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Abstract

In this survey of works on a characterization of Jacobians and Prym varieties among inde-
composable principally polarized abelian varieties via the soliton theory, we focus on a
certain circle of ideas and methods which show that the characterization of Jacobians as
ppav whose Kummer variety admits a trisecant line and the Pryms as ppav whose Kummer
variety admits a pair of symmetric quadrisecants can be seen as an abelian version of
pole systems arising in the theory of elliptic solutions to the basic soliton hierarchies. We
present also recent results in this direction on the characterization of Jacobians of curves
with involution, which were motivated by the theory of two-dimensional integrable hierar-
chies with symmetries.
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1. Introduction

Novikov’s conjecture on the Riemann–Schottky problem, namely that the Jaco-
bians of smooth algebraic curves are precisely those indecomposable principally polar-
ized abelian varieties (ppavs) whose theta-functions provide solutions to the Kadomtsev–
Petviashvili (KP) equation, was the first evidence of nowadays well-established fact: con-
nections between the algebraic geometry and the modern theory of integrable systems is
beneficial for both sides. Novikov’ conjecture was proved by T. Shiota in [48].

The first goal of this paper is to present the strongest known characterization of a
Jacobian variety in this direction: an indecomposable ppav X is the Jacobian of a curve if
and only if its Kummer variety K.X/ has a trisecant line, which was proved in [26,27]. This
characterization is called Welters’ (trisecant) conjecture after the work of Welters [54] which
was motivated by Novikov’s conjecture and Gunning’s celebrated theorem [22]. The approach
to its solution, proposed in [26], is general enough to be applicable to a variety of Riemann–
Schottky-type problems. In [21,25] it was used for a characterization of principally polarized
Prym varieties. The latter problem is almost as old and famous as the Riemann–Schottky
problem, but is much harder.

Our second goal is to present recent results on characterization of Jacobians of
curves with involution. The curves with involution naturally appear as a part of algebraic-
geometrical data defining solutions to integrable system with symmetries. Numerous exam-
ples of such systems include the Kadomtsev–Petviashvili hierarchies of type B and C (BKP
and CKP hierarhies, respectively) introduced in [11, 12] and the Novikov–Veselov hierarchy
introduced in [51,52].

The existence of an involution of a curve is central in proving that the constructed
solutions have the necessary symmetry. The solutions corresponding to the same curve are
usually parameterized by points of its Prym variety. In other words, the existence of involu-
tion plus some extra constraints on the divisor of the Baker–Akhiezer function are sufficient
conditions ensuring required symmetry. The problem of proving that these conditions are
necessary for two-dimensional integrable hierarchies is much harder and that is the problem
solved in [28].

The third and to some extent our primary objective is to take this opportunity to
elaborate on motivations underlining the proposed solution of the Riemann–Schottky-type
problems and to introduce a certain collection of ideas and methods.

Maybe the most important among them is a mysterious generating property of two-
dimensional linear differential, differential-functional, difference-functional equations. In
fact, we will discuss two sources of generating properties. One of them is local, and it con-
cerns equations withmeromorphic coefficients in one of the variables that havemeromorphic
solutions. The other is global and concerns equations with elliptic coefficients that have solu-
tions that are meromorphic sections of a line bundle over an elliptic curve [24].

The three main examples are:

(i) the differential equation�
@t � @2

x C u.x; t/
�
 .x; t/ D 0; u D �2@2

x�.x; t/; (1.1)
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(ii) the differential-functional equation

@t .x; t/ D  .x C 1; t/C w.x; t/ .x; t/; w.x; t/ D @t ln
�
�.x C 1; t/

�.x; t/

�
;

(1.2)
(iii) the difference-functional equation

 nC1.x/ D  n.x C 1/ � vn.x/ n.x/; vn.x/ D
�n.x/�nC1.x C 1/

�n.x C 1/�nC1.x/

(1.3)
with unknown functions  n.x/, n 2 Z.

Each of these equations (after change of notations for independent variables) is one of two
auxiliary linear problems for the three fundamental equations in the theory of integrable
systems: the Kadomtsev–Petviashvili (KP) equation

3uyy D .4ut � 6uux C uxxx/x ; (1.4)

the 2D Toda equation

@�@�'n D e'n�'n � e'n�'nC1 ; 'n D '.x D n; �; �/; (1.5)

and the Bilinear Discrete Hirota equation (BDHE)

�n.l C 1;m/�n.l;mC 1/ � �n.l;m/�n.l C 1;mC 1/

C �nC1.l C 1;m/�n�1.l;mC 1/ D 0; (1.6)

respectively.
At the first glance, all three nonlinear equations, the KP equation, 2D Toda equation,

and BDHE equation, look very different from each other. But in the theory of integrable
systems, it is well known that these fundamental soliton equations share an intimate relation:
the KP equation is as a continuous limit of the BDHE, and the 2D Toda equation can be
obtained in an intermediate step.

Assume that in the first two cases �.x; t/ is an entire function of the variable x and
a (local) smooth function of the variable t , and in the third case �n.x/ is a sequence of entire
functions of x. It turns out that under some generality assumption for each of the above linear
equations, the answer to the question when it has a meromorphic in x solution is given in
terms of equations describing the evolution of zeros of � in the second variable.

To give an idea of these equations and why I called the very existence of them mys-
terious, as an instructive example, consider equation (1.1).

Let  be a meromorphic solution of (1.1) with u D �2@2
x ln �.x; t/, where � is an

entire function of x and a smooth function of t in some neighborhood of t D 0. The generality
assumption is that generic zeros of � are simple. Consider the Laurent expansions of  and
u in the neighborhood of a simple zero, �.q.t/; t/ D 0, @x�.q.t/; t/ ¤ 0:

u D
2

.x � q/2
C v C w.x � q/C � � � I

 D
˛

x � q
C ˇ C 
.x � q/C ı.x � q/2 C � � � :

(1.7)
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(The coefficients in these expansions v; w; : : : I ˛; ˇ; : : : are smooth functions of the vari-
able t ). Substituting (1.7) into (1.1) gives an infinite system of equations. The first three of
them are

˛ Pq C 2ˇ D 0I

P̨ C ˛v C 2
 D 0I

P̌ C vˇ � 
 Pq C ˛w D 0:

(1.8)

Taking the t -derivative of the first equation and using the other two, we get the
equation

Rq D 2w; (1.9)

derived first in [6].
We would like to emphasize once again that there is no reason for the fact that the

system (1.8) can be reduced to equations for the potential u only. Even more unexpected for
the author was that, as we will see later, the existence of one meromorphic solution of equa-
tion (1.1) is sufficient for the existence of a one-parameter family of meromorphic solutions.

Formally, if we represent � as an infinite product,

�.x; t/ D c.t/
Y

i

�
x � qi .t/

�
; (1.10)

then equation (1.9) can be written as the infinite system of equations

Rqi D �4
X
j ¤i

1

.qi � qj /3
: (1.11)

Equations (1.11) are purely formal because, even if � has simple zeros at t D 0, in the general
case there is no nontrivial interval of t where the zeros remain simple. One of the reasons to
present (1.11) is that it shows that, when � is a rational, trigonometric, or elliptic polynomial,
equations (1.11) coincide with the equations of motion for the rational, trigonometrical, or
elliptic Calogero–Moser (CM) system, respectively.

In a similar way, one can get that the existence of a meromorphic solution for
equations (1.2) and (1.3) gives equations on zeros of � which in the case when � is an
elliptic polynomial in x turned out to be the equations of motion of the elliptic Ruijsenaars–
Schneider (RS) model and nested Bethe ansatz equations, respectively.

Recall that the elliptic CM system with k particles is a Hamiltonian system with
coordinates q D .q1; : : : ; qk/, momentums pD .p1; : : : ;pk/, the canonical Poisson brackets
¹qi ; pj º D ıij , and the Hamiltonian

H D
1

2

kX
iD1

p2
i C

X
i¤j

}.qi � qj /: (1.12)

The corresponding equations of motion admit the Lax representation PL D ŒM;L� with

Lij D piıij C 2.1 � ıij /ˆ.qi � qj ; z/; (1.13)
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where

ˆ.x; z/ D
�.z � x/

�.z/�.z/
ex�.z/ (1.14)

and �; �; } are classical Weierstrass functions.
The ellliptic RS system is a Hamiltonian system with coordinates q D .q1; : : : ; qk/,

momentumspD .p1; : : : ;pk/, the canonical Poisson brackets ¹qi ;pj º D ıij , and the Hamil-
tonian

H D

kX
iD1

fi ; (1.15)

where

fi WD epi
Y
j ¤i

�
�.qi � qj � 1/�.qi � qj C 1/

�.qi � qj /2

�1=2

: (1.16)

It is a completely integrable Hamiltonian system, whose equations of motion admit the Lax
representation PL D ŒM;L�, where

Lij D fiˆ.qi � qj � 1; z/; i; j D 1; : : : ; k; (1.17)

The elliptic nested Bethe ansatz equations are a system of algebraic equationsY
j

�.qn
i � qnC1

j /�.qn
i � 1 � qn

j /�.q
n
i � qn�1

j C 1/

�.qn
i � qn�1

j /�.qnC1
i � qn

j /�.q
n
i � qnC1

j � 1/
D �1 (1.18)

for k unknown functions qi D ¹qn
i º, i D 1; : : : ; k, of a discrete time variable n 2 Z.

