¹x 2 E W I.x/ � M º for every M 2 RC,

• For each Borel measurable set B � E,

� inf
VB

I � lim inf
n!1

1

an

ln �n.B/ � lim sup
n!1

1

an

ln �n.B/ � � inf
NB

I: (1.10)

Taking B to be a small ball B D B.�; ı/ for some � 2 E and ı > 0 as small as wished (but
independent of n) shows that the LDP allows estimating the probability of small balls as

�n

�
B.�; ı/

�
' e�anI.�/

in the sense that for any � 2 E,

lim
ı#0

lim inf
n!1

1

an

ln �n

�
B.�; ı/

�
D lim

ı#0
lim sup

n!1

1

an

ln �n

�
B.�; ı/

�
D �I.�/: (1.11)

Such an estimate is called a weak large deviation principle. By a covering argument, (1.11)
can be shown to be equivalent to the LDP if E is compact or if �n satisfies a property called
exponential tightness [73, (1.2.17)]. An important consequence of the LDP.an; I / is that if the
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rate function I vanishes at a single point x� 2 E, then �n converges weakly towards a Dirac
mass at this point.

The two most well-known results from the large deviations theory are Cramèr’s and
Sanov’s theorems. Cramèr’s theorem [73] asserts that the distribution of the empirical mean
mn.x/ satisfies an LDP with speed n when the .xi /i�0 are independent equidistributed real-
valued random variables with distribution � with a finite Laplace transform in a vicinity of
the origin, see (1.9) in the case � D �p . Sanov’s theorem shows that the law of the empir-
ical measure 1

n

Pn
iD1 ıxi

satisfies as well an LDP.n; H.�j�/), so that for any probability
measure �,

P

 
d

 
1

n

nX
iD1

ıxi
; �

!
< ı

!
' e�nH.�j�/ (1.12)

if d is the distance on the set P .R/ of probability measures on the real line defined by

d.�; �/ D sup
kf kL�1

j

Z
f .x/d�.x/ �

Z
f .x/d�.x/j;

where kf kL D supx¤y jx � yj�1jf .x/ � f .y/j C supx jf .x/j. Here, H.�j�/ is the relative
entropy: it is infinite unless � is absolutely continuous with respect to � and then equalsR

ln d�
d�

d�. The proofs of such theorems are more sophisticated than in the coin tossing
example since they cannot rely on direct combinatorial arguments. They often rather follow
from clever changes of measures (also called tilts) that reveal how the distributions should
be changed to make a given rare event typical. These arguments are very much based on
the independence of the variables .xi /i�0. Large deviations theory was mainly developed to
tackle the distribution of sums of independent random variables, or of “weakly” dependent
variables such as Markov chains, or probability measures obtained either by a push-forward
or a nice density from the latter, see the work of Cramèr, Varadhan, and many others [73,75,

81]. This classical theory does not apply to large random matrices in general. Indeed, even if
the random matrices are chosen with independent entries, the spectrum or the eigenvectors
are complicated functions of these entries. We can take the example of the trace of a power
of a matrix, see (1.7): as soon as the power k is higher or equal to 3, it cannot be written
as a sum of independent entries and understanding the large deviations of such functionals
for Wigner matrices is still open in general, see [9, 10] for entries with sharp sub-Gaussian
tails or without Gaussian tails. The case of the Gaussian ensembles is simpler because of the
explicit law of the eigenvalues (1.2). Even if the classical large deviations theory does not
apply to the distribution of the eigenvalues (1.2) because of the strong interaction due to the
Vandermonde determinant term in its density, LDPs were derived in this case to estimate the
probability that the empirical measure of the eigenvalues or the largest eigenvalue deviates
from their typical behavior, see Figure 3.

Theorem 1.2. Let �1 � �2 � � � � �n be distributed according to (1.2) for some ˇ > 0. Then

• ([25]) For � 2 P .R/, set

E.�/ D
1

2

Z Z �
x2

4
C

y2

4
� ln jx � yj

�
d�.x/d�.y/

1015 Rare events in random matrix theory



Figure 3

Large deviations of the spectrum with exponentially small probability. Courtesy of D. Coulette

and E.�/ D E � inf E. Then E is a good rate function. The distribution of the
empirical measure of the eigenvalues O�n D

1
n

Pn
iD1 ı�i

under P n
ˇ

satisfies an
LDP.ˇn2; E/, that is, for every closed set F ,

lim sup
n!1

1

ˇn2
ln P n

ˇ . O�n 2 F / � � inf
F

E;

whereas for any open set O ,

lim sup
n!1

1

ˇn2
ln P n

ˇ . O�n 2 O/ � � inf
O

E:

• ([24, Theorem 6.2]) Let IGOE.x/ D
1
2

R x

2

p
y2 � 4dy for x � 2 and IGOE.x/ D C1

for x < 2. Then the distribution of �1 satisfies an LDP.ˇn; IGOE/.

Notice that the speed of the LDP for the empirical measure is n2, in contrast with
the speed n in Sanov’s theorem, showing again that the eigenvalues of Gaussian ensembles
are much less random than independent variables. Moreover, it can be seen that E vanishes
only at the semicircle law, implying Theorem 1.1 (see Section 2.1 for more detail). Similarly,
IGOE vanishes at 2 only, ensuring the convergence of the largest eigenvalue towards 2. The
proof of this theorem relies on Laplace’s principle. Indeed, the distribution of the empirical
measure of the eigenvalues and of the largest eigenvalue can be seen to have approximately
the density e�ˇn2E. O�n/=Zn and e�ˇnIGOE.�1/=zn, respectively, where Zn; zn are appropriate
normalizing constants. The theorem would follow by the Laplace principle if E and IGOE

were continuous. The main point is to make the above approximations precise and to show
that, even though E is not continuous (because the logarithm is not bounded), the result is
still valid.

One of the main goals of this article is to discuss how to generalize this theorem. For
instance, how can it be extended to general Wigner matrices? In this case, no explicit formula
for the law of the eigenvalues such as (1.2) is known. On the other hand, the LDP a priori
depends on the whole distribution of the entries as in the case of Sanov’s theorem, contrarily
to fluctuations which often depend mainly on a finite number of moments. Such universal
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classes are not expected in large deviations theory. Even conjecturing the rate functions for
such LDPs is not clear. LDPs were also obtained for other invariant models such as Wishart
or unitary matrices [125], or non-Hermitian Gaussian matrices [28], but the distributions of
their eigenvalues all enjoy a rather explicit form. LDPs for Gaussian random matrices with
independent centered entries but variance different from those of the Gaussian ensembles
are also still open, see [105] for large deviation upper bounds. We will see that other invari-
ant matrix models, such as models involving several matrices, remain very challenging as
well.

Large deviations theory is key to study laws of dependent variables such as Boltz-
mann–Gibbs distributions in statistical mechanics. They are probability measures of the form

d�n
ˇ .x/ D

1

Zn
ˇ

e�ˇnEn.x/d�0
n.x/; (1.13)

where En is a function from the space of states (for instance, Rn) into R, often called the
energy or the Hamiltonian, ˇ is a real parameter proportional to the inverse of the tempera-
ture, �0

n.x/ is some reference probability measure, and Zn
ˇ

is the so-called partition function,
namely the constant which turns �n

ˇ
into a probability measure. The properties of such mea-

sures when the dimension n goes to infinity are better understood when the distribution of
En.x/ under �0

n.x/ satisfies an LDP.n; I /. The typical values of the energy can then be
inferred from the fact that for every y 2 R,

�n
ˇ

�
x W
ˇ̌
En.x/ � y

ˇ̌
< ı

�
'

1

Zn
ˇ

e�ˇny�nI.y/CnO.ı/;

from which it is clear that En.x/ concentrates in a neighborhood of the minimizers of
Iˇ .y/ D ˇy C I.y/ with large probability when n goes to infinity. Varadhan’s integral
lemma [73, Theorem 4.3.1] states more precisely that the distribution of En under �n

ˇ
satis-

fies an LDP.n; Iˇ � inf Iˇ ). This type of analysis often holds for the so-called mean field
interacting systems that are distributions such that all variables interact in the same way, for
instance, where the energy En.x/ is a function of the empirical mean mn or of the empirical
measure. A celebrated example is the Curie–Weiss model, where En is a quadratic poly-
nomial in the empirical mean mn and d�0

n D
Qn

iD1 d�p . The LDP for this model can be
proven as above, as well as the convergence of the empirical mean towards the minimizers
of the rate function. It can be shown that this minimizer is unique, equals zero for small
enough ˇ, but takes a nonzero value after some critical ˇc . This provides a simple exam-
ple of a phase transition known as spontaneous magnetization. Such applications are also
important in RMT when studying matrix models, see Section 1.2.4.

We present in the rest of this introduction a few additional motivations for the study
of large deviations for large random matrices, as well as extensions to related fields. We will
then review the main results of this emerging field, focusing first on large deviations for the
spectrum of one random matrix, and then on multimatrix models where noncommutativity
raises new challenges. Along the way, we highlight a few open problems.
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1.2. Motivations
In this section, we discuss a few additional motivations to establish large deviation

principles in random matrix theory.

