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Abstract

Spectral theory of one-dimensional discrete one-frequency Schrödinger operators is a field
with the origins in and strong ongoing ties to physics. It features a fascinating competi-
tion between randomness (ergodicity) and order (periodicity), which is often resolved on
a deep arithmetic level. This leads to an especially rich spectrum of phenomena, many of
which we are only beginning to understand. The corresponding analysis involves, in partic-
ular, dealing with small denominator problems. It has led to the development of non-KAM
methods in this traditionally KAM domain, and to results completely unattainable by the
old techniques, also in a number of other settings. This article accompanies the author’s
lecture at the International Congress of Mathematicians 2022. It covers several related
recent developments.

Mathematics Subject Classification 2020

Primary 47B36; Secondary 37C55, 82B26, 37D25

Keywords

Quasiperiodic operators, small denominators, Lyapunov exponents, spectrual theory,
localization

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 2, pp. 1090–1120
DOI 10.4171/ICM2022/175

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


One-dimensional discrete one-frequency Schrödinger operators

.HV;˛;xu/n WD un�1 C unC1 C V.x C n˛/un;

u 2 `2.Z/; ˛ 2 T WD RnQ; x 2 T ; V W T ! R; (0.1)

and related questions of the dynamics of quasiperiodic cocycles have not been under-
represented at the ICMs. As I remember, roughly within the last 25 years, there were sectional
lectures by H. Eliasson in 1998, myself in 2002, B. Fayad, R. Krikorian, and J. You in 2018,
as well as plenary lectures by A. Avila in 2010 and 2014, devoted either in part or in full to
this topic.

The field itself is not at all new. It may be seen as having been originated in physics
when Peierls [103] and later his student Harper [61] studied the tight-binding two-dimensional
electron in a uniform perpendicular magnetic field (also known as the Harper model) and
derived the by now iconic family H2� cos;˛;x that we now, following Barry Simon [105], call
the almost Mathieu operator. It remains hugely popular in physics, being directly linked to
several remarkable experimental discoveries and Nobel prizes, providing, in particular, the
theoretical underpinning of the Quantum Hall Effect, as proposed by D. J. Thouless in 1983
(see, e.g. [18,19]). A Google search for “Harper’s model physics” leads to many thousands of
hits.

The field may also be seen as having been originated in a numerical experiment,
as the interest was picked after Douglas Hofstadter came up with what we now call the
Hofstadter’s butterfly [64]—a beautiful numerically produced fractal (Figure 1), discovered
even before the word “fractal” was coined by Benoit Mandelbrot. Finally, the field may be
seen as having been originated from the first application of KAM in the spectral theory—a
pioneering work of Dinaburg and Sinai [37], that preceded Hofstadter. The field has consis-
tently attracted top mathematical physicists (e.g., Bellissard, Deift, Simon, Sinai, Spencer),
dynamicists (e.g., Avila, Eliasson, Herman, Krikorian, You), and analysts (e.g., Bourgain,
Eliott, Sarnak, Schlag). Indeed, it turned out to be a fantastic ever-expanding playground
for the analysts and dynamicists alike, leading to strong cross-fertilization of ideas that have
a tendency to later expand to other subjects. Jean Bourgain wrote a book [28] devoted to
analytic, mostly one-dimensional, quasiperiodic operators that summarized significant new
understanding achieved around the turn of the century, where the work of Jean and collabo-
rators was central.

It is therefore all the more surprising that as of the time of this writing it seems that
the field is on the verge of further significant breakthroughs, with our current understanding
covering just the tip of an exciting iceberg. Given the remarkable current momentum, we
will refrain from making an attempt at an overview of the vast past literature, neither even
very recent nor a number of important milestones, and will concentrate instead only on two
selected topics that enjoyed significant recent advances and hold a particular promise to
shape some of the future discourse.

For the review up to about five years ago, see [82], and for various fine issues related
to continuity of the Lyapunov exponents, featuring, in particular, very important work by
M. Goldstein and W. Schlag, see the recent book by P. Duarte and S. Klein [38]. The 2018
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Figure 1

Hofstadter’s butterfly.

ICM proceedings by J. You [117] summarize, among other things, the quantitative reducibility
breakthrough developed in his group, that has led to a number of powerful consequences.
There are also recent expositions [68, 80] that include some further remarkable results of
roughly the last decade that could not make it into this article.

1. Spectral theory meets (dual) dynamics

Quasiperiodic operators (0.1) are, of course, a particular case of one-dimensional
discrete ergodic Schrödinger operators

.Hxu/n WD un�1 C unC1 C V.T nx/un; u 2 `2.Z/; (1.1)

where x 2 X , and .X;�; T / is an ergodic dynamical system. Operators with ergodic poten-
tials (also in the continuum or in a more general multidimensional/covariant setting) always
have spectra and closures of the other spectral components constant for �-a.e. x [95,102]. In
case of the minimal underlying dynamics, such as, e.g., the irrational rotation of the circle in
(0.1), the spectra [21] and absolutely continuous spectra in the one-dimensional case [97] are
constant for all x. In contrast, the point and singular continuous parts (that are constant a.e.)
can depend sensitively on x. It is an interesting problem, usually attributed to B. Simon, and
open even in the setting of (0.1) whether this still holds when they are combined together
(see Problem 6 in [67]).

The spectral theory of one-dimensional ergodic Schrödinger operators (1.1) is
deeply connected to the study of linear cocycles over corresponding underlying dynam-
ics. By an SL.2;R/ cocycle, we mean a pair .T; A/, where T W X ! X is ergodic, A is a
measurable 2 � 2 matrix-valued function on X and detA D 1.
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We can regard it as a dynamical system on X � R2 with

.T; A/ W .x; f / 7!
�
T x;A.x/f

�
; .x; f / 2 X � R2:

A one-parameter family of Schrödinger cocycles over .X; �; T /, indexed by the energy
E 2 C, is given by .T; A/ W .X;R2/ 7! .X;R2/ where .T; A/ W .x; y/ 7! .T x; A.x; E/y/,
and A 2 SL.2;C/ is the transfer-matrix

A.x;E/ WD

 
E � v.x/ �1

1 0

!
;

with x 2 X , y 2 R2, and E 2 C. The eigenvalue equation Hu D Eu can be rewritten
dynamically as  

unC1

un

!
D A

�
T nx;E

�  un

un�1

!
:

The (top) Lyapunov exponent is then defined as L.E/ WD limn!1

R
1
n

ln kAn.x; E/k d�,
where

An.x;E/ WD

0Y
iDn�1

A.T ix;E/: (1.2)

Two classical results link dynamics/Lyapunov exponents to the spectral theory of ergodic
operators:

• (Johnson’s theorem [91]) For minimal .X; �; T /, the spectrum �.H/ (which is
constant in x 2 X ) is given by the set ofE 2 R such that the Schrödinger cocycle
.T; A.�; E// is not uniformly hyperbolic.

• (Kotani theory [94]) The absolutely continuous spectrum �ac.H/ (�- a.e. constant
for any ergodic .X; �; T / and constant for minimal systems [97]) is given by the
essential closure of the set ¹E W L.E/ D 0º.