The above systems are usually called elliptic pole systems, since they describe the
dependence of the poles of the elliptic solutions of the KP, 2D Toda, and BDHE equations,
respectively. A correspondence between finite-dimensional integrable systems and the pole
systems of various soliton equations was considered in [7,29,32,33]. In [2] it was generalized
to the case of field analogues of CM type systems.

The most general form of the function � , known to the author so far, for which the
equations for its zeros are not formal, is the case of abelian functions, that is, when � has the
form

� D �.Ux C z; t/; (1.19)

where x; t 2 C and z 2 Cn are independent variables, 0¤ U 2 Cn, and for all t the function
�.�; t / is a holomorphic section of a line bundle L D L.t/ on an abelian varietyX D Cn=ƒ,
i.e., for all � 2 ƒ it satisfies the monodromy relations

�.z C �; t/ D ea��zCb��.z; t/; (1.20)

for some a� 2 Cn, b� D b�.y; t/ 2 C.
It is tempting to call them abelian CM, RS, and nested Bethe ansatz equations. As

we shall see below, they are central for the proof of three particular cases of the Welters
conjecture.

1126 I. Krichever



2. Riemann–Schottky problem

Let Hg WD ¹B 2Mg.C/ j tB D B; Im.B/ > 0º be the Siegel upper half-space. For
B 2 Hg let ƒ WD ƒB WD Zg C BZg and X WD XB WD Cg=ƒB . Riemann’s theta function

�.z/ WD �.z; B/ WD

X
m2Zg

e2�i.m;z/C�i.m;Bm/; .m; z/ D m1z1 C � � � Cmgzg ; (2.1)

is holomorphic and ƒ-quasiperiodic in z 2 Cg .
The factor space Hg=Sp.2g;Z/' Ag is the moduli space of g-dimensional ppavs.

A ppav .X; Œ‚�/ 2 Ag is said to be indecomposable if the zero-divisor‚ of � is irreducible.
Let Mg be the moduli space of nonsingular curves of genus g, and let J W Mg ! Ag

be the Jacobi map defined by the composition of maps Mg ! Hg ! Ag . The first one
requires a choice of a symplectic basis ai , bi (i D 1; : : : ; g) of H1.�;Z/ which defines a
basis !1, …, !g of the space of holomorphic 1-forms on � such that

R
ai
!j D ıij , and then

the period matrix and the Jacobian variety of � by

B WD

�Z
bi

!j

�
2 Hg and J.�/ WD

�
XB ; Œ‚B �

�
2 Ag ;

respectively.
The above J.�/ is indecomposable and the Jacobi map J is injective (Torelli’s the-

orem). The (Riemann–)Schottky problem is the problem of characterizing the Jacobi locus
Jg WD J.Mg/ or its closure Jg in Ag . For g D 2, 3, the dimensions of Mg and Ag coin-
cide, and hence Jg D Ag by Torelli’s theorem. Since J4 is of codimension 1 in A4, the case
g D 4 is the first nontrivial case of the Riemann–Schottky problem.

A nontrivial relation for the Thetanullwerte of a curve of genus 4 was obtained
by F. Schottky [45] in 1888, giving a modular form which vanishes on J4, and hence at
least a local solution of the Riemann–Schottky problem in g D 4, i.e., J4 is an irreducible
component of the zero locus �4 of the Schottky relation. The irreducibility of �4 was proved
by Igusa [23] in 1981, establishing J4 D �4, an effective answer to the Riemann–Schottky
problem in genus 4.

A generalization of the Schottky relation to a curve of higher genus, the so-called
Schottky–Jung relations, formulated as a conjecture by Schottky and Jung [46] in 1909, was
proved by Farkas–Rauch [18] in 1970. Later, van Geemen [50] proved that the Schottky–Jung
relations give a local solution of the Riemann–Schottky problem. They do not give a global
solution when g > 4, since the variety they define has extra components already for g D 5

(Donagi [16]).
Over more than 120 year-long history of the Riemann–Schottky problem, quite a few

geometric characterizations of the Jacobians have been obtained. None of them provides an
explicit system of equations for the image of the Jacobian locus in the projective space under
the level-two theta imbedding.

Following Mumford’s review with a remark on Fay’s trisecant formula [42], and
the advent of algebraic geometrical integration scheme in the soliton theory [30,31,43] and
Novikov’s conjecture, significant progress was made in the 1980s in characterizing Jacobians
and Pryms using Fay-like formulas and KP-like equations.
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Let us first describe the trisecant identity in geometric terms. The Kummer variety
K.X/ of X 2 Ag is the image of the Kummer map

K D KX W X 3 z 7!
�
W ‚Œ"; 0�.z/ W

�
2 CP 2g �1; (2.2)

where ‚Œ"; 0�.z/ D �Œ"; 0�.2z; 2B/ are the level-two theta-functions with half-integer char-
acteristics "2 ..1=2/Z=Z/g , i.e., they equal �.2.zCB"/;2B/ up to some exponential factor
so that we have

�.z C w/�.z � w/ D

X
"2..1=2/Z=Z/g

‚Œ"; 0�.z/‚Œ"; 0�.w/: (2.3)

We have K.�z/ D K.z/ and K.X/ ' X=¹˙1º.
A trisecant of the Kummer variety is a projective line which meets K.X/ at three

points. Fay’s trisecant formula states that ifX D J.�/, thenK.X/ has a family of trisecants
parameterized by 4 points Ai , 1 � i � 4, on � . Gunning proved in [22] that, under cer-
tain nondegeneracy conditions, that the existence of a one-parametric family of trisecants
characterizes the Jacobians.

Gunning’s work was extended by Welters who proved that a Jacobian variety can
be characterized by the existence of a formal one-parameter family of flexes of the Kummer
variety [53]. A flex of the Kummer variety is a projective line which is tangent to K.X/ at
some point up to order 2. It is a limiting case of trisecants when the three intersection points
come together.

In [5] Arbarello and De Concini showed that the assumption in Welters’ character-
ization is equivalent to an infinite sequence of partial differential equations known as the
KP hierarchy, and proved that only a few first equations in the sequence are sufficient, by
giving an explicit bound for the number of equations, N D Œ.3=2/ggŠ�, based on the degree
of K.X/.

An algebraic argument based on earlier results of Burchnall, Chaundy, and the
author [10, 30, 31] characterizes the Jacobians using a commutative ring R of ordinary dif-
ferential operators associated to a solution of the KP hierarchy. A simple counting argument
then shows that only the first 2gC 1 time evolutions in the hierarchy are needed to obtainR.
The 2g C 1 KP flows yield a finite number of differential equations for the Riemann theta
function � ofX , to characterize a Jacobian. As for the number of equations, an easy estimate
shows that 4g2 is enough, although a more careful argument should yield a better bound.

Novikov’s conjecture, namely that just the first equation of the hierarchy (N D 1!)
suffices to characterize the Jacobians, i.e.,

an indecomposable symmetric matrix B with positive definite imaginary part is the
period matrix of a basis of normalized holomorphic differentials on a smooth algebraic curve
� if and only if there are vectors U ¤ 0; V;W , such that the function

u.x; y; t/ D 2@2
x ln �.Ux C Vy CW t CZjB/; (2.4)

satisfies the KP equation (1.4),

for quite some time seemed to be the strongest possible characterization within the reach of
the soliton theory.
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3. Welter’s conjecture

Novikov’s conjecture is equivalent to the statement that the Jacobians are character-
ized by the existence of length 3 formal jet of flexes.

In [54] Welters formulated the question: if the Kummer varietyK.X/ has one trise-
cant, does it follow that X is a Jacobian? In fact, there are three particular cases of the
Welters conjecture, corresponding to three possible configurations of the intersection points
.a; b; c/ of K.X/ and the trisecant:

(i) all three points coincide .a D b D c/;

(ii) two of them coincide .a D b ¤ c/;

(iii) all three intersection points are distinct .a ¤ b ¤ c ¤ a/.

