
What is a random
surface?
Scott Sheffield

Abstract

Given 2n unit equilateral triangles, there are finitely many ways to glue each edge to a
partner. We obtain a random sphere-homeomorphic surface by sampling uniformly from
the gluings that produce a topological sphere. As n ! 1, these random surfaces (appro-
priately scaled) converge in law. The limit is a “canonical” sphere-homeomorphic random
surface, much the way Brownian motion is a canonical random path.
Depending on how the surface space and convergence topology are specified, the limit is
the Brownian sphere, the peanosphere, the pure Liouville quantum gravity sphere, or a
certain conformal field theory. All of these objects have concise definitions, and are all in
some sense equivalent, but the equivalence is highly nontrivial, building on hundreds of
math and physics papers over the past half-century.
More generally, the “continuum random surface embedded in d -dimensional Euclidean
space” makes a kind of sense for d 2 .�1; 25/ even when d is not a positive integer; and
this can be extended to higher genus surfaces, surfaces with boundary, and surfaces with
marked points or other decoration.
These constructions have deep roots in both mathematics and physics, drawing from clas-
sical graph theory, complex analysis, probability, and representation theory, as well as
string theory, planar statistical physics, random matrix theory, and a simple model for two-
dimensional quantum gravity.
We present here an informal, colloquium-level overview of the subject, which we hope will
be accessible to both newcomers and experts. We aim to answer, as cleanly as possible, the
fundamental question. What is a random surface?
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As a random path, Brownian motion is canonical in the sense that it is uniquely
characterized by certain symmetries, and universal in the sense that it is a limit of many
kinds of discrete random walks. This paper will describe a similarly canonical and universal
random surface. This random surface has several different formulations. To tell the story in
a fanciful way, imagine a dialog, first about random paths, then about random surfaces.

INSTRUCTOR: Consider the simple random walk on Z. At each time step, a coin toss
decides whether position goes up or down. If you shrink the graph horizontally by a factor
of C and vertically by a factor of

p
C , then the C ! 1 limit is Brownian motion.

STUDENT: Great! But can you define Brownian motion directly in the continuum?

INSTRUCTOR: Sure! Fix 0D t0 < t1 < � � �< tn. Specify the joint law ofB.t1/; : : : ;B.tn/ by
making increments B.tk/� B.tk�1/ independent normals with mean 0, variance tk � tk�1.
Extend to countable dense set (Kolmogorov extension), then all t (Kolomogorov–Čentsov).

STUDENT: Are there other natural ways to characterize Brownian motion?

INSTRUCTOR: Brownian motion is canonical in that it is the only random path with certain
symmetries (like stationarity/independence of increments). It is universal in that (per central
limit theorem) it is a limit of many discrete walks. It comes up everywhere.

STUDENT: What if I want a random path embedded in Rd ?

INSTRUCTOR: Use a vector .B1.t/; B2.t/; : : : ; Bd .t// of independent Brownian motions.

The student is happy. Now imagine a similar dialog for random surfaces.

INSTRUCTOR: Take a uniformly random triangulation of the sphere with n triangles. The
picture below is an example with 30,000 triangles by Budzinski, using some software to
embed the surface in three dimensions and give us a view. The n ! 1 limit of this object
is a random fractal surface called the Brownian sphere. It is also a peanosphere and a pure
Liouville quantum gravity sphere, and a conformal field theory.
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STUDENT: You just listed four things! Which is the n ! 1 limit of Budzinski’s picture?

INSTRUCTOR: They all are! The difference comes down to the topology of convergence
and the features of the limit presumed to be measurable. Think of them as different aspects
of the same universal object. Four blind mathematicians feel the surface of an elephant and
describe four different things:

• Brownian sphere: a random metric measure space constructed from the so-called
Brownian snake as explained in surveys by Le Gall, Miermont and Baez [27,171,

175,184,186].

• Peanosphere: a mating of continuum random trees that encodes both a surface
and an extra tree and/or collection of loops drawn on top of it, as explained in
surveys by Gwynne, Holden, and Sun, and by Biane [51,128].

• Liouville quantum gravity sphere: a random fractal Riemannian surface in which
areas, lengths, and other measures are given by exponentials of a Gaussian free
field �, as explained in surveys by Berestycki, Ding, Dubédat, Duplantier, Garban,
Gwynne, Miller, Powell, and Werner [33,37,91,101,113,125,188,259].

• Conformal field theory: a collection of multipoint functions representing (regular-
ized) integrals of products of the form

Q
e˛i �.xi / with respect to a certain infinite

measure, as explained mathematically by David, Guillarmou, Kupiainen, Rhodes,
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and Vargas [87, 120, 121, 160, 254] who also survey the physics literature. The infi-
nite measure is the Polyakov measure which is the product of an unrestricted-area
measure on LQG spheres (with defining field �) and Haar measure on the Möbius
group PSL.2;C/ (to select an embedding in C).
Technical point: The unit area Brownian/Peano/LQG-sphere is a sample from
a probability measure dS on a space of unit area surfaces. There is a natural
infinite measure on unrestricted-area surfaces (with k � 0 marked points) given
by A�7=2CkdAdS where .A; S/ is the rescaling of S with area A. This is nat-
ural because the number of triangulations (quadrangulations, etc.) with n faces
and k marked points scales like Cˇnn�7=2Ck for model-dependent constants C
and ˇ. Weighting the counting measure by ˇ�n, we obtain a discrete measure that
(appropriately rescaled) converges to the measure above as the area-per-triangle
" goes to zero. If we replace ˇ by the “off-critical” ˇ.1 C "�/ then the limit is
A�7=2Cke��AdAdS , which is finite if � > 0 and k � 3. Polyakov included the
e��A factor and motivated it in a different way, using the Liouville equation as
we explain later.

STUDENT: Do I really have to learn all four viewpoints?

INSTRUCTOR: A lot of good work has been done by people fluent in only one of the four.
But all four have important applications. For example, in the Brownian sphere construction,
distances are easy to define, and you can show that the surface has fractal dimension 4. So to
cover the surface with metric balls of radius 1=n, you need � n4 balls. In the peanosphere
construction, one sees the random trees and loops that naturally live on top of a random sur-
face, and most easily makes contact with loop-decorated discrete models. The LQG approach
allows one to define Brownian motion on a random surface as well as other conformally
defined objects (like SLE curves). Conformal field theory is a staple of physics. It ties into
quantum field theory (if one analytically continues from Euclidean to Minkowski space and
replaces probability measures with quantum wave functions).

STUDENT: Are these surfaces characterized by simple axioms like Brownian motion is?

INSTRUCTOR: Yes. But each viewpoint comes with its own axioms, its own history, its
own motivation, its own surveys. The proofs that they agree are long and involved.

STUDENT: Can any of the viewpoints describe a random surface embedded in Rd ?

INSTRUCTOR: Sure. You basically weight the law of the surface by the “number of ways” to
embed it in Rd . This amounts to weighting by the d th power of a certain “partition function”
and this changes the law of the surface itself (even ignoring the embedding). You can apply
such a weighting even when d is not a positive integer, so there is actually a one parameter
family of random surfaces parameterized by d , with the scaling limit of Budzinski’s picture
corresponding to d D 0. These surfaces are “rougher” when d is large and “smoother” when
d is small, converging to the Euclidean sphere as d ! �1. They are defined as random
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metric spaces for any d < 25, but are only finite-diameter and finite-volume if d � 1. The
family can equivalently be parameterized by related quantities that come up in LQG theory
like Q > 0 (where d D 25 � 6Q2) or 
 (where Q D 2=
 C 
=2 – note that 
 is only real
if d � 1 so that Q � 2) or by the peanosphere correlation coefficient.

STUDENT: I’m getting a bit lost. Can you give me the four definitions you promised?

The remainder of this paper will aim to do just that. We present a narrative-style
introduction to each of the four viewpoints above, emphasizing the distinctive intellectual
heritage behind each approach, as well as the relationships between them and the relevant
recent developments.

Along the way, we will introduce several other natural objects: random trees (like the
continuum random tree), random distributions (like the Gaussian free field) and random non-
self-crossing curves (like the Schramm–Loewner evolution). We aim to make the exposition
accessible to outsiders and newcomers, as well as to researchers who have expertise in one
or more of the viewpoints but who might appreciate a high-level overview of the others.
Readers interested in a still less technical account might take a look at the recent Quanta
Magazine articles on this subject [143–145].

It is ambitious to try to tell four stories in one article, but we will do our best to
convey at least the main ideas. The style is informal—no proofs—but we provide accurate
definitions and the surveys mentioned above contain more detail. This paper is targeted pri-
marily at a mathematical audience and is meant to be broadly accessible. This subject has
deep roots in physics (especially string theory, quantum field theory, and planar statistical
physics), but we will do our best to avoid any terminology that would be difficult for non-
physicists to understand. Let us also stress that our reference list is long but very far from
complete, biased by both the limits of the author’s knowledge and the narrative focus of the
paper. As such, it is more of a sampling than an exhaustive survey. Many highlights of the
subject are not mentioned here.

For concreteness and simplicity, we will focus mostly on sphere-homeomorphic
random surfaces. But all of the constructions in this paper have analogs that look the same
locally but have different global topology. For example, in addition to the Brownian sphere
one has a Brownian disk, a Brownian plane, a Brownian torus, Brownian surfaces of arbi-
trary genus and/or arbitrarily many boundary components, etc. [50,65,84,174,187,222]. Variants
like these can be defined within all four viewpoints. One would expect that these definitions
are consistent from one viewpoint to another (so that, e.g., a Brownian three-holed torus is
somehow equivalent to a corresponding LQG three-holed torus or Peano three-holed torus).
Significant work along these lines has been done, but the set of questions one can ask is very
large and the program has not been completed yet.

1. Brownian sphere: a random metric measure space

Our first construction is a random surface called the Brownian sphere (also known
as Brownian map). The Brownian sphere is a random sphere-homeomorphic metric measure
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space. It has been described in longer survey articles by Le Gall and Miermont [171,175,184,
186,187] and in a shorter overview by Baez [27].

Both the peanophere and the Brownian sphere can be constructed by “gluing
together” a pair of “continuum trees” along their outer boundaries, which produces a sphere
decorated by a space-filling curve (that somehow snakes in-between the two trees)—but the
law of the pair of trees is different in the two settings. The idea of gluing together trees to
obtain a sphere may seem counterintuitive, but we will see that it is well motivated by the
discrete models.

Readers familiar with complex dynamics may also recall that the “mating” of two
dendritic Julia sets (these are tree-like sets with empty interior) is a topological sphere, see,
e.g., [25,203,247,261], or look up the online video animations by Arnaud Chéritat. The Brow-
nian sphere and peanosphere constructions are random versions of this phenomenon. Let us
begin by defining continuum random trees which are sometimes also called Brownian trees.

1.1. Continuum random trees (Brownian trees)
Brownian motion is a random function B.t/ defined for t 2 Œ0;1/. But Brownian

motion (like the Brownian sphere) has many variants with similar local behavior. For exam-
ple, the Brownian bridge is a Brownian motion on t 2 Œ0; 1� somehow conditioned on the
(zero probability) event that B.1/ D 0. The Brownian excursion is a Brownian bridge with
B.0/ D B.1/ D 0 that is further conditioned to stay positive on Œ0; 1�.

If one starts with the graph of a Brownian excursion B , and identifies two points
whenever they are connected by a horizontal chord under the graph (see below), one obtains
a random metric space T called the continuum random tree, which was first constructed
by Aldous in 1991 [9–11], and which plays a role in the construction of both the Brownian
sphere and the peanosphere.

Note that the function taking t to the graph point
�
t;B.t/

�
induces a function f from Œ0; 1� to

T that “traces the boundary of the tree clockwise.” The pushforward of Lebesgue measure
on Œ0; 1� endows T with a natural measure. Moreover, one can define the distance between
f .s/ and f .t/ to be �

B.s/ � inf
r2Œs;t�

B.r/
�

C

�
B.t/ � inf

r2Œs;t�
B.r/

�
:

This measures how far “down and up” one has to travel within T to get from f .s/ and f .t/.
Since T comes with a natural measure and a natural metric, we call it a random metric
measure space.
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1.2. Planar map bijections that motivate Brownian sphere and peanosphere
The Brownian sphere has its historical roots in the study of planar maps. A planar

map is a finite graph together with an embedding in the complex sphere C [ ¹1º, where two
embeddings are considered equivalent if there is an orientation-preserving homeomorphism
of C [ ¹1º taking one to the other. For example, the two figures below are isomorphic as
graphs but represent different planar maps, as there is no orientation-preserving homeomor-
phism of C [ ¹1º mapping one to the other.

