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ABSTRACT

We discuss recent developments in the study of semiorthogonal decompositions of alge-
braic varieties with an emphasis on their behavior in families.

First, we overview new results concerning homological projective duality.

Then we introduce residual categories, discuss their relation to small quantum coho-
mology, and compute Serre dimensions of residual categories of complete intersections.
After that we define simultaneous resolutions of singularities and describe a construction
that works in particular for nodal degenerations of even-dimensional varieties.

Finally, we introduce the concept of absorption of singularities which works under appro-
priate assumptions for nodal degenerations of odd-dimensional varieties.
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1. INTRODUCTION

Semiorthogonal decompositions of derived categories of algebraic varieties were
introduced into the realm of algebraic geometry at the turn of the millennium by Bondal and
Orlov [18,19]; since then the theory of semiorthogonal decompositions has become one of its
central topics. Some advances in this theory have been surveyed in [59]; in this sequel paper
we discuss the progress obtained after 2014.

An important point of view in algebraic geometry, explained by Grothendieck, is
that geometry should be studied in a relative situation. Thus, the central object of algebraic
geometry is a morphism X — B, i.e., a family of schemes {Xp}pcp parameterized by the
points b € B of a base scheme. Translating this point of view into the context of semiorthog-
onal decompositions, we understand that we should study semiorthogonal decompositions
of schemes X/ B, especially B-linear semiorthogonal decompositions.

The first step in this direction has been made in [51], where the notions of
B-linear triangulated categories and semiorthogonal decompositions have been introduced:
an enhanced triangulated category D is B-linear if it is endowed with a monoidal action
of the monoidal category DP*f( B) of perfect complexes on B. For instance, if f: X — B
is a scheme over B, the bounded derived category of coherent sheaves DP(X) is B-linear
(where ¥ € DP(B) acts on D*(X) by § > § ® f*F for § € D*(X)) and a semiorthog-
onal decomposition

D°(X) = (Dy,..., Dn) (1)

is B-linearif O; ® f*(DPT(B)) C D; for eachi.
The next major step in this direction has been performed in [58], where the notion of
base change for B-linear semiorthogonal decompositions has been introduced: given a B-
linear semiorthogonal decomposition (1) and a morphism B’ — B, a B’-linear semiorthog-
onal decomposition
Db(x XB B/) =(D1,p",..., Dn,p)

has been constructed (under appropriate technical assumptions). In particular, for each
point b € B of the base scheme B, the base change categories &; 5 are defined. This allows
one to consider a B-linear category D; as a family of triangulated categories {D; p}pep
parameterized by the points b € B of the base scheme B.

In this survey we discuss several independent topics, all of which, however, corre-
spond to various semiorthogonal decompositions defined in families.

In Sections 2-3 we discuss some standard material, developing and deepening
results from [59]. First of all, we describe the main advances in the theory of homologi-
cal projective duality (HPD) (see [52], [59, §3]1), namely categorical joins and categorical
cones. These categorical constructions provide appropriate homological counterparts of
classical constructions of projective geometry and are compatible with HPD. This theory
itself relies on a “noncommutative” (or rather categorical) version of HPD that was devel-
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oped by Alex Perry in [88], so we start Section 2 with a short survey of noncommutative
HPD; Section 2.1 can also serve as an introduction to HPD.

After that in Section 2.2, we introduce the construction of categorical joins and
explain in what sense it is compatible with HPD, then in Section 2.3 we state the nonlin-
ear HPD theorem, a generalization of the fundamental theorem of HPD in which linear
sections of varieties are replaced by arbitrary intersections, and then in Section 2.4 we intro-
duce the construction of categorical cones (a particular case of categorical joins), and com-
bining it with HPD for smooth quadrics and the nonlinear HPD theorem, we deduce the
quadratic HPD theorem. As an application of these results we deduce the duality conjecture
for Gushel-Mukai varieties. Finally, in Section 2.5 we list a number of important develop-
ments in HPD not covered in this survey.

In Section 3 we introduce residual categories: given a semiorthogonal decomposi-
tion

D°(X) = (R.B.8(1)....,B(m— 1)), )

where the line bundle Oy (1) is an mth root of the anticanonical line bundle of a Fano vari-
ety X, ie., oy 1 >~ 9x(m), and B is an admissible subcategory of DP(X), the leftmost
component R of (2) is called the residual category. In Section 3.2 we explain a mirror sym-
metry interpretation of residual categories, which justifies conjectures relating the structure
of the semiorthogonal decomposition (2) and residual category R to the small quantum
cohomology ring of X, stated in Section 3.3. Further, in Section 3.4 we specify the pre-
dictions of the above conjectures for some homogeneous varieties, namely Grassmannians
and adjoint and coadjoint homogeneous varieties; remarkably, in all these cases the resid-
ual categories have a combinatorial nature: when nonzero they are generated by completely
orthogonal exceptional collections or equivalent to derived categories of Dynkin quivers.
Finally, in Sections 3.5-3.6 we discuss the residual categories of hypersurfaces and com-
plete intersections in projective spaces. In these cases the structure of residual categories is
much more complicated. In the case of hypersurfaces, the residual categories have a frac-
tional Calabi-Yau property, and in the case of complete intersections, they are fractional
Calabi—Yau up to an explicit spherical twist; using this we show that they provide interesting
examples of categories with distinct upper and lower Serre dimensions.

In the last part of this survey (Sections 4-5) we discuss two ways that allow us
to find a nice categorical replacement for a degeneration of schemes, i.e., for a flat proper
morphism f: X — B to a smooth pointed curve (B, 0) such that

e the morphism f?:= f|xo: X? — B is smooth, and
* the central fiber X := X, of f is singular.
Here and below we denote

B? := B\ {0}, X°:=Xxg B’ X,:=X xp{o}, 3)
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so that we have the following commutative diagram with Cartesian squares:

J

X =%l > X0
T
{o}¢ B OB°

We show that, in the case where f is projective and the central fiber X = X, has only
ordinary double points as singularities, under appropriate assumptions, one can find

+ a smooth and proper B-linear “modification” D of the derived category D°(X)
of the total space, and

* a smooth and proper “modification” D, of the derived category DP(X,) of the
central fiber

such that D, is the base change of O along the embedding {0} < B. The precise meaning of
the word “modification” depends on the parity of dim(X) and is explained in the following
two theorems. For simplicity, we assume that the central fiber has a single ordinary double
point.

In the case where dim(X) is even, we construct a simultaneous categorical resolu-
tion of singularities of X, which is a special case of a categorical resolution of singularities
introduced in [55] and [59, §4].

Theorem 1.1 (Theorem 4.5). Assume given a commutative diagram (4) with Cartesian
squares, where f is a flat projective morphism to a smooth pointed curve such that f° is
smooth and the central fiber X has a single ordinary double point x, € X.

If dim(X) is even and X has an ordinary double point at x,, there is a smooth and
proper B-linear triangulated category D and a commutative diagram

Ix %

D (X) =—— DPerf () ——L—— DPerf(X0)
Dy D A Do

JT T

DY(X) = DP(X) L D ()

14

where D, and Dpo are the base change categories of D, the functor * is left adjoint to 1y,
wy is left adjoint to mwo«, and

meom® ~id, myxomW

In particular, D provides a categorical resolution of singularities for X, and D, provides a
categorical resolution of singularities for X .

In fact, even more is true—the functors 7* and 7} are also right adjoint functors
of w4 and 7,4, and the categorical resolutions D and D, of X and X are weakly crepant in
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the sense of [55, DEFINITION 3.4]; this follows easily from the construction and [55, PROPOSI-
TION 4.5].

The construction in the case where dim(X) is odd is in some sense opposite to the
above. Note that in this case the exceptional divisor £, C Bly, (X) of the blowup Bl,, (X)
is a smooth quadric of even dimension, hence it comes with two spinor bundles.

Theorem 1.2 (Corollary 5.19 and Remark 5.20). Assume given a commutative diagram (4)
with Cartesian squares, where f is a flat projective morphism to a smooth pointed curve
such that f° is smooth and the central fiber X has a single ordinary double point x, € X.

If dim(X) is odd, X is smooth at x,, and there is an exceptional vector bundle &
on Bly, (X) such that the restriction &| g, to the smooth quadric E, is isomorphic to a spinor
bundle then there is a smooth and proper B-linear triangulated category O and a commu-
tative diagram

(P, Dy) =——— ((ix?), D) — L= Do
l*
I I
D°(X) ————=D"(X) DP(X?)
l*

where  C DP(X) is an admissible triangulated subcategory such that the triangulated
subcategory (i) C D°(X) generated by the image of P under i is admissible, the cat-
egories D, and Dpo are base changes of D, the functors iy and i* in the top row are
compatible with the semiorthogonal decompositions, while j* vanishes on {i«P).

In both cases we obtain a smooth and proper B-linear category O such that for each
point b # o in B the fiber D, is equivalent to DP(X3), the derived category of the fiber of
the original family of varieties. Thus, the category £, provides a smooth and proper exten-
sion of the family of categories DP(X},) across the point o € B. Note, however, that this is
achieved in two “opposite” ways—in the situation described in Theorem 1.1, the category D,
is “larger” than D®(X) (in particular, D°(X) is a Verdier quotient of £,), while in the situa-
tion described in Theorem 1.2, the category D, is “smaller” than D®(X) (in particular, D,
is a semiorthogonal component of DP(X)).

The construction described in Theorem 1.2 does not have a direct geometric ana-
logue; it is called absorption of singularities. More precisely, we say that the subcategory
P C DP(X) absorbs singularities of X and, moreover, it provides a deformation absorption.
We expect the notions of absorption and deformation absorption of singularities (defined in
the general categorical context in Section 5) to become as important as the notion of resolu-
tion of singularities for the geometry of schemes.

The category J# constructed in Theorem 1.2 has a particularly interesting structure.
It is generated by a single object P € D°(X) such that

Ext*(P,P) =~ k[t], deg(t) = 2.

We call such objects CIP*°-objects. They can be considered as limiting versions of CP”"-
objects of Huybrechts—Thomas [35], but while the latter give rise to autoequivalences of

1158 A. KUZNETSOV



categories containing them, the former provide semiorthogonal decompositions with inter-
esting properties. In particular, if P € D*(X) is a CP*-objectand f: X — B is a smoothing
of X, the object i,P € D°(X) is exceptional.

We finish Sections 4 and 5 by sample applications of Theorems 1.1 and 1.2 to geom-
etry of cubic fourfolds (see Section 4.3) and Fano threefolds (see Section 5.4), respectively.
In particular, we show that the nontrivial components of the derived categories of Fano three-
folds of index 2 and degree 1 < d < 5 (with a minor modification in the case d = 1) can
be represented as smooth and proper limits of the nontrivial components of the derived cat-
egories of Fano threefolds of index 1 and genus 2d + 2. This gives a corrected version of a
conjecture from [56].

Other important results. Of course, this survey could not cover all interesting results
related to semiorthogonal decompositions, so we take this opportunity to list here some
important achievements not mentioned in the body of the paper.

In a contrast to dimensions 3 and less, Fano varieties of higher dimensions are not
yet classified. However, there are several lists of interesting Fano varieties (e.g., see [48]);
and, of course, it is interesting to describe their derived categories, especially when they
are expected to have interesting semiorthogonal components. Some results in this direction
can be found in [14, 16, 60, 61]. There is also some progress extending results about derived
categories known over an algebraically closed field to more general fields [4,7,63, 64].

An interesting general question, directly related to the subject of this survey, is if it
is possible to extend a semiorthogonal decomposition of a special fiber X, of a family X'/ B
to a B-linear semiorthogonal decomposition. In [13] a positive answer is given under the
assumption that X, is smooth and proper, and after an étale base change.

An intriguing connection between L-equivalence of smooth projective varieties
(recall that X is L-equivalent to X, if the difference of classes [X1] — [X>] is annihilated
in the Grothendieck ring of varieties by the class [A?] of an affine space) and their derived
equivalence was discovered, see [26,75] and references therein.

Two important general results proved recently are Orlov’s gluing theorem [84] and
Efimov’s embeddability theorem [25]. The first says that any gluing of derived categories of
smooth projective varieties can be realized as an admissible subcategory of another smooth
projective variety. The second gives a criterion for realizability of an enhanced triangulated
category as an admissible subcategory in a category generated by exceptional collection. It
shows in particular that any phantom category admits such a realization, thus providing a
negative answer to [59, CONJECTURE 2.10].

Finally, one of the mostly rapidly developing related areas is the study of Bridgeland
stability conditions on semiorthogonal components. We refer to [8,9] for surveys of this area.