Of course, the first two cases can be regarded as degenerations of the general case (iii).
However, when the existence of only one trisecant is assumed, all three cases are independent
and require their own approaches. The approaches used in [26,27] were based on the theories
of three main soliton hierarchies (see details in [39]): the KP hierarchy for (i), the 2D Toda
hierarchy for (ii) and the Bilinear Discrete Hirota Equations (BDHE) for (iii). Recently, pure
algebraic proofs of the first two cases of the trisecant conjecture were obtained in [4].

Theorem 3.1. An indecomposable principally polarized abelian variety .X; �/ is the Jaco-
bian variety of a smooth algebraic curve of genus g if and only if there exist g-dimensional
vectors U ¤ 0; V;A, and constants p and E such that one of the following three equivalent
conditions is satisfied:

(A) equality (1.1) with � D �.Ux C V t CZ/ and

 D
�.AC Ux C V t CZ/

�.Ux C V t CZ/
epxCEt (3.1)

holds, for an arbitrary vector Z;

(B) for all theta characteristics " 2 .1
2
Z=Z/g ,�

@V � @2
U � 2p@U C .E � p2/

�
‚Œ"; 0�.A=2/ D 0

(here and below @U , @V are the derivatives along the vectors U and V , respec-
tively);

(C) on the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º, the equation�
.@V �/

2
� .@2

U �/
2
�
@2

U � C 2
�
@2

U �@
3
U � � @V �@U @V �

�
@U �

C
�
@2

V � � @4
U �
�
.@U �/

2
D 0 (3.2)

holds.

The direct substitution of expression (3.1) into equation (1.1) and the use of the
addition formula for the Riemann theta-functions shows the equivalence of conditions (A)
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and (B) in the theorem. Condition (B) means that the image of the point A=2 under the
Kummer map is an inflection point (case (i) of Welters’ conjecture).

Condition (C), which we call the abelian CM system, is the relation that is really
used in the proof of the theorem. Formally, it is weaker than the other two conditions because
its derivation does not use an explicit form of the solution  of equation (1.1), but requires
only that  is a meromorphic solution. The latter, as we have seen, implies equation (1.9).
Expanding the function � in a neighborhood of a point z 2 ‚ WD ¹z j �.z/ D 0º such that
@U �.z/ ¤ 0, and noting that the latter condition holds on a dense subset of ‚ since B is
indecomposable, it is easy to see that equation (1.9) is equivalent to (3.2).

Equation (1.1) is one of the two auxiliary linear problems for the KP equation. For
the author, the motivation to consider not the whole KP equation but just one of its auxiliary
linear problems was his earlier work [32] on the elliptic Calogero–Moser (CM) system, where
it was observed for the first time that equation (1.1) is all what one needs to construct the
elliptic solutions of the KP equation.

The proof of Welters’ conjecture was completed in [27]. First, here is the theorem
which treats case (ii) of the conjecture:

Theorem 3.2. An indecomposable, principally polarized abelian variety .X; �/ is the Jaco-
bian of a smooth curve of genus g if and only if there exist nonzero g-dimensional vectors
U ¤ A .mod ƒ/, V constants p; E, such that one of the following equivalent conditions
holds:

(A) equation (1.2) with � D �.Ux C V t CZ/ and  as in (3.1) holds for an arbi-
trary Z;

(B) the equations

@V‚Œ";0�
�
.A�U/=2

�
� ep‚Œ";0�

�
.ACU/=2

�
CE‚Œ";0�

�
.A�U/=2

�
D 0;

are satisfied for all " 2 .1
2
Z=Z/g . Here and below @V is the constant vector

field on Cg corresponding to the vector V ;

(C) the equation

@V

�
�.Z C U/�.Z � U/

�
@V �.Z/ D

�
�.Z C U/�.Z � U/

�
@2

V V �.Z/ (3.3)

is valid on the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º.

Recall, that equation (1.2) is one of the two auxiliary linear problems for the 2D
Toda lattice equation (1.5). The idea to use it for the characterization of the Jacobians was
motivated by [26] and the author’s earlier work with Zabrodin [33], where a connection of
the theory of elliptic solutions of the 2D Toda lattice equations and the theory of the elliptic
Ruijsenaars–Schneider system was established.

Statement (B) is the second particular case of the trisecant conjecture: the line in
CP 2g �1 passing through the points K..A � U/=2/ and K..A C U/=2/ of the Kummer
variety is tangent to K.X/ at the point K..A � U/=2/.
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Condition (C) is what we call the abelian RS equation.
The affirmative answer to the third particular case, (iii), of Welters’ conjecture is

given by the following statement.

Theorem 3.3. An indecomposable, principally polarized abelian variety .X; �/ is the Jaco-
bian of a smooth curve of genus g if and only if there exist nonzero g-dimensional vectors
U ¤ V ¤ A ¤ U .modƒ/ such that one of the following equivalent conditions holds:

(A) equation (1.3) with �n.x/ D �.xU C nV CZ/ and

 n.x/ D
�.AC xU C nV CZ/

�.xU C nV CZ/
expCnE ; (3.4)

holds for an arbitrary Z;

(B) the equations

‚Œ"; 0�

�
A � U � V

2

�
C ep‚Œ"; 0�

�
AC U � V

2

�
D eE‚Œ"; 0�

�
AC V � U

2

�
;

are satisfied for all " 2 .1
2
Z=Z/g ;

(C) the equation
�.Z C U/�.Z � V /�.Z � U C V /

�.Z � U/�.Z C V / �.Z C U � V /
D �1 .mod �/ (3.5)

is valid on the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º.

Under the assumption that the vector U spans an elliptic curve in X , Theorem 3.3
was proved in [29], where the connection of the elliptic solutions of BDHE and the so-called
elliptic nested Bethe ansatz equations was established. Condition (C) is its abelian general-
ization.

4. The problem of characterization of Prym varieties

An involution � W � ! � on a smooth algebraic curve � naturally determines an
involution �� W J.�/ 7! J.�/ on its Jacobian. The odd subspace with respect to this invo-
lution is a sum of an Abelian subvariety of lower dimension, called the Prym variety, and a
finite group. The restriction of the principal polarization of the Jacobian determines a polar-
ization of the Prym variety which is principal if and only if the original involution of the
curve has at most two fixed points. The problem of characterizing the locus Pg of Prym
varieties of dimension g in the space Ag of all principally polarized Abelian varieties is
well known and during its history has attracted considerable interest. This problem is much
harder than the Riemann–Schottky problem and until relatively recently its solution in terms
of a finite system of equations was completely open.

The problem of characterizing Prym varieties in the case of curves with an invo-
lution having two fixed points was solved in [25] in terms of the Schrödinger operators
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integrable with respect to one energy level. The theory of such operators was developed by
Novikov and Veselov in [51, 52], where the authors also introduced the corresponding non-
linear equation, the so-called Novikov–Veselov equation. Curves with an involution having
a pair of fixed points can be regarded as a limit of unramified covers. A characterization of
the Prym varieties in the latter case in terms of the existence of quadrisecants was obtained
the author and Grushevsky in [21].

The existence of families of quadrisecants for curves with an involution having at
most two fixed points was proved in [9,20]. An analogue of Gunning’s theorem asserting that
the existence of a family of secants characterizes Prym varieties was proved by Debarre [13].
We note that the existence of one quadrisecant does not characterize Prym varieties. A coun-
terexample to the naive generalization of Welters’ conjecture was constructed by Beauville
and Debarre in [9].

It was proved in [21] that the existence of a symmetric pair of quadrisecants is a
characteristic property for Prym varieties of unramified covers.

Theorem 4.1 (Geometric characterization of Prym varieties). An indecomposable princi-
pally polarized Abelian variety .X; �/ 2 Ag is in the closure of the locus of Prym vari-
eties of smooth unramified double covers if and only if there exist four distinct points
p1; p2; p3; p4 2 X , none of them of order two, such that the images of the Kummer map
of the eight points p1 ˙ p2 ˙ p3 ˙ p4 lie on two quadrisecants (the corresponding quadru-
ples of points are determined by the number of plus signs).

We should note that the proof of this statement required constructing and developing
the theory of a new integrable equation because before that, in contrast with all other cases, no
nonlinear equations whose algebro-geometric solutions are associated to unramified double
covers were known.