Combinatorially, a planar map is fully determined by the graph together with the “clock-
wise cyclic ordering” of the edges surrounding each vertex. In particular, the number of
distinct planar maps with n edges is finite. To eliminate the ambiguity that comes from
having nontrivial automorphisms, it is sometimes helpful to specify a “root” by fixing an
oriented edge. If an orientation-preserving homeomorphism of C [ ¹1º takes a planar map
to itself (mapping edges to edges and vertices to vertices) and fixes the oriented edge, one
can show that it must induce the identity map on the whole set of vertices and edges. To
see why, imagine that your car starts driving along the oriented edge. From there you can
describe how to get to any other vertex or edge with a set of directions like “Drive until you
reach a vertex, then take the furthest road to your left, then drive until you reach another
vertex, then take the third road from the left,” and so forth. This method of specifying ver-
tices and edges is preserved by homeomorphisms of C [ ¹1º. In other words, fixing a root
gives us a way to uniquely specify all other vertices (just as a Cartesian coordinate system
gives us a way to uniquely specify points on a planar lattice). This implies that fixing the root
eliminates all non-trivial planar map automorphisms: for example, a triangle has three non-
trivial orientation-preserving automorphisms—corresponding to the three rotations—but if
the triangle is assigned a root, then only the identity automorphism would fix the root.

Perhaps the most famous planar map problem of all is the “4 color conjecture”
(also known as Guthrie’s problem) which captivated mathematicians worldwide from its
formulation in 1852 to its computer-assisted proof by Appel and Haken in 1976. See, e.g.,
[81,112,146,223] for historical accounts. The problem is to show, given any finite planar map,
that it is possible to color each vertex one of four colors in such a way that no two neighbors
have the same color. Note that if one has a map of South America, say, one can create a planar
map by putting a vertex in the center of each country and drawing an edge connecting two
countries wherever they share a nonzero-length border. The four color theorem allows one
to color the countries in such a way that no two countries sharing a nonzero-length border
have the same color. One of the key contributors to research on this problem, and to graph
theory in general, was William Tutte.
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By Tutte’s own account [253] (see also [211]), he was motivated by the four color
theorem when he began thinking about enumerating all planar maps. He wrote his famous
“census of” series in 1962 and 1963 [249–252] which, among other things, included a
remarkable formula for the number of rooted planar maps with n edges, namely 2

nC2
�

3n

nC1

�
2n
n

�
. Using, e.g., Stirling’s formula (or the local central limit theorem), one can show

that
�

2n
n

�
D

4n
p

�n1=2 .1CO. 1
n
//which implies that Tutte’s formula grows asymptotically like

Cˇnn�7=2Ck (which is the formula from the technical point in our introductory dialog) with
C D

2p
�

, ˇ D 12, and k D 1. This is consistent with the formula from the introduction
because the root effectively plays the role of a single marked point, and we recall that k
represents the number of marked points.

These papers were followed by another series by Mullin [206–209] which included
a formula for the number of rooted planar maps decorated by a distinguished spanning tree,
namely .2n/Š.2nC2/Š

nŠŒ.nC1/Š�2.nC2/Š
. This grows asymptotically likeCˇnn�4Ck with k D 1 and ˇ D 16.

The addition of the “spanning-tree decoration” somehow changes the growth rate in a fun-
damental way, changing not only ˇ and C but also the power of n (effectively replacing the
7=2 with 4).

Both of these formulas have interesting bijective proofs: the former, in its first form
due to Cori and Vauquelin in 1981 [80], was later advanced and popularized by Schaef-
fer [226]. The latter was essentially due to Mullin in 1967 [209], see also the explanation
by Bernardi [40], and it reduces the problem of counting spanning-tree-decorated rooted
planar maps to a problem about walks in Z2

C (which can be separately addressed, e.g., with
reflection arguments). These bijections motivate the definition of the Brownian map and the
peanosphere, respectively. For now let us describe the bijections side by side, beginning with
the Mullin bijection.

Suppose that .Xn; Yn/ is a simple walk in Z2
C starting and ending at the origin.

Then if we fix a large enough value of C , the graphs ofXn and C � Yn (linearly interpolated
to R) will not intersect; see the figure below. Draw a vertical red line at each time increment.
Then declare two points in the graph of Xn (resp. C � Yn) to be equivalent if one can draw
a horizontal chord connecting them that does not go above the Xn graph (resp. below the
C � Yn graph). In other words, we “identify” each pair of points connected by a horizontal
(blue, black, or green) line segment. We also glue together the leftmost and rightmost red
lines. After this gluing is done, the region below Xn collapses to become a tree (shown with
black edges and green vertices) as does the region above C � Yn (shown with black edges
and blue vertices) and we are left with a planar map with black/red edges and blue/green
vertices. (The left and right red curves are glued together, which makes the topological disk
they enclose into a sphere.) This planar map is a triangulation in which each triangle contains
two red edges and one black edge.
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If the black edges are erased, one is left with a red quadrangulation Q which is bipartite: the
blue and green vertices are the two partite classes. Each quadrilateral in Q has one blue-to-
blue diagonal. These diagonals together form a planar mapM . Conversely, given the planar
map M , it is not hard to show that one can recover Q (by adding a vertex in the center of
each face of M and connecting it to all of the boundary vertices of that face). The blue tree
T is a spanning tree ofM . The green-to-green diagonals of Q form the dual graphM �, and
the green tree T � is the dual spanning tree. The story above gives a bijection between:

• Simple walks .Xn; Yn/ in Z2
C of length 2N that start and end at the origin.

• Pairs .M; T / where M is a rooted planar map and T is a spanning tree of M .
Here rooted means that a distinguished vertex of M and a distinguished incident
vertex ofM � are fixed (to be the roots of T and T �, i.e., the two vertices attached
to the leftmost red line, or the equivalent rightmost red line).

Choosing a uniformly random walk .Xn; Yn/ of the type described above produces a uni-
formly random .M;T / pair. The probability of a given mapM is proportional to the number
of spanning trees M has.

But what if we want to simply count the total number of rooted maps M (or the
total number of quadrangulations Q) instead of the number of .M; T / pairs? This is what
the Cori–Vauquelin–Schaeffer bijection does. It can be seen as similar to the Mullin bijection
but with a few key differences. First, instead of requiring .Xn; Yn/ to traverse lattice edges,
we at each step allow Yn to change by ˙1 and Xn by either 0 or ˙1. Second, instead of
perfectly horizontal green chords, we draw chords that are one unit higher on the right than
on the left. We draw one such chord leftward starting at each vertex on the graph of Xn,
which means that we have to add an extra vertex of minimal height as shown.
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Third, we consider only .Xn; Yn/ pairs for which the above picture has a special property:
namely, whenever two red vertical lines are incident to the same blue chord, their lower
endpoints have the same height.

If we glue together the edges on the C � Yn graph connected by blue chords (the same way
as in the Mullin bijection) we obtain a tree, and the third condition above is equivalent to the
condition that if two red lines start at the same blue vertex on that tree then they terminate at
green vertices of the same height. Thus we can label each vertex in the tree by the height of
the green vertex (or vertices) it connects to. We then obtain a planar map by gluing the black
and green trees on the right to one another: precisely, we glue each green vertex in the tree
on the right to the blue vertex it is connected to by a red edge, effectively shrinking each red
edge to a point. (Also, the outermost two green edges are understood to be glued/identified
with each other, so that the topological disk they surround becomes a sphere.)

We can think of the graph on the left above as obtained by starting with the region below
the Xn graph, then gluing together two black edges of the Xn graph whenever the edges of
the C � Yn graph just above them correspond to the same edge of the upper tree. Whenever
two of these black edges are glued together, they are either both horizontal (each part of a
triangle with two green edges) or one increasing and one decreasing (respectively part of a
two-gon with one green edge and a quadrilateral with three green edges). In each case, once
the two black edges are glued together (and erased) we are left with a green quadrilateral.

The construction above yields a bijection between
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• Well-labeled rooted planar trees .T; `/ (here `maps vertices of T to positive inte-
gers, where the root has label one and adjacent vertices differ by 0 or ˙1) and

• Rooted quadrangulations Q.

To prove that the above is a bijection, one has to show that one can reconstruct the green and
black trees given just the green-edge quadrangulationQ. Roughly speaking, one reconstructs
the original green tree as follows. First, we shorten the green edges slightly so that they
are no longer connected to each other at the vertices, but then we reconnect some of them:
precisely, we connect each edge (directed “downward” towards its lower-label endpoint) to
the successor downward-pointing edge that involves “turning maximally to the left.” Once
this is done, the green tree is a tree of “leftmost geodesics” built from the directed green
edges (each directed in the direction of decreasing distance to the root). Given the green
tree, one can construct the Xn in the figure above and it is not too hard to check that one
can reconstruct the upper tree as well (since one knows which green vertices have to be
equivalent—and hence connected by red–blue–red paths).

We remark that once the black and green trees are glued together, they have vertices
(but no edges) in common (this is different from the Mullin bijection) but in a sense the two
trees still do not “cross” each other. To try to see why, it is interesting to imagine a path that
crosses through the red edges in order from left to right (but does not intersect the green or
black trees). Once we take the quotient (with respect to the equivalence class where all points
on the same red edge are considered equivalent) this becomes a path that winds between the
green and black trees, intersecting the trees at vertices but never crossing a branch of either
tree.

This bijection (like the Mullin bijection) constructs a quadrangulation Q by gluing
together a pair of trees. The microscopic details of the gluing are a bit different: in the Mullin
bijection the red edges form Q and in the Cori-Vauquelin-Schaeffer bijection the green edges
form Q. There are many variants and analogs of the CVS bijection, see for instance [8, 12,

44, 49, 55, 226] and the references therein. At the global level, the main difference between
the CVS bijections (and its variants) and the Mullin bijection (and its variants) is this: in the
CVS bijection, one of the trees (the green one) is the so-called leftmost geodesic tree of edges
and is determined by Q itself. The second tree (the black one) is in some sense “dual” to the
geodesic tree (and is also determined by Q itself). By contrast, in the Mullin bijection the
spanning tree is not determined by Q and Q is not uniform among all quadrangulations.

1.3. Unconstrained variant: when Q is both pointed and rooted
There is a variant of the Mullin bijection in which we relax the restriction that Xn

is nonnegative, see below.
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Here we imagine that the left and right sides of the above rectangle are glued to one another
(so that both Xn and Yn then become indexed by a circle). We can then identify points on
the same blue chord or the same green (possibly wrapping around) chord, just as before, and
we obtain a pair of trees with red edges between them. A key difference from the original
construction is that in this construction the root of the lower tree (corresponding to the min-
imum of Xn) and the root of the upper tree (corresponding to the minimum of Yn) are no
longer required to be adjacent. The minima of Xn and Yn may occur at different places, and
we can think of the vertex corresponding to the Xn minimum as an extra marked point. (In
principle, one could allow both Xn and Yn to take negative values, in which case the two
tree roots—and the point described by the leftmost/rightmost red line—would effectively
describe three marked points.)

It turns out that the CVS construction also has a similar variant, which corresponds
to relaxing the constraint that all of the blue labels are positive. If we relax this constraint,
then the corresponding Xn process can be positive and negative, and in particular no longer
has to have a minimum at the same place that Yn does. This means that the root of the
upper tree and the root of the geodesic tree are no longer required to be adjacent. With
this constraint relaxed, the set of possible labeled upper trees is easier to count: one has a
Catalan number 1

nC1

�
2n
n

�
of rooted planar trees, and given the tree, there are exactly 3n ways

to choose the labels if we fix the root label to be zero. (We are free to do this since adding a
constant to the labels does not affect the map construction, and hence only the labels modulo
additive constant are relevant.) The formula 3n

nC1

�
2n
n

�
can also be obtained by starting with

Tutte’s formula and multiplying by nC 2 (there are nC 2 possible to choose an extra marked
vertex) and dividing by a factor of 2 (which is related to the choice of rootorientation—this
is explained in many places, see e.g. [226] or the short explanation in Section 3 of [68]).

There is another way to think about the trajectory .Xn; Yn/ obtained from a labeled
tree. For every point on a labeled tree, there is a labeled path from that point back to the root.
As one traces the tree clockwise, one obtains a corresponding sequence of labeled paths;
the labeled path seen at time n can be drawn as a “snake” (a vertical-to-horizontal function
defined on Œ0; Yn�) with the horizontal coordinate indicating the label.