Conventions. In this paper all schemes are separated of finite type over a base field k and
all categories are k-linear. We write 4 = (A1,. .., #A,) for a semiorthogonal decomposition
of a category # with components +4;. We denote by D°(X) the bounded derived category
of coherent sheaves and by DP*f(X) the category of perfect complexes on a scheme X . All
pushforward, pullback, and tensor product functors are derived, although we use underived
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notation for them. When we consider enhancements, we usually mean enhancements by dif-
ferential graded categories as in [66], but one can also use infinity categories as in [88]. We
often use the notions of smoothness and properness for enhanced triangulated categories.
Recall that a dg-enhanced triangulated category is smooth if the diagonal bimodule over the
underlying differential graded category is perfect, and proper if for all objects %7, F5 of the
category the graded vector space Ext® (7, #>) has finite total dimension.

2. NEW RESULTS IN HOMOLOGICAL PROJECTIVE DUALITY

Homological projective duality studies the family of hyperplane sections of a given
projective variety. It was the main subject of the survey [59] (see also [94] for an alternative
perspective). In this section we review the main advances in HPD obtained after 2014.

2.1. Noncommutative HPD

It has already become standard to consider nice triangulated categories as derived
categories of “noncommutative varieties”. From this point of view, it was clear from the
very beginning that the operation of homological projective duality is very noncommutative
in nature—a manifestation of this is the fact that the result of HPD (even when applied to
a commutative variety) is typically noncommutative. However, it took some time for a firm
foundation [88] for noncommutative HPD to be developed.

The setup of noncommutative HPD 1is the following. Instead of a smooth proper
variety endowed with a morphism to a projective space P (V') and a Lefschetz decomposition,
one considers a smooth and proper Lefschetz category (+4, #¢) over P (V). By definition this
consists of

e a P(V)-linear category # (in the sense explained in the Introduction), and
¢ an admissible subcategory 4o C 4 (called the Lefschetz center of ),
such that # extends to right and left Lefschetz (semiorthogonal) decompositions
A = (Ao, A1(1), ..., Ay_1(m— 1)) and A = (Al_m(l —m),...,A_1(—1), Ao),
respectively, where
Ap_1 C- C A CAy and A, C--- C Ay C A

are two chains of admissible subcategories (called the Lefschetz components of #4). The com-
ponents +,; of both Lefschetz decompositions (if they exist) are determined by g, and if
one of the Lefschetz decompositions exists then the other exists as well, [55, LEMMA 2.18, 2.19]
or [88, LEMMA 6.3]. Moreover, the maximal m such that «4,,_; # 0 equals the maximal m such
that 41—, # 0; it is called the length of the Lefschetz category and is denoted length(4).
The length of any Lefschetz category (+4, #¢) over P (V) satisfies the inequality

length(+A) < dim(V),
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and if the equality holds and if m = length(+), the category + contains
An—t @ DPN(P(V)) = (Am—t1. An_1(1),..., An_1(m — 1)) (5)

as a rectangular Lefschetz subcategory (see [88, COROLLARY 6.19]) and HPD for +4 reduces to
HPD for the orthogonal complement of (5) in #4 (this is the residual category in the sense
of Section 3). Thus, without losing generality, one can always reduce HPD to the case where
the Lefschetz category (+4, #¢) is moderate, i.e., length(+A) < dim(V).

Given a Lefschetz category (+4, #4¢) over P (V), one constructs the HPD Lefschetz
category (A, AE,) by adapting the definition [52, DEFINITION 6.1]. Namely, consider the
embedding of the universal hyperplane

H(P(V)) = P(V) x P(VY)

and the base change Ay (y)) of the P(V)-linear category + along the natural projec-
tion H(P(V)) — P (V). Then A" is defined (see [88, DEFINITION 7.1]) as

Al = {5‘7 € AP ) | 6+F € A9 K Db(P(VV))} C Aue ),

which is P(VY)-linear category with respect to the P(VY)-linear structure of Agmp )
induced by the morphism H(P (V)) — P (V). Furthermore, the Lefschetz center

A C Al

is defined (see [88, LEMMA 7.3] and [69, (2.17)]) as an explicit admissible subcategory in Al
For a linear subspace L C V, we denote by

Lt :=Ker(VY - LY) C VY

its orthogonal subspace and by Ap(z) and Ag,, (L) the base change of 4 and A" along the

embeddings P(L) < P(V) and P(L1) < P(V"), respectively.
The fundamental theorem of noncommutative HPD is stated as follows. We denote
by +; and A]qc the Lefschetz components of (4, #¢) and (A", Ag), respectively.

Theorem 2.1 ([88, THEOREM 8.7, 8.91). Let (A, A¢) be a moderate Lefschetz category over a
projective space P (V). Then the HPD Lefschetz category (A", AE)) over the dual projective
space P (V) is also moderate and the HP double dual category is Lefschetz equivalent to
the original
b b
(A", (A7) = (A, o).
Moreover, if L C V is a linear subspace and L+ C V'V is its orthogonal complement with
r = dim(L) and s = dim(LY), and if m = length(A), n = length(A"), then there are
semiorthogonal decompositions
Apry = (K, As(1), ... Ap_i(m —s)),

‘A’IHP’(LL) = (AL, = n), . AL (1), K L),
and an equivalence of triangulated categories Ky, >~ K/ .

The simplest example is linear HPD (see [52, §8] for a relative version).
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Example 2.2. Let 0 C W < V be a linear subspace; thus P (W) is a scheme over P (V).
Then D°(P(W)) endowed with the Lefschetz center (Opw)) C DP(P(W)) is a moderate
Lefschetz category over P(V'), and the HPD of (P(W), (Opw))) is given by the Lefschetz
category (P(W1), (Opw1y)), where WL C VV is the orthogonal complement of W.

See [5e-53] for a number of other examples of HPD.

Homological projective duality is related to classical projective duality via critical
loci of morphisms [52, THEOREM 7.9] and this connection persists on the noncommutative level:
the classical projective dual of a Lefschetz category (4, #¢) (defined as the set of all hyper-
planes in P (V') such that the corresponding hyperplane section of +4 is singular) coincides
with the set of critical values of A" (defined as the set of points in P (V") such that the corre-
sponding fiber of A" is singular) [88, PROPOSITION 7.19]. When both 4 and A" are the derived
categories of subvarieties X C P(V) and Y C P(V'V), this reduces to classical projective
duality XV = Y (see Theorem 2.10 for an example).

Noncommutative HPD itself does not provide new examples of homologically pro-
jectively dual varieties (or categories) but, as we already pointed above, it provides a firm
background for developing the theory and for proving results like that in the next subsection.

2.2. Categorical joins

The categorical join construction described below provides an appropriate homo-
logical extension of the classical join construction in projective geometry; it is perfectly
compatible with HPD; moreover, it provides new HPD examples and, as a consequence,
new interesting results about derived categories of algebraic varieties.

Recall that the join of two projective varieties X7 C P(V1) and X, C P(V3) is
defined as the subvariety

J(X1. X2) CP(V1 @ Va)

swept out by all lines connecting points of X; to points of X,, where we consider both X
and X, as subvarieties of P(V; & V3) via the natural embeddings P(V;) C P (V7 & V>).
It is a well-known result in projective geometry that the join construction commutes with
projective duality:

J(X1. X2)Y =J(X). X5) c P(V)Y @ Vy).
In [69] we define the categorical join of Lefschetz categories (A'!, 4() over P(V;) and
(A2, A2) over P(V2), and prove a similar duality relation on the HPD level, see Theorem 2.4

below. The definition is carried out in three steps.
In the first step, the join J(X1, X3) is replaced by the resolved join

J(X1, X2) := Px,xx,(O(=1,0) ® 9(0,-1)).

The resolved join is smooth (as soon as X; and X, are) and provides a natural resolution of
singularities for the join J(X1, X2), which is typically very singular. In particular, we have
the universal resolved join

J(P (). P(V2)) = Pepuy)xp) (O(—1,0) ® 00, —1)) = Blpy,)up ) (P(V1 & V2)).
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We denote by &;: P(V;) x P(Va) < J(P(V;), P(V»)) the exceptional divisor of the blowup
lying over P(V;), and by p: J(P(V1), P(V»)) — P (V1) x P(V,) the P!-bundle, so that we
have a commutative diagram

P(V1) x P(Va) ———= J(P(V1), P(V2)) ~—————P (V1) x P(V2)

P(Vl) X P(Vz)

Note that the compositions p o g; are isomorphisms.
In the second step we define the resolved join of P(V;)-linear categories #' as the
base change
(AL A7) = (AT B A )50, 2 1)
of the P (V) x P(V,)-linear category +! X A? along the IP!-bundle p. The blowup mor-
phism J(P(V1), P(V2)) — P(V; @ V») endows J(A', A2) with a P(V; @ V>)-linear struc-
ture. The morphisms ¢; and p defined above induce a commutative diagram of functors

*
&1

AR A <1 JALAY) 2 s AR A2

Al R A2
Note that the compositions &} o p* are equivalences.

So far, the construction uses the P (V;)-linear structure of the categories Al but is
independent of their Lefschetz centers A} C 4! and AZ C #4?; they come into play in the
third step of the construction. We define the subcategories of J(4!, A42):

F (A A?) = {F € J(A', A%) | e](F) € A K A and e5(F) € A) K A?},  and
Fo 1= p*(Ag B AG).
The isomorphisms &} o p* = id imply the inclusion o C g (A, A?), and one can prove

that the subcategory g is a Lefschetz center in g (A!, 42).

Theorem 2.3 ([69, THEOREM 3.21]). If (A, A)) and (A%, A3) are Lefschetz categories
over projective spaces P (V1) and P (V2) then (§(A', A?), o) is a Lefschetz category
over P(Vy @ V3) of length length(A') + length(#42).

The categorical join (f (4!, A?), do) can be thought of as a categorical resolution
of the usual join, see [69, PROPOSITION 3.17 AND REMARK 3.18]. The most important property of
the categorical join operation is stated in the following

Theorem 2.4 ([69, THEOREM 4.1]). If (A', A]) and (A%, A]) are moderate Lefschetz cate-
gories over projective spaces P (V1) and P (V) then there is a Lefschetz equivalence

(AL A2) = g((A1)" (4%)7).

where both sides are considered with their natural Lefschetz structures over P(V)Y @ V).
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2.3. Nonlinear HPD theorem

Many (but not all, see [69, §6.2]) geometric applications of categorical joins rely on
a categorical version of the following simple observation about the usual join operation.

As before assume given a pair of projective varieties X1 C P(V}) and X» C P(V2),
but now assume dim(V7) = dim(}3). Assume also given linear isomorphisms

Sl: Vl :> V  and 521 V2 :> V,

so that we can consider both X; and X, as subvarieties in P (V). Let

1,—2)

L(tr.£2) = Ker(Vi @ Vs —272), )

be the equalizer of & and &,. Then it is easy to check that
J(X1, X2) NP(L(£1,£2)) = X1 N X7,

where we consider both sides as subvarieties in P (1) using the identifications &; and &,
and the induced identification L(&1, &) =~ V. Furthermore, X; N X, can be thought of
as X1 Xp(v) X2, and since the fiber product of varieties is categorified by the tensor product
of linear categories (see [88, §2.3] for a definition), the above isomorphism has a categorical
generalization:

Lemma 2.5 ([69, LEMMA 5.1]). If (AL, AL) and (A%, A2) are Lefschetz categories over pro-
jective spaces P(Vy) and P (Vo) and &;:V; = V, i = 1,2, are isomorphisms, there is an
equivalence of categories
1 42 ~ 4l 2
FAL Aoy = A Q) A
DP(P(V))

between the base change of $(AY, A?) along the inclusion P(L(£1, £)) — P(V, @ V)
and the tensor product of the P (V)-linear categories 4! and A% over D*(P(V)).