The auxiliary linear equation of the corresponding analogue of the Novikov–Veselov
equation is a discrete analogue of the potential Schrödinger equation considered first in [15].
It has the form

 nC1;mC1 � un;m. nC1;m �  n;mC1/ �  n;m D 0: (4.1)

The analog of condition (C) in the previous theorem which can also be thought as the abelian
generalization of some discrete time integrable system (which has not been studied so far)
is as follows:

(C) There are constants c˙
i ; i D 1; 2; 3 such that two equations (one for the top

choice of signs everywhere, and one for the bottom)

c�2
1 c2

3�.Z C U � V /�.Z � U ˙W /�.Z C V ˙W /

C c�2
2 c2

3�.Z � U C V /�.Z C U ˙W /�.Z � V ˙W /

D c�2
1 c�2

2 �.Z � U � V /�.Z C U ˙W /�.Z C V ˙W /

C �.Z C U C V /�.Z � U ˙W /�.Z � V ˙W / (4.2)

are valid on the theta divisor ¹Z 2 X W �.Z/ D 0º.
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5. Abelian solutions of the soliton equations

The general concept of abelian solutions of soliton equations was introduced by
T. Shiota and the author in [37, 38]. It provides a unifying framework for the theory of the
elliptic solutions of these equations and algebraic-geometrical solutions of rank 1 expressible
in terms of Riemann (or Prym) theta-function. A solution u.x; y; t/ of the KP equation is
called abelian if it is of the form

u D �2@2
x ln �.Ux C z; y; t/; (5.1)

where x, y, t 2 C, and z 2 Cn are independent variables, 0 ¤ U 2 Cn, and for all y, t
the function �.�; y; t/ is a holomorphic section of a line bundle L D L.y; t/ on an abelian
variety X D Cn=ƒ, i.e., for all � 2 ƒ it satisfies the monodromy relations (1.19).

In the case of sections of the canonical line bundle on a principally polarized
Abelian variety the corresponding theta-function is unique up to normalization. Hence the
ansatz (5.1) takes the form u D �2@2

x ln �.Ux C Z.y; t/C z/. Since flows commute with
each other, the dependence of the vector Z.y; t/ must be linear,

u D �2@2
x ln �.Ux C Vy CW t C z/: (5.2)

Therefore, the problem of classification of such Abelian solutions is the same problem as
posed by Novikov.

In the case of one-dimensional Abelian varieties, the problem of classification of
Abelian solutions is the problem of classification of the elliptic solutions. The theory of
elliptic solutions of the KP equation goes back to the remarkable work [1], where it was
found that the dynamics of poles of the elliptic (rational or trigonometric) solutions of the
Korteweg–de Vries equation can be described in terms of the elliptic (rational or trigono-
metric) Calogero–Moser (CM) system with certain constraints. It was observed in [32] that,
when the constraints are removed, this restricted correspondence becomes an isomorphism
when the elliptic solutions of the KP equation are considered. The elliptic solutions of the
KP equation are distinguished amongst the general algebraic-geometric solutions by the con-
dition that the corresponding vector U spans an elliptic curve embedded into the Jacobian of
the curve. Note that, for any vector U , the closure of the group ¹Ux j x 2 Cº; is an Abelian
subvariety X � J.�/. So when this closure does not coincide with the whole Jacobian, we
get nontrivial examples of Abelian solutions. Briefly, the main result on the classification
of Abelian solutions of KP obtained in [37] can be formulated as the statement that all the
Abelian solutions are obtained in this manner. To avoid some technical complications, we
give the formulation of the corresponding theorem in the situation of general position.

Theorem 5.1. Let u.x;y; t/ be an abelian solution of the KP such that the groupCU modƒ
is dense inX . Then there exists a unique algebraic curve� with smooth marked pointP 2 � ,
holomorphic imbedding j0 W X ! J.�/ and a torsion-free rank 1 sheaf F 2 Picg�1.�/

where g D g.�/ is the arithmetic genus of � , such that setting with the notation
j.z/ D j0.z/˝ F

�.Ux C z; y; t/ D �.z; y; t/b��x; y; t; 0; : : : j �;P; j.z/
�
; (5.3)

1133 Abelian pole systems and Riemann–Schottky-type problems



whereb�.t1; t2; t3; : : : j �; P;F / is the KP � -function corresponding to the data .�; P;F /,
and �.z; y; t/ 6� 0 satisfies the condition @U � D 0.

Note that if � is smooth then

b��x; t2; t3; : : : j �;P; j.z/
�

D �
�
Ux C

X
Vi ti C j.z/

ˇ̌̌
B.�/

�
eQ.x;t2;t3;:::/; (5.4)

where Vi 2 Cn,Q is a quadratic form, andB.�/ is the period matrix of � . A linearization on
J.�/ of the nonlinear .y; t/-dynamics for �.z; y; t/ indicates the possibility of the existence
of integrable systems on spaces of theta-functions of higher level. A CM system is an example
of such a system for n D 1.

6. The Baker–Akhiezer functions—general scheme

The “only if” part of all the theorems above is a corollary of the general algebraic-
geometric construction of solutions of soliton equations based on a concept of the Baker–
Akhiezer function.

Let � be a nonsingular algebraic curve of genus g with N marked points P˛ and
fixed local parameters k�1

˛ .p/ in neighborhoods of the marked points. The basic scalar
multipoint and multivariable Baker–Akhiezer function  .t; p/ is a function of external
parameters

t D .t˛;i /; ˛ D 1; : : : ; N I i D 0; : : : I
X

˛

t˛;0 D 0; (6.1)

only finite number of which is nonzero, and a point p 2 � . For each set of the external
parameters t it is defined by its analytic properties on � .

Remark. For the simplicity we will begin with the assumption that the variables t˛;0

are integers, i.e., t˛;0 2 Z.

Lemma 6.1. For any set of g points 
1; : : : ; 
g in a general position there exists a unique
(up to constant factor c.t/) function  .t; p/, such that:

(i) the function (as a function of the variable p 2 �) is meromorphic everywhere
except for the points P˛ and has at most simple poles at the points 
1; : : : ; 
g

(if all of them are distinct);

(ii) in a neighborhood of the point P˛ the function  has the form

 .t; p/ D k
t˛;0
˛ exp

 
1X

iD1

t˛;ik
i
˛

! 
1X

sD0

�˛;s.t/k
�s
˛

!
; k˛ D k˛.p/: (6.2)

From the uniqueness of the Baker–Akhiezer function, we obtain

Theorem 6.1. For each pair .˛; n > 0/, there exists a unique operator L˛;n of the form

L˛;n D @n
˛;1 C

n�1X
j D0

u
.˛;n/
j .t/@

j
˛;1; (6.3)
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(where @˛;n D @=@t˛;n) such that

.@˛;n � L˛;n/ .t; p/ D 0: (6.4)

The idea of the proof of the theorems of this type proposed in [30,31] is universal.
For any formal series of the form (6.2), their exists a unique operator L˛;n of the

form (6.3) such that

.@˛;n � L˛;n/ .t; p/ D O.k�1
˛ / exp

 
1X

iD1

t˛;ik
i
˛

!
: (6.5)

The coefficients of L˛;n are universal differential polynomials with respect to �s;˛ . They can
be found after substitution of the series (6.2) into (6.5).

It turns out that if the series (6.2) is not formal, but is an expansion of the Baker–
Akhiezer function in the neighborhood of P˛ , the congruence (6.5) becomes an equality.
Indeed, let us consider the function  1,

 1 D .@˛;n � L˛;n/ .t; p/: (6.6)

It has the same analytic properties as  except for one. The expansion of this function in
the neighborhood of P˛ starts from O.k�1

˛ /. From the uniqueness of the Baker–Akhiezer
function it follows that  1 D 0 and the equality (6.4) is proved.

Corollary 6.1. The operators L˛;n satisfy the compatibility conditions

Œ@˛;n � L˛;n; @˛;m � L˛;m� D 0: (6.7)

Equations (6.7) are gauge invariant. For any function c.t/, operators

QL˛;n D cL˛;nc
�1

C .@˛;nc/c
�1 (6.8)

have the same form (6.3) and satisfy the same operator equations (6.7). The gauge transfor-
mation (6.8) corresponds to the gauge transformation of the Baker–Akhiezer functione .t; p/ D c.t/ .t; p/: (6.9)

In addition to differential equations (6.4), the Baker–Akhiezer function satisfies an infinite
system of differential-difference equations. Recall that the discrete variables t˛;0 are subject
to the constraint

P
˛ t˛;0 D 0. Therefore, only the first .N � 1/ of them are independent and

tN;0 D �
PN �1

˛D1 t˛;0. Let us denote by T˛ , ˛ D 1; : : : ; N � 1, the operator that shifts the
arguments t˛;0 ! t˛;0 C 1 and tN;0 ! tN;0 � 1, respectively. For the sake of brevity, in the
formulation of the next theorem we introduce the operator TN D T �1

1 .

Theorem 6.2. For each pair .˛; n > 0/, there exists a unique operator OL˛;n of the form

OL˛;n D T n
˛ C

n�1X
j D0

v
.˛;n/
j .t/T j

˛ ; v
.N;n/
0 .t/ D 0 (6.10)

such that

.@˛;n � OL˛;n/ .t; p/ D 0: (6.11)
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The proof is identical to that in the differential case.