The figures below (read from left to right) are steps in a Markov process on a space
of “snakes.” Each figure is a sequence of edges, each of which goes up one unit and �1, 0,
or 1 units to the right. To move from one figure to the next, one first tosses a coin to decide
whether to delete the top edge (with probability 1=2) or to add an up-left edge (probability
1=6), up-right edge (probability 1=6) or up edge (probability 1=6).
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If the head of the snake starts at height zero—and we condition on the head height staying
nonnegative and returning to zero at time 2n—then we can let the head height represent
the process Yn and the head horizontal location represent the process Xn, and it is not hard
to see that this corresponds precisely to the .Xn; Yn/ construction from the labeled tree. If
one rescales this process vertically by a factor of C and horizontally by

p
C , one obtains a

continuum Brownian snake model in the limit. The Brownian snake was introduced by Le
Gall in the 1990s (see, e.g., [167]) not long after Aldous introduced the continuum random
tree (also known as Brownian tree). The terms Brownian snake and Markov snake were
coined by Dynkin and Kuznetsov (who credit Le Gall for the construction) in 1995 [106].

Now the law of the continuum pair .Xt ; Yt / can be described as follows: one first samples
Yt as a Brownian excursion on Œ0; 1� and then takes a quotient of the graph of Yt to produce
a Brownian tree T , together with the natural map f taking t to T (which traces around the
boundary of T clockwise as t varies from 0 to 1). One then generates a Brownian motion
� indexed by T (taken to be zero at the root of T ). This in turn determines a process Xt by
Xt D �.f .t//. The minimum of this process corresponds to the location of the root of the
geodesic tree. The picture of the whole snake at time t (viewed as a vertical-to-horizontal
function as above) is described by the restriction of � to the path in T from f .0/ and f .t/.
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1.4. Passing to the continuum
One would expect both the Mullin and the Cori–Vauquelin–Schaeffer bijections to

have limits given by the gluing of two fractal trees defined by continuum processesXt and Yt ,
something like the figure below:

However, we would expect the law of .Xt ; Yt / to be rather different in the two scenarios. In
the Mullin limit, Xt and Yt are independent Brownian excursions, and the picture is a topo-
logical quotient of two independent continuum random trees (with respect to the equivalence
that identifies two points if they are connected by a red curve). The topological sphere con-
structed this way is a special case of the peanosphere that we will discuss in the next section.
In the CVS limit, Xt and Yt correspond to the horizontal and vertical components of the
head location in the Brownian snake process. The Brownian sphere (also known as Brown-
ian map) is defined to be the metric space obtained by starting with the tree generated byXt

(viewed as a metric space) and then taking the metric quotient with respect to the equiva-
lence that identifies points if they are connected (by the red curves) to the same point on the
upper tree defined by Y .

The Brownian map was originally defined a bit differently. Marckert and Mokka-
dem [180], building on Schaeffer’s work [226] (also citing, e.g., the early work of Krikun and
of Angel and Schramm [21,157]), argued that the limit of the discrete models could be defined
in some sense (since the .Xn; Yn) process had a limit) and coined the term Brownian map to
describe the limiting object; however, they did not show convergence in the space of random
metric spaces. Le Gall showed that subsequential limits of random quadrangulations exist
w.r.t. to the topology obtained from the Gromov–Hausdorff metric (a natural “metric on the
space of all compact metric spaces”) and are a.s. homeomorphic to a metric quotient of the
Brownian tree [168]. Le Gall and Paulin subsequently showed that all such subsequential
limits are a.s. homeomorphic to the 2-sphere [177], see also the sphericity proof by Mier-
mont [183]. The term Brownian map was sometimes used (see e.g. [176]) to describe any one
of the subsequential scaling limits of the discrete models, and in this language, the ques-
tion “Do random quadrangulations have a (non-subsequential) Gromov–Hausdorff scaling
limit?” was formulated as the question: “Is the Brownian map unique?” This problem was
solved independently by Le Gall and by Miermont [170,185], who also showed that this limit
exists in law (without passing to a subsequence) and that the limiting random metric space
is indeed the Brownian-snake-based metric quotient defined above.
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Since this foundational work, Brownian surfaces have been the subject of a sizable
literature. Many different kinds of random planar maps (quadrangulations, triangulations,
various variants, etc.) have been shown to have the Brownian sphere as a scaling limit,
strengthening the idea that the Brownian map (like Brownian motion) is something “uni-
versal” [2–7, 31, 49, 69, 181]. There has also been significant work done on the continuum
model. For example, the behavior of the geodesics in the Brownian sphere is quite interesting
(geodesics “merge into” one another in ways that are very unlike what one sees for Euclidean
spheres) and much has been done to understand their behavior [20,48,54,57,58,169,189].

1.5. An axiomatic approach
Like Brownian motion, the Brownian sphere is uniquely characterized by certain

axioms, as shown in a long paper by the author and Miller [196] which draws on related ideas
by Bertoin, Budd, Curien, Kortchemski, Krikun, Le Gall, Miermont and others [21,46,47,83,

85,86,157,172,173]. We won’t give a fully precise description here, but let us summarize the
rough idea. For Brownian motion, there is a Markov property, which states that given B.t/
the conditional laws of B restricted to Œ0; t � and B restricted to Œt;1/ are independent. Now
consider an unrestricted-area Brownian sphere with two marked points x and y. The natural
Markov property in this setting states that given the boundary length of the filled metric
ball of radius r centered at x (here the “filled metric ball” is obtained by starting with the
ordinary metric ball and adding the components of its complement that don’t contain y) the
conditional laws of the ball and its complement are independent and depend on the boundary
length in a scale invariant way. Furthermore, if we cut a filled metric ball into slices—using
geodesics from evenly spaced points around the boundary to the center—then the slices
are conditionally independent of each other given the length of their intersections with the
metric ball boundary. The main result of [196] (very roughly speaking) is that if a measure
on sphere-homeomorphic metric measure spaces satisfies these properties, then it must be
the Brownian sphere.

2. Peanosphere: a random mating of trees

2.1. Basic definition
In Section 1 we saw that the Mullin bijection gives a bijection between lattice walks

in Z2
C (starting and ending at zero) and pairs .M;T / whereM is a rooted planar map and T

is a spanning tree on M . The X and Y coordinates of the walk encode, respectively, a tree
and a dual tree, which are somehow stitched together to create M . This is actually a special
case of a much more general idea. The idea of considering planar maps together with an extra
structure on the map (a spanning tree, a collection of loops, a distinguished edge subset, a
bipolar orientation, etc.) has long been a staple of this subject, both on the mathematics side
and the physics side. The extra structure is sometimes called a decoration or (on the physics
side) a statistical physics model or a matter field.

It turns out that many kinds of planar map decorations can be used to produce a
spanning-tree/dual-spanning-tree pair in some way. And the resulting trees are often encoded
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by some kind of lattice walk conditioned to stay in Z2
C, so that in the fine mesh scaling limit,

one obtains some kind of Brownian motion conditioned to stay in R2
C (starting and ending at

the origin). However, in general, the kind of Brownian motion involved (before imposing the
quadrant constraint) may be one in which Xt and Yt are correlated. That is, the “diffusion
matrix” may be such that Var.Xt / D Var.Yt / D t and Cov.Xt ; Yt / D �t for some possibly
nonzero correlation coefficient �. (There is no loss in assuming Var.Xt / D Var.Yt / D t ,
since multiplyingX or Y by a constant does not change the topological surface construction.)

The limit of the Mullin construction corresponds to � D 0, but in general one might
consider any � strictly between �1 (where the Brownian trees are perfectly negatively corre-
lated) and 1 (where the Brownian trees are perfectly correlated). For each � there is a natural
way to make sense of this Brownian motion conditioned to stay in R2

C (starting at the origin
at time 0 and returning there at time 1). One can then use the corresponding .Xt ; Yt / pair to
generate a pair of trees that can be “mated together” in the manner described in the previous
section.

Formally, then, the peanosphere is just a pair of random measure-endowed metric
planar trees that, when glued together along their boundaries, make a topological sphere,
as described in the author’s work with Duplantier and Miller [102, 194] and in more recent
surveys [51,128]. The sphere comes equipped with a non-self-crossing, space-filling path (also
known as Peano curve) which in some sense traces the interface between the two continuum
trees. (This is the motivation behind the term peanosphere which was originally proposed by
Richard Kenyon in private communication.) It is also equipped with a measure, which is the
pushforward of Lebesgue measure on the parameterizing interval Œ0; 1�. Note that no matter
the value of �, the law of .Xt ; Yt / is unchanged if we swap the roles ofXt and Yt , which (by
contrast) is very much not the case for the .Xt ; Yt / pair used to define the Brownian map.

Moore in 1925 gave a very general criterion for determining when a topological quo-
tient space is topologically a sphere [205] and as explained in [102,194] one can verify directly
that these criteria are satisfied in our setting, so that the object obtained by “gluing the two
trees together along their outer boundaries” is indeed a topological sphere. The peanosphere
does not a priori come with a simple metric space structure like the Brownian sphere does,
because neither the tree nor the dual tree is a tree of geodesics. On the other hand, both the
tree and the dual tree (as determined by Xt and Yt ) can be viewed as metric measure spaces
themselves, so lengths of arcs within these trees are well defined.

2.2. Percolation and other simple kinds of decoration
A major reason to study the peanosphere is that it helps one understand random

.M;T / pairs, whereM is a random planar map and T is some kind extra decoration onM .
Indeed, most of the scaling limit results known for decorated random planar maps make use
of the peanosphere construction in some way. But before we discuss that topic, let us say a
few words about randomly decorated deterministic planar maps, i.e., let us suppose that M
is fixed to be a grid or lattice, and we are choosing some way to “decorate” M , e.g., with a
coloring or spanning tree.
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In statistical physics, it is often interesting to try to find the simplest possible models
that exhibit behaviors (phase transitions, correlation decays, fractal patterns, etc.) that one
might see in complicated real world systems. By understanding these models thoroughly
and mathematically, one can hope to get a glimpse of why similar behaviors appear in more
complex systems. We will describe a few of these very simple models here.

First, let us discuss lattice percolation which was introduced to the mathematics
literature by Broadbent and Hammersley in [61]. In this model, one starts with a set of edges—
or vertices or faces—and tosses an independent coin for each one to decide whether it is
“open” or “closed.” This is easiest to visualize by a computer. For example, the following
Mathemetica code generates the picture below it:

n=40;Graphics[{Table[If[RandomInteger[1]==1,Line[{{i,j},{i,j+1}}]],{i,0,n},{j,0,n-1}],
Table[If[RandomInteger[1]==1,Line[{{i,j},{i+1,j}}]],{i,0,n-1},{j,0,n}]}]

The above is a 40� 40 grid where one tosses a fair coin independently for each edge
to decide whether to display it or not. The displayed edges are the open edges; the edges
not displayed are closed. A connected component of open edges is called a cluster. One
can think of this as a simplistic model for a porous medium—with open edges representing
pathways that current or fluid can flow through, and closed edges representing obstructions.
The figure above is called bond percolation (with parameter p D 1=2) because it is the
edges (“bonds”) that are assigned to be open or closed. An alternative is site percolation
which independently assigns each vertex—or face if one uses the “dual perspective”—to
be open with probability p. By way of illustration, the following code generates the figure
below it:
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n=40; Graphics[Table[{If[(i-n)(j-n)==0,Blue, If[i j==0,Yellow,If[RandomInteger[1]==1,
Yellow,Blue]]],RegularPolygon[i{-Sqrt[3],-1}+j{-Sqrt[3],1},{1,0},6]},{i,0,n},{j,0,n}]]

This figure represents percolation on the faces of a hexagonal grid. For each interior face,
an independent coin toss decides whether it is open (blue) or closed (yellow). Here we have
also imposed some deterministic boundary conditions, fixing the colors to be blue along
one boundary arc and yellow on the complementary arc. The “blue–yellow” edges (i.e., the
edges on the boundary between blue and yellow) form many finite length cycles and one
long path, which starts at the lower corner and ends at the upper corner. The long path is the
boundary between the outermost yellow cluster (which contains half of the boundary) and
the outermost blue cluster (which contains the other half of the boundary). In the fine mesh
limit, it converges in law to a random fractal curve called the chordal Schramm–Loewner
evolution with parameter � D 6 (SLE6) as proved in the breakthrough work of Smirnov
[239] and Camia and Newman [67], see also the expository paper by Sun [243]. We will say
more about SLE curves in Section 2.5.

Both bond percolation and site percolation have natural variants in which the edge
or vertex subsets are sampled from different (nonuniform) probability measures. One of the
simplest such models is the Fortuin–Kasteleyn (FK) random cluster model, which was intro-
duced by Fortuin and Kasteleyn in 1972 [109–111]. It has a “partition function” (defined
below) that is equivalent to the famous Tutte polynomial introduced by Tutte in 1954 [248].
See the historical accounts in [82,108] and the overviews by Bernardi and Welsh [41,256] of
the Tutte polynomial and its (surprisingly numerous) applications.