Therefore, for minimal, and in particular quasiperiodic, underlying dynamics, spec-
trum and absolutely continuous spectrum of Hx are encoded by the dynamics of the one-
parameter family A.x;E/ of transfer-matrix cocycles, indexed by the energy E; but, for the
spectrum, not by any explicit quantity. One recent surprising development is that for analytic
one-frequency quasiperiodic Schrodinger operators, the spectrum (and therefore absence of
uniform hyperbolicity of the corresponding cocycles) can be characterized more directly. In
[47] we introduce a new object, dual Lyapunov exponent OL.E/, and prove

Theorem 1.1 ([47]). For quasiperiodic operators (0.1) with analytic V ,

�.H/ D
®
E W L.E/ OL.E/ D 0

¯
: (1.3)

Exponent OL.E/ is defined as the limit of lowest Lyapunov exponents of dual high-
dimensional cocycles (see Sections 2 and 4) which is proved to exist. There are interesting
questions of varying levels of difficulty on whether this can be appropriately extended to
higher-dimensional analytic one-frequency quasiperiodic Schrodinger cocycles, correspond-
ing to operators on the strips, to multifrequency analytic cocycles, to nonanalytic potentials,
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or even other underlying dynamics. Perhaps the most natural question is whether one can
find an analytic characterization of the absence of uniform hyperbolicity for all analytic one-
frequency quasiperiodic cocycles. For the latter, there is a topological obstruction, but one
can reduce the question, say, to cocycles homotopic to the identity.

2. Aubry duality and higher-dimensional cocycles

The early work of Dinaburg–Sinai [37] notwithstanding, it is fair to say that the study
of the spectral theory of quasiperiodic operators has been largely shaped around and driven
by several explicit models, all coming from physics. The most prominent of those is the
almost Mathieu family H2� cos;˛;x , which can be argued to be the tight-binding analogue of
a harmonic oscillator. Besides being the main model in the related physics studies and that
featured in the Hofstadter’s butterfly, it is also the simplest, in many ways, analytic case,
yet it seems to represent most of the nontrivial properties expected to be encountered in the
more general situation. In some sense, it plays the same role in the theory of quasiperiodic
operators that the Ising model plays in statistical mechanics, and similarly to the latter, it
does have an important additional symmetry.

Namely, we define the Aubry dual of the one-frequency Schrödinger operator (0.1)
as

. OHV;˛;�u/n D

1X
kD�1

VkunCk C 2 cos 2�.� C n˛/un; n 2 Z; (2.1)

where Vk is the kth Fourier coefficient of V .1 It can be useful to view this as a transformation
of the entire family indexed by x for fixed V; ˛. In this regard, this transform can be viewed
as a unitary conjugation on H D L2.T � Z/, via

U .x; n/ D O .n; x C ˛n/; (2.2)

where O W L2.Z � T / ! L2.T � Z/ is the Fourier transform. The almost Mathieu family
is self-dual with respect to this transformation OH2� cos;˛;x D H 2

�
cos;˛;� , and, in particular,

H2 cos;˛;x , that is, H2� cos;˛;x with � D 1; is the self-dual (also called critical) point.
Aubry duality can be explained by the magnetic nature and corresponding gauge

invariance of two-dimensional magnetic Laplacians that lead to HV;˛;x [101]. In particular,
spectra and integrated densities of states of HV;˛;x and OHV;˛;x coincide. However, it is not
the case for the spectral type, and indeed it is natural to expect that a Fourier-type trans-
form would take localized eigenfunctions (point spectrum!) into extended ones (absolutely
continuous spectrum!), and vice versa. That was the basis for several predictions by physi-
cists Aubry and Andre [1] about the almost Mathieu family with irrational ˛, namely that the
spectrum ofH2� cos;˛;x is absolutely continuous for � < 1 (called subcritical) and pure point
for � > 1 (called supercritical). This was described in the paper where transformation (2.1)

1 There is a more general, multidimensional definition, but we stick to the one-dimensional
case for this exposition.

1094 S. Jitomirskaya



was introduced in the context of the almost Mathieu family, leading to the name Aubry dual-
ity. This problem, along with a few others related to this family, was heavily popularized by
Barry Simon in [106,108], fueling an increased interest in the mathematics community.

Aubry duality has been formulated and explored on different levels, e.g., [10,55,101].
It has consistently played a central role in the analysis of quasiperiodic operators, in proving
absolutely continuous spectrum and reducibility [10,31], point spectrum [17,24,50,57,70],2 or
its absence [11,69].

In general, operator (2.1) is long-range. If V is a trigonometric polynomial of
degree d , the transfer-matrix A.x; E/ of the eigenvalue equation OHV;˛;x‰ D E‰ gives
rise to a 2d -dimensional cocycle, which has a complex-symplectic structure [60], so we will
view it as an Sp.2d;C/ cocycle .˛; A/; A 2 Sp.2d;C/, a linear skew product

.˛; A/ W

´
T � C2d ! T � C2d

.x; v/ 7! .x C ˛;A.x;E/ � v/

µ
:

The Lyapunov exponentsL1.˛;A/�L2.˛;A/� � � � �L2d .˛;A/, repeated accord-
ing to their multiplicity, are defined by

Lk.˛; A/ D lim
n!1

1

n

Z
T

ln
�
�k

�
An.x/

��
dx;

where for a matrix B 2 Mm.C/, �1.B/ � � � � � �m.B/ denote its singular values (eigen-
values of

p
B�B). Since for real E the transfer-matrix A.x; E/ of the eigenvalue equa-

tion OHV;˛;x‰ D E‰ is symplectic, its Lyapunov exponents come in the opposite pairs
¹˙Li .˛; A/º

d
iD1. We will now denote

OLi D Ld�i .˛; A/; (2.3)

so that 0 � OL1 � OL2 � � � � � OLd .
In general, Lyapunov exponents are not nicely behaved with respect to parameter

changes. They can be (and most likely, typically are) discontinuous in ˛ at ˛ 2 Q (the almost
Mathieu cocycle is one example), are generally discontinuous in A in C 0, and can be dis-
continuous in A even in C1 [35, 81, 113, 114]. It is a remarkable fact, enabling much of the
related theory, that Lyapunov exponents are continuous in the analytic category.

Theorem 2.1 ([12, 29, 31, 73]). The functions R � C!.T ; Mm.C// 3 .˛; A/ 7! Lk.˛; A/ 2

Œ�1;1/ are continuous at any .˛0; A0/ with ˛0 2 RnQ.3

For the almost Mathieu operator, it leads to the exact formula for the Lyapunov expo-
nent for energies E in the spectrum of H2� cos;˛;x . We have L�;˛.E/ D max¹ln j�j; 0º [30].

For Diophantine ˛, this continuity extends to sufficiently smooth Gevrey spaces
[35,92], and it is a remarkable recent result [48] that for certain ˛ the transition in the topology

2 Made possible with the development of recent powerful methods [7,14,65,118] to establish
nonperturbative reducibility directly and independently of localization for the dual model.