Combining this observation with Theorems 2.1 and 2.4, we obtain

Theorem 2.6 ([69, THEOREM 5.5]). Let (A, AL) and (A2, A3) be moderate Lefschetz cate-
gories over projective spaces P (V1) and P (V3) of equal dimensions. Let

N =dim(V;) = dim(V,), m = length(g (A", A%))., n= length(g((e/%l)q, (Az)u)),

and let §; and ;’,u( denote the Lefschetz components of § (A", A2) and § (AN, (A2)D). For
any isomorphisms §;:V; => V, i = 1,2, there are semiorthogonal decompositions

A Q) A = (Ke gy SN Fmor (m = N)),
De(P(V))
1\f 2\l _ 4l i
(A" Q@ (A) = {F (V= m) F (1) Ky ey

Db (P(VV))

and an equivalence of categories K, ¢, ~ ‘KEEV)‘I €)1 where the P(VV)-linear struc-
. 1 S\S2

tures of the HPD categories (A!)" are induced by the isomorphisms (&’ )L /A =y
fori =1,2.
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If we consider the special case where one of the Lefschetz categories, say #72, is the
derived category of a linear subspace P (L) C IP(V3) = P (V') with its natural Lefschetz struc-
ture, then, as it was explained in Example 2.2, (AZ)tl is Lefschetz equivalent to the derived
category of the orthogonal subspace P(L1) C P (V,') = P(VY), and there are equivalences

Al Q) D°(P(L)) = Ap .
Db (P (V)
A)" @ D(B(LY) = (A)puy.
D (P(V'V))
where the right-hand sides are the base change categories. In this case the statement of
Theorem 2.6 is equivalent to the statement of Theorem 2.1; therefore Theorem 2.6 can be
considered as a nonlinear HPD theorem.
Below we give two sample applications of Theorem 2.6. The first is a consequence
of HPD for the Grassmannian Gr(2, 5).

Corollary 2.7 ([85, PROPOSITION 1.1], [20, THEOREM 1.1], [69, THEOREM 6.1]). Let Vi and V, be
vector spaces of dimension 5 and let &;: N2°V; =5V, i = 1,2, be linear isomorphisms. Set

X :=Gr(2, V1) xp) Gr(2,V2) and Y := Gr(2,V}) xpvy Gr(2, V).

If the fiber products X and Y have the expected dimension 3, then there is an equivalence of
triangulated categories D*(X) ~ D(Y).

The varieties X and Y are deformation equivalent Calabi—Yau threefolds, and as
the above corollary states they are derived equivalent. However, they are not birational in
general [85, THEOREM 1.2], [26, THEOREM 1.2], and thus the pairs (X, Y') provide counterexamples
to the so-called birational Torelli problem. See [44] for another similar example.

The second application is a similar consequence of HPD for the connected com-
ponents OGr (5, 10) of the orthogonal isotropic Grassmannian OGr(5, 10); it provides
examples of deformation and derived equivalent, but not birational Calabi—Yau fivefolds.
Recall that OGr4 (5, 10) are homogeneous varieties of the simple algebraic group Spin(10),
and the primitive generators of their Picard groups embed them into the projectivizations of
the two mutually dual 16-dimensional half-spinor representations of Spin(10).

Corollary 2.8 ([81, PROPOSITION 4.2], [69, THEOREM 6.3]). Let Vi and V, be vector spaces
of dimension 10 endowed with nondegenerate quadratic forms, let S1 and S, be the 16-
dimensional half-spinor representations of the corresponding groups Spin(V;), and let
£:S; = V be linear isomorphisms. Set

X = OGI’+(5, Vl) XP(V) OGI‘+(5, Vz) and Y = OGI’_(S, Vl) XP(VV) OGI”_(S, Vz).

If the fiber products X and Y have the expected dimension 5, then there is an equivalence of
triangulated categories D*(X) ~ DP(Y).

Quadratic HPD discussed in Section 2.4 is also a special case of nonlinear HPD.
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2.4. Categorical cones and quadratic HPD

As we have seen above, examples of geometrically meaningful Lefschetz categories
for which the HPD categories are also geometrically meaningful and well understood lead
to applications of the nonlinear HPD theorem with interesting geometric consequences. One
nice example of such Lefschetz categories can be obtained from smooth quadrics.

Assume the base field k is algebraically closed of characteristic not equal to 2. Let Q
be a smooth quadric, i.e., a smooth proper variety isomorphic to a hypersurface of degree 2
in a projective space. Let O g (1) be the ample line bundle that embeds Q as a quadric hyper-
surface. A morphism f: Q — P (V') such that f*Op)(1) = Og(1) is called standard: thus
either

e f is adegree 2 embedding into a linear subspace of P (V), or
e f is adegree 2 covering over a linear subspace of P (V') ramified over a quadric.

We say that f is nondegenerate if the subspace above (i.e., the linear span of f(Q)) is equal
to P (V). In what follows we always consider Q as a IP(V)-linear category by means of a
standard morphism Q — P (V).

Let § be a spinor bundle on Q (the only one, if dim(Q) is odd, or one of the two,
if dim(Q) is even).

Lemma 2.9 ([70, LEMMA 2.4]). The subcategory Q¢ := (S, ©) C D®(Q) is a Lefschetz center;
the length of the corresponding Lefschetz structure on DP(Q) is equal to dim(Q) and its
Lefschetz components are given by

(§.0), iflil=1-p,
(0), ifl—p<|i|=dim(Q) -1,
where p € {0, 1} is the parity of dim(Q).

Q =

The Lefschetz structure of D°(Q) described above is called a standard Lefschetz
structure of Q; note that it depends on the choice of the spinor bundle § (but the Lefschetz
structures associated to different choices of § are noncanonically equivalent).

Recall that if @ C P (V) is a smooth quadric hypersurface, the classical projective
dual of Q is also a smooth quadric hypersurface Q¥ C P(V"). The HPD for a smooth
quadric Q with a standard Lefschetz structure is described in similar terms.

Theorem 2.10 ([7e, THEOREM 1.1]). Let f: Q — P (V) be a standard nondegenerate mor-
phism of a smooth quadric Q endowed with a standard Lefschetz structure. Then the HPD
of Q is given by a standard nondegenerate morphism % Q" — P(VV) of another smooth
quadric Q", where:

(1) If f is a divisorial embedding and dim(Q) is even, then Q" = QV is the clas-
sical projective dual of Q and f% Q" — P(VV) is its natural embedding.

() If f is a divisorial embedding and dim(Q) is odd, then f%: Q' — P(VV) is

the double covering branched along the classical projective dual of Q.
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(3) If f is a double covering and dim(Q) is even, then QY is the classical projective
dual of the branch locus of f and f%: Q% — P (V) is its natural embedding.

(4) If f is a double covering and dim(Q) is odd, then f': Q' — P(VY) is the
double covering branched along the classical projective dual of the branch locus
of f.

In all cases the HPD Lefschetz structure of Q% is a standard Lefschetz structure.

This already allows one to apply the nonlinear HPD theorem, but the application
becomes much more powerful after an extension to singular quadrics (see [71, §1.4] for an
explanation why this is useful). Note that the derived category of a singular quadric is not
smooth and proper, so it does not fit into the framework of HPD adopted in this paper. On
the other hand, every singular quadric Q can be written as a cone Cy, ( Q) over a smooth
quadric 0, and since a cone is a special case of a join, one can use the formalism of cate-
gorical joins to find a suitable smooth and proper replacement for D°(Q). This is achieved
by the categorical cone construction.

Let (A, #Ao) be a Lefschetz category over P (1) and let Vp # 0 be a vector space.
We define the categorical cone €y, (/) as the categorical join

Cry (4) = (P (Vo). A),

where P (V}) is endowed with the standard Lefschetz structure from Example 2.2. In fact,
in [71] we use another definition, but it is equivalent to the above by [71, PROPOSITION 3.15].

The categorical cone €y, (), being the special case of a categorical join, is a Lef-
schetz category over P(Vy @ V'), which is moderate if # is, and can be thought of as a
categorical resolution of the usual cone. Combining Theorem 2.4 with Example 2.2, we
deduce the following

Theorem 2.11 ([71, THEOREM 1.1]). Let V = Vo @ V @ Vo and let (A, A¢) be a moderate
Lefschetz category over P(V). Then there is a Lefschetz equivalence

Ey, (A)F = Cyy (A7),
where both sides are considered as Lefschetz categories over P(VY).

Here we add the summand V to V' for higher flexibility of the construction. For
instance, in the next application to smooth quadrics it allows us to work with possibly degen-
erate morphisms of singular quadrics, like the morphism Cy, (0) — P(V) below.

Corollary 2.12 ([71, THEOREM 5.20]). Let V = Vo ® V @ Voo, let QO — P (V) be a standard
nondegenerate morphism of a smooth quadric Q andlet Q" — P (V) be its HPD morphism.
There is a Lefschetz equivalence

€y, (0)" =~ €yy (0Y),

where both sides are considered as Lefschetz categories over P(VY).
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This leads to the following quadratic HPD theorem. In the statement the assumption
that a P(V')-linear category + is supported away from P (1) means that the IP(V')-linear
structure of #4 is induced by a (P(V) \ P (Vp))-linear structure; in this case the linear pro-
jection P(V) \ P(Vy) — P(V/Vp) provides A with a P(V/ Vy)-linear structure. A similar
convention is applied to Al

Theorem 2.13 ([71, THEOREM 5.21]). Let (A, A¢) be a moderate Lefschetz category over P (V')
and let (A, AE)) be its HPD. Assume given a direct sum decomposition V. = Vo @ V @ Vo
such that the P (V)-linear category 4 is supported away from P(Vy) and the P(VV)-linear
category A is supported away from P(VY). Let 0 — P(V) be a standard nondegener-
ate morphism from a smooth quadric Q and let Q% — P(VV) be its HPD morphism and
denote Q := Cy,(Q), Q" := Cyy(Q"). Let

N =dim(V), m = length(A), n = length(Au), d =dim(Q), e= dim(Qn).

Then there are semiorthogonal decompositions

AQ = <J<Q(')4’)’ Ae(l) ® 85 '--,Am—l(m _e) ® Sa
An-a()® O..... An_i(m +d —N)® 0).
(AT e = (A}, (N—e=m) ®0..... AL y(-1)®0,
AL (d—n) @S AL (=) ® §5 K, (A7),

and an equivalence of triangulated categories Kg(#A) ~ K ’Qu(a‘\;u), where § and S" are
spinor bundles on Q and QF, Ao is defined as the base change of A along the mor-
phism Q — P (V) and (Au)Qq is defined analogously.

Again, here is a sample application of this result. Recall that a Gushel-Mukai vari-
ety [23] is either a quadratic section of a linear section of Gr(2, 5), or a double covering of a
linear section of Gr(2, 5) branched at a quadratic section. In other words, a Gushel-Mukai
variety can be described uniformly as a dimensionally transverse fiber product

X = Gr(z, V) X]P’(/\ZV) Q9

where V is a 5-dimensional vector space and Q — P(A2V) is a standard (possibly degen-
erate) morphism of a (possibly singular) quadric. Note that for each Q as above there is a
direct sum decomposition

NV =VodV & Ve (6)

and a standard nondegenerate morphism Q — P (V) from a smooth quadric Q such that

one has Q = Cy, (Q).

Theorem 2.14 ([71, THEOREM 6.4]). Let V be a vector space of dimension 5, let (6) be a direct
sum decomposition of N2V, let Q — P (V) be a standard nondegenerate morphism of a
smooth quadric, and let Q% — P (V) be its HPD morphism. Assume the fiber products

X =Gr(2,V) xpaev) Cro(Q) and Y = Gr(2,VY) xpa2pvy Cry (Q%) (D)
are smooth GM varieties of dimensions dx > 2 and dy > 2. Let Ux and ‘L(’Y denote the pull-

backs to X and Y of the rank 2 tautological bundles of the corresponding Grassmannians.
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Then there are semiorthogonal decompositions

D°(X) = (Kx,0x (1), Uy (1), ..., Ox (dx —2), Uy (dx —2)). ®)
D°(Y) = (Uy (2 —dy). Oy (2 —dy),.... Uy (-1), Oy (—1), X}), 9)

and an equivalence of triangulated categories Kx ~ Ky

With a bit more work [71, cOROLLARY 6.5] this implies the duality conjecture [68,
CONJECTURE 3.7] for Gushel-Mukai varieties.

2.5. Other results

To finish this section we list briefly other results developing HPD that appeared
after 2014 and have not been mentioned in [59]. First, there are several works establishing
HPD for new classes of varieties. The most interesting among these are:

e The work of Rennemo [89], where the HPD for the symmetric square of a pro-
jective space P” (considered as a stack) is constructed, see also [34] by Hosono—
Takagi for a more geometric description of this HPD for small values of n.

* The work of Rennemo—Segal [9e], where a construction that allows to deduce
some consequences of HPD for Gr(2, 2n + 1) (without proving the HPD itself)
is suggested.

Besides these major advances, the following papers should be mentioned: [15], where the
linear HPD is applied to deduce HPD for determinantal varieties; [6], where a differential
graded algebra providing the HPD for a degree d (with d > 3) Veronese embedding of a
projective space is described; and [63, sp], where HPD for P! x P! x P! is established.