In the FK random cluster model, one begins with a finite graph G D .V; E/ and
chooses a random T � E (which need not necessarily be a spanning tree). The probabil-
ity of a given T is proportional to a weight given by WG.T / WD qk.T /wjT j where q and w
are positive constants, and k.T / represents the number of clusters (i.e., connected compo-
nents) of the graph .V; T /. Note that k.t/ is maximized and equal to jV j if T is empty. It is
minimized and equal to 1 if .V; T / is connected.
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If q D 1, then the FK random cluster model is just ordinary bond percolation with
p D w=.1Cw/. Generally, a large w gives a bias toward T having more edges, and a small
w gives a bias toward T having fewer edges. If q is very large, then the probability measure
is biased in favor of .V; T / being highly disconnected (i.e., having lots of components).
If w is close to zero, then the bias is in favor of T being more connected (i.e., having few
components). The uniform spanning tree can be obtained as a limiting case of the FK random
cluster model. (Taking w ! 0 quickly forces T to be a.s. connected; taking p ! 0 slowly
makes jT j as small as possible, and the connected T that minimize jT j are spanning trees.)
The partition function of the FK random cluster model is defined to be the sum of the weights,
taken over all T � E,

ZG.q; w/ D

X
T �E

WG.T /;

which again is equivalent to the Tutte polynomial (up to a certain coordinate change). An
important point to stress is that if q D 1, the partition function WG.T / depends only on the
number of edges in G.

For certain parameters, the FK random cluster model is also closely related to the
hugely influential Ising model which was presented by Ising in 1925 but actually introduced
earlier by Lenz in 1920, see, e.g., the historical account at [63]. In the Ising model, not all
of the possible face colorings are equally likely; rather one weights the probability of each
coloring by a constant to the number of adjacent pairs on which the colors disagree.

The decorations we have discussed so far (bond percolation, site percolation, uni-
form spanning tree, FK random cluster model, Ising model) are some of the very simplest
statistical physics models. But there are others. For example, one can decorate a graph G
with a bipolar orientation, which is a way of orienting the edges inG so that only one vertex
v (the sink) has all incident edges oriented toward v, and only one vertex w (the source) has
all incident edges oriented away fromw. The number of bipolar orientations is also encoded
in the Tutte polynomial, see, e.g., Bernardi’s explanation in [41]. One can also decorate G
with a so-called Schnyder wood or an instance of the Gaussian free field or a Brownian loop
soup (all of which will be mentioned below). The list goes on. We will not properly survey
the literature on decorated planar maps here, but a few examples of work in this area include
[39,42,43,52,53,55,56,78].

2.3. Decorated random planar maps
In this section we give some examples of how one can generate a pair of spanning

trees if one starts with another type of decoration. The figures below were used in [236] to
explain how to generate a pair of trees from an instance of the FK random cluster model.
By way of setup, one starts with a planar map M in black, adds a vertex in the center of
each face, and draws a green edge connecting it to each vertex on the boundary of the face,
thereby producing a green quadrangulation Q. The planar map M � (which is dual to M ) is
obtained by connecting red-to-red within each green quadrilateral of Q, and is shown with
dotted lines. (Here M itself is recovered from Q by connecting blue to blue within each
quadrilateral.)
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Next, the figures below illustrate an edge subset T in solid black (which happens
to form a spanning tree) with the dual T � shown as dotted black lines. (The dual consists
of a red-to-red dotted line contained within each quadrilateral that does not have a blue-to-
blue solid line.) The interface between the two trees is represented by a red curve that passes
through all of the green edges one at a time, and starts at a location between the root and
dual root (shown as large blue and red vertices).

Finally, the figure below on the left illustrates an example of T (solid black lines)
that is not a spanning tree (it contains cycles and there is one blue vertex that is not connected
to any others). When one draws the red curve (which passes through green lines but never
through black solid/dotted lines) one finds that it is not connected—in fact, it has five different
components. In the figure on the right, four “swaps” have been made, where the edge in a
quadrilateral was changed to a dual edge, or vice versa. The new edges/dual-edges produced
by the swaps are colored in yellow. There is a simple algorithm (due to Bernardi in [41], see
the author’s explanation in [236]) for choosing which edges to swap. (Very roughly speaking,
one tries to form a single red loop that crosses all the green edges one at a time, as above—
but whenever the path is about to “seal off” a region without traversing it, one replaces a
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black blue-to-blue edge with a dotted dual red-to-red edge, or vice versa, to prevent this
from happening.) Each swap reduces the number of red loops by one—and at the end, one
is left with a single red loop, and a tree/spanning-tree pair. This is called the hamburger–
cheeseburger construction because of its relationship to a simple inventory accumulation
model in which two kinds of products (“burgers”) are created and consumed [236].

At the end of the day, [236] uses some algebra (which is too detailed to explain
here) to show that the lattice path encoding this pair of trees converges to a two-dimensional
Brownian motion where the correlation coefficient � depends on the FK-cluster parameter
in a simple way. While the work in [236] was done for infinite graphs, Gwynne, Mao, and
Sun have understood the scaling limits for the FK model on a finite random planar map, and
have given much stronger forms of convergence, which also encode the structure of the loops
themselves in a direct way [131, 141, 142]. See also [35, 77] for more results about critical FK
random maps. Since then, work by Bernardi, Holden, and Sun has explained that a simpler,
tailor-made bijection applies for site-percolation-decorated random triangulations, in which
case � D 0:5.

With site or bond percolation, the partition functions depend only on the number of
vertices or edges, and once one conditions on this the marginal law ofM is the same as in the
undecorated model [45]. This suggests that the peanosphere corresponding to �D 0:5 should
be somehow equivalent to the Brownian map (together with extra randomness encoding the
percolation structure on the Brownian map). And this is indeed the case—see Section 5.

Other bijections have been found for bipolar orientations and Schnyder woods, and
so-called active spanning trees [42,51,130,155,178]. All of these models have different � values.
For an extreme case, note that if we naively set � D 1, then we are effectively gluing two
identical Brownian trees to each other, and we simply obtain the same Brownian tree back.
On the other hand, there is a way of taking the � ! 1 limit that produces a nontrivial object,
as shown in a remarkable paper by Aru, Holden, Powell, and Sun [22], which shows that there
is a nontrivial construction that is far nicer than anyone could have expected, see also [24].
(The � D �1 limit is expected to correspond to an ordinary Euclidean sphere.)
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As a short preview for the experts, let us now note that there is a general relation-
ship between � and the � parameter from SLE theory, a parameter we will say more about
in Section 2.5. Using this relationship, one finds for example that the bipolar orientation
model corresponds to SLE12 and the Schnyder wood model to SLE16. This is because (see
Section 5) there is a natural way to “conformally map” the peanosphere onto the Euclidean
sphere, and when this is done the space-filling Peano curve becomes a space-filling form of
SLE� (see Sections 2.5 and 2.6) with � > 4, where �D �cos.4�=�/ [102]. Here � ranges from
4 to 1 as � ranges from 1 to �1. Let us note that the peanosphere surface itself turns out to be
equivalent to an LQG sphere (see Section 3) with relevant parameters satisfying 
2 D 16=�

and Q D 2=
 C 
=2 and d D 25 � 6Q2. The special value � D 0:5 corresponds to � D 6

(and 
 D
p
8=3 and d D 0). We will say more about these quantities in subsequent sections.

2.4. Computing the scaling exponent
As mentioned above, it turns out that if we set � D 0:5 then the peanosphere is

a random surface that is equivalent to the Brownian sphere (decorated by a percolation
model that does not change the law of the surface itself) although this is far from obvious at
first glance. In this case, the two continuum trees are somehow midway between perfectly
uncorrelated (as in the Mullin limit) and perfectly correlated. Even before constructing that
bijection, it is not hard to argue heuristically that 0:5 is the only correlation coefficient that
is consistent with the Cˇnn�7=2Ck formula, just as 0 is the only correlation coefficient con-
sistent with Cˇnn�4Ck . In general, one can derive a relationship between � and the b in
Cˇnn�bCk .

We will not give the full details here, but let us sketch the rough idea, just to show
that the relationship between b and � is not something mysterious. What is the probability
that a simple random walk on Z2, started at the origin, remains in the wedge of angle �
until time n, and is back at the origin at time n? By way of illustration, part of a wedge of
angle �=4 is shown below on the left (below the generating Mathematica code) along with
its conformal image under the map z ! z4.

f[z_]=z^4;F[{x_,y_}]={Re[f[x+I y]],Im[f[x+I y]]};n=40;
{ParametricPlot[Table[{{t(1-j/n)+j/n,j/n},{j/n,t j/n}},{j,0,n}],{t,0,1}],
ParametricPlot[Table[{F[{t(1-j/n)+j/n,j/n}],F[{j/n,t j/n}]},{j,0,n}],{t,0,1}]}
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Here is the heuristic. (References to rigorous arguments along these lines are given in [155].)
Suppose one does a simple random walk in a wedge of angle � , with lattice size 1=

p
n, and

we want the probability of the walk starting at the origin and returning in n steps (without
leaving the wedge). Using the fact that the random walk approximates Brownian motion, and
Brownian motion is conformally invariant under the map shown above, it appears that the
odds of escaping to a macroscopic distance within n=3 steps should be of order .1=

p
n/�=� D

n��=.2�/. The same should hold if one selects the walk increments in reverse (starting at
time n) for order n=3 steps; and then there is an order 1=n chance that the middle third lines
up correctly, so overall one expects a probability of order n��=��1.

The same should also hold if the simple random walk is replaced by another walk
that has Brownian motion as a scaling limit. If � 6D 0 then it is necessary to stretch or squash
the grid by some amount (in the .1;�1/ direction) in order to produce a walk with Brownian
motion as a scaling limit, and one can easily work out the angle � as a function of �.

The formula n��=��1 corresponds to n�bCk where k D 1 and b D �=� C 2 so
that � D �=.b � 2/. If we have b D 4 then � D �=2, which makes sense since the Mullin
bijection corresponds to a simple random walk in a quadrant. More generally, if we have
Xt D QBt C aBt and Yt D QBt � aBt (where Bt and QBt are independent standard one-
dimensional Brownian motions), we have a correlation coefficient � D .1 � a2/=.1C a2/

where a is the factor by which the space is scaled in the .1;�1/ direction. Then � is the angle
obtained when we squash the standard positive quadrant by a factor of a in that direction.
Precisely, 1=a D tan.�=2/ so a D cot.�=2/ and � D .1 � cot.�=2/2/=.1 C cot.�=2//2 D

� cos.�/ D � cos. �
b�2

/. Plotting this relationship, we see that the b value increases from 3

to 1 as � decreases from 1 to �1.

2.5. Schramm–Loewner evolution
Schramm–Loewner evolution is by itself a large subject. It has been the topic of sev-

eral other sets of ICM lecture notes, see, e.g., the ICM notes by Duplantier, Lawler, Schramm,
Smirnov, and Werner [101,162,229,240,242,258]. Longer expository introductions to the subject
include, e.g., [36,152,161,257].

Here we will briefly explain what SLE curves are. First, let us present the axioms
that motivated the definition. In 1999 [228], Schramm set out to construct—for any simply
connected domain D with boundary points a and b—a random non-self-crossing chordal
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curve � connecting a and b. Schramm insisted that the definition of an SLE curve have
two properties. First, the definition had to be conformally invariant meaning that if  is a
conformal (i.e., analytic and one-to-one) map takingD to a domain  .D/ then the image of
� under  should have the law of an SLE in  .D/ from  .a/ to  .b/ (up to a time change).
Second, the path should be Markovian in the sense that given � up to a stopping time � ,
the conditional law of the rest of � is (up to a time change) that of an SLE in D n �.Œ0; ��/

from �.�/ to b. Schramm showed that there was only a one-parameter family of ways to
define SLE if one insists on these properties. Schramm indexed this family by a parameter
� 2 Œ0;1/.

For completeness, let us now give Schramm’s more explicit definition of SLE
(though we will not say too much more about it here). By conformal invariance, it is enough
to define the law of � for one domain and one pair of boundary points. It turns out to be
convenient to work with the upper half plane H � C with a D 0 and b D 1. For any time t ,
we define the function gt to be the unique conformal map from the unbounded component
of H n �.Œ0; t �/ to H that satisfies

lim
jzj!1

gt .z/ � z D 0:

Schramm defined SLE in a rather indirect way: namely, he constructed the analytic functions
gt , and then used these functions to deduce what � must be. The gt are defined by setting
g0.z/ D z and then requiring that for any fixed z 2 H, the ODE

@tgt .z/ D
2

gt �Wt

is satisfied up until the smallest time t at which z is hit (or cut off from infinity by) the curve
�.Œ0; t �/, where Wt WD B�t is a standard Brownian motion sped up by a factor of �. This
requirement determines the functions gt which in turn determine �.