Corollary 6.2. The operators OL˛;n satisfy the compatibility conditions

Œ@˛;n � OL˛;n; @˛;m � OL˛;m� D 0: (6.12)

Theta-functional formulae. It should be emphasized that the algebro-geometric construc-
tion is not a sort of abstract “existence” and “uniqueness” theorems. It provides the explicit
formulae for solutions in terms of the Riemann theta-functions. They are the corollary of the
explicit formula for the Baker–Akhiezer function.

Let ai ; bi 2 H1.�;Z/, i D 1; : : : ; g, be a basis of cycles on � with the canoni-
cal intersection matrix, i.e., ai � aj D bi � bj D 0, ai � bj D ıij , and let !i be the basis of
holomorphic differentials on � normalized by the equations

H
aj
!j D ıij . The matrix B

of their b-periods Bij D
H

bi
!j is indecomposable symmetric matrix with positive definite

imaginary part. By formula (2.1), it defines the Riemann theta-function �.z/ D �.zjB/.

Theorem 6.3. The Baker–Akhiezer function is given by the formula

 .t; p/ D c.t/ exp
�X

t˛;i�˛;i .p/
��.A.p/C

P
U˛;i t˛;i CZ/

�.A.p/CZ/
: (6.13)

Here the sum is taken over all the indices .˛; i > 0/ and over the indices .˛; 0/ with
˛ D 1; : : : ; N � 1, and

(a) �˛;i .p/ is the abelian integral, �˛;i .p/ D
R p

d�˛;i , corresponding to the
unique normalized,

H
ak
d�˛;i D 0, meromorphic differential on � , which for

i > 0 has the only pole of the form d�˛;i D d.ki
˛ CO.1// at the marked point

P˛ and for i D 0 has simple poles at the marked pointP˛ andPN with residues
˙1, respectively;

(b) 2�iU˛;j is the vector of b-periods of the differential d�˛;j , i.e.,

U k
˛;j D

1

2�i

I
bk

d�˛;j I

(c) A.p/ is the Abel transform, i.e., a vector with the coordinatesAi .p/D
R p
d!i ;

(d) Z is an arbitrary vector (it corresponds to the divisor of poles of Baker–
Akhiezer function).

Notice that from the bilinear Riemann relations it follows that the expansion of the
Abel transform near the marked point has the form

A.p/ D A.P˛/ �

1X
iD1

1

i
U˛;ik

�i
˛ : (6.14)

Example 1. One-point Baker–Akhiezer function. KP hierarchy. In the one-point case,
the Baker–Akhiezer function has an exponential singularity at a single point P1 and depends
on a single set of variables ti D t1;i . Note that in this case there is no discrete variable,
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t1;0 � 0. Let us choose the normalization of the Baker–Akhiezer function with the help of
the condition �1;0 D 1, i.e., an expansion of  in the neighborhood of P1 equals

 .t1; t2; : : : ; p/ D exp

 
1X

iD1

tik
i

! 
1C

1X
sD1

�s.t/k
�s

!
: (6.15)

Under this normalization (gauge), the corresponding operator Ln has the form

Ln D @n
1 C

n�2X
iD0

u
.n/
i @i

1: (6.16)

For example, for n D 2; 3, after redefinition x D t1 we have

L2 D @2
x � u; L3 D @3

x �
3

2
u@x � w; (6.17)

with u D 2@x�1, w D 3@x�2 C 3@2
x�1 �

3
2
u�1.

If we define y D t2, t D t3, then from (6.7), with n D 2 and m D 3, it follows that
u.x; y; t; t4; : : :/ satisfies the KP equation (1.4).

The normalization of the leading coefficient in (6.15) defines the function c.t/ in
(6.13). This gives the following formula for the normalized one-point Baker–Akhiezer func-
tion:

 .t; p/ D exp
�X

ti�i .p/
��.A.p/C

P
Ui ti CZ/�.Z/

�.
P
Ui ti CZ/�.A.p/CZ/

; (6.18)

(shifting Z if needed we may assumed that A.P1/ D 0). In order to get the explicit theta-
functional form of the solution of the KP equation, it is enough to take the derivative of the
first coefficient of the expansion at the marked point of the ratio of theta-functions in the
formula (6.18).

Using (6.14), we get the final formula for the algebro-geometric solutions of the KP
hierarchy [31], namely

u.t1; t2; : : :/ D �2@2
1 ln �

 
1X

iD1

Ui ti CZ

!
C const: (6.19)

Example 2. Two-point Baker–Akhiezer function. 2D Toda hierarchy. In the two-point
case, the Baker–Akhiezer function has exponential singularities at two points P˛; ˛ D 1; 2,
and depends on two sets of continuous variables t˛;i>0. In addition, it depends on one discrete
variable n D t1;0 D �t2;0. Let us choose the normalization of the Baker–Akhiezer function
with the help of the condition �1;0 D 1.

According to Theorem 6.1, the function satisfies two sets of differential equations.
The compatibility conditions (6.7) within the each set can be regarded as two copies of
the KP hierarchies. In addition the two-point Baker–Akhiezer function satisfies differential-
difference equations (6.10). The first two of them have the form

.@1;1 � T C u/ D 0; .@2;1 � wT �1/ D 0; (6.20)

where

u D .T � 1/�1;1.n; t/; w D e'n�'n�1 ; e'n.t/
D �2;0.n; t/: (6.21)
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The compatibility condition of these equations is equivalent to the 2D Toda equation with
� D t1;1 and � D t2;1. The explicit formula for the solution 'n.t/ is a direct corollary of the
explicit formula for the Baker–Akhiezer function,

'n.t˛;i>0/ D ln
�..nC 1/U C

P
U˛;i t˛;i CZ/

�.nU C
P
U˛;i t˛;i CZ/

; ˛ D 1; 2: (6.22)

Example 3. Three-point Baker–Akhiezer function. Starting with three-point case, in
which the number of discrete variables is 2, the Baker–Akhiezer function satisfies cer-
tain linear difference equations (in addition to the differential and the differential-difference
equations (6.4), (6.11)). The origin of these equations is easy to explain. Indeed, if all the con-
tinuous variables vanish, t˛;i>0 D 0, then the Baker–Akhiezer function n;m WD  .n;m;p/,
where nD �t1;0,mD �t2;0, is a meromorphic function having a pole of order nCm at P3

and zeros of order n and m at P1 and P2, respectively, i.e.,

 n;m 2 H 0
�
D C n.P3 � P1/Cm.P3 � P2/

�
; D D 
1 C � � � C 
g : (6.23)

The functions  nC1;m;  n;mC1;  n;m are all in the linear spaceH 0.D C .nCmC 1/P3 �

nP1 �mP2/. By Riemann–Roch theorem, for a genericD the latter space is 2-dimensional.
Hence, these functions are linearly dependent, and they can be normalized such their linear
dependence takes the form

 m;nC1 D  mC1;n C um;n m;n (6.24)

with

un;m D
�mC1;nC1�m;n

�m;nC1�mC1;n

; �m;n WD �.mU C nV CZ/: (6.25)

At first glance, it seems that everything here is within the framework of classical algebraic-
geometry. What might be new and brought to this subject by the soliton theory is under-
standing that the discrete variables t˛;0 can be replaced by continuous ones. Of course, if in
the formula (6.13) the variable t˛;0 is not an integer, then  is not a single-valued function
on � . Nevertheless, because the monodromy properties of  do not change if the shift of the
argument by an integer, it satisfies the same type of linear equations with coefficients given
by the same type of formulae. It is necessary to emphasize that in such a form the difference
equation becomes a functional equation.

In the four-point case, there are three discrete variables n,m, and l . For each two of
them the Baker–Akhiezer function satisfies a difference equation. The compatibility of these
equations is expressed by the BDHE equation.

7. Key idea and steps of the proofs

As it was mentioned above, the proof of all the particular cases of Welters’ trisecant
conjecture uses different hierarchies: the KP, the 2D Toda, and the BDHE. In each case, there
are some specific difficulties, but the main ideas and structures of the proof are the same. As
an instructive example, we present in this section the idea and key steps of the proof of the
first particular case of Welters’ conjecture, namely, the proof of Theorem 3.1.
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As it was mentioned above, the implication (A) ! (C) is a direct corollary of (1.9).
Now we are going to show that (1.9), which is satisfied when (1.1) has one meromorphic
solution, is sufficient for the existence of one-parametric family of formal wave solutions
below.

The wave solution of (1.1) is a solution of the form

 .x; y; k/ D ekxC.k2Cb/t

 
1C

1X
sD1

�s.x; t/k
�s

!
: (7.1)

Lemma 7.1. Suppose that equations (1.9) for the zeros of �.x; t/ hold. Then there exist
meromorphic wave solutions of equation (1.1) that have simple poles at zeros q of � and are
holomorphic everywhere else.