1.2.1. Bernoulli matrices
Matrices with entries equal to zero or one can be interpreted as the adjacency matri-

ces of random graphs where the entry at .ij / is equal to one iff there is an edge between the
vertices i and j . In particular, random matrices with independent Bernoulli entries are the
adjacency matrices of Erdős–Rényi graphs. The spectrum of the adjacency matrix of a graph
is intimately related to the graph’s geometric properties, such as being an expander. More-
over, traces of moments count particular subgraphs, for instance, the trace of the adjacency
matrix to the third power counts the number of triangles in the graph. Understanding how a
random graph looks like when a rare event happens is a natural question [60]. As we will see,
studying the large deviations for the spectrum of matrices with non-Gaussian entries such as
Bernoulli’s is far more difficult, basically because the law of the eigenvalues is not given by
an explicit distribution as in (1.2). In particular, one needs to understand more precisely the
best scheme to perform a given large deviation event.

1.2.2. The BBP transition
The largest eigenvalue is often used to test whether an array of data contains infor-

mation, just by comparing it with the largest eigenvalue of an array taken at random. Even
though such applications involve usually asymmetric matrices and their singular values, the
famous Wishart matrices in RMT [183], we stick to Wigner matrices in this article for con-
sistency. The renowned BBP transition [15] asserts that the largest eigenvalue of a random
matrix perturbed by a finite-rank signal pops out of the bulk at a critical value of the intensity
of the signal (more precisely, of its largest eigenvalue), above which the weak recovery of the
signal u from the observation of the perturbed signal is possible [30]. The large deviations
for the largest eigenvalue have then been used in statistics to assert the risk of statistical tests
[34]. In the related problem of estimating a low-rank tensor in Gaussian noise [27] requires
large deviations for the largest eigenvalue of a rank-one perturbation of a Gaussian matrix,
which were derived in [111,147].

1.2.3. The complexity of random functions
The interest in optimizing random functions grew in the last ten years from its rel-

evance to deep learning, building on its importance in spin glass theory. However, random
functions in high dimensions are complex in the sense that they have many local minima
and finding their global minima may be a complicated task, in fact, an NP-hard problem. In
the last ten years, the study of the complexity of random functions grew into a field on its
own, for instance, allowing to estimate the expectation of the number of local minima of a
random function with a given index and level. Such estimates are based on Kac–Rice for-
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Figure 4

Gluing of 4 triangles and 1 square. Corners of the same color belong to the same vertex of the map in the final
surface. Courtesy of G. Miermont

mula. Because the Hessian of a random function can be seen as a random matrix, the large
deviations for the latter are crucial to getting such estimates [6,7,23,27,61,96,167].

1.2.4. Random matrices and the enumeration of maps
The relation between random matrices and the enumeration of maps goes back to

[50,123,168] where it was proved that if Gn follows the GUE, then for every integer k,

E

�
1

n
Tr
�
.Gn/2k

��
D

X
g�0

1

n2g
Mg.k/;

where Mg.k/ is the number of ways to glue the sides of a 2k-polygon in pairs such that the
resulting surface has genus g. The counting is made after labeling the sides clockwise, or,
equivalently, after drawing the polygon on an orientable surface with a distinguished root
side. Maps are the same only if all the matchings occur between sides with the same labels.

This relation between maps and random matrices extends to several polygons, see
Figure 4, if one considers the distribution

dP n
V;2.Xn/ D

1

Zn
V;2

e�n Tr.V.Xn//dP n
2 .Xn/ (1.14)

for some potential V . Here, V.Xn/ is defined as the matrix with the same eigenvectors as Xn

and eigenvalues given by the image by V of the eigenvalues of Xn. The measure P n
2 denotes

the law of the GUE (1.1) and the constant Zn
V;2 is the normalizing constant so that P n

V;2 is a
probability measure. We will assume that V is a polynomial, V.x/ D �

Pp
iD3 ti x

i , with p

even and tp < 0, so that (1.14) makes sense. It was shown [50,168] that

F n
V;2 D

1

n2
ln Zn

V;2 D

X
g�0

1

n2g

1X
k1;:::;kpD0

Y
1�i�p

t
ki

i

ki Š
Mg

�
.ki ; i/1�i�p

�
; (1.15)

where Mg..ki ; i/1�i�p/ denotes the number of ways to glue pairwise the sides of ki poly-
gons with i sides, 1 � i � p, and get a connected two-dimensional surface of genus g. The
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counting is done with labeled sides. Equivalently, we can think of a polygon with i sides as
a vertex with i half-edges drawn on an orientable surface. The number Mg..ki ; i/1�i�p/

then counts the maps, that is, the connected graphs drawn on a surface, built by matching
the half-edges of ki vertices with i half-edges, 1 � i � p. Half-edges are labeled. The genus
of the map is the genus of the surface in which the graph can be properly embedded, which
is such that the faces, obtained by cutting the surface along the edges of the map, are home-
omorphic to disks. It can be computed from the fact that the Euler characteristic 2 � 2g is
equal to the number of vertices minus the number of edges plus the number of faces.

Observe also that making a small change V !V C ıx` in (1.14), and identifying
the linear term in ı, shows thatZ

1

n
Tr
�
.Xn/`

�
dP n

V;2.Xn/ D

X
g�0

1

n2g

1X
k1;:::;kpD0

Y t
ki

i

ki Š
Mg

�
.ki ; i/1�i�p; .1; `/

�
; (1.16)

where .1; `/ means that the maps contain an additional polygon with ` sides, also called
external face. A priori, (1.15) and (1.16) are equalities of formal series. They are obtained by
expanding all the terms depending on V and using Wick formula (or, equivalently, Feynman
diagrams) to compute the resulting Gaussian expectations. These equalities can be turned
into an asymptotic expansion up to errors of order n�2k for any integer number k as soon as
the parameters ti ; 1 � i � p, are small enough, p is even and with tp > 0 [83]. Therefore,
computing the large n limit of the free energy F n

V;2 or the limit of the empirical measure
of the spectral measure of the eigenvalues allows effectively enumerating planar maps. This
route was followed in [50] where random triangulations and quadrangulations were studied,
corresponding to cubic and quartic polynomials. Note that in the first case p is odd and Zn

V;2

a priori infinite, but the above relations can be generalized by restricting the integration to
matrices with spectral radius bounded by a large enough constant. Such computations can
be done more generally by using large deviations theory [106,113].

1.2.5. Beta-ensembles
A change of variables shows that the eigenvalues E� D .�1; : : : ; �n/ of Xn following

P n
V;2 of (1.14) are distributed according to the distribution P n

1
2 x2CV;ˇ

where

dP n
V;ˇ .E�/ D

1

Zn
V;ˇ

�.E�/ˇ e�
ˇn
2

Pn
iD1 V.�i /

Y
d�i ; (1.17)

and ˇ D 2. The case ˇ D 1 corresponds to symmetric matrices and ˇ D 4 to quaternionic
entries. We only considered the case ˇ D 2 in the previous section because the combinatorial
interpretation of the other cases is less clear in general, see, e.g., [56,104,141] for ˇ D 1. In fact,
P n

V;ˇ
makes sense for any ˇ > 0 and is called a Beta-ensemble. Equation (1.17) furnishes

a classical example of particles in strong interaction belonging to the family of Coulomb
gases in dimension 1, see, e.g., [28,161] for higher dimensions. Large deviations are useful in
analyzing the limiting distribution of the particles.

Equation (1.17) also provides another route to estimate the asymptotics of the free
energy F n

V;2 or of the empirical measure of the matrix models (1.14) and hence study the enu-
meration of maps, as proposed in [50] to complement Tutte’s combinatorial approach [172].
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1.2.6. Multimatrix models and the enumeration of maps
Equation (1.15) generalizes to colored maps for matrix models of the form

dP n
V;2.Xn

1; : : : ; Xn
d / D

1

Zn
V;2

e�n Tr.V.Xn
1 ;:::;Xn

d
//� n

2 Tr.
P

.Xn
i /2/dXn

1 � � � dXn
d ; (1.18)

where V is a self-adjoint polynomial going to infinity fast enough. If V.a1; : : : ; ad / D

�
Pp

iD1 tj qj .a1; : : : ; ad / with monomials qj , then the authors of [50,168] show that

1

n2
log Zn

V;2 D

X
g�0

1

n2g

1X
k1;:::;kpD0

Y
1�i�p

.ti /
ki

ki Š
Mg

�
.ki ; qi /1�i�p

�
(1.19)

where Mg..ki ; qi /1�i�p/ counts maps with genus g built over ki colored polygons of
type qi . A colored polygon of type q D ai1 � � � aik is a polygon drawn on an orientable
surface so that its first side has color i1 2 ¹1; : : : ; mº (the root), second has color i2, and
so on until the last one which has color ik . Maps are constructed by matching sides with
the same color and counting is done with labeled sides. Note that a colored polygon is in
bijection with a rooted vertex with ordered colored half-edges and maps are then obtained by
matching half-edges of the same color. Even though this equality holds a priori at the level
of formal power series, it can be turned into an asymptotic expansion [113]. This equality
allows representing many physical models in terms of random matrices, such as the Ising
model or the Potts model on random maps [45,89]. Multimatrix integrals turn out to be much
more difficult to estimate than one matrix integrals, basically because noncommutativity
kicks in. This fact is not surprising given the complicated combinatorial questions that they
eventually represent. We will see in Section 3 that the case of the so-called AB interaction
is better understood than the general case discussed in Section 4.