In some sense, the larger the � (and hence the faster theWt is moving up and down),
the “windier” the curve becomes. In fact, Rohde and Schramm showed in [224] that � is a.s.
a simple curve when � 2 Œ0; 4�, that � a.s. hits (but does not cross) itself when � 2 .4; 8/ and
that � is a.s. a space-filling curve when � � 8. Beffara showed that the Hausdorff dimension
of the range of � is linear in �, a.s. given by min¹1 C �=8; 2º [29]. (Beffara builds on a
related dimension calculation in [224].) In particular, since the scaling limit of the percolation
picture above corresponds to � D 6, the Hausdorff dimension of the curve is almost surely
1C 6=8 D 7=4.

At least on the square lattice, scaling limits of critical Ising model interfaces and
the FK–Ising interfaces (which correspond to the FK cluster model for a particular choice
of parameters) have scaling limits given by SLE3 and SLE16=3, respectively, as shown in a
remarkable series of papers by Smirnov and coauthors including Chelkak, Duminil-Copin,
Hongler, Kemppainen [75, 76, 241]. Loop-erased random walks and uniform spanning tree
boundaries have scaling limits given by forms of SLE2 and SLE8, respectively, as shown
in a remarkable paper by Lawler, Schramm, and Werner [163]. Level lines of the so-called
Gaussian free field are given by SLE4 as shown by Schramm and the author [230,231].
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2.6. Conformal loop ensembles
What happens if we consider a percolation model with all blue boundary conditions,

and then consider the collection of all of the loops that form boundaries between blue and
yellow regions?

Camia and Newman showed in [66] that in the fine-mesh scaling limit, these loops
converge to a random collection of continuum loops, called a conformal loop ensemble
(CLE) with parameter � D 6. Conformal loop ensembles are defined for any � 2 .8=3;8�, see
the CLE construction by the author in [234] and/or the axiomatic characterization of simple
CLE loops by the author and Werner in [238].

We will not give a formal definition of CLE here. But we wish to stress one point.
As explained in [238], it turns out that there is a natural way to use an instance of CLE� for
� 2 .4; 8/ to generate a space-filling version of SLE� (even though ordinary SLE� is not
space-filling for � in this range) which is somehow the continuum version of the procedure
used in Section 2.3 to combine multiple red loops into one loop. One can also reverse the
procedure and recover the loops from the space-filling curve. Very roughly speaking, one
tries to follow the CLE interfaces, but any time the curve separates a region from the target
point, one violates the rules and fills up that region before continuing. The space-filling curve
divides space into a continuum tree-and-dual-tree pair. Although we are not giving details
here, this implies that, at least in the continuum, if one wants to understand loop-decorated
random surfaces one can equivalently try to understand tree-decorated random surfaces. We
remark that these continuum trees also have an interpretation as coalescing rays within a
so-called imaginary geometry [98,190–193] where the dual tree corresponds to the coalescing
tree of rays drawn in the opposite direction.
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3. Liouville quantum gravity sphere: a random Riemannian

geometry

The Liouville quantum gravity sphere is a random sphere-homeomorphic space
whose law depends on the single parameter d (orQ or 
 ) as mentioned earlier. When d D 0

the LQG sphere is called the pure LQG sphere. The pure LQG sphere differs from the Brow-
nian sphere in that the former a priori comes endowed with a conformal structure but no
metric space structure, while the latter is a priori endowed with a metric space structure but
no conformal structure.

A recent summary of LQG surfaces and the Gaussian free field can be found in the
lecture notes by Berestycki and Powell [33, 37]. See also the Astérisque summary of LQG
surfaces and the KPZ formula by Garban [113], the Notices of the AMS overview article by
Gwynne [125], and the ICM proceedings article by Miller. A more recent set of ICM lecture
notes by Ding, Dubédat and Gwynne gives an overview of recent works that have established
a metric space structure for general values of d < 25 [91].

To summarize the latter point, recently various researchers (such as Ang, Basu,
Bhatia, Ding, Dubédat, Dunlap, Falconet, Ganguly, Gwynne, Holden, Miller, Pfeffer, Remy,
Sepúlveda, and Sun) have contributed to a spectacular international program to show that
LQG spheres with d 6D 0 can also be given a canonical metric measure space structure, and
to prove some basic properties about the resulting random metric spaces [13, 28, 90, 92, 93,

99, 100, 124, 127, 132, 140, 213]. The reader might start by looking at the metric constructions
by Gwynne and Miller or by Ding and Gwynne [92, 133]. Viewed as random metric spaces,
general LQG spheres can thus also be viewed as generalizations of the Brownian map. On
the other hand, we stress that when d 6D 0 there is no reason to believe that the geodesic-
tree/dual-tree pair is described by anything as simple as the Brownian snake. That is, as far
as we know, the simple Brownian map construction given in Section 1 has no simple analog
corresponding to d 6D 0.

3.1. The Gaussian free field
Brownian motion is a natural random function from R to R. A generalization of

Brownian motion called the Gaussian free field (GFF) is a random (generalized) function
from Rd to R for any d . Our use of the term GFF in this paper will be limited to d D 2.

There are many ways to define the Gaussian free field, see the author’s survey [233].
It is a scaling limit of discrete random functions from Z2 to R much as Brownian motion is
the scaling limit of random functions from Z to R. One particularly concise definition is as
follows.

Fix a bounded planar domain D. If f and g are functions on D whose gradients
lie in L2 then we can write .f; g/r D .2�/�1

R
D

rf .z/ � rg.z/dz for the Dirichlet inner
product of f and g. Let H.D/ be the Hilbert space closure of the space of compactly sup-
ported smooth functions with respect to this inner product. Then the Gaussian free field on
D with zero boundary conditions is the sum

P
˛ifi where the fi are an orthonormal basis

for H.D/ and the ˛i are independent standard normal random variables (mean zero, vari-
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ance one). The sum a.s. does not converge pointwise or inH.D/ but it a.s. does converge in
the space of generalized functions (a.k.a. distributions) [233].

The GFF can also be defined as the Gaussian random distribution with covariance
given by Green’s functionG.x;y/. HereG.x; �/ is given by � log jx � �j minus the harmonic
extension of � log jx � �j from @D to D. The symbols h and � are both commonly used to
describe an instance of the Gaussian free field, depending on the context. We will use � in
this paper.

The GFF can also be defined on the whole plane, where one simply has G.x; y/ D

� log jx � yj. In this setting the field � is only defined up to additive constant. But one may
nonetheless write Cov..�; f /; .�; g// D

’
� log jx � yjf .x/g.y/dxdy as long as both f

and g have mean zero. The integration-by-parts identity

.f; g/r D
1

2�

Z
rf .z/ � rg.z/dz D

�1

2�
f .z/�g.z/dz D

�1

2�
.f;��g/

is frequently used.

3.2. Conformal parameterizations
The LQG-sphere has a long history. On the physics side, LQG surfaces come up in

certain formulations of string theory and 2D quantum field theories based on the Einstein
equations (which in two dimensions reduce to the very simple Liouville equation). This lit-
erature is rich and complex, with foundational contributions by Belavin, Brézin, David, Di
Francesco, Distler, Dorn, Duplantier, Eynard, Fateev, Itzykson, Kawai, Kazakov, Knizhnik,
Kostov, Migdal, Otto, Parisi, Polchinski, Polyakov, Segal, Seiberg, Teschner, Witten, the
Zamolodchikov brothers, Zinn-Justin, Zuber, and many others. (This list is far from exhaus-
tive.) We will not attempt to properly survey the physics literature in this paper, but we point
the reader to the long list of references in [105] (or the articles cited in Section 4) as a place
to start.

On the mathematics side, one might begin with Gauss [115] who explained in 1827
how curvature could be understood as an intrinsic property of a two-dimensional surface,
independently of how the surface was “embedded” in a higher-dimensional space. The Rie-
mann mapping theorem (formulated by Riemann in 1851, proved by Osgood in 1900) and
the more general Riemann uniformization theorem (conjectured by Klein in 1893, Poincaré
in 1892, proved by Poincaré in 1907, Koebe in 1907) also play a central role [119,255].

It is standard in differentiable geometry to define a surface (or two-dimensional
manifold) by covering the surface with a “chart” of open sets that can each be diffeomor-
phically mapped to a planar domain. Within one of these open sets, parameterized by pairs
.x; y/, the “metric” can be written A.x; y/dx2 CB.x; y/dxdy C C.x; y/dy2. The param-
eterization is said to be conformal if A D C and B D 0, and the Riemann uniformization
theorem implies that one can always find a conformal parameterization. If we treat the param-
eterizing domain U as a subset of C and write z D x C iy then we can write the metric as
e�.z/.dx2 C dy2/ and the associated area measure as e�.z/dz where dz is Lebesgue mea-
sure on U . (In some conventions the definition of � may differ by a factor of two; the issue
is whether e�.z/ is interpreted as the length multiplier or the area multiplier.)
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The Gaussian curvature is �e��.z/��.z/ so the integral of the Gaussian curvature
over the set parameterized by a region R is equal to the integral of�� over R. In particular,
the Gaussian curvature is zero if and only if �� D 0 so that � is harmonic. A function �
on a bounded domain D is harmonic if and only if it minimizes

R
.r�.z/ � r�.z//dz DR

.��.z/��.z//dz given its boundary conditions. More generally, the Gaussian curvature
is equal to the constantK if and only if��D �Ke�. The latter equation is called Liouville’s
equation and was formulated by Liouville in 1838 [179]. A function with constant curvature
minimizes

R
.r�.z/ � r�.z//CKe�, which is a linear combination of the Dirichlet energy

.�; �/r and the overall surface area. (Polyakov used the latter quantity to define the so-called
Liouville action, see Section 3.5.2.)

If we want to choose a random perturbation of a flat metric, we need to find a random
function � that is in some sense a random perturbation of a harmonic function. Roughly
speaking, one “randomly perturbs” a harmonic function by replacing the assertion that “the
Dirichlet energy of � is minimal given its boundary values” with “the probability of a given
� is proportional to the exponential of minus the Dirichlet energy of �.” Formally, this means
taking � to be a constant 
 2 .0; 2/ times the Gaussian free field. The induced area measure
then takes the form �� WD e
�.z/dz. This cannot make literal sense (since � is a random
distribution) but there are various ways to make sense of this through regularization.

The first rigorous construction of a random measure with the law of �� is due to
Høegh-Krohn [158] who constructed the object for 
 2 Œ0;

p
2�. Høegh-Krohn was motivated

by earlier works in the quantum field theory literature that made sense of V.�/ where � was
the Gaussian free field and V was a polynomial. The exponential of the free field (viewed as
a quantum field theory) was studied in several papers over the subsequent decade, and was
cited by prominent quantum field theorists such as Glimm, Jaffe, and Simon.

In the 1980s Kahane derived a similar construction for all 
 2 Œ0; 2/ and used
the term Gaussian multiplicative chaos to describe the associated random measures [153].
Kahane was motivated by the multiplicative cascades popularized by Mandelbrot. (See, e.g.,
[103] for 
 D 2.) Neither Høegh-Krohn nor Kahane interpreted these random measures as
the pullback to a planar domain of the area measure on a random surface parameterized by
that domain. The author’s work with Duplantier [105] constructed the measure �� as a weak
limit as " ! 0 of the random measures "
2=2e
�".z/dz, where �".z/ is the mean value of �
on the ball boundary @B".z/, see also [237]. This construction showed that the measure �� is
a function of the Gaussian free field �.

Computer visualization can help us generate some intuition about what the measures
�� look like. The following Mathematica code generates the two figures shown below.