3 In dimension one, it extends to the Lyapunov exponents of multifrequency cocycles
R � C!.Tb ;SL2.C// 3 .˛; A/ 7! L.˛;A/ 2 Œ0;1/.
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for continuity of L occurs sharply at the Gevrey space G2. It should be noted that both
the original spectacular counterexample [113] and its refinements [48, 114] require ˛ to be a
fixed irrational of bounded type, i.e., having a continued fraction expansion with bounded
coefficients. This set includes the golden mean but forms a set of zero Lebesgue measure. The
authors of all these papers also vary the cocycle, i.e., the potential. This still leaves open the
question whether continuous behavior of the Lyapunov exponents at least for Schrödinger
cocycles with regularity lower than G2 is possible if ˛ is not of bounded type. Another
open question is whether it is true that for a fixed potential of lower than G2 regularity, the
Lyapunov exponent is necessarily a continuous function of energy.

3. Avila’s global theory and classification of analytic

one-frequency cocycles

While many results exist in lower regularity, the analyticity of V in (0.1) brings
on board powerful ideas related to subharmonicity (leading, in particular, to the crucially
important for other developments continuity results) and the technique of semialgebraic sets
introduced to the field by J. Bourgain [28]. As a result, a lot more can be said about analytic
quasiperiodic operators. Particularly, while Kotani theory based its characterization of the
absolutely continuous spectrum on compexifying the energy, for analytic quasiperiodic oper-
ators there is one more natural parameter to complexify, namely the phase. This idea goes
back to M. Herman [63], and has been fruitfully used to prove positivity (and later continuity)
of the Lyapunov exponent in [29,63,110]. Avila [5] discovered a remarkable related structure
that has served as a foundation of his global theory (later extended to the high-dimensional
cocycles in [12]). Define

L�.E/ WD lim
n!1

Z
1

n
ln






 0Y
j Dn�1

Aj .x C j˛ C i�; E/






 d�:
Avila observed that, for a given cocycle, L� is a convex function of �, and proved that it has
quantized derivative in �.

Theorem 3.1 ([5]). For any complex-analytic one-frequency cocycle,

!.A/ D lim
�!0C

L�.A/ � L0.A/

2��
2 Z:

This was enabled through approximation by the rationals due to the continuity of the
Lyapunov exponent in the analytic category [32]. The fact that such continuity does not hold
even for higher Gevrey cocycles [48,113,114] complicates potential nonanalytic extensions.

Theorem 3.1 already enables full analytic computation of the Lyapunov exponents
forE in the spectrum, as well as of their complexificationsL� and further analysis for several
models originating and relevant in physics: the almost Mathieu operator [5], the extended
Harper’s model [81], recently discovered models with mobility edges [112] and unitary almost
Mathieu operator [34], models arising in the study of the quantum graph graphene [23], and
others.
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Avila classified analytic cocycles A.x/ depending on the behavior of the Lyapunov
exponent L� of the complexified cocycle A.x C i�/. Namely, he distinguishes three cases,
with the terminology inspired by the almost Mathieu family:

(Subcritical) L� D 0; � < ı; ı > 0, or, alternatively, L0 D !.A/ D 0.

(Critical) L0 D 0;L� > 0; � > 0, or, alternatively, L0 D 0; !.A/ > 0.

(Supercritical) L0 > 0.

For the almost Mathieu family, these three regimes are uniform over the spectrum,
corresponding to the supercritical (� > 1), subcritical (� < 1), and critical .� D 1) values
of the coupling constant. Spectrally, there is purely absolutely continuous spectrum for all x
and all ˛ 2 RnQ in the subcritical case [3], purely singular continuous spectrum for all x and
all ˛ 2 RnQ in the critical case [69], and pure point spectrum for a.e. x; ˛ with sharp spec-
tral transitions depending on the arithmetics of both ˛ and x between pure point spectrum
and singular continuous spectrum in the supercritical case (see Section 5). Remarkably, the
critical almost Mathieu operators appear at the boundary of the two other regimes.

For general quasiperiodic operators, this classification leads to the corresponding
division of energies in the spectrum, depending on (sub/super)criticality of the cocycle
A.�; E/. For convenience we will call the energy in the spectrum (super/sub)critical accord-
ing to whether the corresponding transfer-matrix cocycle is such. It is expected that the key
spectral properties of spectra in the three above regimes follow those of the corresponding
almost Mathieu operators.

Indeed, pure point spectrum for a.e. x;˛ holds through the supercritical set of ener-
gies, for any analytic potential [30]. It is an important open problem to make this result
arithmetic, and it is expected that certain universal features of the transitions and structure
of the eigenfunctions discovered in [77, 78] will hold globally, throughout the supercritical
regime, see Section 6.3.

The subcritical regime is subject to the almost reducibility conjecture (ARC) which
claims that subcritical cocycles are almost reducible, that is, have constant cocycles in the
closure of their analytic conjugacy class (note that since almost reducibility implies subex-
ponential growth of the iterates of the cocycle that is uniform in the (complexified) phase,
the converse is obviously true). The idea of reducing nonperturbative (global) to perturbative
(local) results originated from an earlier work by Avila and Krikorian [14]. ARC was first for-
mulated in [10], and first established for the almost Mathieu operator [3,10]. It was solved by
Avila for the Liouville case in [4], and the solution for the complementary Diophantine case
has been announced [5] to appear in [2]. Also, L. Ge has recently found a different proof [46].

Almost reducible (and therefore subcritical) cocycles enjoy all the dynamical and
spectral consequences of the Eliasson’s perturbative regime [39]. In particular, there is purely
absolutely continuous spectrum throughout the subcritical regime. Moreover, reducibility
can be made quantitative [117], and even arithmetically so [50], allowing for a wealth of
conclusions. However, it remains true that the absolutely continuous spectrum is fully char-
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acterized by the subcritical regime, with no delicate dependence, as far as the spectral decom-
position goes, on any other parameters.

The critical regime is expected (see [11, 82]) to support only singular continuous
spectrum (again, no dependence on the other parameters, as long as ˛ is irrational) but
fully establishing it even for the critical almost Mathieu operator took decades and was only
accomplished recently [69].

On the other hand, the key result of Avila’s global theory [5] is that operators with
critical energies throughout the spectrum, like the critical almost Mathieu operator, are an
anomaly, that does not happen typically. In fact, for prevalent (in a certain measure-theoretic
sense) potentials, there are no critical energies, and the spectrum is contained in finitely many
intervals, with either only subcritical or only supercritical regime within each.4 Moreover,
the set of potentials and energies .V; E/ such that E is critical is contained in a countable
union of codimension-one analytic submanifolds of C!.T I R/ � R. Another remarkable
related fact is that Lyapunov exponent enjoys even much stronger regularity when restricted
to potentials and energies with a fixed value of acceleration: it becomes real-analytic on this
(typically rather irregular) set, in both the energy E and any parameter � ranging in a real
analytic manifold ƒ, if V� in C!.T I R/ is a family real-analytic in parameter �.

From the point of view of the global theory, it becomes particularly important to
study the universal features of the two prevalent regimes, subcritical and supercritical. As
mentioned above, the absolutely continuous spectrum is fully characterized by the subcritical
regime, with no delicate dependence, as far as the spectral decomposition goes, on any other
parameters. The picture for the supercritical regime is a lot more interesting, and is in a
certain sense at the beginning of its development.

Going back to the complexified cocycle L� , quantizatization of acceleration means
that as a function of � > 0, L� is convex, piecewise affine, and thus is fully characterized
by LD L0 and monotone increasing sequences of turning points bi and slopes ni 2 2�ZC,
so that the slope of L� between bi and biC1 is ni . Clearly, sequences bi and ni present a
very important intrinsic characterization of the cocycle and the corresponding Schrödinger
operator. What information do they give us?