1.2.7. Multimatrix models and Voiculescu’s entropy
One of the most challenging goals in studying large deviations for random matrices

was provided by Voiculescu [176,178] in the 1990s when he defined notions of entropy in the
context of free probability. Free probability is a probability theory where random variables
do not commute and the notion of independence is replaced by freeness. A central point
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in free probability theory is that Gaussian random matrices are free variables in the limit
where their size goes to infinity [175]. Free probability is intimately related to von Neumann
algebras, and Voiculescu’s hope was to define an invariant for von Neumann algebras to
classify them. His ideas were inspired by Minkowski content and entropy in classical prob-
ability theory. Voiculescu microstates entropy can be seen as a generalization of Shannon’s
entropy as it measures the volume of matrices which approximate in a weak sense a given set
of noncommutative random variables. In the case of a single variable, the noncommutative
entropy is roughly speaking given by the rate function of the large deviation principle for
the law of the empirical measure of the eigenvalues of Gaussian ensembles in Theorem 1.2
[178]. Understanding better Voiculescu’s entropies would have groundbreaking applications
in the theory of von Neumann algebras. Moreover, random matrices can serve to construct
interesting noncommutative laws, see, e.g., [110]. We discuss these issues in Section 4.

1.3. Extensions
Beta-ensembles and random matrices are connected with many other fields, of

which we describe briefly a few below, see, e.g., [2,93] for more.

1.3.1. Beta-ensembles and quantum physics
Beta-ensembles and Coulomb gases arise in many domains of physics, including

condensed matter physics, statistical physics, and quantum mechanics, we refer to [161] for
a survey including higher dimensional generalization. Variants of Beta-ensembles involving
hyperbolic Vandermonde determinants appear in quantum integrable models solvable by the
quantum separation of variables method, such as the Toda chain [136] or the lattice Sinh-
Gordon model [144]. Such integrals then correspond to normalizations of the n-particles
wave functions and, more generally, to matrix elements of local operators. Some of their
large-n properties were investigated in [42]. Furthermore, integrals similar to Beta-ensembles
but having more general interactions with the same singularity arise in the form factor expan-
sions of Wightman functions in massive integrable quantum field theories in 1 C 1 dimension
[164]. The large deviation techniques discussed in this article allow estimating such integrals.

1.3.2. Random tilings
Beta-ensembles extend to the discrete case. They then model the distribution of hor-

izontal lozenge tiles in a lozenge tiling taken at random. Indeed, consider discrete ensembles
given for a weight function w by

P n
w. È/ D

1

Z!
n

Y
i<j

j j̀ � `i j
2
Y

i

w.`i ; n/: (1.20)

The coordinates `1; : : : ; `n are discrete and such that `iC1 � `i 2 N�. This probability
measure arises in the setting of lozenge tilings of domains such as the hexagon. In fact,
considering an hexagon with sides of size A; B; C , along the vertical line at distance t of the
vertical side of size A (see Figure 5), the distribution of horizontal lozenges corresponds to
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Figure 5

Tiling of the hexagon. Courtesy of L. Petrov and V. Gorin

a potential of the form

w.`; n/ D
�
.A C B C C C 1 � t � `/t�B.`/t�C

�
; (1.21)

where .a/k D a.a C 1/ � � � .a C k � 1/ is the Pochhammer symbol, and n is the total number
of horizontal lozenges. Large deviations can be used to describe the limiting surface of the
tiling when n goes to infinity, for instance, recovering the limiting well-known arctic circle,
see, e.g., [62,162] for large deviations of the whole surface. The measure in (1.20) corresponds
to ˇ D 2 ensembles, but can be generalized to all ˇ > 0, see [40].

1.3.3. Zeroes of random polynomials
The distribution of zeroes of random polynomials also follows a kind of Beta-

ensembles distribution: this connection was used in [185] to study large deviations for the
distribution of such zeroes. In the same direction, [102] studies the topology of a random
real hypersurface in a given smooth real projective manifold by estimating the mean of their
Betti numbers thanks to large deviation principles. Such questions are closely related to the
study of the complexity of random functions discussed in Section 1.2.3.

1.3.4. Longest increasing subsequence and discrete polynuclear growth
Beta-ensembles also describe the distribution of the discrete polynuclear growth

and the length of the longest increasing subsequence of a permutation taken at random,
a relation which allowed to study precisely the fluctuations and the large deviations of these
models. It was shown in [130] that the distribution of the length of the longest increasing sub-
sequence of a permutation of n elements taken uniformly at random is closely related with
Beta-ensembles. This formed the basis for the evaluation of the fluctuations of the longest
increasing subsequence in [16]. In [132], the distribution of the discrete polynuclear growth
given by

G.M; N / D max
�

X
.i;j /2�

w.i; j /;
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where � is a up-right path from .0; 1/ to .M; N /, was shown to be intimately related with
a discrete Beta-ensemble when the w are independent equidistributed geometric variables.
These connections with random matrices allowed studying large deviations [18,19,74,133,160].

1.3.5. Sum rules
Gamboa et al. [97, 98] found out that equating large deviations rate functions in

random matrix theory was also fruitful in getting a deep understanding of the sum rules
of Killip and Simon [138], also called GEM relations in spectral theory. The latter states
highly nontrivial equalities between different functionals on the space of measures. [97, 98]
interpreted both sides of the equalities as rate functions for the large deviations for the spectral
measure given by O�n

e .f / D he; f .Gn/ei for a deterministic unit vector e (and a GOE/GUE
matrix Gn). Indeed, one can take two different routes to compute the probability of devia-
tions of this spectral measure: either by relating it to the spectrum of Gn or to the recursion
relations of the associated orthogonal polynomials. Equating the resulting rate functions
allows recovering the sum rules of [138] and proving new sum rules. Even the fact that both
sides of these equalities are finite at the same time is surprising, see [48] for a pedagogical
introduction.

1.3.6. Gibbs ensembles for Toda lattice
Recently, the interest in tridiagonal matrices was revived by Spohn [165, 166] who

related them with the Toda lattice. The latter is described by the evolution of n particles with
position qj and momentum pj satisfying

@t qj D pj ; @t pj D e�rj � e�rj �1 ;

where rj D qj � qj �1 and the periodic boundary conditions qj Cn D qj C cn. We consider
the Lax matrix Ln which is the self-adjoint tridiagonal matrix with entries pj on the diagonal
and Ln.j; j C 1/ D Ln.j C 1; j / D e�rj =2 with periodic boundary condition. It is easy to
see that for any function V , Tr.V .Ln// and

P
rj are left invariant under the dynamics so

that natural invariant measures, called generalized Gibbs measures for the Toda lattice, are
given by

dT n
V;P .p; r/ D

1

Zn;T
V;P

exp
®
� Tr

�
V.Ln/

�¯ nY
iD1

e�P ri dri dpi ; (1.22)

where Zn;T
V;P is the partition function of the Toda Gibbs measure,

Zn;T
V;P D

Z
exp

®
� Tr

�
V.Ln/

�¯ nY
iD1

e�P ri dri dpi : (1.23)

The goal is then to characterize the limiting spectrum of the Lax matrix under T n
V;P . Spohn

related this problem with the Beta-ensembles, hence allowing to describe rather explicitly
the equilibrium measure of this model. When V.x/ D x2, we see that Ln is a tridiagonal
matrix with standard independent Gaussian variables on the diagonal and independent chi-
distributed variables with a fixed degree on the off-diagonal, allowing comparisons with the
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Beta-ensembles thanks to [77]. This also led to LDPs [113] and convergence for a wider set
of potentials V .

2. One matrix models

In this section, we discuss the main large deviations results encompassing only one
matrix. We start with the invariant ensembles and more generally Beta-ensembles. We then
discuss Wigner matrices.

2.1. Beta-ensembles
The Beta-ensembles are defined in (1.17). As in the Gaussian case of Theorem 1.2,

they are amenable to a large deviation analysis and we have the following more general
statement.

Theorem 2.1 ([25]). Let V be a continuous function going to infinity at infinity faster than
ln jxj. For a probability measure � on R, set

EV .�/ D
1

2

Z Z �
V.x/ C V.y/ � ln jx � yj

�
d�.x/d�.y/

and EV .�/ D EV .�/ � inf EV . Then EV is a good rate function and the distribution of the
empirical measure of the eigenvalues under P n

V;ˇ
satisfies an LDP with rate function EV and

speed ˇn2. In particular, the free energy 1
ˇn2 ln Zn

V;ˇ
converges towards � inf EV .

This theorem implies the almost sure convergence of the empirical measure of the
eigenvalues as EV vanishes at a unique probability measure �V . Indeed, EV is strictly convex
on the space of probability measures [158] because it is equal to the sum of a linear functional
� !

R
Vd� and a strictly convex function since, for any probability measures �; �0 on the

real line,

�

Z
ln jx � yjd.� � �0/.x/d.� � �0/.y/ D

Z 1

0

1

t

ˇ̌̌̌Z
eitxd.� � �0/.x/

ˇ̌̌̌2
dt � 0:

This ensures the uniqueness of the minimizers of EV and hence the following corollary.

Corollary 2.2 ([25, 158]). Let V be a continuous function going to infinity at infinity faster
than ln jxj. Then, O�n converges almost surely towards a distribution �V which is the unique
probability measure � such that there exists a constant C such that for every x 2 R,

Veff.x/ WD V.x/ �

Z
ln jx � yjd�.y/ � C � 0

with equality � almost surely.