Proof. Substitution of (7.1) into (1.1) gives a recurrent system of equations

2� 0
sC1 D @t�s C u�s � � 00

s : (7.2)

We are going to prove by induction that this system has meromorphic solutions with simple
poles at all the zeros q of � .

Let us expand �s at q to get

�s D
rs

x � q
C rs0 C rs1.x � q/C � � � : (7.3)

Suppose that �s is defined and equation (7.2) has a meromorphic solution. Then the right-
hand side of (7.2) has the zero residue at x D q, i.e.,

resq. P�s C u�s � � 00
s / D Prs C virs C 2rs1 D 0: (7.4)

We need to show that the residue of the next equation vanishes also. From (7.2) it follows
that the coefficients of the Laurent expansion for �sC1 are equal to

rsC1 D � Pqrs � 2rs0; 2rsC1;1 D Prs0 � rs1 C wrs C vrs0: (7.5)

These equations imply

PrsC1 C vrsC1 C 2rsC1;1 D �rs. Rq � 2w/ � Pq. Prs C vrs C 2rs1/ D 0; (7.6)

and the lemma is proved.

�-periodic wave solutions. Our next step in the proof is to fix a translation-invariant nor-
malization of �s which defines wave functions uniquely up to an x-independent factor. It is
instructive to consider first the case of the periodic potentials u.x C 1; t/ D u.x; t/ (see the
details in [36]).

Equations (7.2) are solved recursively by the formulae

�sC1.x; t/ D csC1.t/C �0
sC1.x; t/; (7.7)

�0
sC1.x; t/ D

1

2

Z x

x0

. P�s � � 00
s C u�s/dx D 0; (7.8)

where cs.t/ are arbitrary functions of the variable t . Let us show that the periodicity condi-
tion �s.x C 1; t/ D �s.x; t/ defines the functions cs.t/ uniquely up to an additive constant.
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Assume that �s�1 is known and satisfies the condition that the corresponding function �0
s

is periodic. The choice of the function cs.t/ does not affect the periodicity property of �s ,
but it does affect the periodicity in x of the function �0

sC1.x; t/. In order to make �0
sC1.x; t/

periodic, the function cs.t/ should satisfy the linear differential equation

@tcs.t/C B.t/cs.t/C

Z x0C1

x0

�
P�0
s .x; t/C u.x; t/�0

s .x; y/
�
dx; (7.9)

where B.t/ D
R x0C1

x0
udx. This defines cs uniquely up to a constant.

In the general case, when u is quasiperiodic, the normalization of the wave functions
is defined along the same lines.

Let YU D hCU i be the Zariski closure of the group CU D ¹Ux j x 2 Cº in X .
Shifting YU if needed, we may assume, without loss of generality, that YU is not in the
singular locus † defined as the @U -invariant subset of the theta-divisor ‚, i.e., YU 6� †.
Then, for a sufficiently small t , we have YU C V t … † as well. Consider the restriction of
the theta-function onto the affine subspace Cd C V t , where Cd WD .the identity component
of ��1.YU //, and � W Cg ! X D Cg=ƒ is the universal covering map of X :

�.z; t/ D �.z C V t/; z 2 Cd : (7.10)

The function u.z; t/ D �2@2
U ln � is periodic with respect to the latticeƒU D ƒ\ Cd and,

for a fixed t , has a double pole along the divisor ‚U .t/ D .‚ � V t/ \ Cd .

Lemma 7.2. Let equations (1.9) for the zeros of �.Ux C z; t/ hold. Then:

(i) equation (1.1) with the potential u.Ux C z; t/ has a wave solution of the form
 D ekxCk2y�.Ux C z; t; k/ such that the coefficients �s.z; y/ of the formal
series

�.z; t; k/ D ebt .1C

1X
sD1

�s.z; tk
�s/ (7.11)

are meromorphic functions of the variable z 2 Cd with a simple pole at the
divisor ‚U .t/,

�s.z C �; t/ D �s.z; t/ D
�s.z; t/

�.z; t/
I (7.12)

(ii) �.z; t; k/ is quasiperiodic with respect to ƒU , i.e., for � 2 ƒU ,

�.z C �; t; kI z0/ D �.z; t; kI z0/��.k/I (7.13)

(iii) �.z; t; k/ is unique up to a @U -invariant factor which is an exponent of the
linear form,

�1.z; t; k/ D �.z; t; k/e.`.k/;z/;
�
`.k/; U

�
D 0: (7.14)
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The spectral curve. The next goal is to show that �-periodic wave solutions of equation
(1.1) are common eigenfunctions of rings of commuting operators.

Note that a simple shift z ! z C Z, where Z … †, gives �-periodic wave solu-
tions with meromorphic coefficients along the affine subspaces Z C Cd . These �-periodic
wave solutions are related to each other by a @U -invariant factor. Therefore choosing, in a
neighborhood of any Z … †, a hyperplane orthogonal to the vector U and fixing initial data
on this hyperplane at y D 0, we define the corresponding series �.z C Z; t; k/ as a local
meromorphic function of Z and the global meromorphic function of z.

Lemma 7.3. Let the assumptions of Theorem 3.1 hold. Then there is a unique pseudo-
differential operator

L.Z; @x/ D @x C

1X
sD1

ws.Z/@
�s
x (7.15)

such that

L.Ux C Vy CZ; @x/ D k ; (7.16)

where  D ekxCk2y�.Ux C Z; t; k/ is a �-periodic solution of (1.1). The coefficients
ws.Z/ of L are meromorphic functions on the abelian variety X with poles along the divi-
sor ‚.

Proof. Let  be a �-periodic wave solution. The substitution of (7.11) into (7.16) gives a
system of equations that recursively define ws.Z; t/ as differential polynomials in �s.Z; t/.
The coefficients of  are local meromorphic functions of Z, but the coefficients of L are
well-defined global meromorphic functions on Cg n † because different �-periodic wave
solutions are related to each other by a @U -invariant factor, which does not affect L. The
singular locus is of codimension � 2. Then Hartogs’ holomorphic extension theorem implies
that ws.Z; t/ can be extended to a global meromorphic function on Cg .

The translational invariance of u implies the translational invariance of the
�-periodic wave solutions. Indeed, for any constant s, the series �.Vs C Z; t � s; k/ and
�.Z; t; k/ correspond to �-periodic solutions of the same equation. Therefore, they coincide
up to a @U -invariant factor. This factor does not affect L. Hence, ws.Z; t/ D ws.V t CZ/.

The �-periodic wave functions corresponding to Z and Z C �0 for any �0 2 ƒ are
also related to each other by a @U -invariant factor. Hence, ws are periodic with respect toƒ
and therefore are meromorphic functions on the abelian varietyX . The lemma is proved.

Consider now the differential parts of the pseudodifferential operators Lm. Let Lm
C

be the differential operator such that Lm
� D Lm � Lm

C D Fm@
�1 C O.@�2/. The leading

coefficient Fm of Lm
� is the residue of Lm:

Fm D res@ Lm: (7.17)

From the definition of L, it follows that Œ@t � @2
x C u;Ln� D 0. Hence,�

@t � @2
x C u;Lm

C

�
D �

�
@t � @2

x C u;Lm
�

�
D 2@xFm: (7.18)
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The functions Fm are differential polynomials in the coefficients ws of L. Hence,
Fm.Z/ are meromorphic functions on X . The next statement is crucial for the proof of the
existence of commuting differential operators associated with u.

Lemma 7.4 ([26]). The abelian functions Fm have at most second order poles on the divi-
sor ‚.

Let OF be a linear space generated by ¹Fm; m D 0; 1; : : :º, where we set F0 D 1. It
is a subspace of the 2g -dimensional space of the abelian functions that have at most second
order poles at ‚. Therefore, for all but Og D dim OF positive integers n, there exist constants
ci;n such that

Fn.Z/C

n�1X
iD0

ci;nFi .Z/ D 0: (7.19)

Let I denote the subset of integers n for which there are no such constants. We call this
subset the gap sequence.

Lemma 7.5. Let L be the pseudodifferential operator corresponding to a �-periodic wave
function  constructed above. Then, for the differential operators

Ln D Ln
C C

n�1X
iD0

ci;nLn�i
C D 0; n … I; (7.20)

the equations

Ln D an.k/ ; an.k/ D kn
C

1X
sD1

as;nk
n�s; (7.21)

where as;n are constants, hold.