There are also some results contributing to general properties of HPD. Among these
one should mention [22], where the HPD for a morphism f: X — P (V) is related to the HPD
of the same variety X (blown up if necessary) with respect to a morphism f’: X — P(V")
obtained from f by composing with a linear projection P (V') --> P(V’) (see [69, B.1] for a
categorical version of this result). Finally, one should mention the series of papers [36-41],
where an alternative approach to categorical joins is developed and many related results are
obtained.

3. RESIDUAL CATEGORIES
Let € be a triangulated category and let ae: € — € be an autoequivalence. We
say that an admissible subcategory 8 C € generates a rectangular Lefschetz collection of
length m with respect to e if the collection of subcategories B, ae(B), ... ,ag_l (B) is
semiorthogonal in €. Admissibility of B implies that this collection extends to a semiorthog-
onal decomposition
€ =(R.B.ae(B),....al " (B)) (10)

and the component R of this decomposition is called the residual category, see [72,78].
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Residual categories often appear in HPD: if the Lefschetz decomposition of a Lef-
schetz category + is rectangular, i.e., A9 = -+ = sA,;—1, the nontrivial components Kp(r)
appearing in Theorem 2.1 are the residual categories of #p(z,). In particular, residual cate-
gories often appear in families of semiorthogonal decompositions.

3.1. Serre compatibility and rotation functors
The residual category R defined by (10) has especially nice properties if the sub-
category B is Serre compatible in the sense that the condition

Se(af2(B)) = B (11)

holds. Note that the Serre functor commutes with any autoequivalence, hence (11) implies
that the autoequivalence Se o ai¢ preserves all the components of (10).

One nice consequence of Serre compatibility is the following. First of all, R comes
with a natural autoequivalence, induced by the so-called rotation functor Og. Below we
denote by L g and Rg the left and right mutation functors of € with respect to 8.

Proposition 3.1 ([78, THEOREM 2.8], see also [67, THEOREM 7.7] and [62, COROLLARY 3.18]). If an
admissible subcategory B C € is Serre compatible then the composition

Og:=Lgoae

induces an autoequivalence of the residual category R, with the inverse autoequivalence
induced by the composition agl oRg.

Second, the relation between the autoequivalence
ag = 0g|g
and the Serre functor S of R is analogous to that of ae and Se.

Theorem 3.2 ([78, THEOREM 2.8, REMARK 2.9, PROPOSITION 2.18]). I[f B C € is Serre compatible
and R is the residual category then

Sz oa’y = (Se o a}f)|x.
Moreover, there is a bijection between
* Lefschetz decompositions of R with respect to o and
e Lefschetz decompositions of € with respect to ae containing B in every compo-

nent.

3.2. Mirror symmetry interpretation

Before discussing further properties of residual categories we sketch their interpre-
tation from the point of view of mirror symmetry. This section is mostly speculative, but it
serves as a motivation for precise mathematical conjectures stated in Section 3.3.
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In this subsection, we take € = D(X) to be the derived category of a smooth
complex Fano variety X and let

ae(-) =)L (12)
be the twist autoequivalence given by a line bundle £. Assume also that
wp! = £, (13)

so that for any admissible subcategory 8 C DP(X) generating a rectangular Lefschetz
decomposition of length m the Serre compatibility condition (11) holds.

Homological mirror symmetry predicts the existence of a pair (¥, w) (called a
Landau—Ginzburg model) consisting of a proper morphism (called the superpotential)

w:Y — Al

from a smooth scheme Y endowed with a relative symplectic form, such that there are two
equivalences of triangulated categories

D°(X) ~ FS(Y, w), (14)
Fuk(X) >~ MF(Y, w), (15)

where Fuk(X) is the Fukaya category of X, FS(Y, w) is the Fukaya—Seidel category
of (Y, w), and MF(Y, w) is the category of matrix factorizations for (Y, w).

A Landau-Ginzburg model for X is very far from being canonically defined. On
the other hand, the equivalence (14) implies that the groups of autoequivalences of DP(X)
and FS(Y, w) coincide, hence the symmetry of D°(X) provided by the autoequivalence (12)
should correspond to an autoequivalence ags of FS(Y, w), i.e., to a symmetry of (Y, w).
Since the (inverse) Serre functor of FS(Y, w) corresponds to the 27 -rotation around the
origin of the target plane A! = C of the superpotential w, the autoequivalence ags should
correspond to the 27 /m-rotation. Therefore, we expect that there exists a u,,-equivariant
Landau—Ginzburg model for X, i.e., a Landau—Ginzburg model (Y, w), where Y is endowed
with a p,,,-action and the morphism w is ,,-equivariant for the standard p,,-action on A,

So, from now on we assume that (Y, w) is u,,-equivariant. The Fukaya—Seidel cat-
egory FS(Y, w) is localized over the critical values of the superpotential w. Let

Crit(w) = {29, 21,...,zy} C Al (16)

be the set of critical values of w. For each 0 <i < N choose a C*-path y; in Al connecting
the point z; to oo = P!\ A! in such a way that the paths do not intersect and their nat-
ural cyclic order corresponding to the way they arrive at co is compatible with the linear
ordering of the points z; in (16). By the definition of FS(Y, w) this gives a semiorthogonal
decomposition (depending on the isotopy class of paths ;)

FS(Y,w) = (Bo, B1..... Bn)

such that the component B; is localized over z;.
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Since w is u,,-equivariant, the set (16) is g ,,-invariant. It may or may not contain
the point 0; in any case it will be convenient to set

zp:=0¢€ Al
and if this is not a critical value of w, set Bg := 0. So, let
Z1,...,zny € Al \ {0}

be the nonzero critical values of w. Since the action of u,, on A! \ {0} is free, m divides N
and reordering the points if necessary we can assume that

Zi+N/m = § - Zi (7

for1 <i <N — N/m, where { = exp(2w ~/—1/m). Furthermore, we can choose the paths y;
in such a way that y;  n/», = ¢ - y;. Then it follows that

Bitn/m = aps(B;),
so gathering the components B4, ..., By, together and setting
B = (31,...,31\]/"1), R = B(),

we see that B is admissible, Serre compatible of length m, and we have a semiorthogonal
decomposition
FS(Y,w) = (R, B.ogs(B).....af5 ' (B))

with residual category R. In particular, if 0 is not a critical value for w, the residual category
vanishes and FS(Y, w) acquires a rectangular Lefschetz decomposition. In view of (14), the
category D°(X) should have a decomposition of the same type.

The above speculation shows the importance of understanding the critical values of
the Landau-Ginzburg superpotential for the structure of DP(X). It is interesting that one can
find them without describing the Landau—Ginzburg model, purely in terms of X, by using
the second equivalence (15). Indeed, the matrix factorization category by definition has a
direct sum decomposition

N
MF(Y.w) = (DMF(Y, w).,
i=0
with components MF(Y, w), supported over the same points z; € A!, therefore a similar
direct sum decomposition holds for its Hochschild cohomology
N
HH*(MF (Y, w)) = @5 HH* (MF(Y. w))
i=0
Thus, HH®* (MF(Y, w)) can be thought of as a finite length coherent sheaf on A!, i.e., a finite-
dimensional module over the ring C|z] of functions on Al. So, to control the points z;, it is

Z,"

enough to understand how the generator z of this ring acts on HH* (MF (Y, w)). For this we
use the isomorphism

HH® (MF(Y, w)) = HH®(Fuk(X)) 2 QHy, (X)
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(the first isomorphism follows from (15) and the second has been conjectured in [47] and is
proved in [3e, COROLLARY 91), where QH_,,(X) is the small quantum cohomology ring of X
with the quantum parameters specialized to the anticanonical class (see a more detailed dis-
cussion in the introduction to [79]). The right-hand side QH,,, (X) is isomorphic to H* (X, C)
as a vector space and is endowed with the supercommutative quantum multiplication; in
particular, one can consider the operator of quantum multiplication by the cohomology
class ky € QH_,,(X) of the anticanonical line bundle. Note that cohomological degree
(divided by 2) induces a Z/m-grading on the even part QHZ " (X) of QH,,,(X) (which
is a commutative ring), i.e., a jt,,-action on its spectrum

QS(X) := Spec(QHIM (X)), (18)

can

and the corresponding morphism
kx:QS(X) — Al

is p,,-equivariant. It is expected that its image coincides with the p,-invariant finite
subset (16) in Al see [5, THEOREM 6.1] for the toric case and a discussion preceeding it.

3.3. The conjectures
Summarizing the above discussion, we suggest the following precise conjectures.
We use the notation introduced in Section 3.2. For a point z € A!, denote by QHZ*" (X)) )

can

the quotient ring of QHZ,."(X) that corresponds to the union of connected components

of QS(X) supported over z.

Conjecture 3.3. Let X be a complex Fano variety such that (13) holds. Assume the p,,-

invariant subset

kx (QS(X)) N (AT\{0}) = {z1.....zx} C AT\ {0},

is ordered in such a way that (17) holds. Then there is an Aut(X)-invariant semiorthogonal
decomposition
D'X)=(R.8.8%L,....80 L") (19)

and the Hochschild homology spaces of its components are given by

HHo(R) = QHen(X) Q) QHE(X)11(0),

QHES"(X)
N/m
HH.(8) = @D (QHen(X) @) QHE" (X))
i=1 QHZ" (X)

where in the right-hand sides we identify QH,,, (X)) with the space H*(X, C) = HH, (D" (X))
with the Hochschild homology grading.

The following example illustrates how this conjecture works.
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Example 3.4. Let X C P” be a smooth Fano complete intersection of type (dy, ..., dk)
with 3 < dim(X) < 2(n 4+ 1 —>_d;) — 1. Then, by [11, THEOREM], the small quantum coho-
mology ring of X can be written as

QH_,,(X) = C[h’a]aeHl’)ﬁ;{,f(X,c)/(hn_k"'l — . hea. o -y — (Oll,az)(hn_k . h8—1))’

where £ is the hyperplane class, ngi’n]f (X, C) is the primitive cohomology, (—, —) is the
intersection pairing, and § = ) _(d; — 1). Since the anticanonical class of X is a multiple
of h, the localization of this ring away from IC)?I (0) is obtained by inverting /4, and so it is
isomorphic to C[]/(h"**1=8 —1). Note that m :=n —k + 1 -8 =n 41— d; is the
Fano index of X, hence N =m, zy, .. ., zy are mth roots of unity, and QH_,, (X)K)?l ) = C
for 1 <i < m. Thus, Conjecture 3.3 predicts the existence of semiorthogonal decomposi-
tion (19) with components B such that HHe(8) = C. Such a decomposition is indeed easy

to construct, it is enough to take 8 = (Ox), see Section 3.6.

It also makes sense to combine Conjecture 3.3 with Dubrovin’s conjecture [24]
that predicts that generic semisimplicity of the big quantum cohomology ring BQH(X)
is equivalent to the existence of a full exceptional collection in DP(X). Note that generic
semisimplicity of BQH(X) implies that H*¥(X, C) = 0, hence QH,,(X) = QHS(X),

see [33, THEOREM 1.3]. Recall the finite length scheme QS(X) defined in (18) and the u,,-
equivariant morphism « y . Furthermore, let

QS™(X) := kx' (AT \ {0}) CQS(X). QS°(X) :=QS(X)\ QS™(X) C QS(X).
These are finite u,,-invariant subschemes of QS(X) and the action of w,, on QS*(X) is

free. Recall the autoequivalence e g defined in §3.1.

Conjecture 3.5 ([79, CONJECTURE 1.3]). Let X be a complex Fano variety such that (13) holds
and the big quantum cohomology BQH(X) is generically semisimple. Let N be the length
of the scheme QS™ (X).

(1)  There is a semiorthogonal decomposition (19), where the component 8B is
generated by an Aut(X)-invariant exceptional collection of length N/m.

(ii) The residual category R of (19) has a completely orthogonal Aut(X)-invari-

R= P Re

§€Qs°(X)

with components indexed by closed points § € QS°(X); moreover, the com-

ant decomposition

ponent R of R is generated by an exceptional collection of length equal to
the length of the scheme QS°(X) at £.

(iii) The autoequivalence o g permutes the components Rg of the residual cate-

gory; more precisely, for each point § € QS°(X) it induces an equivalence
ap: Re = Re ().

where g is a generator of JL,,.
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Most of the predictions in Conjecture 3.5 are specializations of assertions of Con-
jecture 3.3 to the case of a category with an exceptional collection. The only exception is
the complete orthogonality statement in part (ii). A justification for it, based on a com-
parison with the Fukaya—Seidel category FS(Y, w), can be found in [78] just before [7s,
CONJECTURE 1.12].