K = 8; fieldmultiplier = 1.5; squarefraction = .001;
phi=Re[Fourier[Table[(InverseErf[2 Random[]-1]+I InverseErf[2 Random[]-1])*If[j+k == 2,0,

1/Sqrt[(Sin[(j-1)*Pi/2^K]^2+Sin[(k-1)*Pi/2^K]^2)]],{j,2^K},{k,2^K}]]];
CO = squarefraction Sum[M[[i,j]], {i,1,2^K}, {j,1,2^K}]; M=Exp[fieldmultiplier phi];
{ListPlot3D[phi],Graphics[Table[Table[If[Sum[M[[2^k m+i,2^k n+j]],{i,1,2^k},{j,1,2^k}]<CO,

{Hue[k/8],EdgeForm[Thin],Rectangle[{2^k m, 2^k n},{2^k m+2^k,2^k n+2^k}]}],
{m,0,2^(K-k)-1},{n,0,2^(K-k)-1}], {k,0,K-1}]]}
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The left figure is an instance� of a discrete version of the Gaussian free field on the 256� 256

torus (lines 2 and 3 encode the discrete GFF; see the explanation in [233]). The exponential
of fieldmultiplier times � (called M in the code) describes a random measure on the torus.
To obtain the picture on the right one starts with the whole square, then divides it into four
equal squares, then divides each of those into four equal squares and so on, except that one
stops dividing whenever one reaches a square where the area in the square is less than some
constant cutoff (taken in the code to be squarefraction times the total area). The squares are
colored according to their Euclidean size. Each square S shown in the picture above has area
less than the cutoff—but its dyadic parent S 0 must have area greater than the cutoff (as other-
wise S 0 would have been drawn after S , and would have covered S ). In this sense one expects
that all of the squares shown are “about the same size” in the random geometry. The blue
squares correspond to regions where � is smaller on average (and the measure is less dense)
while the orange and red squares correspond to high density areas. One can easily paste the
code above into Mathematica and experiment with different variants: for example, shown
below are the figures obtained by taking a fieldmultiplier of 0:5 (left) and 1 (right) instead of
1:5 above. The measure represented by the left figure is much closer to Euclidean measure.
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3.3. LQG surfaces
We use the term LQG surface broadly to describe any surface whose area measure is

e
�.z/dz where � has a law that is locally absolutely continuous with respect to the Gaussian
free field. Formally, an LQG surface is an equivalence class of pairs .D;�/, where .D;�/ and
. QD; Q�/ are equivalent if they are related as in the following diagram withQ D 
=2C 2=
 .

Using the definition �� WD lim"!0 "

2=2e
�".z/dz, one can show that the � Q� area measure

on QD above must a.s. agree with the pullback of the �� area measure on D. Roughly speak-
ing, this is because exp.
Q log j 0j/ D j 0j2j 0j


2=2. The j 0j2 is part of the usual change
of variables formula, and the j 0j


2=2 accounts for the fact that  maps circles of diame-
ter " to (approximate) circles of size diameter j 0j", which affects the "
2=2 factor in the
regularization.

In addition to the area measure �� , it is possible to define a boundary length measure
(in the case that � is a GFF with free boundary [105]) or a fractal length associated to a line or
an SLE curve or other fractal set, see [38]. All of these measures, as well as the LQG distance
function discussed above, are preserved by the coordinate change—which makes sense since
.D; �/ and . QD; Q�/ literally represent the same surface. The image under  of the so-called
Liouville Brownian motion inD as defined in [34,114] is a Liouville Brownian motion in QD.

Furthermore, if x1; : : : ;xk are points inD, and we write Qxi D .xi /, then we say that
.D; �; x1; : : : ; xk/ and . QD; Q�; Qx1; : : : ; Qxk/ represent the same “LQG surface with k marked
points.” Finally, let us stress that the above definition of LQG surface makes sense for any
Q � 0, not only forQ � 2. (The valuesQ � 2 are those that have the formQ D 
=2C 2=


for some 
 > 0 or, equivalently, those for which d D 25� 6Q2 < 1.) One just has to accept
that the area measure is not well defined when Q < 2. However, as we mentioned earlier,
the metric space structure (along with the fractal measure of some other sets) continues to
be well defined when Q < 2 (although the diameter of the surface becomes infinite when
Q < 2, which corresponds to d > 1).

3.4. Constructing the LQG sphere
One simple way to define a unit-area LQG sphere is to consider a GFF � on a simply

connected bounded domainD with boundary conditions given by a constant C , and to con-
dition on ��.D/D 1. As C ! �1 this object converges in law to the unit area LQG sphere
(with the boundary somehow shrinking—in the metric sense—to a single marked point in the
limit) as explained in [235]. Another approach involves starting with an infinite cylinder and
two marked points (the cylinder’s endpoints), as described in [102]. Yet another approach
involves starting with the infinite-volume Polyakov measure (see the next subsection) and
“pinning it down” at three points, in a manner described in [87]. The paper by Aru, Huang,
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and Sun [23] established the equivalence of the approaches in [102] and [87]. (See also the
alternate proof in [16] and the disk analog in [70].) A chart, presenting several equivalent
definitions and the relationships between them, is included in [194].

All of these approaches have analogous constructions that produce unrestricted area
LQG spheres (instead of unit area LQG spheres). In the C ! �1 construction above, for
example, instead of conditioning on ��.D/ D 1, one can (for any C value) multiply the
measure by a constant factor to ensure that the measure assigned to � distributions with
��.D/ 2 Œ1; 2� is constant, and then take the vague C ! �1 limit.

3.5. Polyakov’s infinite measure on embedded LQG surfaces
The Polyakov measure is an infinite measure on the space of unmarked, unrestricted-

area LQG spheres embedded in C. As mentioned in the introduction, it corresponds to an
unrestricted-area LQG sphere embedded in all possible ways (with the embedding chosen
from Haar measure on the Möbius group). The measure is infinite for two reasons: first, we
recall from the introduction that the law of the area for an unrestricted-area LQG sphere has
the form A�bdA (or A�be��AdA for some constant � in the “off-critical” case) which is an
infinite measure for the b values that we will encounter (namely b > 3, recall Section 3.7).
Second, the embedding is chosen from the Haar measure on the Möbius group, which itself
has infinite volume. Also, just to avoid confusion, let us clarify that it is the Polyakov measure
on the space of surfaces—not the area measure on any individual surface—that is infinite. In
the Polyakov measure, almost all surfaces have finite area (assuming d � 1; the total area is
not defined if d > 1). Each embedded surface is described by a generalized function �, so the
Polyakov measure can be viewed as an infinite measure on the set of generalized functions.

The Polyakov measure is usually defined in a slightly different way. It is presented
as a way to make sense of the expression “e�S.�/d�” where S is the so-called Liouville
action, which we will discuss below, see the presentation by David, Kupiainen, Rhodes, and
Vargas at [87] or the lecture notes by Kupianen at [159]. The simplest way to describe it (in
the case � D 0) is to say that � is an instance of the zero-mean GFF on the sphere plus an
independent constant C chosen from the infinite measure e�2Qcdc. To obtain the general-�
measure, one simply weights the zero-� measure by e��A, where A is the area of the LQG
surface.

The fact that the Liouville action produces a measure on embedded LQG surfaces
of the form described above (in particular, a measure that is Möbius invariant) is counterin-
tuitive at first glance, but it is carefully explained, e.g., by Ang, Holden, and Sun in [16], see
also the conformal invariance discussion in [159]. There is a certain miracle (related to what
we will call “semi-Gaussian” measures) that makes everything work out. Before we discuss
the specifics, let us present a couple of simpler semi-Gaussian measures as a warmup.

3.5.1. Semi-Gaussian measures
A semi-Gaussian measure is a constant times e�F .v/dv where F is a quadratic

that is strictly convex in all directions except one. For example, 1p
2�
ey�x2

dxdy is semi-

1232 S. Sheffield



Gaussian. It is a product of a normal measure 1p
2�
e�x2=2dx and an infinite measure eydy.

If we restrict this measure to any nonvertical line, we obtain a finite measure, which is a
constant times a normal probability measure. If we restrict to any vertical line, we obtain an
infinite measure.

In the figures below, the orange lines are level sets of the function y � x2 (and hence
also the function 1p

2�
ey�x2

dxdy). In each figure, one can imagine “sampling” .X;Y / from
the infinite measure in two steps. First one decides which blue line .X; Y / belongs to. (The
blue lines in the three figures are the lines of slope 0, �1, and 1, respectively. By integrating
the density function along the blue lines, we find that the law of the y-intercept of the blue
line is given by a constant multiple of eydy.) Then given that one chooses the location on the
blue line. The conditional law of the location on the blue line is that of a Gaussian random
variable centered at a point on the vertical green line (which is the point on the blue line
where y � x2 is largest).

n = 4;{ParametricPlot[{Table[{t,j/n},{j,-2n,2n}],Table[{t,t^2+ j/n},{j,-2n,2n}],{0,t}},{t,-2,2},
PlotRange->{{-1,1},{-1,1}}],ParametricPlot[{Table[{t,-t+j/n},{j,-2n,2n}],Table[{t,t^2+j/n},
{j,-2n,2n}],{-.5,t}},{t,-2,2},PlotRange->{{-1,1},{-1,1}}],ParametricPlot[{Table[{t,t+j/n},
{j,-2n,2n}],Table[{t,t^2+j/n},{j,-2n,2n}],{.5,t}},{t,-2,2},PlotRange->{{-1,1},{-1,1}}]}

In the left figure, no matter what blue line we choose, the conditional expectation ofX is 0. In
the second and third figures, no matter what blue line we choose, the conditional expectation
of X is (respectively) �1=2 or 1=2. Changing the blue-line slope somehow has the effect of
“shifting” the conditional law of X .

This is a bit counterintuitive. For a closely related example (essentially a rotation of
the one above by 45 degrees), suppose

e�.a�b/2=2te.aCb/=2dadb

is the (semi-Gaussian) density function for a pair .A; B/. Then we can formally compute
EŒBjA� D AC t=2 and EŒAjB� D B C t=2. This is because if we restrict to a fixed value
of a, we obtain a multiple of a Gaussian measure on b values centered at a C t=2 (and
similarly with a and b reversed). Checking this fact is an elementary complete-the-square
calculation: if b is fixed then �.a2 � 2ab C b2/=2t C .aC b/=2 is �.a2 � 2a.b C t=2/C

.b C t=2/2/=2t plus a term that does not depend on a.
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At a glance, the above seems to suggest that A is t=2 units bigger than B on aver-
age, and B is t=2 units bigger than A on average, which in turn seems contradictory. This
is somehow reminiscent of “envelope switching” paradoxes, where after one observes the
amount of money in either one of two envelopes, one always expects the other to contain
more, see, e.g., [62]. In fact, this is just the sort of paradox that one encounters when dealing
with infinite measures and/or infinite expectations. We find that the following are equivalent:

• First “sample”A from the infinite measure eada. Then chooseB as a normal with
variance t and mean AC t=2.

• First “sample”B from the infinite measure ebdb. Then chooseA as a normal with
variance t and mean B C t=2.

One can imagine similar constructions in higher dimension. For example, we could replace
the X in the figures above by a vector .X1; X2; : : : ; Xn/ and replace y � x2 with
y �

Pn
iD1 x

2
i , and replace the blue lines by blue hyperplanes. One could then argue in a

similar way that changing the slope of the blue hyperplanes has the effect of shifting the
location of the vertical green line.

By taking a limit of an increasing sequence of finite-dimensional subpaces, we can
also make sense of an infinite dimensional semi-Gaussian—precisely the same way we
make sense of the GFF as an infinite dimensional Gaussian, using the quadratic func-
tion �

1
2
.�; �/r , or the way we define Brownian motion, using the quadratic function

1
2

R 1

�1
. @

@t
B.t//2dt .

Let us give an example. Define a process (whose law is an infinite measure) by
M.t/ D B.t/C jt j=2C Y where Y has density eydy and B.t/ is an independent standard
Brownian motion (defined for all t 2 R, withB.0/D 0). This is an infinite measure on paths
that at first glance seems to be “mostly supported” on paths that have their minima near 0. If
we tried to define an “action” for M.t/ it would have the form

S.M/ D eM.0/
C
1

2

Z 1

�1

�
@

@t

�
M.t/ � jt j=2

�2
�
dt:

On the other hand, some thought reveals that, when t is fixed, the (infinite-measure) law of
B.0/ and B.t/ is equivalent to the law of A and B in the example above, and in fact the law
is symmetric with respect to swapping the roles 0 and t . One can also show that givenM.0/
and M.t/ the conditional law of the rest of the process is given by a Brownian bridge on
.0; t/ and Brownian motions with drift on .t;1/ and (running time backward) on .�1; 0/,
with the given values of M.0/ and M.t/ as endpoints. One can make a similar argument
using �t and 0 in place of 0 and t and use this to show that the the law of M is invariant
w.r.t. to translation by t units (for any t ).