It is easy to see that Veff goes to infinity under our assumptions and hence �V has
compact support. The case when the potential satisfies a weaker growth assumption is dif-
ferent [122]. An LDP can also be proven for the extreme eigenvalues in the sense that the
probability that some eigenvalue goes away from the support of the equilibrium measure
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decays exponentially fast if Veff is positive there [3, 24, 39, 41]. It was shown [91] that, con-
versely, if the effective potential is not strictly positive outside of the support of the limiting
measure, eigenvalues may deviate towards the points where it vanishes.

Theorem 2.3. Let S be the support of �V . Assume that Veff is positive outside S and V is
C 2. Then, for any closed set F in Sc ,

lim sup
n!1

1

ˇn
ln P n

V;ˇ

�
9i 2 ¹1; nº W �i 2 F

�
� � inf

F
Veff;

whereas for any open set O � Sc ,

lim inf
n!1

1

ˇn
ln P n

V;ˇ

�
9i 2 ¹1; nº W �i 2 O

�
� � inf

O
Veff:

An important question, both in physics and for the applications to map enumera-
tions, is to understand the phase transitions for these models. It can be seen that this often
occurs when the support of the equilibrium measure changes (or its density vanishes).

Remark. Theorem 2.1 can be extended to the case where ˇ goes to zero with n [101]. If ˇn

goes to a finite constant P > 0, the speed of the LDP is n and the rate function contains a
new entropy term coming from Sanov’s theorem.

But what can we say about the large deviations for the traces of moments? Because
polynomials are unbounded functions, this is not implied by Theorem 2.1. In fact, such large
deviations are mainly due to the deviations of the extreme eigenvalues [97,98] and their speed
depends on the moment. The following result was obtained in [10].

Theorem 2.4. Let V.x/ D cjxj˛ C v.x/ where ˛ � 2, c > 0, v is convex and v.x/=jxj˛

goes to zero at infinity. Then, for any ˇ > 0, any p > ˛, the law of n�1
Pn

iD1 j�i j
p under

P n
V;ˇ

satisfies an LDP.n
1C ˛

p ; Ip;˛/ where Ip;˛ is infinite if x < �V .yp/ and otherwise is
given by

Ip;˛.x/ D
ˇ

2
c
�
x � �V .yp/

�˛
:

In Section 1.3.5, we have seen that LDPs for the spectral measure, given for a deter-
ministic vector e as the probability measure O�e

n such that

O�e
n.f / D

˝
e; f .Gn/e

˛
D

X
f .�i /he; vi i

2;

are also interesting. They depend a priori on the large deviations of the whole spectrum and
of the scalar products .he; vi i

2/1�i�n, while the empirical measure of the eigenvalues stays
close to the semicircle law with overwhelming probability. Because Gn follows the Gaussian
ensembles, the distribution of by the spectral measure does not depend on e. Interestingly,
the rate function depends on the “reverse relative entropy,” see [100, 145] for related works.
This yields the following result, see [99] for general Beta-ensembles.

Theorem 2.5 ([97]). The distribution of O�e
n satisfies an LDP.ˇn; J/ where J.�/ is infinite

unless there exists a nonnegative measure � and countably many atoms ¹Ei ºi2N such that
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� D � C
P

i>0 ˛i ıEi
, ˛i > 0, and then

J.�/ D H.� j�/ C

X
i>0

IGOE.jEi j/

where H.� j�/ is the relative entropy of the semicircle law � with respect to � and IGOE is
the rate function for the largest eigenvalue of the GOE, see Theorem 1.2.

We have also seen in Sections 1.2.3 and 1.2.2 that large deviations for rank-one
perturbations of Gaussian matrices appear naturally in statistics. It is not hard to see that the
law of the eigenvalues of the perturbed matrix Yn D Gn C �eeT is absolutely continuous
with respect to the law of Gn and with density given by the spherical integral. The spherical
integral evaluated at an n � n self-adjoint matrix An and a real parameter � is given by

I n
ˇ .An; �/ WD Ee

�
e

nˇ
2 �he;Anei

�
; (2.1)

where the expectation holds over the vector e which follows the uniform measure on the
sphere in Cn if ˇ D 2 and Rn if ˇ D 1. The spherical integral An ! I n

ˇ
.An; �/ is an eigen-

function of the Laplacian which only depends on the eigenvalues of An. It appears as a natural
Laplace transform in RMT and, as such, plays a key role in many large deviations questions.
In particular, large deviations for the extreme eigenvalues of Yn are based on asymptotic
estimates for these integrals. We discuss spherical integrals for matrices with higher rank in
Section 3.

Theorem 2.6. • ([111]) Let An be a sequence of n � n self-adjoint deterministic
matrices whose largest eigenvalues converge towards � whereas the empirical
measures of their eigenvalues converge weakly towards �A. Then, for any � � 0,
there exists a finite constant J.�A; �; �/ such that

lim
n!1

1

ˇn
ln I n

ˇ .An; �/ D J.�A; �; �/: (2.2)

• ([147]) For any unit vector u and if Gn follows the GUE or GOE, the law of the
largest eigenvalue of Gn C �uu� satisfies an LDP with speed ˇn and rate function
x ! IGOE.x/ � J.�; x; �/ � inf¹IGOE � J.�; �; �/º.

Idea of proof 2.1. Again, the density of the eigenvalues of a rank-one deformation of a
Gaussian matrix is given by the spherical integral in (2.2) so that Laplace’s principle and (2.2)
gives the result. The estimation of spherical integrals can itself use the representation of the
uniform law on the sphere by Gaussian variables [111], or in terms of Dirichlet laws [109] or
in terms of Schur functions [103]. The limit J.�A; �; �/ is explicit and depends on � only for
� large enough.

Open Problems 2.7. Theorems 2.6 and 2.5 are restricted to invariant ensembles: generalize
them to noninvariant matrix ensembles such as random matrices with bounded entries.

In the last part of this section we outline the relation of LDPs with the local fluctu-
ations of the spectrum. As we stressed in the introduction, fluctuations and large deviations
are a priori different concepts. However, they were shown to be associated in RMT in two
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different ways. First, the tails of Tracy–Widom laws were demonstrated to be intimately
related to the rate function of the largest eigenvalue [43, 72] (where the probability that the
largest eigenvalue takes a value strictly smaller than two is given by the large deviations for
the empirical measure, which then cannot converge to the semicircle law). The fluctuations
of the eigenvalues inside the bulk could also be described by an LDP in [140]. To do so,
the authors considered the finite configuration around E given by the nonnegative measure
on R,

EXn.E/ D

nX
iD1

ın.�i �E/:

From [173], we know that the finite configuration converges vaguely almost surely inside the
bulk when V is quadratic (see [20,21,46,47] for extensions to general V ). In other words, for
any integer number p and any compactly supported bounded continuous function f ,

1

2s

Z s

�s

du

Z
f .x1; : : : ; xp/d EXn.E C u/.x1/d EXn.E C u/.x2/ � � � d EXn.E C u/.xp/

converges almost surely as n goes to infinity and s goes to zero with n slowly enough for any
E � .�2; 2/. To state large deviations, [140] considers the tagged empirical field given for
† � R by the following probability measure on the space of nonnegative measures,

Empn. EXn/.†/ WD
1

j†j

Z
†

ı
E; EXn.E/

dE:

Such Empn. EXn/.†/ converges vaguely almost surely towards the so-called Sine-Beta pro-
cess if † has size going to zero, but j†j is much bigger than 1=n. Leblé and Serfaty [140]

prove the following LDP.

Theorem 2.8 ([140]). The distribution of Empn. EXn/ satisfies a large deviation principle with
speed n for the vague topology.

The rate function is the sum of the relative entropy with respect to the Poisson law
and a complicated term coming from the Coulomb interaction. Even though it is not very
explicit, it was proved in [82] that it achieves its minimal value at a unique point for every
ˇ > 0, hence providing another characterization of the Sine-Beta process.

Open Problems 2.9. • In higher dimensions, Theorem 2.8 also holds for Coulomb
and Riesz gases [140], but the uniqueness of the minimizers of the rate function is
still unknown.

• It would be interesting to characterize as well the Airy process describing the
fluctuations at the boundary by an LDP, for which one should first understand how
to generalize the notion of tagged empirical field. It would also be interesting to
relate the large deviations for the KPZ equation [143,171] with large deviations of
the eigenvalues, see [69] for heuristics.
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2.2. Wigner matrices
We recall that a Wigner matrix Xn is an n � n matrix with independent centered

entries above the diagonal with variance 1=n. Wigner’s theorem [182] and Kómlos–Füredi’s
theorem [95] apply in great generality.

Theorem 2.10 ([13, 142]). Assume that the family ..
p

nXn
ij /2/i�j is uniformly integrable.

Then, almost surely, for any a < b,

lim
n!1

1

n
#
®
i W �i 2 Œa; b�

¯
D �

�
Œa; b�

�
Moreover, if there exists � > 0 such that

B� WD sup
n2N

sup
.i;j /2¹1;:::;nº2

E
�
j
p

nXn
ij j

4C�
�

< 1; (2.3)

then the largest eigenvalue of Xn converges to 2 almost surely.