4. Dual Lyapunov exponents or global theory demystified

It turns out that Aubry duality not only provides a new proof of quantization of
acceleration, but holds key to the mystery of the global theory. We have

Theorem 4.1 ([47]). Assume ˛ 2 RnQ and V 2 C!.T ;R/. Then there exist nonnegative
¹ OLi .E/º such that for any E 2 R,

OLi .E/ D lim
d!1

OLd
i .E/;

4 A part of this picture was previously established in the semiclassical regime in the con-
tinuum in [40].
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Figure 2

The complexified Lyapunov exponent.

where OLd
i .E/; i D 1; : : : ;d , are the Lyapunov exponents, as defined in (2.3), of the Sp.2d;C/

transfer-matrix cocycle of the dual eigenvalue equation OHV d ;˛;x‰ D E‰, with
V d .x/ D Dd ? V and Dd being the Dirichlet kernel. Moreover,

L�.E/ D L0.E/ �

X
¹i W OLi .E/<2�j�jº

OLi .E/C 2�
�
#
®
i W OLi .E/ < 2�j�j

¯�
j�j

In fact, the theorem also holds for V 2 C!
h
.T ;R/ and j�j < h, where C!

h
.T ;R/

is the space of bounded analytic functions f defined on a strip ¹j=zj < hº with the norm
kf kh D supj=zj<h jf .z/j. See Fig. 2 for an illustration of the three possible scenarios.

This means that for the trigonometric polynomials V the turning points bi are given
precisely by the Lyapunov exponents OLi .E/ of the dual cocycle, and increases in the slopes
are given by the 2� times their multiplicities; for analytic V , these objects are given by
the limits of those quantities for successive trigonometric polynomial cutoffs of V . We call
OLi .E/ the dual Lyapunov exponents, the objects that play a role similar to that of zeros of
an analytic function in the Jensen’s formula. In particular, the acceleration !.E/ turns out to
be precisely the number of vanishing dual Lyapunov exponents (an analogue of the winding
number for an analytic function on T ).
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Besides unraveling the mystery of the behavior of complexified Lyapunov expo-
nents, this leads to a new understanding of the key statement of Avila’s global theory, namely
that for prevalent operators (0.1), almost all pairs of potentials and energies are acritical.
Indeed, it immediately follows that

Theorem 4.2 ([47]). Assume ˛ 2 RnQ and V is analytic, then the energy E 2 R is

(1) outside the spectrum if L.E/ > 0 and OL1.E/ > 0,

(2) supercritical if L.E/ > 0 and OL1.E/ D 0,

(3) critical if L.E/ D 0 and OL1.E/ D 0,

(4) subcritical if L.E/ D 0 and OL1.E/ > 0.

Thus, in the regimeL.E/D 0, criticality is in the locus of vanishing of an additional
continuous [12] function OL1.E/, implying the prevalence of the acriticality claim. Theo-
rem 4.2, of course, also contains the statement of Theorem 1.1, with OL WD OL1, as well as the
fact that Schrödinger cocycle is subcritical if and only if its dual Lyapunov exponents are all
positive. It also leads to a number of other powerful spectral corollaries, both for the general
analytic case and several particular models [47]. It also has exciting physics applications [100].

5. Precise analysis of small denominators

One of the most fascinating features of the spectral theory of one-frequency quasi-
periodic operators in the supercritical regime is its delicate dependence on the arithmetics,
that can be analyzed to a remarkable depth, and in some cases completely. There were many
exciting recent developments where the arithmetics has played a crucial role (e.g., [9,15,89])
but here we focus only on the analysis of small denominators in the proofs of point spectrum
and related study of the eigenfunctions.

The main difficulty in proving point spectrum (or the phenomenon of Anderson
localization, that is, pure point spectrum with exponentially decaying eigenfunctions) and
analyzing the corresponding eigenfunctions of ergodic operators is in the fact that the eigen-
values are dense in the spectrum. Formal perturbative expansions of eigenfunctions and
eigenvalues include the .V .T nx/ � V.Tmx//�1 terms that, of course, get arbitrarily large.
More generally, when we have resonances, that is, restrictions to boxes that are not too far
away from each other that have eigenvalues that are too close (something that is bound to
happen for ergodic operators), small denominators are created. Thus localization for ergodic
and, in particular, quasiperiodic operators can be viewed as a small denominator problem.

Indeed, it has been traditionally approached in a perturbative way: through KAM-
type schemes for large couplings [39,44,109], which all required Diophantine conditions on
the frequency ˛. Small denominators are not simply a nuisance, but lead to actual change in
the spectral behavior, since in the opposite regime of very Liouville frequencies (too small
denominators), there is no localization even with the positivity of the Lyapunov exponent;
and delocalization (which in this case means singular continuous spectrum) can be proved by
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perturbation of nearby periodic operators [20,54]. At the same time, for exponentially approx-
imated frequencies that are neither far from nor close enough to rationals, there is nothing
left to perturb about or to remove. Tackling those cannot be approached perturbatively, but
requires a precise analysis, giving the problem a strong number-theoretic flavor.

It should be noted that the topology of the one-dimensional line is such that even
occasional barriers make it difficult to pass through, strongly favoring localization in the
presence of even small irregularities. For example, in the one-dimensional random case,
localization holds for all couplings �, when considering a family of potentials �V , and
the same is expected but is apparently difficult to prove even for the underlying dynam-
ics .X; �; T / with very weak chaotic properties, such as a skew shift. It has even been
conjectured by Kotani and Last that absolutely continuous spectrum is impossible for one-
dimensional operators that are not almost periodic, but it has been disproved [6,111], and with
a particularly simple construction in [119]. Those examples notwithstanding, the presence
of metal–insulator transitions (that roughly correspond to transitions between the spectral
types) as couplings change remains a distinctive feature of quasiperiodic operators.

The transitions in coupling between absolutely continuous and singular spectrum
are fully determined by the vanishing/nonvanishing of the Lyapunov exponent. In the super-
critical regime, absolutely continuous spectrum is impossible, but whether the spectrum is
point or singular continuous is resolved in the competition between the depth of the small
denominators—the strength of the resonances—and the Lyapunov growth.

Two types of resonances have played a special role in the spectral theory of quasi-
periodic operators. Frequency resonances, when jV.x/�V.xC k˛/j is small simply because
k.x C k˛/ � x/kR=Z D kk˛kR=Z is small, where kxkR=Z D inf`2Z jx � `j, were first
exploited in [21] based on [54] to prove the absence of eigenvalues (and therefore singular
continuous spectrum in the hyperbolic regime) for quasiperiodic operators with Liouville
frequencies. Their strength is measured by the arithmetic parameter

ˇ.˛/ D lim sup
k!1

�
ln kk˛kR=Z

jkj
(5.1)

that is equal to zero for Diophantine (thus a.e.) ˛. Frequency resonances are ubiquitous for
all quasiperiodic potentials.