This is a rather remarkable fact. The definition of M.t/ does not look translation
invariant at all—it is clearly centered at 0. But somehow translating the definition by r units
to the right does two things: it effectively weights the law ofM by eM.r/�M.0/ D eB.r/�B.0/

(this puts a bias in favor of functions that increase on the interval Œ0; r�) and it deterministi-
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cally adds the function f .t/ D
jt�rj

2
�

jt j

2
(which decreases on the interval Œ0; r� and is flat

elsewhere). And these two changes magically cancel each other out.
We remark that another way to construct this measure is by considering a

Brownian bridge measure on processes B.t/ indexed by Œ�T; T �, with boundary values
B.T / D B.�T / D T=2, then multiplying the measure by a constant to ensure that the mea-
sure of paths with B.0/ < 0 is some fixed constant, then taking the vague T ! 1 limit.
This construction might make the translation invariance a bit more intuitive.

To extend the story to two dimensions, note that the above construction is still trans-
lation invariant if we take the law of Y to be e�2Qydy and writeM.t/ D B.t/�Qjt j C Y .
This just corresponds to taking B.T / D B.�T / D �QT in the limiting procedure men-
tioned above. On the cylinder C D ¹t C � i W t 2 R; i 2 Œ0;2�/º one can then define �.t C � i/

to beM.t/ plus the projection of the GFF (on the cylinder) onto the space of functions with
mean zero on every fixed-t slice of the cylinder. If restrict toM.t/ that have their maximum
at t D 0 (to eliminate the translation symmetry) we obtain the so -called “˛ D 0 quantum
sphere” [102]. If we don’t restrict in this way, we obtain the Polyakov measure (with � D 0),
an infinite measure on surfaces that turns out to be invariant w.r.t. all Möbius coordinate
changes, not only translations.

To see why, note that there are three “mostly flat” surfaces often used to parameterize
an LQG sphere: the Riemann sphere C [ ¹0º, the cylinder C [ ¹˙1º and the gluing D of
two unit disks together their boundaries. There are obvious unit-circle- preserving conformal
maps between these three spaces. If  is the obvious conformal map from C to D then
Q log j 0.t C i�/j D �Qjt j. This is the term that comes up in the change of coordinates
from D to C . If we instead change coordinates from D to C, then this term is replaced by
�2Qmax¹log jzj; 0º. Working in C, the proof that the law of the construction is invariant
under translations and rotations of C (as well as inversions and dilations) is very similar to
the one dimensional argument above, and since these operations generate the Möbius group,
full Möbius invariance follows, see [16,159].

3.5.2. Embedded Polyakov sphere
When building physical field theories it is often natural to define a measure on fields

� by writing formally e�S.�/d� where d� represents some sort of uniform measure on the
space of all functions. In some cases this is hard to make mathematically precise because it
is not clear what the measure d� corresponds to. One might attempt to approximate d� by
something well defined (like Lebesgue measure on a finite-dimensional space of piecewise-
linear functions) but it may be unclear how to normalize the construction to obtain a non-
trivial limit, or how to prove such a limit exists. In the special case of the Liouville action,
however, these concerns can be overcome. Let us tell the story with a playful dialog.

INSTRUCTOR: Consider the measure e�A.�/�B.�/d� where d� is the uniform measure on
the space of all functions.

MATH POLICE: Sorry, there is no such thing as the uniform measure on all functions. Your
object is not defined.
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INSTRUCTOR: But my A is a quadratic function on the space of � for which it is finite. If I
restrictA to a codimension-one subspace thenA is the norm for a Hilbert space. So e�A.�/d�

is just a Gaussian Hilbert space cross an infinite measure that looks something like eydy.
Check out Janson’s book on Gaussian Hilbert spaces [150]. These things are certainly well
defined.

MATH POLICE: Okay fine, but you still need to weight by the e�B.�/ factor.

INSTRUCTOR: My friends proved that (with appropriate normalizing)B.�/ is well-defined
and finite for almost all � taken from the measure e�A.�/d�.

MATH POLICE: So e�B.�/ is the Radon–Nikodym derivative with respect to the semi-
Gaussian measure? And B is obviously measurable?

INSTRUCTOR: That’s right.

MATH POLICE: Okay, you’re free to go.

We can take the S in the above dialog to be the Liouville action defined as follows:

S.�/ D

Z �
1

2
�
1

2�
jr�.z/j2 C

1

4�
QR.z/�.z/C �e
�.z/

�
dz;

where R is the Ricci curvature associated to the “reference metric,” see e.g. [87].
For example, we may assume that the reference metric is the ordinary sphere so that R is
constant (with total integral 8� by Gauss-Bonnet—recall that the Ricci curvature is twice the
Gaussian curvature) so that the second term is 2Q times the mean value of �. Alternatively,
if the reference metric is the glued pair of disks D from the previous subsection, then the
second term becomes 2Q times the mean value of � on the unit circle.

The integral of the first two terms is the quadratic part A.�/ while the integral of
the last term is the B.�/. The fact that the latter is defined (provided Q > 2) follows essen-
tially from the ideas of Høegh -Krohn and Kahane—see also the author’s later work with
Duplantier [105] which constructs e
�.z/dz as a measure-valued function of the field � and
explains the LQG context. In light of the above dialog, the Polyakov measure e�S.�/d� is
in fact rigorously defined; this is explained in more detail in [87] (see also the higher genus
version in [88]).

Stories like the above, where S has a quadratic term (relatively simple to handle)
and a nonquadratic term (requiring more thought) are relatively common in quantum field
theory, and it is certainly not always the case that the nonquadratic part simply modifies the
Gaussian part in an absolutely continuous way.

The �D 0measure is already rather interesting; for example, it can be easily shown
to be Möbius invariant (following the LQG coordinate change rules), despite appearing at
first glance to be “centered” at a specific location within the Möbius group, a phenomenon
analogous to the example at the end of Section 3.5.1. The miracle is that when one applies a
Möbius transformation  , the Q log j 0j factor one has to add exactly compensates for the
effect of the recentering (swapping the curvature measureR.z/dz for its image under ), see
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[16]. This implies that the Polyakov measure factors as the product of a measure on (unem-
bedded) LQG surfaces and a measure on embeddings (given by the infinite-volume Haar
measure on the Möbius group) see [16]. The same is true if one considers a nonzero �. How-
ever, the Polyakov measure with a nonzero � only makes sense as described above if d � 1

(since otherwise the natural volume measure is infinite), while the construction of the zero-�
measure makes sense for anyQ� 0. Changing the choice of reference metric is analogous to
changing the slope of the blue lines/hyperplanes in the previous section and (up to a constant
multiplicative factor) it leaves the measure construction unchanged [87].

On a flat reference metric, the quadratic action is simply the Dirichlet energy of �
while the �e
�.z/ term corresponds to the Ke� term associated to the Liouville equation
with a nonzero K. Polyakov was not the first to work with variants of the free field action,
and in [214] and [216] he attributes a closely related “quadratic action” to Douglas, who used
it in his work on Plateau’s problem for minimal surfaces. (Douglas was awarded one of the
first two Fields medals for this work in 1936 [97].) See also [60,89] which introduce the action
now called the Polyakov action, which Polyakov used later in [215].

3.6. More history
The Brownian map and peanosphere constructions were directly motivated by dis-

crete objects—namely random planar map models. The construction of LQG surfaces, on the
other hand, was motivated within physics as a “quantization” based on the Dirichlet energy
or on the Liouville equation. Why would one expect these objects to be equivalent?

The discrete planar map models were well studied in physics due to their relationship
with random matrices and the random particle systems corresponding to random matrix
eigenvalues, see the seminal papers from the 1970s by ’t Hooft and by Breézin, Itzykson,
Parisi, and Zuber [1,59], along with more recent overviews by Eynard, Guionnet, and Maurel-
Segala [107, 122]. However, it took some time for people to be persuaded that the Liouville
theory corresponded to the scaling limit of these models. For example, Polyakov wrote in
a memoir [216] (see also his previous memoir [214]) that he did not become convinced of
the connection between the discrete models and Liouville quantum gravity until the late
1980s after jointly deriving, with Knizhnik and Zamolodchikov, the so-called KPZ formula
for certain Liouville quantum gravity scaling dimensions [156] and comparing them with
known combinatorial results for the discrete models (for a rigorous approach, see also [32,

103,105,113,220]).
At this point the relationship between the planar map models and the continuum

objects is on more solid mathematical ground. We have convergence results of various kinds
and formal equivalence proofs between the different continuum objects, see Section 5. But
these rely on a lot of machinery that was not yet available in the 1980s. The quantum gravity
zipper perhaps gives the cleanest way to rigorously relate the peanosphere construction and
the Liouville quantum gravity construction, as described in [102,235], see also [26].

1237 What is a random surface?



3.7. Computing the scaling exponent
On the other hand, just as in the peanosphere case, one can compute the scaling

exponent quite easily. This is already enough to show that if for some 
 the unrestricted-
area LQG sphere is the scaling limit of the unrestricted-area discrete models, then we must
have 
 D

p
8=3 in the undecorated case and 
 D

p
2 in the tree-decorated case.

Say we fix the Gaussian free field up to the mean value X on the unit circle. Then
this mean value is sampled from the infinite measure e�2Qxdx. The total area of e
�.z/dz

goes like e
x times a constant. So we have to consider the image of the measure e�2Qxdx

under the map  .x/ D e
x . By standard change of variables the new measure is (up to a
constant factor)

1

. �1/0.A/
e�2Q��1.A/dA D

1

A
e�2Q log.A/=


D A�1�2Q=
dA:

Here 1C 2Q=
 D .4=
2 C 2/ which comes to 7=2 if 
 D
p
8=3 and 4 if 
 D

p
2.

3.8. Random surfaces embedded in d-dimensional space
Suppose we accept, based on the previous discussion, that the 
 D

p
8=3 theory

(which corresponds to 25� 6Q2 D 0) describes the scaling limit of the undecorated d D 0

model. We can call this pure Liouville quantum gravity model. We would then like to argue
that if we weight the law of the pure model by the d th power of the GFF partition function
(or the corresponding and equivalent “loop soup” partition function) we obtain a new LQG
model with a Q parameter that satisfies d D 25 � 6Q2.

This has been explained heuristically in various ways over the years. The author
with Ang, Park, and Pfeffer gave a rigorous version of this statement that applied to a certain
way of regularizing the random surfaces [17]. We won’t gvie details here but we mention
below a few of the ingredients used to make the connection between loop soup weightings
and changes to d D 25 � 6Q2.

On a compact surface with boundary, the heat kernel trace can be written
Z D Z.t/ D sp et� D

P
et�n where �n are the eigenvalues of the Laplace–Beltrami oper-

ator�. By standard Tauberian theory, the asymptotics ofZ (as t ! 0) are closely related to
the asymptotics of �n (as n ! 1). Weyl addressed the latter for bounded planar domains
D in 1911 [260] (see discussion in [182]) by showing ��n �

2�n
area.D/

as n ! 1 which is
equivalent to

Z �
area.D/
4�t

as t ! 0. In 1966 Kac gave higher-order correction terms for Z on domains with piecewise
linear boundaries (accounting for boundary length and corners) in his famously titled “Can
you hear the shape of a drum?” which asks what features of the geometry of D can be
deduced from the �n or, equivalently, from Z [151]. (Short answer is some but not all.)

McKean and Singer (among others) extended these asymptotics from planar domains
to smooth manifolds with nonzero curvature [182] where the constant order correction term
is a certain curvature integral. For two-dimensional surfaces with boundary, the integralR 1

ı
Z.t/=tdt turns out to describe the Brownian loop soup measure of the set of loops
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longer than ı (as developed and explored by Lawler, Werner, Dubédat, and others; see [17]

for further explanation and references). When the metric takes the form e� times a flat
metric, the small ı asymptotics have a constant order correction term that corresponds to
the Dirichlet energy of �. This is the so-called Polyakov–Alvarez formula, also known as the
Polyakov–Ray–Singer or Weyl anomaly formula, and it has played a major role in conformal
field theory. See e.g. the early discussion of Laplacian determinants and this formula by
Osgood, Phillips and Sarnak [212,225].

4. Conformal field theory and multipoint correlations

Conformal field theory is a huge subject. For a broader overview of conformal field
theory, beyond just Liouville theory, the reader might begin with the well-known (and very
long) textbook by Di Francesco, Mathieu, and Sénéchal [95]. Alternatively, the overview at
[221] begins with a list of several conformal field theory textbooks.

Liouville theory is one of many conformal field theories, but it is by itself a large and
highly studied subject. Here one might begin with the 1990 survey by Seiberg [232], the 1993
lecture notes by Ginsparg and Moore [118], the 1995 survey by Di Francesco, Ginsparg, and
Zinn-Justin [94], the 2004 retrospective by Nakayama [210], or the 2014 textbook by Ribault
[221] (which among other things explains why Liouville conformal field theory is uniquely
characterized by certain axioms).