When the entries do not have a finite variance, for instance, have ˛-stable dis-
tribution, the limiting distribution of the spectrum differs [26, 29, 44, 184] and the extreme
eigenvalues go to infinity because of the presence of large entries in the matrix [8].

The large deviations of the spectrum of Wigner matrices are still poorly understood
in many cases, for instance, when the entries

p
nXn

ij of the matrix are bounded. In this case
we expect the large deviations for the empirical measure to have the same speed n2 as for
Gaussian matrices because of concentration results [118], but no LDP was derived. These
large deviations question are related to a new large deviations theory called nonlinear large
deviations [11,59,67,80] which allows one to analyze large deviations for functions of indepen-
dent variables whose gradients have low complexity (in a certain sense). Understanding large
deviations for Wigner matrices remains a challenge because, as we will see, large deviations
are often created both by events that have low entropy (like a few large entries in the matrix)
coupled with high entropy events (like changing all entries a little), a combination that so
far resisted a systematic approach. We start our journey in the LDPs for Wigner matrices by
mentioning the breakthrough paper [36] which tackled the case when the tail of the entries
decays slower than the Gaussian. Assume that for some ˛ 2 .0; 2/, there exists a > 0 so that
for every i; j ,

lim
t!1

2�1iDj t�˛ ln P
�ˇ̌p

nXn
ij

ˇ̌
� t

�
D �a:

Theorem 2.11. • ([36]) The law of the empirical measure satisfies an LDP with
speed n1C ˛

2 and rate function E˛ which is infinite except at probability measures
given by the free convolution � � � of the semicircle law and a probability mea-
sure �. It is then equal to a

R
jxj˛d�.x/.

• ([9]) The law of the largest eigenvalue satisfies an LDP.n
˛
2 ; C.˛/.

R
d�.y/

��y
/�˛/.

Above, � � � denotes the free convolution of � and �, see Section 4.3.

Idea of proof 2.2. Large deviations are here created by making a few large entries of order
one to create a large eigenvalue and O.n/ large entries to change the empirical measure, the
rest of the matrix behaving like a typical Wigner matrix.
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The large deviations for sparse matrices are also partly understood, in particular if
one considers the eigenvalues of the adjacency matrix of Erdős–Rényi graphs where an entry
is equal to one with probability p=n, and to zero otherwise. In this case, [37] gives an LDP for
the empirical measure with speed n. Moreover, the largest eigenvalues go to infinity. When
ln.1=np/ � ln n and np �

p
ln n= ln ln n, [33] proves an LDP with respect to the typical

behavior.

Open Problems 2.12. Prove LDPs for Wigner matrices with heavy tails (such as ˛-stable
laws). We expect the LDPs for the empirical measure to have speed n, following the concen-
tration of measures estimates of [38].

Recently, there was some progress in understanding the large deviations proper-
ties of the largest eigenvalue of Wigner matrices with compactly supported or sub-Gaussian
entries. Surprisingly, it turns out that they are universal for the so-called sharp sub-Gaussian
entries, that is, entries whose laws Pij satisfy, for every real number t ,

ln
Z

etxdPij .x/ �
t2

2
(2.4)

if the entries are real (and if they are complex, we assume the real and imaginary parts
independent and the bound (2.4) holds for both real and imaginary parts. This is the case of
Rademacher entries Pij D

1
2
ı�1 C

1
2
ıC1 and the uniform measure on Œ�

p
3;

p
3�. We tune

the variances of the entries so that they are the same as in the Gaussian ensembles. We then
have, see [108]:

Theorem 2.13. Let Xn be a Wigner matrix with sharp sub-Gaussian entries. Then the law
of the largest eigenvalue satisfies an LDP with speed ˇn and the same rate function IGOE

than in the Gaussian case.

More generally, assume that the entries are sub-Gaussian,

A WD sup
ij

sup
t2R

2

t2
ln
Z

etxdPij .x/ 2 Œ1; C1/:

Then there is a transition in the LDP if A > 1:

Theorem 2.14 ([12]). Under some technical hypothesis, there exist 2 � x1 � x2 < 1 and
a good rate function I� such that for x 2 Œ2; x1� [ Œx2; 1/,

lim
ı#0

lim inf
n!1

1

n
ln P .j�1 � xj � ı/ D lim

ı#0
lim sup

n!1

1

n
ln P .j�1 � xj � ı/ D �ˇI�.x/:

Moreover, I�.x/ '
x2

4A
when x goes to infinity, whereas I�.x/ D IGOE.x/ when x � x1.

Furthermore, for A 2 .1; 2/ we can take x1 D .A � 1/1=2 C .A � 1/�1=2 > 2.

This result shows a transition where the “heavy tails” created by A > 1 kick in. It
is related to the optimal way to create these large deviations: for small enough values, the
best way to create large deviations is delocalized, meaning that one better changes a bit all
the entries of the matrix, whereas for very large deviations one better changes one or o.n/

entries. This is also related to a transition between a localized or a delocalized eigenvector.
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Unfortunately, the same kind of universality does not hold for the empirical measure and we
do not expect to have a universal rate function. For instance, the probability that the empirical
measure of the eigenvalues of a Wigner matrix with Rademacher entries is close to a Dirac
mass at 0 is bounded below by .1=2/n2 , the probability that all entries equal C1, whereas the
Gaussian rate function is infinite at any Dirac mass. This nonuniversal behavior persists also
in examples with entries possessing a density, and thus contrasts with the large deviations
for the empirical measure of the zeroes of random polynomials [51].

Open Problems 2.15. • Prove an LDP for the empirical measure of the eigenval-
ues of a Wigner matrix with Rademacher entries, or, more generally, any Wigner
matrix with sub-Gaussian tails (which is not Gaussian).

• Complete the LDP for the extreme eigenvalues of Wigner matrices with sub-
Gaussian entries and understand the localization of the eigenvectors for the ex-
treme eigenvalues conditionally to their large deviations.

Large deviations for traces of moments are also interesting, see [11] for LDPs of
traces of moments of Wigner matrices with sharp sub-Gaussian tails such as Rademachers. It
can also be relevant in combinatorics to consider traces of moments of random matrices with
Bernoulli entries. If one considers the matrix Bn with Bernoulli entries of mean p, Tr..Bn/3/

is the number Tn;p of triangles in the Erdős–Rényi graph. Observe that its expectation is of
order p3n3. In [60], the following theorem was proved:

Theorem 2.16. Let

Ip.f / D sup
h

´Z 1

0

Z 1

0

f .x; y/h.x; y/dxdy �
1

2

Z Z
log
�
pe2h.x;y/

C .1 � p/
�
dxdy

µ
and set '.p; t/ D inf¹Ip.f /;

R
f .x; y/f .y; v/f .v; x/dxdydv � 6tº. Then for each p 2

.0; 1/,
lim

n!1

1

n2
log P .Tn;p � tn3/ D �'.p; t/:

Wigner matrices assume that all entries are taken at random, but it is in many cases
more relevant to consider band matrices, for instance, to reflect the notion of neighbors and
the geometry of the underlying space. The most common model under consideration is that of
matrices with independent centered entries but with nontrivial variance profile .�i;j /1�i;j �n,
for instance, �ij D 1ji�j j�W W �1 with W going to infinity with the dimension. In this set-
ting, the convergence of the empirical measure [163] and of the largest eigenvalue towards
the boundary of the support (when W goes to infinity fast enough with the dimension) are
also known [1, 4]. But very little is known about large deviations even when the entries are
Gaussian because the law of the eigenvalues is not explicit. There are, however, LDPs proved
for the largest eigenvalue for nice variance profile [126] and a large deviation upper bound
for the empirical measure [105].

Open Problems 2.17. • Obtain LDPs for the empirical measure of Wigner matri-
ces with a variance profile.
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• Obtain the optimal assumptions on the profile to prove an LDP for the law of the
largest eigenvalue.

• Derive a local LDP similar to Theorem 2.8 for matrices with a variance profile.

A more tractable setting for large deviations is a band matrix with finite width W ,
independent of the dimension. Indeed, in this case, we can see that the trace of polynomials in
the matrix is a sum of functions on the entries which only depend on 2W entries of the matrix,
hence making the use of Markov chains’ approach or the so-called 2W dependent large devi-
ations applicable [186]. However, even in this case the rate function is not very explicit and
the analysis of associated Boltzmann distributions quite difficult in general. A remarkable
special case is when W D 1 and the entries are chosen independent centered Gaussian vari-
ables with variance ˇ on the diagonal and independent chi distributed variables with .n � i/

degrees of freedom for i 2 ¹1; : : : ; nº. Indeed, it was then shown [77] that the eigenvalues of
such a matrix follows the Beta-ensemble (1.17) and therefore large deviations can be derived
with an explicit good rate function, see Section 2.1.