Proof. First note that from (7.18) it follows that�
@t � @2

x C u;Ln

�
D 0: (7.22)

Hence, if  is a �-periodic wave solution of (1.1) corresponding to Z … †, then Ln is
also a formal solution of the same equation. That implies the equation Ln D an.Z; k/ ,
where a is @U -invariant. The ambiguity in the definition of  does not affect an. Therefore,
the coefficients of an are well-defined global meromorphic functions on Cg n †. The @U -
invariance of an implies that an, as a function of Z, is holomorphic outside of the locus.
Hence it has an extension to a holomorphic function on Cg . Equations (7.13) imply that an

is periodic with respect to the lattice ƒ. Hence an is Z-independent. Note that as;n D cs;n,
s � n. The lemma is proved.

The operator Lm can be regarded as a Z … †-parametric family of ordinary differ-
ential operators LZ

m whose coefficients have the form

LZ
m D @n

x C

mX
iD1

ui;m.Ux CZ/@m�i
x ; m … I: (7.23)
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Corollary 7.1. The operators LZ
m commute with each other,�
LZ

n ; L
Z
m

�
D 0; Z … †: (7.24)

From (7.21) it follows that ŒLZ
n ; L

Z
m� D 0. The commutator is an ordinary differ-

ential operator. Hence, the last equation implies (7.24).

Lemma 7.6. Let AZ ; Z … †, be a commutative ring of ordinary differential operators
spanned by the operators LZ

n . Then there is an irreducible algebraic curve � of arithmetic
genus Og D dim OF such that AZ is isomorphic to the ringA.�;P0/ of the meromorphic func-
tions on � with the only pole at a smooth point P0. The correspondence Z ! AZ defines a
holomorphic imbedding of X n† into the space of torsion-free rank 1 sheaves F on �

j W X n† 7! Pic.�/: (7.25)

The statement of the lemma is a corollary of the following fundamental fact from
the theory of commuting differential operators

Theorem 7.1 ([10,30,31,43]). There is a natural correspondence

A $
®
�;P0;

�
k�1

�
1
;F
¯

(7.26)

between regular at x D 0 commutative rings A of ordinary linear differential operators
containing a pair of monic operators of coprime orders, and sets of algebraic-geometrical
data ¹�;P0; Œk

�1�1;F º, where � is an algebraic curve with a fixed first jet Œk�1�1 of a local
coordinate k�1 in the neighborhood of a smooth point P0 2 � and F is a torsion-free rank 1
sheaf on � such that

H 0.�;F / D H 1.�;F / D 0: (7.27)

The correspondence becomes one-to-one if the rings A are considered modulo conjugation
A0 D g.x/Ag�1.x/.

Note that in [10,30,31] the main attention was paid to the generic case of the com-
mutative rings corresponding to smooth algebraic curves. The invariant formulation of the
correspondence given above is due to Mumford [43].

The algebraic curve � is called the spectral curve of A. The ring A is isomorphic
to the ring A.�;P0/ of meromorphic functions on � with the only pole at the point P0. The
isomorphism is defined by the equation

La 0 D a 0; La 2 A; a 2 A.�;P0/: (7.28)

Lemma 7.7 ([26]). The linear space OF generated by the abelian functions ¹F0 D 1;

Fm D res@Lmº is a subspace of the space H generated by F0 and by the abelian func-
tionsHi D @U @zi

ln �.Z/.

The construction of multivariate Baker–Akhiezer functions presented for smooth
curves is a manifestation of a general statement valid for singular spectral curves: flows of the
KP hierarchy define deformations of the commutative rings A of ordinary linear differential
operators. The spectral curve is invariant under these flows. For a given spectral curve � ,
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the orbits of the KP hierarchy are isomorphic to the generalized Jacobian J.�/ D Pic0.�/,
which is the equivalence classes of zero degree divisors on the spectral curve (see the details
in [30, 31, 47, 48]). Hence, for any Z … †, the orbit of the KP flows defines a holomorphic
imbedding

iZ W J.�/ 7! X: (7.29)

From (7.29) it follows that J.�/ is compact.
The generalized Jacobian of an algebraic curve is compact if and only if the curve

is smooth [14]. On a smooth algebraic curve, a torsion-free rank 1 sheaf is a line bundle, i.e.,
Pic.�/ D J.�/. Then (7.25) implies that iZ is an isomorphism. Note that for the Jacobians
of smooth algebraic curves, the bad locus † is empty [48], i.e., the imbedding j in (7.25) is
defined everywhere on X and is inverse to iZ . Theorem 3.1 is proved.

8. Characterizing Jacobian of curves with involution

As it was mentioned in the Introduction, the characterization problem of Jacobians
of curves with involution addressed in [28] was motivated by the construction of solutions
of two-dimensional integrable systems with symmetries. To the best of our knowledge, from
a pure algebraic-geometrical perspective, the characterization problem of curves with invo-
lution in terms of their Jacobians has never been considered in its full generality. The only
known to the author works in this direction are [8,17,44].

Two characterizations which distinguish such Jacobians were obtained in [28] within
the framework of cases (i) and (ii) of Welter’s conjecture. Both of them are limited to the
case of involutions having at least one fixed point, i.e., to two-sheeted ramified covers.

In a certain sense, the setup we consider—the Jacobian and the Prym variety in it—
resembles the setup arising in the famous Schottky–Yung relations, and it is tempting to find
a way to get these relations by means of the soliton theory. Unfortunately, this challenging
problem remains open.

The first characterization, related to the KP theory, is limited to the case of ramified
cover for the obvious reason—a curve with one marked point is used in constructing its
solutions.

Theorem 8.1. An indecomposable principally polarized abelian variety .X; �/ is the Jaco-
bian variety of a smooth algebraic curve � of genus g with involution � W � ! � having
at least one point fixed if and only if there exist g-dimensional vectors U ¤ 0; V; A; � and
constants �1; �2; b1 such that:

Condition (A) of Theorem 3.1 is satisfied and
(B) the intersection of the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º with a shifted

abelian subvariety Y � X which is the Zariski closure of �.Ux C �/ � X is reduced and
the equation

@V � j‚\Y D 0 (8.1)

holds.
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Moreover, the locus … of points � 2 X for which equation (8.1) holds is the locus
of points for which the equation � C �.�/ D 2P CK 2 X , where K is the canonical class,
holds.

Condition (B) implies
(C) there is a constant b2 such that the equality

@U @V ln � j OY
D b2 (8.2)

holds on Y .
From the addition theorem (2.3), it follows that (8.2) is equivalent to the condition

that the vector .@U @VK.0/ � b2K.0// is orthogonal to the image under the Kummer map
K.…/ of the shifted abelian subvariety OY :X

"2..1=2/Z=Z/g

�
@U @V‚Œ"; 0�.0/ � b2‚Œ"; 0�.0/

�
‚Œ"; 0�.z/ D 0; z 2 OY ; (8.3)

whence follows the condition of a kind of flatness of the image under the Kummer map of the
shifted Prym subvariety… � X , that is, K.…/ lies in a proper (projective) linear subspace.

The explicit meaning (B) is as follows. As shown in [19,48], the affine line Ux CZ

is not contained in ‚ for any vector Z. Hence, the function �.x; t/ WD �.Ux C V t C z/,
z 2 Y is a nontrivial entire function of x. The statement that ‚ \ Y is reduced means that
the zeros q.t/ of � , considered as a function of x (depending on t ), are generically simple,
�.q.t/; t/ D 0, �x.q.t/; t/ ¤ 0. Then (8.2) is the equation

@tqjtD0 D 0: (8.4)

In the case when U spans an elliptic curve in the Jacobian, the statement that from
(B) it follows that the corresponding curve � admits an involution is obvious. Indeed, in that
case the curve is the normalization of the spectral curve ofN -point elliptic CM systems. The
latter is defined by the characteristic equation

det
�
k � I � L.z/

�
D 0

of the matrix L.z/ defined in (1.13) with qi D qi .0/ and pi D Pqi .0/, where qi .t/ are roots
of the equation �.Ux C V t C z/ D 0. If equation (8.4) holds, i.e., pi D 0, then it is easy
to see that the matrix L.z/ satisfies the equation Lt .z/ D �L.�z/. The latter implies that
the curve is invariant under the involution .k; z/! .�k;�z/. That observation made in [34]

was the main motivation behind [28].
At the heart of the proof in the general case is the statement that if (B) is satisfied

then there is a local coordinate k�1 such that if  .x; t; k/ is the wave solution of (1.1) as in
Lemma 7.2 then  .x; 0;�k/ D  �.x; 0; k/ where  � is a wave solution of the equation

.@t C @2
x � u/ �.x; t; k/ D 0; (8.5)

which is formally adjoint to (1.1).
The second characterization of the Jacobians of curves with involution is related

to the 2D Toda theory. A priori, unlike in the KP case, there is no obvious reason why it
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is not applicable to all types of involution, including unramified covers. It turned out that
there is an obstacle for the case of unramified covers, and our second theorem also gives a
characterization of the Jacobians of curves with involution with fixed points.