Another class of resonances, appearing for all even potentials, was discovered in [83],
where it was shown that the arithmetic properties of the phase also play a role and may
lead to singular continuous spectrum even for the Diophantine frequencies. Indeed, for even
potentials, phases with almost symmetries, when jV.x/� V.xC k˛j is small because k.xC

k˛/ � .�x/kR=Z is small, lead to resonances, regardless of the values of other parameters.
The strength of phase resonances is measured by the arithmetic parameter

ı.˛; �/ D lim sup
k!1

�
ln k2� C k˛kR=Z

jkj
: (5.2)

Phase resonances are symmetry based and exist for all even functions V .
It was conjectured in [66] that for the almost Mathieu family no other resonances

appear and the competition between the Lyapunov growth and combined exponential res-
onance strength resolves in a sharp way: there is a pure point spectrum for L.E/ >
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ˇ.˛/C ı.˛; x/ and a singular continuous spectrum in the regime L.E/ < ˇ.˛/C ı.˛; x/.
We note that for the special case of ˛-rational x, that is, such that 2x 2 Z˛ C Z, we
have ı.˛; x/ D ˇ.˛/ so the resonances “double up” and the conjectured threshold becomes
2ˇ.˛/.

An early nonperturbative localization method was first developed in the 1990s for
the almost Mathieu operator [84] and represented perhaps the first case of solving a tradition-
ally KAM problem in a direct way, without an inductive procedure. It presented a (simple, but
not sharp) technique to treat the nonresonant case, ˇ.˛/D ı.˛/D 0. Further breakthroughs
came in [85] where the role of the Lyapunov exponents and corresponding deviations was
first understood, allowing to achieve the nonresonant result up to the actual Lyapunov transi-
tion, and then in the work of Bourgain and collaborators [28,30] where robust nonperturbative
methods were developed for general analytic potentials and more, leading to the proofs of
localization for a.e. frequency throughout the supercritical regime. The ideas of [85] hold
more generally, and have, in particular, led to very simple proofs of localization for the one-
dimensional Anderson model [90]. Most importantly, however, their arithmetic nature has
been crucial for further developments. For example, the fact that localization holds for ˛-
rational x,5 enabled Puig’s proof [104] of the ten martini problem (that the spectrum is a
Cantor set) for Diophantine ˛. The solution of the full ten martini problem [8,9] required, in
particular, dealing with intermediate frequencies that are neither Diophantine nor Liouville,
thus with the frequency resonances. A method to treat those has been devised in [9] leading
to the proof of localization for L.E/ > 16

9
ˇ, but failing in the neighborhood of the actual

transition. A sharp method to treat pure frequency resonances was developed in [77], and a
sharp method to treat pure phase resonances in [78].

Therefore, the sharp arithmetic spectral transition conjecture of [66] has been estab-
lished for single-type-resonances: for pure frequency resonances (that is, for the so-called
˛-Diophantine phases for which ı.˛; x/ D 0 so there are no exponential phase resonances)
in [17,52,77],6 and for pure phase resonances (that is, for Diophantine frequencies for which
ˇ.˛/ D 0 so there are no exponential frequency resonances) in [78].

The methods to treat pure frequency and phase resonances in [77,78] are robust in a
sense that weak exponential resonances of the other type can be added easily, but it is still an
open problem to treat combined frequency and phase resonances in a sharp way. However,
there were two very recent breakthroughs.

Namely, W. Liu has developed a way to sharply treat doubled resonances for the
almost Mathieu operator, proving localization up to the conjectured threshold:

5 This was, in fact, established in [72].
6 In [17] the pure frequency part of the conjecture of [66] has been proved by a completely

different method, namely through quantitative reducibility [117] and duality, but in a
measure-theoretic in x sense, i.e., losing the control over the arithmetics of x. A recent
breakthrough by Ge–You [50] where an arithmetic version of quantitative reducibility was
developed has lead to a way to obtain sharp arithmetic in phase results through duality as
well, enabling, in particular, an arithmetic duality-based proof of the frequency part of the
conjecture [52], that works also for all Aubry duals (2.1) of operators (0.1).
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Theorem 5.1 ([99]). OperatorH2� cos;˛;x with˛-rational x has Anderson localization when-
ever L.E/ > 2ˇ.˛/ (or equivalently, � > e2ˇ.˛/).

In Liu’s earlier work, this was established for L.E/ > 3ˇ.˛/ [98], but a significant
new understanding of treatment of doubled resonances was necessary to go sharp, and it
was achieved in [99]. Also ˛-rational phases x hold special importance for various ques-
tions because eigenvalues for such x are located at gap edges [104]. Puig’s proof of the ten
martini problem for the Diophantine case [104] was based precisely on localization for ˛-
rational x. The original plan to prove the full ten martini problem was to establish localization
for ˛-rational x and L.E/ > ˇ.˛/ [8]. Not surprisingly, it failed, prompting the resonance
doubling-up conjecture in [9] that is now solved [99]. It should be noted that the singular-
continuous part of the conjecture, namely singular-continuous spectrum for ˛-rational x and
L.E/ < 2ˇ.˛/, is still open.

In a different direction, R. Han, F. Yang, and I [58] developed a sharp method to treat
the third type of resonances: high barriers (that effectively play the role of antiresonances),
and, moreover, combinations of frequency resonances and high barriers, in another popular
quasiperiodic family originating in physics, the Maryland model.

Maryland model is a family

.M�;˛;�u/n D unC1 C un�1 C � tan
�
�.� C n˛/

�
un; (5.3)

where � > 0 is the coupling constant, irrational ˛ 2 T D Œ0; 1� is the frequency, and � 2 T

is the phase with � … ‚ D ¹
1
2

C ˛Z C Zº.
It was originally proposed by Grempel, Fishman, and Prange [56] as a linear version

of the quantum kicked rotor and has attracted continuing interest from the physics commu-
nity, see, e.g., [26, 42, 45], due to its exactly solvable nature. It has explicit expression for
the Lyapunov exponent, integrated density of states, and even (a little less explicit) for the
eigenvalues and eigenfunctions. In particular, the Lyapunov exponent L�.E/ is an explicit
function of �; E not dependent on ˛. However, the implicit expressions for the eigenfunc-
tions do not allow for easy conclusions about their behavior, which is expected to be quite
interesting, with transfer matrices satisfying certain exact renormalization [41].

Phase resonances do not exist for the Maryland model, and as a result, for Dio-
phantine (i.e., nonresonant) frequencies it has localization for all phases [87,107]. However,
it does have barriers, when the trajectory of a given phase approaches the singularity too
early. Barriers compensate for the resonances, and therefore serve as what we call in [58]

the antiresonances, providing the reason why for the Maryland model there are phases with
localization even for the most Liouville frequencies [76]. Thus Maryland model features a
combination of frequency resonances and phase antiresonances.