3. Matrix models with an external field

In this section we shall start our journey towards noncommutative matrix models
by considering n � n self-adjoint random matrices following the distribution

dP n
V;ƒ;ˇ .Xn/ D

1

Zn
V;ƒ;ˇ

en
ˇ
2 Tr.Xnƒ/�n Tr.V.Xn//dXn;

where ƒ is a deterministic self-adjoint matrix. We can integrate either on Hermitian (ˇ D 2)
or symmetric (ˇ D 1) matrices. We could also consider ƒ random and study two random
matrices with AB interaction such as

dP n
V1;V2;ˇ .Xn; Yn/ D

1

Zn
V1;V2;ˇ

ecn Tr.XnYn/�n Tr.V1.Xn//�nTr.V2.Yn//dXndYn:

The latter includes the Ising model on random graphs as it is intimately connected with
their combinatorics, see (1.19). If one takes, for instance, Vi .x/ D

1
2
x2 C ti x

4 and ˇ D 2,
then the limiting free energy was computed [152], hence providing the first formula for the
enumeration of the Ising model on planar maps (see, e.g., [90] for generalizations). We refer
to [49] for numerous other motivations. Clearly, diagonalizing the matrices Xn and Yn, we
see that the main new ingredient to analyze such probability measures is again a spherical
integral, the famous Harish-Chandra–Itzykson–Zuber integral given by

I ˇ
n .An; Bn/ D

Z
e

ˇ
2 n Tr.AnUnBn.Un/�/dUn;

where dUn denotes the Haar measure over the orthogonal (resp. unitary and symplectic)
group when ˇ D 1 (resp. 2 and 4). When ˇ D 2, this integral was shown by Harish-Chandra
[124] and then Itzykson and Zuber [127] to be equal to a determinant

I 2
n .An; Bn/ D cn

detŒenai bj �1�i;j �nQ
i<j .ai � aj /.bi � bj /

; (3.1)
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where a D .a1;a2; : : : ;an/ and b D .b1;b2; : : : ;bn/ are the eigenvalues of An and Bn, respec-
tively. This formula allows showing that Schur functions are intimately related to spherical
integrals. Note, however, that Harish-Chandra–Itzykson–Zuber formula does not help to esti-
mate it asymptotically as it expresses the integral as a large signed sum of terms with modulus
going to infinity. These asymptotics were first studied in [149], and made rigorous in [106,119]

for ˇ D 1; 2, and finally for ˇ D 4 in [107], where the result is also extended to rectangular
spherical integrals, by computing the Laplace transform of the real part of Tr.AUBV / for
rectangular matrices A; B and independent unitary matrices U; V .

Theorem 3.1. Let An; Bn 2 Rn�n (resp. An; Bn 2 Cn�n) be self-adjoint and Un 2 O.n/

(resp. U.n/) following the Haar distribution over orthogonal group (resp. unitary group) for
ˇ D 1 (resp. ˇ D 2). We assume that the empirical measure of the eigenvalues O�n

A and O�n
B

of An and Bn converge weakly to �A and �B , respectively. We, moreover, assume that for
C D A or B , we have supn O�n

C .x2/ < 1 and †.�C / WD
R

ln jx � yjd�C .x/d�C .y/ > �1.
Then, the following limit of spherical integral exists:

lim
n!1

1

n2
log In.An; Bn/ D

ˇ

2
I.�A; �B/:

It is given explicitly by

I.�A; �B/ D � inf
¹�t º0�t�1

´Z 1

0

Z
u2

s �sdxds C
�2

3

Z 1

0

Z
�3

s dxds

µ
C �A.x2/ C �B.x2/ �

�
†.�A/ C †.�B/

�
C c; (3.2)

where c is a constant. The infimum is taken over continuous measure-valued processes
.�t .x/dx/0<t<1 such that

lim
t!0

�t .x/dx D �A; lim
t!1

�t .x/dx D �B : (3.3)

Moreover, u is given as the weak solution of the following conservation of mass equation:

@s�s C @x.�sus/ D 0:

Idea of proof 3.1. The proof follows from the fact that the density of the law of the matrix
Gn C An is given by the spherical integral. As a consequence, it is enough to prove an LDP
for the empirical measure of the eigenvalues of Gn C An to derive the limit of the spherical
integral. On the other hand, we can think of Gn C An as Hn

1 C An where Hn is a symmetric or
an Hermitian Brownian motion, that is, a Wigner matrix whose Gaussian entries are replaced
by Brownian motions, see Figure 6. The interest of this point of view is that the eigenvalues
of Hn

t C An follow a Dyson Brownian motion: �i
0 D ai and for every t � 0,

d�i
t D

p
2p

ˇn
dW i

t C
1

n

X
j Wj ¤i

1

�i
t � �

j
t

dt; 1 � i � n: (3.4)

The large deviations for the empirical measure-valued process of the .�i
t /1�i�n

would then be standard to derive if the drift was not singular, as (3.4) shows that the eigen-
values of the Hermitian (or symmetric) Brownian motion are simply particles in mean-field
interaction. The whole point is again to show that this singularity does not matter.

1033 Rare events in random matrix theory



Figure 6

The Dyson Brownian motion between .a1; : : : ; an/ and .b1; : : : ; bn/. Courtesy of D. Coulette

As a consequence, we find again by Laplace’s principle that the two matrix models
with AB interaction converge [106] in the following sense.

Corollary 3.2. Assume that V1 and V2 are polynomials going to C1 at infinity. Then, the
law of the empirical measure of X or Y under P n

V1;V2;ˇ
satisfies an LDP with speed ˇn2. Its

rate function has a unique minimizer towards which the empirical measure converges almost
surely.

Similar statements hold for the matrix model with an external field, provided the
empirical measure of the eigenvalues of ƒ converges.

Open Problems 3.3. • Theorem 3.1 describes the asymptotic of the spherical inte-
gral when Bn has full rank, where Theorem 2.6 deals with the case where it has
rank one. As long as the rank does not go to infinity too fast with n, it can be seen
that spherical integrals factorize [66,109]. It would be interesting to understand the
transition from this factorization phenomenon at low rank and the full rank case.

• Study the corrections to the large n limit of spherical integrals in nonperturbative
situations (see [116] for the perturbative case).

• Study the LDP for Brownian motions interacting via more singular potentials such
as Riesz’s which corresponds to an interaction of the form

P
h.�i � �j / with h

blowing up at the origin like x=jxjsC2 for some s > 0.

• Study the LDP for the law of the largest particle .�1.t/; t 2 Œ0; 1�/ with general
initial condition, hence generalizing [76].
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4. Multimatrix models

4.1. Setup
We next study the asymptotic of traces of words in several matrices. More precisely,

let .An
1; : : : ; An

d
/ be a family of d self-adjoint matrices of size n � n. Their empirical distri-

bution generalizes the empirical measure of the eigenvalues as follows. We consider the set
of polynomials ChX1; : : : ; Xd i in d noncommutative variables given by the complex linear
span of words in X1; : : : ; Xd and equip it with the involution

.zXi1Xi2 � � � Xik /�
D NzXik � � � Xi1 :

The empirical distribution of An
1; : : : ; An

d
is defined as the linear form on ChX1; : : : ; Xd i

such that, for every P 2 ChX1; : : : ; Xd i,

O�n
A1;:::;Ad

.P / D
1

n
Tr
�
P.An

1; : : : ; An
d /
�
:

We let Md be the set of linear functionals � on the set of polynomials in d noncommutative
variables such that

�.PP �/ � 0; �.1/ D 1; �.PQ/ D �.QP /:

Clearly, O�n
A1;:::;Ad

belongs to Md . We will say that the empirical distribution O�n
A1;:::;Ad

con-
verges weakly as n goes to infinity towards � iff for every P 2 ChX1; : : : ; Xd i,

lim
n!1

O�n
A1;:::;Ad

.P / D �.P /:

If the empirical distribution of An
1; : : : ; An

d
converges weakly towards � , for any self-adjoint

polynomial P , P D P �, the empirical measure of the eigenvalues of the n � n self-adjoint
matrix P.An

1; : : : ; An
d

/ converges towards �P , the probability measure on the real line such
that Z

xkd�P .x/ D �.P k/; 8k 2 N: (4.1)

Also �P is unique as soon as the moments do not grow too fast. Strong convergence requires
additionally that the operator norm of P.An

1; : : : ; An
d

/ converges to the largest point in the
support of �jP j for any polynomial P 2 ChX1; : : : ; Xd i:

lim
n!1



P.An
1; : : : ; An

d /




1
D lim

n!1
lim

k!1
O�n

A1;:::;Ad

�
.PP �/k

� 1
2k D lim

k!1
�
�
.PP �/k

� 1
2k :

We will denote by MR
d

the elements of Md bounded by R (that is, j�.Xi1 � � � Xik /j � Rk for
all choices of indices il 2 ¹1; : : : ; dº).

Another important feature of random matrices is their role in free probability, as a
toy example of matrices whose large dimension limit is free. Free probability is a theory of
noncommutative variables equipped with a notion of freeness. Freeness is a condition on the
joint distribution of noncommutative variables. We say that X1; : : : ; Xd are free under � iff

�
�
P1.Xi1/ � � � P`.Xi`/

�
D 0 (4.2)

as soon as �.Pj .Xij // D 0 for all j and ij ¤ ij C1, 1 � j � ` � 1. The latter property was
introduced by Voiculescu and named freeness, as it is related to the usual notion of free
generators of a group. He also proved the key result [175]:
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Theorem 4.1 ([3, 175]). Let .Xn
1; : : : ; Xn

d
/ be n independent Wigner matrices with entries

with finite moments. Then, for any choice of i1; : : : ; ik 2 ¹1; : : : ; dºk ,

lim
n!1

1

n
Tr.Xn

i1
� � � Xn

ik
/ D �d .Xi1 � � � Xik / a.s.;

where �d is the law of d free semicircular variables. It is uniquely described by the facts
that the moments of a single Xi are given by the Catalan numbers, and their joint moments
satisfy (4.2).