Theorem 8.2. An indecomposable, principally polarized abelian variety .X; �/ is the Jaco-
bian of a smooth curve of genus g with involution having fixed points if and only if there exist
nonzero g-dimensional vectors U ¤ A .modƒ/; V; �, constants �0; �1; b1 such that:

Condition (A) of Theorem 3.2 is satisfied and
(B) (i) the intersection of the theta-divisor with the shifted Abelian variety Y , which

is a closure of �.Ux C �/, is reduced and is not invariant under the shift by U , ‚ \ Y ¤

.‚C U/ \ Y , and (ii) the equation��
@V �.z/

�2
C �.z C U/�.z � U/

�ˇ̌
z2‚\Y

D 0 (8.6)

holds.
Moreover, the locus of the points � 2 X for which equation (8.6) holds is the locus

of point for which the equation � C �� D K C P1 C P2 2 J.�/, where .P1; P2/ are points
of the curves permuted by � and such that U D A.P2/ � A.P1/ is satisfied.

Remark 1. In the case when U spans an elliptic curve in the Jacobian, the statement of the
theorem was proved first in [40].

The geometric form of the characterization is the condition that the vector
.2@2

VK.0/ � b2K.U / � b3K.0// is orthogonal to the image under the Kummer map of
the abelian subvariety…:X

"2..1=2/Z=Z/g

�
2@2

V‚Œ"; 0�.0/ � b2‚Œ"; 0�.U / � b3‚Œ"; 0�.0/
��
‚Œ"; 0�.z/ D 0; (8.7)

where z 2 … and b3 is a constant.

9. Nonlocal generating problem

Until now our main focus was on equations that arise from the local generating
properties of two-dimensional linear operators with meromorphic coefficients. The nonlocal
generating properties of the same linear operators do not lead directly to equations of motion
for zeros of the � function. To begin with, they generate the Lax representation of these
equations. That nonlocal perspective is known for the elliptic case. Its abelian generalization
is an open and challenging problem.

Let D be a linear differential or difference operator in two variables .x; t/ with
coefficients which are scalar or matrix elliptic functions of the variable x (i.e., meromor-
phic double-periodic functions with the periods 2!˛; ˛ D 1; 2). We do not assume any
special dependence of the coefficients with respect to the second variable. Then it is natural
to introduce a notion of double-Bloch solutions of the equation

D‰ D 0: (9.1)
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We call a meromorphic vector-function f .x/ that satisfies the following monodromy prop-
erties:

f .x C 2!˛/ D B˛f .x/; ˛ D 1; 2; (9.2)

a double-Bloch function. The complex numbers B˛ are called Bloch multipliers. (In other
words, f is a meromorphic section of a vector bundle over the elliptic curve.)

In the most general form, a problem considered in the framework of elliptic pole sys-
tems is to classify and to construct all the operatorsL such that equation (9.1) has sufficiently
many double-Bloch solutions.

It turns out that the existence of the double-Bloch solutions is so restrictive that only
in exceptional cases such solutions do exist. A simple and general explanation of that is due
to the Riemann–Roch theorem. LetD be a set of points qi , i D 1; : : : ;m, on the elliptic curve
�0 with multiplicities di and let V D V.DIB1; B2/ be a linear space of the double-Bloch
functions with the Bloch multipliers B˛ that have poles at qi of order less than or equal to
di and holomorphic outside D. Then the dimension of D is equal to

dimD D degD D

X
i

di :

Now let qi depend on the variable t . Then for f 2D.t/, the function Df is a double-Bloch
function with the same Bloch multipliers, but in general with higher orders of poles because
taking derivatives and multiplication by the elliptic coefficients increase orders. Therefore,
the operator D defines a linear operator

D jD W V
�
D.t/IB1; B2

�
7! V

�
D0.t/IB1; B2

�
; N 0

D degD0 > N D degD;

and (9.1) is always equivalent to an overdetermined linear system of N 0 equations in N
unknown variables which are the coefficients ci D ci .t/ of an expansion of ‰ 2 V.t/ with
respect to a basis of functions fi .t/ 2 V.t/. With some exaggeration, one may say that in the
soliton theory the representation of a system in the form of the compatibility condition of an
overdetermined system of the linear problems is considered as equivalent to integrability.

In all of known examples, N 0 D 2N and the overdetermined system of equations
has the form

LC D kC; @tC D MC; (9.3)

where L and M are N � N matrix functions depending on a point z of the elliptic curve
as a parameter. A compatibility condition of (9.3) has the standard Lax form @tL D ŒM;L�,
and is equivalent to a finite-dimensional integrable system.

The basis in the space of the double-Bloch functions can be written in terms of the
fundamental function ˆ.x; z/ defined by the formula (1.14). Note that ˆ.x; z/ is a solution
of the Lame equation �

d2

dx2
� 2}.x/

�
ˆ.x; z/ D }.z/ˆ.x; z/: (9.4)
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From the monodromy properties, it follows that ˆ, considered as a function of z, is doubly-
periodic,

ˆ.x; z C 2!˛/ D ˆ.x; z/;

though it is not elliptic in the classical sense due to an essential singularity at z D 0 for x ¤ 0.
As a function of x, the function ˆ.x; z/ is a double-Bloch function, i.e.,

ˆ.x C 2!˛; z/ D T˛.z/ˆ.x; z/; T˛.z/ D exp
�
2!˛�.z/ � 2�.!˛/z

�
:

In the fundamental domain of the lattice defined by 2!˛ , the function ˆ.x; z/ has a unique
pole at the point x D 0,

ˆ.x; z/ D x�1
CO.x/: (9.5)

The gauge transformation
f .x/ 7! Qf .x/ D f .x/eax ;

where a is an arbitrary constant, does not change the poles of any function and transforms a
double Bloch-function into a double-Bloch function. If B˛ are Bloch multipliers for f , then
the Bloch multipliers for Qf are equal to

QB1 D B1e
2a!1 ; QB2 D B2e

2a!2 : (9.6)

The two pairs of Bloch multipliers that are connected with each other through the relation
(9.6) for some a are called equivalent. Note that for all equivalent pairs of Bloch multipliers,
the product B!2

1 B
�!1
2 is a constant depending on the equivalence class only.

From (9.5) it follows that a double-Bloch function f .x/ with simple poles qi in the
fundamental domain and with Bloch multipliers B˛ (such that at least one of them is not
equal to 1) may be represented in the form

f .x/ D

NX
iD1

ciˆ.x � qi ; z/e
kx ; (9.7)

where ci is a residue of f at xi and z, k are parameters related by

B˛ D T˛.z/e
2!˛k : (9.8)

(Any pair of Bloch multipliers may be represented in the form (9.8) with an appropriate
choice of the parameters z and k.)

To prove (9.7), it is enough to note that as a function of x the difference of the
left- and right-hand sides is holomorphic in the fundamental domain. It is a double-Bloch
function with the same Bloch multipliers as the function f . But a nontrivial double-Bloch
function with at least one of the Bloch multipliers that is not equal to 1 has at least one pole
in the fundamental domain.
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Example: elliptic CM system. Let us consider equation (1.1) with an elliptic (in x) poten-
tial u.x; t/. Suppose that equation (1.1) has N linearly independent double-Bloch solutions
with equivalent Bloch multipliers andN simple poles qi .t/. The assumption that there exist
N linearly independent double-Bloch solutions with equivalent Bloch multipliers implies
that they can be written in the form

‰ D

NX
iD1

ci .t; k; z/ˆ
�
x � qi .t/; z

�
ekxCk2t ; (9.9)

with the same z but different values of the parameter k.
Let us substitute (9.9) into (1.1). Then (1.1) is satisfied if and if we get a function

holomorphic in the fundamental domain. First of all, we conclude that u has poles at qi only.
The vanishing of the triple poles .x � qi /

�3 implies that u.x; t/ has the form

u.x; t/ D 2

NX
iD1

}
�
x � qi .t/

�
: (9.10)

The vanishing of the double poles .x � qi /
�2 gives the equalities that can be written as a

matrix equation for the vector C D .ci /,�
L.t; z/C kI

�
C D 0; (9.11)

where I is the unit matrix and the Lax matrix L.t; z/ is defined in (1.13). Finally, the van-
ishing of the simple poles gives the equations�

@t �M.t; z/
�
C D 0; (9.12)

where

Mij D

�
}.z/ � 2

X
j ¤i

}.qi � qj /

�
ıij � 2.1 � ıij /ˆ

0.qi � qj ; z/: (9.13)

The existence ofN linearly independent solutions for (1.1) with equivalent Bloch multipliers
implies that (9.11) and (9.12) haveN independent solutions corresponding to different values
of k. Hence, as a compatibility condition, we get the Lax equation PLD ŒM;L� for the elliptic
CM system.
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