Maryland model was the first one where the spectral decomposition has been
resolved completely, for all values of the parameters [76].7 Let pn=qn be the continued frac-
tion approximants of ˛. We note that the frequency resonance index ˇ.˛/ defined in (5.1)

7 It also remains the only one with spectral transitions where this could be claimed.
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also satisfies ˇ.˛/ D lim supn!1
ln qnC1

qn
. A new index, ıM .˛; �/, was introduced in [76] as

ıM .˛; �/ WD lim sup
n!1

ln qnC1 C ln kqn.� �
1
2
/kT

qn

: (5.4)

We have

Theorem 5.2 ([76]). H�;˛;� has purely singular continuous spectrum on ¹E W L�.E/ <

ıM .˛; �/º, and pure point spectrum on ¹E W L�.E/ > ı
M .˛; �/º.8

This provides complete spectral analysis, for all ˛; � , but was established implic-
itly: through the combination of Cayley and Fourier transforms and the study of a resulting
explicit cohomological equation, making sharp the previous work in [56,107]. The extension
of the analysis from a.e. � in [107] to all � in [76] required accounting for the effect of the
barriers, and Cayley transform allowed to do it, albeit in a highly implicit way. In particular,
this proof did not allow the analysis of the structure of eigenfunctions.

The method of [85] was adapted to the Maryland model in [87] where the nonresonant
situation was treated and localization for Diophantine ˛ was shown, developing the initial
framework to study the eigenfunctions in the much more difficult resonant situation.

In [58] we show that ı.˛; �/ can be interpreted as the exponential strength of fre-
quency resonances, ˇ.˛/, combined with the (negative) exponential strength of phase anti-
resonances, defined as the positions of exponential smallness of the cos.�.� C k˛//,9 and
develop the approach to sharply treat the “resonance tamed by an antiresonance” situation.
In particular, we give a constructive proof of the localization part of Theorem 5.2 and obtain

Theorem 5.3 ([58]). For any ˛ 2 RnQ and any � , the spectrum on ¹E WL�.E/� ıM .˛; �/º

is pure point and for any eigenvalueE 2 ¹L�.E/> ı
M .˛;�/º and any � > 0, the correspond-

ing eigenfunction �E satisfies j�E .k/j < e
�.L�.E/�ıM .˛;�/��/jkj for sufficiently large jkj.

Theorem 5.3 provides the sharp upper envelope, and develops the key tools to study
the fine behavior of the eigenfunctions, see Section 6.2. In fact, such a study is the most
exciting outcome of the proofs of localization based on sharp analysis of resonances.

There are several other models where sharp arithmetic spectral transitions have been
conjectured and partially established, most notably the extended Harper’s model, where for
the complete analysis one would need to develop tools to study the simultaneous presence
of three different types of resonances: frequency, phase, and singularity-induced antireso-
nances. However, for a.e. phase we expect the arithmetic frequency transition to be universal
in the class of general analytic potentials. As for the arithmetic transitions in phase, we expect
the same results to hold for general even analytic potentials for a.e. frequency. We note that
the singular continuous part up to the conjectured transition is already established, even in a
far greater generality, in [17,71,78].

8 It follows from the explicit formula for L�.E/ that the equality can only happen for two
values of E.

9 So exponential largeness of the tan.
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Finally, there is a question of arithmetic interfaces, e.g., what happens for the almost
Mathieu operators with L.E/D ˇ.˛/C ı.˛; �/? It turns out that (in the pure resonance sit-
uations) both pure point and singular continuous spectra are possible depending on the finer
arithmetic properties of parameters [13, 86, 88]. So far we do not even have a good conjec-
ture on where the arithmetic thresholds within the transition lines lie. Making a significant
progress on this problem would require a development of polynomial (as contrasted with cur-
rent exponential) methods to tackle resonances, a very important problem in its own right,
as it could lead to universal hierarchical structures (see Section 6) on polynomial scales.

6. Exact asymptotics and universal hierarchical

structure of eigenfunctions

A very captivating question and a longstanding theoretical challenge is to explain
the self-similar hierarchical structure visually obvious in the Hofstadter’s butterfly, as well as
the hierarchical structure of eigenfunctions, as related to the arithmetics of parameters. Such
structure was first predicted for the almost Mathieu operator in the work of Azbel in 1964
[22], some 12 years before Hofstadter [64], and before numerical experimentation was possi-
ble. Such self-similar behavior is present for spectra and eigenfunctions of all quasiperiodic
operators.

While this does not describe or explain the self-similarity, a step in the right direc-
tion is to prove that the spectrum is a Cantor set. Mark Kac offered ten martinis in 1982 for
the proof of the Cantor set part of Azbel’s 1964 conjecture. It was dubbed the Ten Martini
problem by Barry Simon, who advertised it in his lists of 15 mathematical physics problems
[106] and later, mathematical physics problems for the XXI century [108]. Most substantial
partial solutions were made by Bellissard, Simon, Sinai, Helffer, Sjöstrand, Choi, Eliott, Yui,
and Last [25,36,62,96,109], between 1983 and 1993. J. Puig [104] solved it for Diophantine ˛
by noticing that localization at � D 0 [73,85] leads to gaps at corresponding (dense) eigen-
values. The final solution was given in [9]. Cantor spectrum is also prevalent for general
one-frequency operators with analytic potential: in the subcritical regime [10], and, by very
different methods, in the supercritical regime [53] (and it is conjectured [11] also in the crit-
ical regime, which is nongeneric in itself [5]). Moreover, even all gaps predicted by the gap
labeling are open in the noncritical almost Mathieu case [10, 16], the statement that is also
expected to be true in the critical case, and recently claimed in the physics literature [27] to
follow directly from [69].

As for the understanding the hierarchical behavior of the eigenfunctions, despite
significant numerical studies and even a discovery of Bethe Ansatz solutions [116], it has
remained an important open challenge even at the physics level, although some indications
existed in the perturbative regime [33,62,109,120].

Sharp analysis of resonances and small denominators has led to the discovery of
universal self-similar structures of eigenfunctions defined by the type of resonance. The uni-
versal nature of these structures manifests in two ways: there is the same universal function
that depends only on the type of the resonance, that governs the behavior around each expo-
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nential frequency or phase resonance (upon (possibly) reflection and renormalization), and
it is the same structure for all the parameters involved: any (Diophantine) frequency ˛, (any
˛-Diophantine phase �/ with ˇ.˛/ < L .ı.˛; �/ < L/, and any eigenvalue E. It has been
discovered and proved for the almost Mathieu operator [77,78] but is expected to be univer-
sal also throughout the class of analytic potentials, and more,10 that is to hold in the regime
of pure resonances. For example, the same universal structure for frequency resonances has
already been proved for the Maryland model [59], for a.e. phase, namely, phases without the
exponential antiresonances, see also a result on the hierarchical structure in the semiclassical
regime [93]. However, for phases whose trajectories approach the barrier too fast, the hierar-
chical structure of the eigenfunctions is very different, and the complete analysis is extremely
delicate.

Generally, one can identify four types of (anti)resonances that lead to different uni-
versal structures:

• frequency

• phase (only even potentials)

• barriers (antiresonance)

• singularity (antiresonance for Jacobi matrices)

We describe the universal structures for phase and frequency resonances [77, 78] in
the following subsections, and the one for the barrier antiresonances will appear in [59].

We expect that when different types of resonances are present, there will be further
different self-similar structures, universal for all corresponding parameters and different res-
onance positions. Describing these structures for different combinations of resonances is
very challenging but seems to be potentially within reach. In particular, in [58] we developed
the tools to fully describe the universal structures for the Maryland model for all parameters,
that is for combinations of frequency resonances and barrier antiresonances. We expect it to
be done in [59]. We also expect the latter structures to be universal in the class of monotone
potentials with a simple pole.

To give a glimpse into the universality results, we present two of them in more detail.