Voiculescu also showed that matrices Yj D Uj Dj U�
j with deterministic matrices Dj

and independent Haar distributed orthogonal or unitary matrices are asymptotically free in
the sense that their joint moments satisfy in the large n limit the freeness property (4.2).
Hence, matrices become asymptotically free if the position of their eigenvectors are “suffi-
ciently” independent.

In the groundbreaking article [121], it was shown that independent Gaussian matrices
are not only asymptotically free, but also strongly asymptotically free in the sense that they
converge strongly to free semicircular variables.

Theorem 4.2. Let .Xn
1; : : : ; Xn

d
/ be n independent GUE matrices, then for any polyno-

mial P ,
lim

n!1



P.Xn
1; : : : ; Xn

d /




1
D lim

k!1
�d
�
.PP �/k

� 1
2k a.s.

This result was generalized to the GOE and GSE [159], to Wigner matrices with
entries satisfying Poincaré inequality [54], to polynomials in GUE matrices and determinis-
tic matrices in [148], to polynomials in deterministic matrices and Haar distributed unitary
matrices in [65]. These results are based on the linearization trick that allows comparing the
spectrum of a polynomial in matrices with the spectrum of a larger matrix obtained by sums
of tensor products of the original matrices. The main drawback of this approach is that the
estimates for this convergence are far from optimal: to remedy this point, an interpolation
trick was introduced [17,64].

4.2. Large deviations and Voiculescu’s entropies
Free entropy was defined by Voiculescu as a generalization of classical entropy to

the noncommutative context. There are several definitions of free entropy; we shall concen-
trate on two of them. The first is the so-called microstates’ entropy that measures a volume
of matrices with empirical distribution approximating a given law. The second, called the
microstates-free entropy, is defined via a noncommutative version of Fisher information.
The classical analog of these definitions is, on the one hand, the definition of the entropy of
a measure � as the volume of points whose empirical distribution approximates �, and, on
the other hand, the well-known entropy �

R
d�
dx

log d�
dx

dx. In this classical setting, Sanov’s
theorem shows that these two entropies are equal. The free analog statement is still open
but we shall give in this section bounds to compare the microstates and the microstates-free
entropies [35,52].
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Definition 4.3. Let R 2 RC and � 2 MR
d

. For " > 0 and k; N 2 N, we define the microstate
as the following subset of the set H d

n of d Hermitian matrices of size n � n:

�n.� I "; k; R/ D
®
An

1; : : : ; An
d 2 H d

n W max
1�i�d

kAi k1 � R;ˇ̌
O�n

A1;:::;Ad
.Xi1 � � � Xip / � �.Xi1 � � � Xip /

ˇ̌
� "

for all ij 2 ¹1; : : : ; dº; all j 2 ¹1; : : : ; pº; p � k
¯

We then define the microstates entropy of � by

�.�/ D lim sup
"!0;L!1

k!1

lim sup
n!1

1

n2
log.P n

2 /˝d
�
�n.� I "; k; L/

�
: (4.3)

Remark 4.4. • The classical analogue is Sanov’s theorem (1.12) which computes
the volume of small balls for the weak topology. Besides noncommutativity, it dif-
fers from the above definition by using bounded continuous test functions, instead
of polynomials, and so do not need the cut-off

T
i ¹kAn

i k1 � Rº.

• It was shown that noncommutative laws with finite entropy have nice properties.
For instance, if P is a self-adjoint noncommutative polynomial, the law �P of
P.a1; : : : ; ad / as defined in (4.1) has no atoms [57].

We denote by @i the noncommutative derivative given on monomials by

@i .Xi1 � � � Xik / D

X
j Wij Di

Xi1 � � � Xij �1
˝ Xij C1

� � � Xik

and Di D m ı @i the cyclic derivative, where m.P ˝ Q/ D QP . Let us now introduce
the microstates-free entropy. Its definition is based on the notion of free Fisher information
which is given, for a tracial state � , by

ˆ�.�/ D 2

dX
iD1

sup
P 2ChX1;:::;Xd i

²
� ˝ �.@i P / �

1

2
�.P 2/

³
:

Then, we define the microstates-free entropy �� by

��.�/ D �
1

2

Z 1

0

ˆ�.�tXC
p

t.1�t/S /dt

with S D .S1; : : : ; Sd / being a d -dimensional free semicircular vector, free from X D

.X1; : : : ; Xd / with law � . An equivalent definition of �� is given by optimizing the entropy
of the distribution of the noncommutative law . O�H1

s ;:::;Hd
s
; s 2 Œ01�/ of independent Hermi-

tian Brownian motions .H1; : : : ; Hd /. We let .�t /t2Œ0;1� be a continuous process with values
in MR

d
. Then we define the dynamical entropy „ W C.Œ0; 1�; MR

d
/!Œ0; 1� to be infinite if

�0 is not the distribution of d operators equal to 0 and to be otherwise given by

„.�:/ D sup
F

´
�1.F1/ � �0.F0/ �

Z 1

0

"
�s.@sFs/ C

1

2

dX
iD1

�s ˝ �s.@i Di Fs/

#
ds

�
1

2

dX
iD1

Z 1

0

�s

�
jDi Fsj

2
�
ds

µ
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where the supremum is taken over smooth noncommutative self-adjoint test functions F .
Such „ is the candidate rate function for the large deviation of s! O�H1

s ;:::;Hd
s
, generalizing to

the noncommutative setting the large deviations of Theorem 3.1. It is easily seen by Riesz’s
theorem that the supremum over F is achieved at K such that

Pd
iD1

R 1

0
�s.jDi Kj2/ds is

finite and such that for every F ,

�1.F1/ � �0.F0/ �

Z 1

0

�s.@sF / �
1

2

Z 1

0

dX
iD1

�s ˝ �s.@i Di Fs/ds

D

dX
iD1

Z 1

0

�s.Di Fs � Di Ks/ds: (4.4)

The entropy is infinite if such a K does not exist. Then taking �0 D ı0, ��.�/ D

inf�1D�¹„.�:/º. We define as well ��� in the same way, but by taking the infimum only
over processes such that the associated field K is smooth (the entropy is �1 if there is no
such process ending near � ). Then [35,52,53] proved that

Theorem 4.5. For every � 2 MR
d

,

���.�/ � �.�/ � ��.�/:

Open Problems 4.6. • Show that the limsup in the definition (4.3) of � can be
replaced by a liminf. The two bounds above still hold if we perform this change.

• Prove that � D �� at least whenever � < 1. In [70,128], it was proven that �.�V / D

��.�V / when �V is the equilibrium measure of matrix models with convex poten-
tials, see Section 4.4.

• Prove that ��� D �� in general. This is already true if � is close to some �1

obtained as the value at time 1 of a process satisfying (4.4) with K smooth.
In particular, �1 can be smoothly constructed from the increments of an Her-
mitian Brownian motions by a smooth differential equation. In a breakthrough
series of papers, it was recently shown that there exist tracial states that cannot
be approximated by a sequence of noncommutative empirical distributions of d

matrices [129]. Hence, the question of estimating noncommutative laws by dif-
ferential equations is far from trivial, in particular because the weak closure of
the set of noncommutative empirical distributions of d matrices is not very well
understood.

• Prove an LDP for the operator norm of polynomials in independent GUE matrices,
in the line of the topological entropy introduced by Voiculescu [179].

4.3. Free convolution
A long-standing question posed by Weyl was to describe the spectrum of the sum

of two Hermitian matrices. A complete description was conjectured by Horn, and proved by
Knutson and Tao [139]. But what should be the spectrum of the sum of two matrices taken
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at random? This question was tackled [31,32] when the two matrices are asymptotically free.
It was characterized by an analog of the Fourier transform, the so-called R-transform. It is
defined as follows: Let G� be the Stieltjes transform of a probability measure � given for
complex number z by

G�.z/ D

Z
1

z � x
d�.x/:

Then G� is invertible in a neighborhood of infinity, with inverse K� equivalent to 1=z in a
neighborhood of the origin. The R-transform R� is given in a neighborhood of the origin by

R�.z/ D K�.z/ �
1

z
:

It is not hard to see that R� defines uniquely � as it defines uniquely G�.

Theorem 4.7 ([31,32,156]). If the empirical measures O�n
X1

and O�n
X2

of Xn
1 and Xn

2 converge
respectively towards �1 and �2, and X1 and X2 are asymptotically free, then the empirical
measure O�n

X1CX2
of the eigenvalues of Xn

1 C Xn
2 converges weakly in L1 towards the unique

probability measure �1 � �2 defined by

R�1��2
.z/ D R�1.z/ C R�2.z/:

The above result holds in particular for Xn
1 C UnXn

2.Un/� if Xn
1; Xn

2 are two deter-
ministic Hermitian matrices whose spectral measures converge, independent of U which
follows the Haar measure on the unitary or orthogonal group. Theorem 4.7 was shown
then to be a direct consequence of the asymptotics of spherical integrals [111]. But what
can we say about the large deviations of the empirical measure and the largest eigenvalue of
X1 C UnX2.Un/�? The description of the spectrum of the sum of two self-adjoint matrices
is complicated and depicted by Horn’s problem [139]. Understanding which of these pos-
sible spectrum has a finite entropy is a natural question which was attacked in [68, 187] by
noticing that the Fourier transform of the density of the spectrum can be written in terms
of Harish-Chandra–Itzykson–Zuber integrals. Unfortunately, this formula so far has resisted
asymptotic analysis as they require complex matrices and hence oscillatory integrals. We
now, however, have a quite complete series of results on the large deviations for the sum of
two random Hermitian matrices.