Example 3.6. Let X = Pm—1 x Pm—1 Then by the quantum Kiinneth formula [46] one has

QH(X) = C[hy, hal/ (R} — q1. k5 — q2).
QHcan(X) = (C[hlth]/(hrln - l’han - 1)’

and the Z/m-grading is defined by deg(h;) = deg(h,) = 1. Therefore,
QS(X) = oy X fhpy C A2,

where the embedding is induced by the natural embeddings u,, C A\ {0} C A!, and up
to rescaling of A! the map ky is induced by the summation map A? — A!.

If m is odd, QS°(X) is empty, hence Conjecture 3.5 predicts the existence of
an Aut(X)-invariant rectangular Lefschetz collection with zero residual category. Several
such collections, indeed, have been constructed in [89].

On the other hand, if m is even, QS°(X) has length m (it consists of all pairs (&, —£)
for & € p,,); consequently, Conjecture 3.5 predicts the existence of an Aut(X )-invariant rect-
angular Lefschetz collection with residual category generated by m completely orthogonal
objects. Such collection has been found in [79, EXAMPLE 1.4].

3.4. Residual categories of homogeneous varieties

In this subsection, we make the predictions of Conjecture 3.5 more explicit for some
homogeneous varieties of reductive algebraic groups and compare them with known results
about their derived categories.

According to an old folklore conjecture homogeneous varieties are expected to have
full exceptional collections (the conjecture is still not proved, see a discussion of known cases
in [73, §1.2] and more recent developments in [12, 29, 31,79, 93]). Therefore, Conjecture 3.5
should be applicable and we only need to compute the small quantum cohomology ring.
This is pretty easy for Grassmannians.

Example 3.7. The small quantum cohomology ring of X = Gr(k, n) can be presented as
Clety vy Stoen oSt (L +c1 4o+ )L+ 514+ 5,) = 1+ (=1D)Fg),

where ¢; and s; should be thought of as Chern classes of the tautological subbundle and
quotient bundle respectively, and ¢ is the quantum parameter (see [91, THEOREM ©.1]). Decom-
posing formally

k

n
l+a++a=[]0-x), l+si+-+sx= [] 1-x),
i=1 i=k+1
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where x1, ..., x, are the corresponding Chern roots, and specializing the quantum param-
eter ¢ to (—1)k*1, we conclude that {x;,...,x,} = I, Since the canonical class of X is
proportional to the first Chern class of the tautological bundle, we have up to rescaling

QS(X) = (k) N (AR \ A)) /Gy,

where A C A¥ is the big diagonal, @ is the permutation group, and the map «y is induced
by summation of coordinates in A¥. Furthermore, the natural action of , onQS(X) is given
by simultaneous multiplication of all coordinates by a root of unity. Thus, the u,-action is
free if and only if gcd(k, n) = 1, and otherwise orbits of length d correspond to subsets of
cardinality k/d in p,, /4.

Note that some free orbits may be contained in QS°(X) (by [92] this happens if
and only if both k and n — k are sums of nontrivial divisors of n, the simplest example
with ged(k,n) = 1 being n = 12 and k = 5), so the following conjecture is stronger than
the prediction of Conjecture 3.5.

Conjecture 3.8 ([78, CONJECTURE 3.10 AND LEMMA 3.91). If X = Gr(k,n) there is a rectangular
Lefschetz collection with residual category generated by

Ren=— Y u(&(%j)

d | ged(k,n), d>1

completely orthogonal objects, where

1, if d is square-free with an even number of prime factors,
u(d) =1 —1, ifd is square-free with an odd number of prime factors,
0, if d has a squared prime factor

is the Mobius function.

By now this conjecture is known for the case gcd(k, n) = 1, where the residual
category vanishes [28, THEOREM 4.3 AND PROPOSITION 4.8], as well as for the case where k is a
prime number [78, THEOREM 3.13].

For more complicated homogeneous varieties, we can also use the available quan-
tum cohomology computations to formulate a number of precise conjectures. We do this
below for some interesting classes of homogeneous varieties.

Recall that the adjoint (resp. coadjoint) homogeneous variety of a simple algebraic
group G is the orbit of the highest weight vector in the projectivization of an irreducible
representation of G, whose highest weight is the highest long (resp. short) root of G; in
particular, if the group G is simply laced, the adjoint and coadjoint varieties coincide.

The following conjecture is motivated by the results of [87]. For a group G we denote
by Dghort (G) the short roots subdiagram of the Dynkin diagram of G (if the group G is simply
laced, it is the entire Dynkin diagram).

Conjecture 3.9 ([79, CONJECTURE 1.8]). Let X be the coadjoint variety of a simple complex
algebraic group G. Then D°(X) has an Aut(X )-invariant rectangular Lefschetz exceptional

collection with residual category R, where
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(1) if the Dynkin type of G is A, and n is even, then R = 0;

(2) otherwise, R is equivalent to the derived category of representations of a quiver
Of type Dshort (G)

By now this conjecture is known for all Dynkin types except for the exceptional
types E¢, E7, Eg, see a discussion and references in [79].

For adjoint varieties (of non simply laced groups) the prediction of Conjecture 3.5
has been shown to be true with the last step recently accomplished in [93].

Theorem 3.10. Let X be the adjoint variety of a non simply laced simple complex alge-
braic group G. Then D°(X) has a full Aut(X)-invariant rectangular Lefschetz exceptional
collection with zero residual category.

The proof is a combination of [54, THEOREM 7.1] for type B, [78, EXAMPLE 1.4] for
type Cy, [93, THEOREM 1.1] for type F4, and [51, §6.4] for type G;.

3.5. Residual categories of hypersurfaces

Until now we only met examples of residual categories which were of combinatorial
nature (either generated by completely orthogonal exceptional collections or equivalent to
derived categories of Dynkin quivers). In Section 3.5-3.6 we consider more complicated
examples and concentrate on a description of their basic invariants: Serre functors and Serre
dimensions.

Let X C P” be a Fano hypersurface, i.e., a hypersurface of degree d < n. Note that

oy' = Ox(n+1-4d),
hence (13) holds for £ = Ox (1) and
m=n+1-d.

Furthermore, the category 8 := (Oy) is admissible in the derived category of perfect com-
plexes DP(X) (we do not assume X to be smooth and therefore consider DP*f(X) instead
of D°(X)) and induces a rectangular Lefschetz collection of length m

D™ (X) = (Rx, Ox.....Ox(m — 1)) (20)

defining the residual category Ry C DP™(X). Finally, as X is a Gorenstein scheme, the
category € = DPf(X) has a Serre functor given by tensor product with wy and shift
by dim(X) = n — 1, so if ae is defined by (12) then the autoequivalence

Se oay = [n—1]

preserves any triangulated subcategory 8 C DPf(X); in particular, Serre compatibility (11)
holds for 8 as above.

One of the most surprising properties of the residual category Ry of a Fano hyper-
surface is its fractional Calabi—Yau property (note, however, that the residual categories

1177 SEMIORTHOGONAL DECOMPOSITIONS IN FAMILIES



that appeared in Section 3.4 are also fractional Calabi—Yau). This result has already been
explained in [59] for smooth X; we restate it here for completeness.

Theorem 3.11 ([49, COROLLARY 4.3]). Let X C P" be a smooth hypersurface of degree d
with 1 <d < n. Setc = ged(d,n + 1). Then

SHC = [(n+1)(d —2)/c]. Q1)

Remark 3.12. The result also holds true (trivially) when d = n + 1. Indeed, the defini-
tion (20) in this case implies Ry = DP*f(X) and the formula (21) reads as Sy = [n—1],
which is true since X is a Calabi—Yau variety of dimensionn — 1.

Actually, the smoothness assumption in the statement of Theorem 3.11 can be
removed; this follows immediately from Theorem 3.14 and Remark 3.15 below.

Example 3.13. If X is a cubic fourfold, one has S, = [2]. Thus, the category Ry is a
K3 category, see [57].

In [62, THEOREM 3.5] Theorem 3.11 was generalized to the situation where X is a
smooth divisor in (or a double covering of) a smooth variety M which admits a rectangular
Lefschetz decomposition (so that the residual category of M is zero). We do not state this
result separately because it is a special case of Theorem 3.14 stated below, see Remark 3.15.
The special case of Theorem 3.11 is obtained by taking M = P” with the rectangular Lef-
schetz decomposition given by the Beilinson exceptional collection

D°(P") =(0.0(1),...,0(n)).

There are many other special cases of [62, THEOREM 3.5] (see [62, §4] for a list) which explain
most of the currently known examples of fractional Calabi—Yau categories. For instance, it
explains the appearance of K3 categories in derived categories of cubic fourfolds, Gushel—
Mukai varieties of even dimensions, and Debarre—Voisin 20-folds, see [62, §4.4].

3.6. Residual categories of complete intersections

The results of [62] have been significantly generalized in [72]. To explain this gen-
eralization, recall that, for any (enhanced) functor W: € — D between (enhanced) trian-
gulated categories with a right adjoint functor W' (for instance, for a Fourier-Mukai func-
tor between (perfect) derived categories of projective varieties), one can define twist func-
tors Ty y1: D — D and Ty y: € — € by means of distinguished triangles of functors

Vo Lidp > Ty and Tyrg — ide —> ¥ o ¥,

where 7 is the unit and ¢ is the counit of adjunction. The functor W is called spherical if
the twist functors Ty, g and Ty y are both autoequivalences (for alternative definitions
and characterizations of spherical functors see [1, 2,43, 62]); in this case the twist functors
are known as spherical twists. Note that if the functor W is zero (for instance, if the source
or target category of W is zero), it is spherical and the corresponding spherical twists are
isomorphic to the identity.
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The simplest geometric example of a spherical functor is the pullback functor
W= i*:DP(M) — D™(X)

for a divisorial embedding i: X < M. Its right adjoint is the pushforward i, and the corre-
sponding spherical twists are given by

T,’*,i*(ff’v) =% ® Ox(—X)[2] and Ti*,i*(‘g) =5 Q® Oy (—X).

Another interesting example is the pullback functor for a flat double covering f: X — M
(see [72, LEMMA 2.9] for the description of the corresponding spherical twists).

Now assume M is a projective Gorenstein variety such that wp = £,/ for a line
bundle £,s and with a semiorthogonal decomposition

D™ (M) = (R, Bu, Bu ® Lur,..., By ® L377').
Assume furthermore given another projective Gorenstein variety X and a spherical functor
W:DP(M) — DP(X)

such that Ty (Bum) = By ® éﬁﬁl forsome 1 <d <m—1land ¥V (— Q Ly ) =V(—-)Q Lx
for a line bundle £x on X. Under these assumptions the following result is proved.

Theorem 3.14 ([72, COROLLARY 4.191). Assume M, By, £y, X, L£x, and ¥V are as above.

()  Thefunctor V|g,, is fully faithful, the subcategory Bx := W(Bpr) C DP(X)
is admissible, and there is a semiorthogonal decomposition

DF(X) = (Ry., Bx. Bx ® Lx..... By ® LF 471,
where Ry C DP(X) is the residual category.

(ii) The restriction Vg := W|g,, is a spherical functor Ryr — Ry between the
residual categories.

(iii) Ifc = ged(d, m) then

d/c . mpm/c ddlm(M)
Sau =Tyl vy © [f ’

dje . mim—dyje | ddim(X)—2(m—d)
ScRX = T\IJ;R,\I/:R © |: c ’

(22)

where T‘I’ER W and TW:R!"I’EQ are the spherical twists with respect to the spher-
ical functor ¥ g.

Remark 3.15. In the special case, where Rps = 0, the spherical twist Ty, v is iso-

>R
morphic to the identity, and we conclude that Ry is a fractional Calabi—Yau category of
dimension dim(X) —2(m — d)/d.

Example 3.16. Assume the base field is algebraically closed of characteristic not equal to 2.
Let M C P> be a smooth quadric, By = (@) as in (20), and let X C M be a smooth
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intersection of M with a cubic hypersurface. Then the residual category of M is generated
by two completely orthogonal spinor bundles of rank 2:

Rm = (S+.5-),

their restrictions S+ y and S_y to X are contained in Ry and form a so-called spherical pair
(i.e., induce a spherical functor from the derived category of a disjoint union of two points
to Ry, see [72, §2.2]), and formula (22) gives

S3:RX g TS+X,57X o [7]7
where Tg, , s_,:Rx — Ry is the spherical twist with respect to the spherical pair, i.e.,
Ts, v.5_x(F) = Cone(Ext*(S1x. F) @ S1x D Ext*(S_x, F) @ S_x — F).