6.1. Frequency resonances
In [77] we find explicit universal functions f .k/ and g.k/, depending only on the

Lyapunov exponent and the position of k in the hierarchy defined by the denominators
qn of the continued fraction approximants of the flux ˛, that completely define the expo-
nential behavior of, correspondingly, eigenfunctions and norms of the transfer matrices of
the almost Mathieu operators, for all eigenvalues corresponding to ˛-Diophantine phase,
see Theorem 6.1. This result holds for all frequency and coupling pairs in the frequency-

10 For example, C 2 cos-type potentials have been a popular object of study [43, 49, 51, 109,

115] and there are reasons to believe that they will feature the same structure, at least in the
perturbative regime.
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resonance localization regime. Since the behavior is fully determined by the frequency and
does not depend on the phase, it is the same, eventually, around any starting point, so is also
seen unfolding at different scales when magnified around local eigenfunction maxima, thus
describing the exponential universality in the hierarchical structure.

Since we are interested in exponential growth/decay, the behavior of f and g
becomes most interesting in case of frequencies with exponential rate of approximation
by the rationals.

These functions allow describing precise asymptotics of arbitrary solutions of
H�;˛;�' D E' where E is an eigenvalue. The precise asymptotics of the norms of the
transfer-matrices provides the first example of this sort for nonuniformly hyperbolic dynam-
ics. Since those norms sometimes differ significantly from the reciprocals of the eigenfunc-
tions, this leads to further interesting and unusual consequences, for example, exponential
tangencies between contracted and expanded directions at the resonant sites.

Given ˛ 2 RnQ; we define functions f;g W ZC ! RC in the following way. Let pn

qn

be the continued fraction approximants to ˛. For any qn

2
� k <

qnC1

2
, define f .k/; g.k/ as

follows:

Case 1. q
8
9

nC1 �
qn

2
or k � qn.

If `qn � k < .`C 1/qn with ` � 1, set

f .k/ D e�jk�`qnj ln j�j
Nrn
` C e�jk�.`C1/qnj ln j�j

Nrn
`C1; (6.1)

and
g.k/ D e�jk�`qnj ln j�j qnC1

Nrn
`

C e�jk�.`C1/qnj ln j�j qnC1

Nrn
`C1

; (6.2)

where for ` � 1,
Nrn
` D e

�.ln j�j�
ln qnC1

qn
C ln `

qn
/`qn :

Set also Nrn
0 D 1 for convenience.

If qn

2
� k < qn, set

f .k/ D e�k ln j�j
C e�jk�qnj ln j�j

Nrn
1 ; (6.3)

and
g.k/ D ek ln j�j: (6.4)

Case 2. q
8
9
nC1 <

qn

2
and qn

2
� k � min¹qn;

qnC1

2
º.

Set
f .k/ D e�k ln j�j; (6.5)

and
g.k/ D ek ln j�j: (6.6)

Notice that f; g only depend on ˛ and �, but not on � or E; f .k/ decays and g.k/
grows exponentially, globally, at varying rates that depend on the position of k in the hierar-
chy defined by the continued fraction expansion of ˛, see Figures 3 and 4.
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Nrn
`

Nrn
`C2

Nrn
`C4

`qn .`C 1/qn .`C 2/qn .`C 3/qn .`C 4/qn kqnC1

2
qn

2

f .k/

Figure 3

The universal behavior of eigenfunctions at scale n:

qnC1

Nrn
`

qnC1

Nrn
`C2

qnC1

Nrn
`C4

`qn .`C 1/qn .`C 2/qn .`C 3/qn .`C 4/qn kqnC1

2
qn

2

g.k/

Figure 4

The universal behavior of transfer matrix norms at scale n:

It turns out that, in the entire regime L.E/ > ˇ, the exponential asymptotics of the
eigenfunctions and norms of transfer matrices at the eigenvalues are completely determined
by f .k/; g.k/.

Theorem 6.1. Let ˛ 2 RnQ be such that j�j> eˇ.˛/. Suppose � is Diophantine with respect
to ˛, E is an eigenvalue of H�;˛;� , and � is the eigenfunction. Let U.k/ D

�
�.k/

�.k�1/

�
. Then

for any " > 0, there existsK (depending on �; ˛; OC ; ") such that for any jkj � K, U.k/ and
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Ak
11 satisfy

f .jkj/e�"jkj
� kU.k/k � f .jkj/e"jkj (6.7)

and
g.jkj/e�"jkj

� kAkk � g.jkj/e"jkj: (6.8)

In fact, the theorem is formulated in [77] for generalized eigenfunctions, thus can also
be used to establish pure point spectrum throughout the indicated regime. Certainly, there
is nothing special about k D 0, so the behavior described in Theorem 6.1 happens around
an arbitrary point k D k0. This implies the self-similar nature of the eigenfunctions: U.k/
behave as described at scale qn but, when looked at in windows of size qk ; qk � qn�1, will
demonstrate the same universal behavior around appropriate local maxima/minima.

To further illustrate the above, let � be an eigenfunction and U.k/ D
�

�.k/
�.k�1/

�
.

An immediate corollary of Theorem 6.1 is the universality of behavior at all appropriately
defined nonresonant local maxima. We will say k0 is a local j -maximum of � if kU.k0/k �

kU.k/k for jk � k0j � qj . Then, with an appropriate notion of nonresonance (see [77]), we
have

Theorem 6.2 ([77]). Given " > 0, there exists j."/ < 1 such that if k0 is a nonresonant
local j -maximum for j > j.�/, then

f .jsj/e�"jsj
�

kU.k0 C s/k

kU.k0/k
� f .jsj/e"jsj; (6.9)

for js � koj � qj .

In case ˇ.˛/ > 0, Theorem 6.1 also guarantees an abundance (and a hierarchical
structure) of local maxima of each eigenfunction.

Let k0 be a global maximum. The self-similar hierarchical structure of local maxima
can be described in the following way. We will say that a scalenj0 is exponential if lnqnj0

C1>

cqnj0
. Then there is a constant scale On0, thus a constant C WD q On0C1, such that for any

exponential scale nj and any eigenfunction there are local nj -maxima within distance C
of k0 C sqnj0

for each 0 < jsj < e
cqnj0 . Moreover, these are all the local nj0 -maxima in

Œk0 � e
cqnj0 ; k0 C e

cqnj0 �.
The exponential behavior of the eigenfunction in the local neighborhood (of size of

order qnj0
) of each such local maximum, normalized by the value at the local maximum is

given by f . Note that only exponential behavior at the corresponding scale is determined by
f and fluctuations of much smaller size are invisible.

Now, let nj1 < nj0 be another exponential scale. Denoting “depth 1” local maxi-
mum located near k0 C anj0

qnj0
by banj0

, we then have a similar picture around banj0
: there

are local nj1 -maxima in the vicinity of banj0
C sqnj1

for each 0 < jsj < e
cqnj1 . Again, this

describes all the local qnj1
-maxima within an exponentially large interval. And again, the

exponential (for the nj1 scale) behavior in the local neighborhood (of size of order qnj1
) of

each such local maximum, normalized by the value at the local maximum, is given by f .