Theorem 4.8. Let Xn
1;Xn

2 be two Hermitian matrices whose empirical measures of the eigen-
values O�n

X1
and O�n

X2
of Xn

1 and Xn
2 converge respectively towards �1 and �2. Let Un follow

the Haar measure on the orthogonal or unitary group.

• ([112]) Assume that the largest eigenvalues of Xn
1 and Xn

2 stick to the bulk. Then
the largest eigenvalue of Xn

1 C UnXn
2.Un/� satisfies an LDP in the scale ˇn.

• ([22]) The law of N �1
PN

iD1 ı.UnXn
1.Un/�/i i

satisfies an LDP in the scale ˇn2 and
good rate function I D.�/ D sup�¹

1
2

R 1

0
T�.x/T�.x/ � I.�; �1/º where T� is the

inverse of F�.x/ D �..�1; x�/.

• ([22]) The law of O�n
X1CUX2U � satisfies a weak large deviation estimate (1.11) in

the scale ˇn2 and good rate function I X1CX2.�/ D sup�¹I.�; �/ � I.�; �1/ �
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I.�; �2/º at any � so that argmax.I X1CX2.�// ¤ argmax.I X1CX2.�0// for all
�0 ¤ �.

• ([155]) Assume that for j D 1 and 2, the eigenvalues .�
j
i /1�i�n of Xn

j are such
that �

j
i D fj . i

n
/ with strictly increasing functions fj . Then the law of O�n

X1CUX2U �

satisfies a weak large deviation principle in the scale ˇn2.

It would be interesting to understand how the two last results relate. The first three
results above were obtained by tilting the laws by spherical integrals, and using their limit
I.�; �/ from Theorem 3.1, the last is derived by using large deviations on an interesting object
called random hives, closer to [139].

4.4. Multimatrix models
Recall the definition (1.18) of the multimatrix model, which can be extended to

ˇ D 1:

dP n
V;ˇ .Xn

1; : : : ; Xn
d / D

1

Zn
V;ˇ

e�ˇn Tr.V.Xn
1 ;:::;Xn

d
//�

ˇn
4 Tr.

P
.Xn

i /2/dXn
1 � � � dXn

d : (4.5)

Here V is a self-adjoint polynomial that decomposes as V D �
P

ti qi with words (or mono-
mials) qi in d noncommutative letters. We assume either that V is bounded from below
uniformly, or we restrict the integration over

T
i ¹kXn

i k � M º for some M > 2.

Theorem 4.9 ([113, 150]). Let ˇ D 1 or 2. For all g 2 N, there exists "g > 0 such that for
every j"j � "g , every monomial q,Z

O�n
X1;:::;Xd

.q/dP n
"V;ˇ .Xn

1; : : : ; Xn
d /

D

gX
`D0

1

n`

X
k1;:::;kp

Y ."ti /
ki

ki Š
M

ˇ

`

�
.ki ; qi /1�i�p; .1; q/

�
C o

�
1

ng

�
:

Moreover, for every monomial q, O�n
X1;:::;Xd

.q/ converges almost surely towards

�"V .q/ D

X
k1;:::;kp2N

Y ."ti /
ki

ki Š
M 2

0

�
.ki ; qi /1�i�p; .1; q/

�
:

Note that when ˇ D 1, the expansion is in 1=n rather than 1=n2. The first-order
expansion is the same, M 1

0 ..ki ; qi /1�i�p; .1;q// D M 2
0 ..ki ; qi /1�i�p; .1;q//, but the higher

orders differ. M 1
`

..ki ; qi /1�i�p; .1; q// can also be seen to enumerate certain maps, but in
locally orientable surfaces, see, e.g., [104,141].

The proof of this theorem follows by showing that O�n
X1;:::;Xd

.q/ is tight and its
moments satisfy the so-called Dyson–Schwinger equations as a consequence of integration
by parts. Showing the uniqueness of the solutions to the limiting Dyson–Schwinger equa-
tion gives the result for g D 0. A more detailed study of the solution of Dyson–Schwinger
equations allows obtaining the higher-order corrections [114,150].
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Remark 4.10. • Theorem 4.9 was extended to the case where one integrates over
the Haar measure on the unitary or orthogonal groups [63,116] and to SO.n/ lattice
gauge theory [58].

• Distribution �"V extends by linearity to polynomials. It is a priori unclear that �V

is a noncommutative law, in particular that �"V .PP �/ � 0 for all polynomials P .
This is part of the result.

• The noncommutative distribution �"V has finite entropy, and hence the spectral
distribution of polynomials has no atoms by [57]. Much more was proved in [120]:
there exist noncommutative functions given by absolutely converging series such
that �"V is the push-forward of �0 D �d by these functions (and vice versa). This
implies that the C � and von Neumann algebras associated with �"V by the so-
called GNS construction are isomorphic to those of d free semicircular variables.

• The central limit theorem for the empirical distribution can be proven by analyz-
ing the asymptotic of more general moments of the empirical distribution [114],
allowing to derive the next order expansion of the free energy related to maps
with higher genus. The fact that the eigenvalues fluctuate locally like independent
GUE was proven in [92] by constructing approximate transport maps.

It should be expected that the convergence in Theorem 4.9 (which amounts to taking
g D 0) holds for large ", at least till a certain phase transition. In the one-matrix case, this
phase transition is usually related to the point where the support of the equilibrium mea-
sure splits, which is the case, for instance, when the potential has several wells that become
deeper when the parameters vary. This, in particular, does not happen when V is convex.
The same is true for several matrices. Of course, for potentials in several matrices the notion
of convexity itself needs to be clarified, see [70,71,117,128]. The most handy one, in the sense
that it is easier to check, relies on matrices and simply states that, in any dimension n, the
map Xn

1; : : : ; Xn
d

!TrV.Xn
1; : : : ; Xn

d
/ is a convex function of the entries of the self-adjoint

matrices .Xn
1; : : : ; Xn

d
/.

Theorem 4.11 ([70,128]). Assume that the noncommutative function V.X1; : : : ; Xd / C .1 �

ı/ˇ
P

X2
i is convex for some ı > 0. Then the empirical distribution O�n

X1;:::;Xd
converges

P n
V;2-almost surely towards �V . Moreover, ��.�V / D �.�V / is the limit of the classical

entropy of P n
V;2.

This result uses again the dynamics of the Hermitian Brownian motions and the fact
that they converge uniformly to their invariant measures P n

V;2 thanks to convexity. In this case
it is also seen that ��.�V / D ���.�V /. Unfortunately, except for multimatrix models whose
interaction is related to spherical integrals, even the convergence of the matrix models is
unknown in general (such a convergence will result in the possibility of changing the lim sup
by a lim inf in the definition of � which would have important consequences). Recently, [115]
undertook the study of matrix models at “low temperature” in the sense that the constant
� in Theorem 4.9 is now very large. In this case, we can give sufficient conditions on the
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potential V so that the matrices stay bounded in norm with high probability. The limit point
of the empirical distribution then satisfies the Dyson–Schwinger equations. Unfortunately,
the uniqueness of the solutions to these equations is in general not true and convergence is
unclear. We can, however, study more in detail special situations when the case � D 1 is
simple. We detail below a few results that hold under P n

V;ˇ
for T small enough.

• Assume V D
1
T

V0 C W where V0 is uniformly strictly convex. Let .˛i /1�i�d

be the unique minimizer of V0 in Rd . Then, the matrices will concentrate near
.˛i I /1�i�d when n goes to infinity and then T to zero. Moreover, the empiri-
cal distribution O�n

X1;:::;Xd
converges almost surely towards a noncommutative law

which can be obtained as a smooth push-forward of d free semicircular variables.

• Assume V.X1; : : : ; Xd / D
1
T

V1.X1/ C V1.X1/W.X1; : : : ; Xd / with V1 nonneg-
ative and vanishing at .˛i /1�j �m. Then, the spectrum of X1 will asymptotically
belong to a neighborhood of the minimizers of V1. Moreover, the empirical distri-
bution O�X1;:::;Xd

converges almost surely towards a noncommutative law which
can be obtained as a smooth push-forward of free semicircular variables and a
projection.

• If V.X1; X2/ D �
1
T

ŒX1; X2�2 C W1.X1/ C W2.X2/, then the matrices will
asymptotically commute and their respective spectrum will converge towards
the minimizers of W1 and W2 with nontrivial masses.

The last result is interesting because we see that the matrices asymptotically commute but
are not a multiple of the identity in general. Indeed, the case where we have 3 matrices and
the strong interaction presents two commutators ŒX1; X2�2 C ŒX1; X3�2, it is easy to see by
an entropy argument that X1 will be forced to be a multiple of the identity, regardless of
the rest of the potential of order one. It was therefore tempting to think that all such limit
laws would asymptotically commute because they are trivial, which is not the case. This is
only the beginning of the journey towards the understanding of multimatrix models at low
temperature and large dimension.
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