Example 3.17. In the situation of Example 3.16, a similar result can be proved for the refined
residual category 4y of X defined as the orthogonal complement of one of the spinor bundles
in Ry, say S4+x, which is exceptional, so that there is a semiorthogonal decomposition

Rx = (Ax,S+x).

In this case the projection of the other spinor bundle to 4y is a spherical object K € Ay and
it is proved in [72, PROPOSITION 5.18] that

Sk, = T¢' o [7]
(where Ty is the spherical twist with respect to K), quite similarly to the case of Ry.

One can apply Theorem 3.14 in order to compute Serre dimensions of residual cat-
egories of complete intersections. Recall that the upper and lower Serre dimensions Sdim(€)
and Sdim(€) of a category € admitting a Serre functor Se are defined as the rate of
growth of upper and lower cohomological amplitude of powers of Sp!, see [27] or [72,
DEFINITION 6.10] for details. In the case where € = DPe‘f(X ) for a Gorenstein variety X,
so that Se(¥) = ¥ ® wy[dim X], one obtains from [27, LEMMA 5.6] the equalities

Sdim(DP(X)) = Sdim(DP"(X)) = dim(X),

so Serre dimensions provide a categorical interpretation of the geometric (Krull) dimension
of a variety. In this example the upper and lower Serre dimensions coincide, but in general
this is not true, and residual categories of Fano complete intersections provide nice examples
of this sort.

Theorem 3.18 ([72, THEOREM 1.7]). Let X C P" be a smooth Fano complete intersection in P"
oftype (d1,d>, ..., dy), where

di=zdy >+ >dp > 2.

Denote byind(X)=n+1-— Zf;l d; the Fano index of X . Let Rx be the residual category
of X defined by (20) with m = ind(X). Assume there exists a chain of smooth varieties

X=Xy C---CX,CX; CXo=DP"
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where X; is a complete intersection of type (dy,da, ..., d;). Then

Saim(Rx) = dim(x) ~ 270 sdim(y) = dim(x) — 270
1 k

In particular, if di > dy, the upper Serre dimension of Ry is strictly bigger than the lower
Serre dimension.

The assumption of the existence of a chain of smooth complete intersections X;
interpolating between P” and X is of technical nature; it well may be that the result is also
true without this assumption. Note also that this assumption holds when the characteristic of
the base field is zero by Bertini’s Theorem, see [72, LEMMA 6.11].

In the situation of Examples 3.16 and 3.17, one deduces from Theorem 3.18 that

Sdim(Ay) = Sdim(Ry) = 7/3, Sdim(sAy) = Sdim(Rx) = 2.

In fact, it is easy to describe objects of the categories Ay or Ry on which the rate of growth
of powers of the inverse Serre functor equals 7/3 and 2, respectively; indeed, the first happens
on the orthogonal complements K+ C #Ax and $ j_‘X ns fX C Ry, respectively, while the
second holds on the subcategories generated by K in 4y and S1x in Ry, respectively.

4. SIMULTANEOUS CATEGORICAL RESOLUTIONS OF SINGULARITIES

The goal of this section is to explain the proof of Theorem 1.1 that provides a simul-
taneous categorical resolution of singularities for a nodal degeneration of even-dimensional
varieties. We start by explaining what we mean by a simultaneous categorical resolution; this
notion is similar to a relative version of the definition of a categorical resolution from [55,66].

Let f: X — B be a flat proper morphism to a pointed scheme (B, 0). Recall nota-
tion (3) and (4). We usually assume that B is a curve and f is smooth over B°.

Definition 4.1 ([65, DEFINITION 1.4]). A simultaneous categorical resolution of (X, X,) is a
triple (D, w*, «), where

¢ D is an enhanced B-linear triangulated category, and

o 7*:DPT(X) — D and m4: D — DP(X) is a pair of B-linear triangulated func-
tors,

such that
(i) D is smooth and proper over B,
(ii) 7* is left adjoint to 7,
(iii) 7y o 7™ == id.
More precisely, the condition in part (ii) means that there is a functorial isomorphism

Hom(n*?, ﬁ) >~ Hom(¥F, . §)
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for all ¥ € DP(X), ¢ € D, and the condition in part (iii) means that the composi-
tion 74 o * is isomorphic to the canonical inclusion DP™(X) < D°(X). Furthermore,
we usually assume that the base change Dpo of the category O along the open embed-
ding B® < B is equivalent to DP*'(X?) = DP(X?°) via the functors induced by 7* and 7.

If the scheme X has rational singularities and the morphism f: X — B admits a
simultaneous resolution 77: X — X in the geometric sense (i.e., a resolution of singularities
of X such that its central fiber DZO — X, is a resolution of singularities of X,) then the cat-
egory D := DP(X) = D°(X) with the derived pullback * and pushforward 7, functors
is a simultaneous categorical resolution.

Geometric simultaneous resolutions of singularities exist for surface degenerations
with rational double points by [21] (see also [95]), but not in higher dimensions.

4.1. General results

In [65] we suggest a construction of a simultaneous categorical resolution, analogous
to the construction of a categorical resolution of a variety X given in [55]. Recall that the
construction of [55] assumes that X is resolved by a single blowup with exceptional divisor £
and, as an extra input, one needs a Lefschetz decomposition of DP(E) with respect to the
conormal line bundle of E.

Similarly, to construct a simultaneous categorical resolution we assume that both
the total space X and the central fiber X, of f are resolved by blowups with the same
center Z C X, C X, such that both have smooth exceptional divisors £ and E,, and that an
appropriate Lefschetz decomposition of D’(E) is given. The precise statement is as follows:

Theorem 4.2 ([65, THEOREM 3.11]). Let f: X — B be a flat projective morphism to a smooth
pointed curve (B, 0) such that X, xp B° is smooth over B° and let Z C X, be a smooth
closed subscheme in the central fiber. Assume the scheme X has rational singularities, the
blowups X = BlZz(X), Xy = Blz(X,), and their exceptional divisors E and E, are
all smooth, and the central fiber of X — B is reduced. Let w: X — X, m,: 560 — X,
p:E—>Z poEy > Z, e E— 9& o Ep — 9~Co, and ig: E, — E be the natural mor-
phisms, shown on the diagram

E.i_E)EO

B<————0}.
Furthermore, assume given a Z-linear left Lefschetz decomposition

D’(E) = (A1—m ® Og((m — E)..... A ® Op(RE), A_1 ® Op(E), o) (24)

1182 A. KUZNETSOV



of DP(E) such that p*(D°(Z)) C sq. Then the category
D :={F eD(X) | £*(F) € Ao} C DO(X) (25)
provides a categorical resolution of X and there is a semiorthogonal decomposition
D*(X) = (ex(A1-m ® O ((m — DE)).....ex(A_ ® Op(E)). D).  (26)

Moreover, if additionally we have 4_y = g, and the categories A) = i ()
form a semiorthogonal decomposition

D°(E,) = (A|_,, ® Op,((m — 1)E,),.... A, ® Op,(2E,), A_; ® Of,(E,)) (27)
of D*(E,) then:

(i)  The base change D, of D along the embedding {0} — B is smooth and
proper over the residue field of the point o, one has

D, = {F e DO(X,) | 5(F) € AL}, (28)
and there is a semiorthogonal decomposition
D®(Xo) = (2ox (A} ® OF, (M —2)E,)),. . ., e0x (A, ® OF, (E,)), Do).

(ii)  The triple (D, *, w4) is a simultaneous categorical resolution of (X, X,);

in particular D is smooth and proper over B.

The category D defined by (25) provides a categorical resolution of X and fits into
the semiorthogonal decomposition (26) by [55, THEOREM 4.4 AND PROPOSITION 4.1]. The crucial
step in the proof of Theorem 4.2 is the identification (28) of the base change D, of the
category D, which a priori is a subcategory of the derived category of the central fiber of
the morphism X — B,witha subcategory of X, Note that the central fiber is a reduced, but
reducible scheme—the union 960 U E of the blowup 560 of X, and the exceptional divisor E
of X with DZO N E = E,. The required identification is achieved in [65, PROPOSITION 3.7],
where a more general result of this sort is established. This proves part (i) of the theorem.

On the other hand, by [55, PROPOSITION 4.1] the right-hand side of (28) is an admissible
subcategory of D"(DEO); in particular, it is smooth and proper. Therefore, the second part (ii)
of the theorem follows from the following general and very useful result.

Theorem 4.3 ([65, THEOREM 2.10]). Let g: Y — B be a flat proper morphism of quasiprojective
schemes and let
D*(¥) = (D,1D)

be a B-linear semiorthogonal decomposition with admissible components and projection
Sfunctors of finite cohomological amplitude. If for each point b € B, the category Dy, is smooth
and proper over the residue field of b then the category D is smooth and proper over B.

Remark 4.4. The geometric origin of the category £ in Theorem 4.3 is important for the
proof given in [65]. We expect a similar statement for general B-linear categories is not true,
although we do not know any example where it fails.
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Theorem 4.3 applies immediately to the morphism g = f o 7: X — B. Indeed,
for b # o the fiber Dy, is equivalent to the category Db(be) = DP(X}) which is smooth and
proper because X xp B¢ is assumed to be smooth and proper over B, while the category D,
is smooth and proper by part (i) of the theorem.

4.2. Nodal singularities

Theorem 4.2 applies easily to nodal degenerations of even-dimensional varieties
under a mild technical assumption that can be satisfied by a simple trick, see Remark 4.6.
We use notation introduced in diagram (23).

Theorem 4.5 ([65, THEOREM 3.14]). Assume the base field is algebraically closed of charac-
teristic not equal to 2. Let f: X — B be a flat projective morphism of relative dimension 2n
to a smooth pointed curve (B, 0) such that X Xg B° is smooth over B°. Assume the central
fiber X, and the total space X, both have an isolated ordinary double point at x,. Let E
and E, be the exceptional divisors of the blowups Bl (X) and Bly,(X,). Then (X, X,)
has a simultaneous categorical resolution of singularities D fitting into a semiorthogonal

decomposition
D°(BL,, (X)) = (exOg (2n — 1)E),...,exOp(E), e+Sg. D),

where SE is a spinor bundle on the smooth quadric E; in particular, D is smooth and proper
over B with Dy = D(X}) for b # 0, and the central fiber D, of D fits into a semiorthogonal
decomposition

D (Bly,(X,)) = (e0xOE, (20 —2)E,). .. .. £0xO g, (Eo), D).

Indeed, in this case taking Z = {xo} we see that the exceptional divisor E of the
blowup X = Bl,,(X) is a smooth quadric of dimension 2n, so we can take (24) to be
the left Lefschetz decomposition from Lemma 2.9. Then A_; = A (here it is important
that dim(X /B) = dim(FE) is even), and since E, is a smooth quadric of dimension 2n — 1,
decomposition (27) holds, again by Lemma 2.9. So, Theorem 4.2 gives the desired results.

Remark 4.6. If f/: X’ — B’ is a smoothing of a nodal variety X (i.e., X, =~ X and X’ is
smooth) applying base change with respect to a double covering B — B’ ramified over o,
we obtain a morphism X — B such that X, =~ X and X has an ordinary double point at x,.
This double covering trick is quite standard, see [3].

Note that the simultaneous categorical resolution O constructed in Theorem 4.5
depends on a choice of one of the two spinor bundles §g; however, two different choices
result in equivalent categorical resolutions, and the equivalence can be thought of as an
instance of a categorical flop, see [65, PROPOSITION 3.15].

In the case of a degeneration of surfaces (i.e., forn = 1), the category O constructed
in Theorem 4.5 is equivalent to the derived category of a small resolution of singularities
of X, a choice of one of the two small resolutions corresponds to a choice of one of the
two spinor bundles $ g on the smooth quadric surface E, and the categorical flop mentioned
above reduces to the usual Atiyah flop between the small resolutions.
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It would be very interesting to find generalizations of Theorem 4.5 to other types of
simple singularities.

4.3. Application to nodal degenerations of cubic fourfolds
In this subsection, we provide a simple application of Theorem 4.5 to K3 categories
of cubic fourfolds. Recall that for any cubic fourfold X C P> there is a semiorthogonal
decomposition
D*(X) = (Rx, Ox, Ox (1), Ox (2)). (29)

In fact, this is just the special case of decomposition (20), so the category Ry above is the
residual category of X. In particular, as we observed in Example 3.13, the Serre functor
of Ry is isomorphic to the shift [2], so Ry is a K3 category.