11 Products Ak are defined in (1.2).
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Universal hierarchical structure of an eigenfunction

b1 b2b�1b�2 k0

Local maximum of depth 1Local maximum of depth 1

Global maximum

b2;2b2;1

b1;�1

b1;1

b1;2

Window I

Figure 5

Universal self-similar structure of eigenfunctions

Denoting those “depth 2” local maxima located near banj0
C anj1

qnj1
by banj0

;anj1
,

we then get the same picture taking the magnifying glass another level deeper, and so on.
At the end we obtain a complete hierarchical structure of local maxima that we denote by
banj0

;anj1
;:::;anjs

with each “depth s C 1” local maximum banj0
;anj1

;:::;anjs
being in the cor-

responding vicinity of the “depth s” local maximum banj0
;anj1

;:::;anjs�1
, and with universal

behavior at the corresponding scale around each. The quality of the approximation of the
position of the next maximum gets lower with each level of depth, yet the depth of the hierar-
chy that can be so achieved is at least j=2�C , Figure 5 schematically illustrates the structure
of local maxima of depth one and two, and Figure 6 illustrates that the neighborhood of a
local maximum appropriately magnified looks like a picture of the global maximum. See
[77] for the exact statement.

6.2. Phase resonances
In [78] we found another universal structure, this time for phase resonances. Once

again, we found (different) functions f that determine universal asymptotics of the eigen-
functions, also locally around the resonances, which features a self-similar hierarchical struc-
ture. In particular, we have Theorem just like Theorem 6.1 but with new f and for ˇ.˛/D 0

and L > ı.˛; �/ [78]. The behavior described in this theorem happens around an arbitrary
point. This, coupled with effective control of parameters at the local maxima, allows uncover-
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Window I

b1;1 b1;2b1;�1b1;�2 b1

Local maximum of depth 2Local maximum of depth 2

Local maximum of depth 1

b1;2;2b1;2;1

b1;1;�1

b1;1;1

b1;1;2

Figure 6

Universal self-similar structure of eigenfunctions, zoomed in

ing the self-similar nature of the eigenfunctions, but this time one needs not only the rescaling
but also alternating reflections, leading to what we call the reflective-hierarchical structure.

Assume phase � satisfies 0 < ı.˛; �/ < ln�. Fix 0 < & < ı.˛; �/. Let k0 be a global
maximum of eigenfunction �. LetKi be the positions of exponential resonances of the phase
� 0 D � C k0˛ defined by

k2� C .2k0 CKi /˛kR=Z � e�& jKi j: (6.10)

This means that jv.� 0 C `˛/� v.� 0 C .Ki � `/˛/j � Ce�& jKi j, uniformly in `, or,
in other words, the potential vn D v.� C n˛/ is e�& jKi j-almost symmetric with respect to
.k0 CKi /=2.

Since ˛ is Diophantine, we have

jKi j � cecjKi�1j; (6.11)

where c depends on & and ˛ through the Diophantine constants �; � . On the other hand, Ki

is necessarily an infinite sequence. Let � be an eigenfunction, and U.k/D
�

�.k/
�.k�1/

�
. We say

k is a local K-maximum if kU.k/k � kU.k C s/k for all s � k 2 Œ�K;K�.
The informal description of the reflective-hierarchical structure of local maxima is

the following. There exists a constant OK such that there is a local cKj -maximum bj within
distance OK of each resonanceKj . The exponential behavior of the eigenfunction in the local
cKj -neighborhood of each such local maximum, normalized by the value at the local maxi-
mum, is given by the reflection of f .
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reflective self-similarity of an eigenfunction

I II

II0 I0

Global maximum

Kj1

bj1

Kj0

bj0

bj0;j1

0

Kj1

Figure 7

Reflective self-similarity of an eigenfunction.

Moreover, this describes the entire collection of local maxima of depth 1, that is, all
K such thatK is a cK-maximum. Then we have a similar picture in the vicinity of bj : there
are local cKi -maxima bj;i ; i < j , within distance OK2 of eachKj �Ki . The exponential (on
theKi scale) behavior of the eigenfunction in the local cKi -neighborhood of each such local
maximum, normalized by the value at the local maximum, is given by f .

Then we get the next level maxima bj;i;s; s < i in the OK3-neighborhood of
Kj �Ki CKs and reflected behavior around each, and so on, with reflections alternat-
ing with steps. At the end we obtain a complete hierarchical structure of local maxima that
we denote by bj0;j1;:::;js , with each “depth sC 1” local maximum bj0;j1;:::;js being in the cor-
responding vicinity of the “depth s” local maximum bj0;j1;:::;js�1 � k0 C

Ps�1
iD0.�1/

iKji

and with universal behavior at the corresponding scale around each. The quality of the
approximation of the position of the next maximum gets lower with each level of depth, with
bj0;j1;:::;js�1 determined with OKs precision, thus it presents an accurate picture as long as
Kjs � OKs .

Thus the behavior of �.x/ is described by the same universal f in each � Kjs

window around the corresponding local maximum bj0;j1;:::;js after alternating reflections.
The positions of the local maxima in the hierarchy are determined up to errors that at all but
possibly the last step are superlogarithmically small inKjs . We call such a structure reflective
hierarchy.

Figure 7 depicts reflective self-similarity of an eigenfunction with global maximum
at 0. The self-similarity is seen as follows: I0 is obtained from I by scaling the x-axis propor-
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tional to the ratio of the heights of the maxima in I and I0; II0 is obtained from II by scaling
the x-axis proportional to the ratio of the heights of the maxima in II and II0. The behavior
in the regions I0, II0 mirrors the behavior in regions I, II upon reflection and corresponding
dilation.

6.3. Universality and extensions
The hierarchical structures of Sections 6.1 and 6.2 are expected to hold universally

for most in the appropriate sense (albeit not all, as for the almost Mathieu) local maxima for
general analytic potentials. Establishing this fully would require certain new ideas since so far
even an arithmetic version of localization for the Diophantine case has not been established
for the general analytic family, the current state-of-the-art result by Bourgain–Goldstein [30]

being measure-theoretic in ˛.
The universality of the hierarchical structures of Sections 6.1 and 6.2 is twofold:

not only it is the same universal function that governs the behavior around each exponential
frequency or phase resonance (upon reflection and renormalization), it is the same structure
for all the parameters involved: any (Diophantine) frequency ˛ (any ˛-Diophantine phase �/
with ˇ.˛/ < L .ı.˛; �/ < L/, and any eigenvalue E. The universal reflective-hierarchical
structure in Section 6.2 requires the evenness of the function defining the potential and,
moreover, resonances of other types may also be present in general. However, we conjectured
in [78] that for general even analytic potentials for a.e. frequency only finitely many other
exponentially strong resonances will appear, thus the structure described in Section 6.2 will
hold for the corresponding class.

The key elements of the technique developed for the treatment of arithmetic reso-
nances are robust and have made it possible to approach other questions and, in particular,
study delicate properties of the singular continuous regime. Among other things, it has
allowed obtaining upper bounds on fractal dimensions of the spectral measures and quan-
tum dynamics for the singular continuous almost Mathieu operator [79], as well as potentials
defined by general trigonometric analytic functions [75], and determining also the exact expo-
nent of the exponential decay rate in expectation for the two-point function [74], the first result
of this kind for any model. These methods are also expected to be applicable to many other
models.
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