In the case where X has a single ordinary double point x, € X, the category Ry
is not smooth, but it admits a categorical resolution by the derived category of a smooth
K3 surface. In fact, the linear projection out of x, identifies the blowup Bly, (X) with
the blowup Blg(P*) of P# along a smooth complete intersection K3 surface S C P* of
type (2, 3) and the derived category of S provides a categorical resolution of singularities
for Ry, see [57, THEOREM 5.2]. We write S(X, x,) for this K3 surface.

In the next theorem we show that the category D°(S(X, x,)) can be realized as a
limiting category for the K3 categories of smooth cubic fourfolds.

Theorem 4.7 ([65, COROLLARY 1.8]). Let X be a cubic fourfold with a single ordinary double
point x, € X over an algebraically closed field k of characteristic not equal to 2. There is

* a flat proper family X C Pg — B of cubic fourfolds over a smooth pointed
curve (B, 0) with central fiber X, = X such that X is smooth over B° and has
an ordinary double point at x,, and

e a B-linear category R smooth and proper over B such that:

(i) for any point b # o in B one has Ry ~ Rx;,, i.e., the fiber Ry is
the K3 category of Xp;

(ii) one has Ry, ~ DP(S(X, x,)).

In particular, D°(S(X, x,)) is a smooth and proper extension of the family of categories Rx,
across the point o € B.

The construction of the family X is quite straightforward—we take any smooth
cubic fourfold X’ C PP in the ambient projective space of X in such a way that the singular
point x, € X does not lie on X'. Then, if F and F’ are the cubic equations of X and X’, we
consider the hypersurface in P> x A! given by the equation

(1-1?)F +1°F' =0,

where ¢ is a coordinate on A'. Throwing away its singular fibers (except for the fiber X
over 0 € A!) we obtain the required family XX — B C Al
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Next, we consider the smooth and proper B-linear category O C DP(BI,, (X)) from
Theorem 4.5 and define the subcategory R C D by the semiorthogonal decomposition

D = (R, f*D*(B), f*D*(B) ® Ox/5(1), f*D*(B) ® Ox/5(2)), (30)

where f: Bly, (X) — B is the composition Bly, (X) % i) B of the blowup mor-
phism and the natural projection and O, g (i) is the pullback to Bly, (X) of the line
bundle (9IP§ /B (). Applying the base change of this decomposition to various points of
the base B and using [57, THEOREM 5.2] for the point 0, we obtain the required identifications
of the categories R and R,.

One possible interpretation of Theorem 4.7 is the following. Let M, be the GIT
moduli space of cubic fourfolds [8e] and let N C My, be the divisor of singular cubic

fourfolds. Then the family of K3 categories of smooth cubic fourfolds (a priori defined over

nod
cub

the open subspace MWy \ M C IMeyp) extends to the general point of the boundary divisor

of the root stack 4/ smggg /M .up (the appearance of the root stack corresponds to the necessity

of the double covering trick of Remark 4.6).

Remark 4.8. It would be interesting to find analogous extensions of K3 categories of smooth
cubic fourfolds to other special loci of the moduli space IMi.,,. One particularly interesting
point of 9.y, corresponds to the so-called “chordal cubic” (see [32, §4.4] and [8e, §8.2]),
defined as the secant variety of the Veronese surface v, (P2?) C P°. It seems likely that to
make such an extension possible it is necessary to blowup this point on the moduli space.
A general point of the exceptional divisor corresponds to a smooth sextic curve in P2, and it
is natural to expect the derived category of the double covering of P2 branched at that curve
to show up in the extension.

5. ABSORPTION OF SINGULARITIES
The goal of this section is to introduce the notion of absorption of singularities, to
explain the proof of Theorem 1.2, and to sketch an application to Fano threefolds.

5.1. Absorption and deformation absorption

We start with the definition of absorption of singularities of a category. For sim-
plicity, we restrict to the case when the category in question is D°(X) and X is a proper
(singular) variety.

Definition 5.1 ([76]). We say that a subcategory & C DP(X) absorbs singularities of X if it is
admissible and the orthogonal complements P+ and + & in DP(X) are smooth and proper.

Note that, when J is admissible, the left and right mutation functors with respect
to & induce equivalences of the orthogonal complements P+ ~ - so one of them is
smooth and proper if and only if the other is so.

We think of the category #+ ~ L as a smooth and proper “modification” of
the category D°(X). There is, of course, a trivial example of absorption with = DP?(X)
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and P = 1P = 0; clearly, this example is not interesting, and it shows that it is desirable to
have the absorbing category & as small as possible (hence its orthogonal complements -+
and L as big as possible).

The notion of absorption is “opposite” to that of categorical resolution in the sense
that in the latter we replace DP(X) by a larger smooth and proper category, while in the
former we replace it by a smaller smooth and proper category.

The following is the simplest example of absorption.

Example 5.2. Let X = X; U X, be a complete curve with two smooth components inter-
secting transversely at a point xo and with X; = P!, Then

P :=(0x,(-1)) C D°(X)

absorbs singularities of X ; indeed, the category + & is equivalent to D?(X3) (via the pullback
functor for the projection X — X, contracting X to the intersection point xo € X»), hence
smooth and proper, and £+ ~ - because X is Gorenstein.

Other examples of absorption are given by the so-called Kawamata-type semiorthog-
onal decompositions introduced in [42, DEFINITION 4.1] (see [45] for many decompositions of
this type for surfaces).

We will give more examples of absorption in the next subsection, and meanwhile
we introduce a stronger notion. Recall that a smoothing of a proper variety X is a Cartesian
diagram (4) where f is a flat proper morphism to a smooth pointed curve (B, 0) and X is
smooth. Recall that i: X — X denotes the embedding of central fiber.

Definition 5.3 ([76]). Assume a subcategory $ C DP(X) absorbs singularities of a proper
variety X. We say that & provides a deformation absorption of singularities of X if for any
smoothing f: X — B of X the idempotent completion (i, (P))® C D°(X) of the triangu-
lated subcategory generated in DP(X) by the image of i,: # — DP(X) is admissible.

Example 5.4. The absorption of singularities described in Example 5.2 is a deformation
absorption, because for any smoothing X’ — B of the reducible curve X = X; U X, we
have

‘le/x = (9X1 (Xl) = (9X1 (_XZ) = (9X1 (_XO) = (9X1 (—l),

hence X; C X is a (—1)-curve on a smooth surface X, so ix(Ox, (—1)) € D°(X) is an
exceptional object, and hence the subcategory (i«(£))® = (i.Ox, (—1)) is admissible.

The following result demonstrates how a subcategory providing a deformation
absorption can be used to construct a smooth family of categories.

Theorem 5.5 ([76]). Assume a subcategory $ C D°(X) provides a deformation absorption
of singularities of a proper variety X. Let f: X — B be a smoothing of X with X quasipro-
jective. Define the subcategory D C D°(X) from the semiorthogonal decomposition

D°(X) = ((i.(2))®, D). 31)
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Then Dy = D°(X}p) for b # o, and D, = L C DP(X). In particular, D is smooth and
proper over B.

The main thing to prove here is the equality
(ix(P); = P

of the base change of the category (i, ($))® with & (as subcategories of DP(X)). The inclu-
sion P C (i* (!P))ZB follows from [58, COROLLARY 5.7]. To prove the other inclusion, consider
the distinguished triangle

" (F) > F - F[2) (32)
that exists for any ¥ € 2. It implies that i * ({i (#))®) C & and using the definition of base
change and admissibility of & the required inclusion easily follows.

Example 5.6. In the setup of Example 5.4, if X is the surface obtained from a smoothing X
of X by contracting the (—1)-curve X; then X is smooth, X is isomorphic to the blowup
of X at a point, and the orthogonal complement O of (ix(£))® in D°(X) is equivalent
to D°(X).

Following this example it is suggestive to think of the category O from Theorem 5.5

as a categorical contraction of Db(X ); this point of view is developed in [76].

5.2. CP*°-objects
In this section we introduce a class of objects that can be used to construct defor-
mation absorptions of singularities.

Definition 5.7 ([76]). We say that P € D°(X) is a CPP*°-object if
Ext®(P,P) =~ k[¢], where deg(z) = 2.

In other words, the derived endomorphism algebra of P is isomorphic to the cohomology
algebra of the topological space CIP*°.

Remark 5.8. In [76] we define a more general notion of IP°>*?-objects for an arbitrary posi-
tive integer g by assuming that Ext®*(P, P) = k[¢] with deg(¢) = ¢. Such objects can be also
used to absorb singularities (and there are many geometrically meaningful examples of such
absorptions for ¢ = 1, see Remark 5.20), but they never provide deformation absorptions
unless g = 2.

For each CPP*°-object we define the canonical self-extension M of P from the canon-
ical distinguished triangle
M — P - P[2], (33)

where the second arrow is given by the generator ¢ € Ext?(P, P) of Ext®(P, P).
The following characterization is useful and easy to prove.

Lemma 5.9 ([76]). IfP € D°(X) is a CP®°-object and M is its canonical self-extension then

Ext*(M, P) =~ k. (34)
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Conversely, if objects P,M € D°(X) satisfy (34) and Cone(M — P) = P[2], then P is a CP*°-
object.

Example 5.10. Consider the situation described in Example 5.2. Let £ be the line bundle
on X that restricts to X; as Ox, (—1) and to X, as Ox,. Similarly, let £ be the line bundle
on X that restricts to X, as Ox, (—xp) and to X1 as Oy, . Then there is an exact sequence

0— 0Ox,(-1) > £1 = £o = Ox,(-1) —> 0,

where the middle arrow is defined as the composition £1 — Ox, (—xo) < Lo. It follows
that the objects P := Ox,(—1) and M := Cone(£; — &£o) fit into a distinguished triangle
of the form (33). It is also easy to check that (34) holds; therefore P is a CPP*°-object.

As the next proposition shows, CIP*-objects induce semiorthogonal decomposi-
tions; it is instructive to compare this with the well-known notion of CIP”-objects (see [35]),
which rather give autoequivalences of derived categories.

Proposition 5.11 ([761). If X is a proper Gorenstein scheme, P € D°(X) is a CP*-object,
and the canonical self-extension M of P is perfect, i.e., M € DP( X)), then the subcategories

P :=(P) cD(X) and M := (M) C D (X)
are admissible in D*(X) and DP*(X), respectively. Moreover,
P ~D"(k[e]/€*) and M ~DF"(k[e]/e®), where deg(e) = —1,
the right-hand sides are the derived categories of DG modules over the DG algebra k[e]/e?

which are perfect over k and k[€]/€?, respectively. Finally, # N DPT(X) = M.

For instance, since in the situation of Example 5.10 the curve X is Gorenstein and
the object M is perfect, we conclude that the category &> C D(X) generated by Ox, (—1)
is admissible. A similar computation shows that if X is a tree of rational curves, there is a
semiorthogonal collection of CIP*°-objects in D°(X) absorbing its singularities.

A useful property of CIP*°-objects is given by the following

Theorem 5.12 ([76]). Let Py, ..., P, be a semiorthogonal collection of CP*°-objects
in DP(X). If the category P = (P1,...,P,) absorbs singularities of X, it provides a defor-
mation absorption of singularities.

To prove the theorem, we consider a smoothing f: X — B of X and check that for
each 1 < j < n the object
Mj = l*l*(P])

is the canonical self-extension of P; (this follows from the triangle (32) for ¥ = P;). Then
using the adjunction isomorphisms

Ext®(i+P;j.i+Pr) = Ext*(M;, Pg),
Lemma 5.9, and the triangles (33), we deduce exceptionality and semiorthogonality of i,P;,

which implies admissibility of the subcategory of D(X) generated by i,Py, ..., i.Py.
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Combining Theorem 5.12 with Theorem 5.5, we obtain

Corollary 5.13. Let Py, ..., P, be a semiorthogonal collection of CP™-objects in D*(X).
If the category = (Pq,...,P,) generated by the P; absorbs singularities of X, then for
any smoothing f: X — B of X there is a semiorthogonal decomposition

DP(X) = (i+P1,...,isP,, D) (35)

and the subcategory D defined by (35) is smooth and proper over B with D = D®(X})
forb # o0 and D, = +P C DP(X).

5.3. Absorption of nodal singularities

In this section under appropriate assumptions we show how to construct collections
of CIP*°-objects absorbing singularities of nodal varieties of odd dimension. We concentrate
on the case of threefolds, because this case is technically simpler and the main assumption
has clearer geometric meaning.

Definition 5.14 ([42]). A threefold X with isolated singularities is called maximally nonfac-
torial if the natural morphism from the class group of Weil divisors on X to the sum of local
class groups over all singular points of X

ax)—- @ aw.x

x€Sing(X)

is surjective.

For simplicity, consider the case where X has a single ordinary double point xg € X .
In this case CI(X, x¢) = Z, and X is nonfactorial if and only if the morphism of the class
groups ClI(X) — CI(X, xq) is surjective onto a subgroup of finite index. Thus, maximal
nonfactoriality is a strengthening of the usual nonfactoriality property.
Further, if xo € X is a nonfactorial ordinary double point of a threefold, there exists
a small resolution 7: X — X, i.e., a smooth threefold X with a projective morphism 7 such
that its exceptional locus
Lo := 7" (x0) = P! (36)

is a smooth rational curve. In these terms maximal nonfactoriality is equivalent to the exis-
tence of a line bundle &£ on X such that

$|Lo = (9L0(—1). (37)

Theorem 5.15 ([761). Let X be a maximally nonfactorial proper threefold with a single ordi-
nary double point xo € X and assume H*(X, Ox) = k. Let w: X — X be a small resolution
with exceptional locus (36). Then for any line bundle £ on X for which (37) holds the object

P:= & (38)

is a CP®-object in DP(X) providing a deformation absorption of singularities of X.
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To prove the theorem, we first decompose the derived category DP( X) into two parts:
the first is generated by an exceptional pair and the second is its orthogonal complement. The
pair consists of the line bundle £ and the twisted ideal sheaf

£ =4, ® L.

Exceptionality of the pair (£’, £) follows from the isomorphism (37) and the fact that Ly is
a (—1,—1)-curve. Now we obtain a semiorthogonal decomposition

D*(X) = (P, D), where P := (£, &) and D =g’ £).

Since, by [17, THEOREM 2.14], the functor 7r,: DP(X) — D°(X) is a Verdier localization with

the kernel generated by Or,,(—1) and since Or,,(—1) = Cone(£’ — &£) € P, it follows that
there is a semiorthogonal decomposition

D°(X) = (P, D),

suchthat D = 7*(D) and P ~ P /(O Lo (—1)). The category D is equivalent to the smooth
and proper category D, hence P absorbs singularities of X. On the other hand, & is gen-
erated by the object P := 74 (&£) = 7. (&£’), and a simple computation shows that there is a
distinguished triangle

M) — £ — £[2]

for an object M € DP*f(X) such that (34) holds. Pushing forward this triangle, we obtain (33),
hence P is a CPP*°-object by Lemma 5.9 (and M is its canonical self-extension).

Remark 5.16. The CIP°°-object P defined in (38) is a reflexive sheaf of rank 1 on X and the
image of [P] € CI(X) in CI(X, xo) is a generator of the local class group. Note that the line
bundle £ satisfying (37) is unique up to twist by a line bundle pulled back from X, hence the
same is true for the reflexive sheaf P. On the other hand, if X' is the other small resolution
of X and P’ is the reflexive generator of CI(X, x¢) constructed from it, it follows that P’ is
isomorphic to the underived dual PV of P up to line bundle twist. Thus, the flop X --> X'
between the small resolutions corresponds to dualization of the corresponding CP*°-object.

Remark 5.17. Theorem 5.15 shows that maximal nonfactoriality is sufficient for the exis-
tence of an absorption of singularities of a threefold with a single ordinary double point by
a CPP*°-object. Using [86, LEMMA 1.11] and [42, COROLLARY 3.8] one can prove that this condition
is also necessary, see [76].

Remark 5.18. Let X be a maximally nonfactorial threefold with n ordinary double points
and let 7: X — X be a small resolution of singularities with exceptional curves L,..., L.
Assuming there is an exceptional collection (£1, ..., £,) of line bundles on X such
that £;|z, = Or, (=) (here §;; is the Kronecker delta) for all 1 < j, k < n, a simi-
lar argument shows that singularities of X are absorbed by the semiorthogonal collection
of CP*®-objects Pj := m,&Lj, 1 < j <n.

Combining Theorem 5.15 with Theorem 5.12, we obtain
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Corollary 5.19 ([76]1). Let X be a maximally nonfactorial projective threefold with a single
ordinary double point xg € X and assume H*(X,Ox) = k. Let f: X — B be a smoothing
of X. Then there is a semiorthogonal decomposition

D°(X) = (i+P, D),

where P € DP(X) is the CP®-object defined in Theorem 5.15 and the subcategory D is
smooth and proper over B with Dy, = DP(X}) for b # 0 and D, = +P C DP(X).

Of course, a similar result holds for maximally nonfactorial threefolds with several
ordinary double points if the assumption of Remark 5.18 is satisfied.

Remark 5.20. There is a similar construction of deformation absorption that works in higher
dimensions. Let X be a variety of odd dimension with a single ordinary double point xo € X .
Let X = Bl,, (X); then the exceptional divisor £ C X is a smooth even-dimensional quadric.
Assume there is an exceptional object & € DP(X) such that

Elg = Sk,

where S g is a spinor bundle (this condition plays the same role as (37)). Then P := 7, (&) is
a CIP*°-object providing a deformation absorption of singularities of X, see [761. Of course,
there is also a version of this result for several ordinary double points as in Remark 5.18.

An analogous construction for even-dimensional varieties produces a P !-object
(as defined in Remark 5.8) which also absorbs singularities of X, but it does not give a
deformation absorption.

5.4. Fano threefolds

In this subsection, we apply the above results to clarify and extend the relation
between nontrivial components of derived categories of del Pezzo threefolds and prime Fano
threefolds that was discovered in [56].

Recall that a prime Fano threefold is a Fano threefold X with Pic(X) = Z Ky, and
its genus g(X) is defined from the equality

(~Kx)* = 2g(X) — 2.

It is well known that 2 < g(X) < 12 and g(X) # 11.
Mukai proved (see [82], [74, §B.1]) that, for any prime Fano threefold X with

g(X) € {6,8,10, 12},

there exists a unique exceptional vector bundle Uy of rank 2 with ¢;(Uy) = Ky such
that (Ox, Uy) is an exceptional pair; it is called the Mukai bundle. Using this observation,
the nontrivial part Ay C DP(X) was defined in [56] from the semiorthogonal decomposition

D°(X) = (Ax. Ox, Uy). (39)
Remark 5.21. This definition extends to general prime Fano threefolds of genus

g(X) =4.
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In fact, any smooth prime Fano threefold of genus 4 is a complete intersection X C P> of
type (2, 3). We will say that X is general if the (unique) quadric passing through X C P>
is smooth; in this case there are two Mukai bundles (the restrictions of the spinor bundles
from the quadric) and the corresponding nontrivial parts of D°(X) are equal to the refined
residual categories from Example 3.17.

Similarly, a del Pezzo threefold is a Fano threefold Y with — Ky = 2 H for a primitive
Cartier divisor class H and its degree d(Y') is defined as

d(Y) = H3.

It is well known that 1 < d(Y') < 5 for del Pezzo threefolds of Picard rank 1.

If Y is a del Pezzo threefold, the pair of line bundles (Oy, Oy (H)) is exceptional,
and this time the nontrivial part By C D(Y') was defined in [56] from the semiorthogonal
decomposition

D*(Y) = (By, Oy, Oy (H)) (40)

(so, in this case these are just the residual categories in the sense of Section 3).
It was observed in [56, PROPOSITION 3.9] that when X and Y are as above and

g(X) = 2d(Y) + 2,

the categories 4y and By have isomorphic numerical Grothendieck groups (and their iso-
morphism is compatible with the Euler pairings). Furthermore, it was proved in [56, THE-
oReM 3.8] that for each prime Fano threefold X with g(X) € {8, 10, 12} there is a unique
del Pezzo threefold Y (with d(Y) = g(X)/2 — 1 € {3, 4, 5}) such that

a‘\)x ’:By.

So, it was expected [56, CONJECTURE 3.7] that the same equivalence takes place for appropriate
pairs (X, Y) with g(X) € {4,6} and d(Y) € {1, 2}.

However, the conjecture turned out to be false: for g(X) = 6 and d(Y) = 2, it was
disproved in [1e] or [96, THEOREM 1.2], and for g(X) = 4 and d(Y') = 1, it is false for trivial
reasons as in this case dim(HH; (#4Ax)) = 21 while dim(HH; (8y)) = 20. The next theorem
clarifies the situation in these two cases.

Theorem 5.22 ([77]). For2 <d < 5let Y be a del Pezzo threefold of degree d and Picard
rank 1 and for d = 1 let Y be a small resolution of a del Pezzo threefold of degree 1 and
Picard rank 1 with a single ordinary double point. Then there exists a flat projective mor-
phism f: X — B to a smooth pointed curve (B, 0) such that X is smooth and

(a) for any point b # o in B the fiber Xy is a smooth prime Fano threefold of
genus g =2d +2;

(b) the central fiber X, is a prime Fano threefold of genus g = 2d + 2 with a single
maximally nonfactorial ordinary double point x, € X, birational to Y .
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Furthermore, there is a B-linear subcategory # C DP(X) which is smooth and proper
over B and such that:

(i) for any point b # o in B one has Ap = Ax, C DP(Xp);
(ii) the central fiber A, is equivalent to the component By of D*(Y).

In particular, the nontrivial part By of D’(Y) is a smooth and proper extension across the
point o € B of the family 4 x, of the nontrivial parts of D°(Xp).

Remark 5.23. The case d = 1 in the theorem is somewhat special; in this case we take Y to
be a small resolution Y — ¥ of a del Pezzo threefold ¥ with a single node (such resolution ¥
always exists as an algebraic space, but not as a projective variety). Note, however, that the
component By is still defined for this algebraic space Y by the same formula (40), where
the line bundle Oy (H) is the effective generator of the Picard group of Y. It is remarkable
that in this case all prime Fano threefolds X, for b # o in the constructed family are general
in the sense of Remark 5.21.

Let us explain how the family X is constructed. Let Y be as in the theorem.
If2<d <5let C CY be a general smooth rational curve of degree d — 1 (with respect
to H), and if d = 1 let C be the exceptional curve of Y (recall that in this case Y is a
small resolution of a nodal del Pezzo threefold Y ). Then one can prove that C has a unique
bisecant line L C Y and there exists a diagram

Blc(Y)——= X <L,
e NN
L——7Y X <—{xo}

where p is the blowup morphism, 7 is the contraction of the strict transform Lo C X of L,
and X is a maximally nonfactorial prime Fano threefold of genus g = 2d + 2 with a single
ordinary double point xg = 7w (Lg). Now we define the family f: X — B as a smoothing
of X (it exists by [83]).

Now we explain how the subcategory 4 C DP®(X) is constructed. First, applying

Corollary 5.19 to the smoothing f: X — B constructed above we obtain a B-linear subcat-
egory » C D°(X) smooth and proper over B such that

Dp =D°(Xp) forb#o0 and D, ~*(Jp,(—H).Oz(—H)) C D’(X),
where H is the pullback to X of the hyperplane class of Y. Next, we consider the sheaf
y == Ker(Oy (H) ® Oy (H) — Oc¢(d)),

where the morphism is a twist of the evaluation morphism Oy & Oy — Oc¢(1). We check
that there is a vector bundle Ux on X such that U}, = ps(7*Uy), that (Ox, UY) is an
exceptional pair in DP(X), and this pair deforms (possibly after an étale base change) to
the nearby fibers of a family f: X — B. Therefore, after a possible étale base change we
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can assume that the pair is defined on X, and hence we have a B-linear semiorthogonal
decomposition
D = (A, f*D*(B), /*D*(B) ® U¥)

Finally, we check that U x|x, is the Mukai bundle of X, when b # o, hence A, = Ay,.
On the other hand, we find a simple sequence of mutations identifying 4, C D, C DP(X)
with By. This proves the equivalence A, =~ By.

Remark 5.24. When 3 < d < 5 the family of threefolds X in Theorem 5.22 can be chosen
in such a way that the family of categories s x;, is isotrivial, i.e., Ax, ~ By forallb € B.
This is no longer possible for d € {1, 2}.

Remark 5.25. There are several interesting examples of del Pezzo threefolds with higher
Picard rank: two del Pezzo threefolds of degree 6 (the flag variety FI(1,2;3) and (P!)3)
and one del Pezzo threefold of degree 7 (the blowup of P3 at a point). The construction
of Theorem 5.22 works for these threefolds and relates the nontrivial parts of their derived
categories (still defined by (40)) to the nontrivial parts (still defined by (39)) of the derived
categories of appropriate Fano threefolds with primitive canonical class and genus g = 14
and g = 16, respectively.

There are other interesting maximally nonfactorial nodal Fano threefolds, e.g., some
prime Fano threefolds of odd genus g € {5, 7, 9}. They also provide geometrically mean-
ingful extensions of (appropriately defined) nontrivial components of derived categories,
see [77] for details.
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