What is a conformal field theory? An internet search for “A conformal field theory
is” reveals several definitions, the first two from Wikipedia:

• a quantum field theory that is invariant under conformal transformations,

• a set of correlation functions that obey a number of axioms,

• a functor [204] between categories satisfying certain “sewing axioms,”

• a Virasoro module [227]

V D

M
iDB1

W.ci ; �i /˝W. Nci ; N�i /

with unitary highest weight modules W.ci ; �i /, W. Nci ; N�i / subject to [certain]
axioms.

The first definition is standard but its precise meaning depends on how one defines a quantum
field theory. The third and fourth definitions represent formalization efforts that would go
somewhat beyond the scope of this note. So let us focus on the second definition, sometimes
called the conformal bootstrap approach to CFT. Here a CFT is no more or less than a set of
correlation functions, and the interpretation of these functions is that they represent (in some
sense) expected products of random generalized functions called fields evaluated at different
points.
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The famous 1984 paper by Belavin, Polyakov, and Zamolodchikov (BPZ) [30] argued
that conformal invariance symmetries should imply certain properties for these correlation
functions, and that this should be sufficient to allow one to explicitly compute the correla-
tion functions for some conformal field theories (the so called minimal models) including
a theory that one would expect to describe the scaling limit of the Ising model. About a
decade later Dorn, Otto, Zamolodchikov, and Zamolodchikov were able to compute cer-
tain three-point correlations for the Liouville theory [96, 262]. Other correlation functions
could then be deduced from these using the BPZ theory [30] and further input proposed by
Teschner [244–246]. These arguments involved mathematically nonrigorous steps, such as
assuming without proof that formulas defined in one setting could be analytically continued
and applied in other settings.

Building on [87], Guillarmou, Kupianen, Rhodes, and Vargas have produced a series
of papers that define and derive the correlation functions for Liouville theory mathematically,
building on earlier derivations from the physics literature that we mentioned above. The
expressions describing the correlation functions are complicated (integrals, special func-
tions, recursive definitions, etc.) but nonetheless explicit. The first work in this series is
a proof of the DOZZ formula [160]. The second paper derives an analog of Plancharel’s
theorem (which states that the Fourier transform preserves L2-norm) along with a certain
“spectrum” relevant to this context [120]. The final paper completes the bootstrap program
[120] with an extension to n-point functions and higher genus surfaces [121]. We recommend
that the reader take a look at the introduction to [120], which summarizes this viewpoint and
situates it within the larger enterprise of quantum field theory. Here we will give a much
shorter overview of this viewpoint, aiming only to give a simple account of the relationship
to the other perspectives in this paper.

The physics literature on conformal field theory can be challenging for mathemati-
cians to follow. It comes with a large and very specialized jargon, and it does not always
proceed in the order a mathematician would expect (where one first produces the measure
space and the � -algebra, then constructs the measure, then begins doing calculations). Partly
this is because (when quantum wave functions are involved) not everything in quantum field
theory can be described in a simple probabilistic way—sometimes “observables” are non-
commuting operators that can only be defined in indirect ways. Fortunately, Liouville theory
does have a simple probabilistic interpretation.

Let us make one more comment on nomenclature. In quantum field theory, a (gener-
alized) function on RnC1 can be interpreted as a path on the space of functions on Rn, and the
term integral is often a shorthand for a measure with respect to which one integrates. In this
context, the object we call the Polyakov measure (on the space of surfaces) in Section 3.5 is
also called the Polyakov path integral (with n taken to be 1). This language evokes the Feyn-
man path integral, an integral over particle trajectories that appears in quantum mechanics.
Similar interpretations arise in string theory, where an integral over the space of string tra-
jectories is seen as an integral over the space of embedded surfaces (a.k.a. “worldsheets”).
A very informal overview of this viewpoint (featuring Vargas) appears in an online video
produced by Quantum Magazine (starting at time 7:20) https://youtu.be/9uASADiYe_8.
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4.1. Gaussian case
It is generally instructive to do something easy before doing something hard. So let

us start in the simple setting where � is a whole plane Gaussian field with additive constant
chosen so that the mean value on the unit circle is 0. (This is also the starting point in [120],
for example.) In this case the Green’s function is given by

G.x; y/ D ln
1

jx � yj
C ln jxjC C ln jyjC;

where jxjC D max¹1; jxjº and the construction of “random fields” of the form
V˛.x/ WD e˛�.x/ is relatively straightforward. In some sense it can already be seen in the
work of quantum field theorists of the 1970s, beginning with the work of Høegh-Krohn. As
we have already discussed, one way to make sense of this is by writing V "

˛ .x/ WD "˛2=2e˛�".z/

and V˛.x/ WD lim"!0 V
"

˛ .x/, where �".z/ is the mean value of � on @B".z/ and the con-
vergence holds locally a.s. in the space of random generalized functions (or in the space of
random measures). Then for any sufficiently small " (so that the ballsB".xi / do not overlap),
we have DY

V "
˛i
.xi /

E
D e

P
˛i j̨

QG.xi ;xj /

where

QG.x; y/ D

8<:G.x; y/; x 6D y;

log jxjC C log jyjC; x D y:

This comes up out to beY
i 6Dj

jxi � xj j
˛i j̨

Y
i;j

�
max¹jxi j; 1º max¹jxj j; 1º

�˛i j̨
;

and, in the case that all the xi lie inside the unit disc, the expression is simplyY
i 6Dj

jxi � xj j
˛i j̨ :

By starting with V "
˛i

and taking " ! 0, we can give meaning to the multipoint correlation
function (also known as Schwinger function) written asDY

V˛i
.xi /

E
D

Y
i 6Dj

jxi � xj j
˛i j̨ :

This can be interpreted as the density function for a two-dimensional “Coulomb gas” of
particles with charges ˛i . The overall integral over all x D .x1; : : : ; xn/ may be infinite
(depending on the ˛i values), but it is finite if one restricts to a subset of .x1; : : : ; xn/ values
such that the jxi j are bounded above and the jxi � xj j are bounded below. Just to clarify, for
now we are making this Coulomb gas calculation only for the centered GFF �, not for the
full Polyakov measure from Section 3.5.

As a formal collection of correlation functions (obtained in the " ! 0 limit) this
expression makes perfect sense for any ˛i 2 C. Differentiation commutes with expectation,
so one can use the same formula to compute expectations of products involving derivatives
like @

@xi
V˛i
.xi /. Expectations of fields involving � itself (or polynomials in �) can also be

defined mathematically.
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4.2. Incorporating the Liouville term or area conditioning
The � used in Section 4.1 (plus a deterministic function) can be obtained by restrict-

ing the Polyakov measure to the set of � whose mean value on the unit circle is zero. But
what if we instead restrict the Polyakov measure to the set of surfaces of total quantum area 1
(or weight by e��A whereA is the surface area)? The answer is that after such a conditioning
or such a weighting, � is no longer Gaussian, and the n-point correlation computation trans-
forms from easy to doable but only barely. On the other hand, in order to understand some
fundamental things like the law of conformal modulus of four points (or n points) sampled
independently from the measure on an LQG sphere, one has to address the harder question,
and this is precisely what is done in [120, 121, 160]. Although these results are rather recent,
they have already inspired a tremendous amount of activity, establishing exact solvability for
many problems that could previously only be addressed more qualitatively.

Papers by Ang and Sun, including some with coauthors Holden and Remy, give
applications of LCFT results to various domains (SLE, CLE, and a variance formula for the
peanosphere) [15,16,18,19]. These remarkable papers combine mating-of-trees and conformal-
welding techniques with LCFT techniques, leading to rigorous proofs of physics results (such
as the FZZ formula and the imaginary DOZZ formula), as well as entirely new results. They
have to extend the welding/mating theory to finite-volume surfaces/trees, which is harder
than the infinite-volume work, since the finite-volume surfaces lack scale invariance. Recent
integrability achievements for the disk include works by Remy and Zhu [218,219] and a proof
of the Fyodorov–Bouchaud formula by Remy [217]. See also the work of Ghosal, Remy, Sun,
and Sun on the torus [117].

5. Relationships

Although all four viewpoints are equivalent in some sense, the relationships are
somewhat involved. The following diagram summarizes a few of the associated keywords,
which we will discuss briefly below.

1242 S. Sheffield



Miller and the current author recently showed that the LQG and Brownian spheres
are a posteriori equivalent [195, 197, 198]. That is, we showed that there is a canonical way
to endow each object with the other object’s structure, and that once this is done the two
objects agree in law. This is not all obvious. The papers are long and difficult, and build on
hundreds of pages of prior work. The author’s other joint works on the LQG construction
include [38,103–105,154]. This establishes the upper arrow in the special case of the Brownian
map. The construction of the metric space structure for general LQG surfaces (with d 6D 0)
was discussed earlier.

In [235] the author showed that when two infinite half-plane-homeomorphic 
 -LQG
surfaces are “conformally welded” to one another along their boundaries—and the new sur-
face is conformally mapped to the half-plane—the interface between these curves becomes
an SLE� curve with � D 
2. The sphere version is established in a follow-up work [194], and
a disk version appears in [14]. Establishing the correlation formula for � > 8 was achieved
in [126].

With Duplantier and Miller, the author showed the equivalence of the peanosphere
approach and the SLE-decorated-LQG approach in [102], which draws from the imaginary
geometry results in [190–193] and the quantum zipper construction in [235]. A remarkable
series of papers by Holden and Sun has shown that if one embeds the uniformly random
triangulation in the plane in a natural way (inspired by the conformal coordinates Smirnov
developed for his proof of Cardy’s formula) then the counting measure on the vertices con-
verges (in an appropriate scaling limit) to the Liouville quantum gravity measure, see the
overview at [147,148].

Random planar maps converge to continuum objects in the limit, but there are also
natural ways to generate random planar maps from the continuum constructions by “coarse
graining” in some sense. The Poisson–Voronoi tesselation (constructed from the Brownian
map) and mated-CRT map (constructed from the peanosphere) have been shown to converge
to LQG when they are embedded according to the Tutte embedding. This was done in a series
of four papers with Gwynne and Miller [136–139]. Effectively, this gives a way of putting a
conformal structure on the Brownian map or the matings of trees that is more concrete than
the one guaranteed by [195,197,198]. The heart of all of this is [138] which gives an invariance
principle (i.e., Brownian motion convergence) for random walks in random environments
that are “scale free” in the sense that there is no universally typical length scale. (All of
the most natural discretizations of Liouville quantum gravity measures are scale free in this
sense.)

Gwynne, Holden, and Sun established the joint convergence of random triangula-
tions in the metric and peanosphere sense [129]. (Convergence in one topology coupled with
convergence in another topology does not imply joint convergence in the product of the two
topologies, but it was established in this particular case.) This result builds on earlier con-
vergence work by Gwynne and Miller for percolation-interface-decorated surfaces [134,135].

A series by the author plus Miller and Werner explores conformal loop ensembles
on random surfaces, the surfaces obtained by cutting along the boundaries of these loops,
and so forth [201,202]. These papers extend the conformal welding stories described earlier
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and show that much of the intuition one derives from discrete planar maps is correct in the
continuum as well (e.g., the surfaces inside and outside of a CLE loop are independent given
the interface length) and this leads to a number of interesting computations. These papers
build on another recent paper by the same authors [199] which concerns continuum versions
of the classical Edwards–Sokal couplings involving FK-models and Ising/Potts models and
their variants, see also [200].

6. Gauge theory

Random surfaces are related to many areas of math and physics, including random
matrix theory, two-dimensional statistical physics, string theory, and so on. But we should
also note that Polyakov’s influential 1981 paper began by mentioning an interest in gauge
theory:

“In my opinion at the present time we have to develop an art of handling sums
over random surfaces. These sums replace the old-fashioned (and extremely
useful) sums over random paths. The replacement is necessary, because today
gauge invariance plays the central role in physics. Elementary excitations in
gauge theories are formed by the flux lines (closed in the absence of charges) and
the time development of these lines forms the world surfaces. All transition ampli-
tude[s] are given by the sums over all possible surfaces with fixed boundary.”
(A. M. Polyakov, Moscow, 1981) [215]

Over 40 years later, many fundamental gauge theory problems remain unsolved, including
the famous Clay Millenial Prize Problem, and it is unclear how much random surface theory
will help—see, e.g., the “skeptic vs. enthusiast” dialog in Section 2 of [79], written in 1995.
Nonetheless, there has been some progress on so-called gauge string duality. For more on
these efforts, the reader may consult the literature on the AGT conjecture and the AdS/CFT
correspondence, or see the recent works of Chatterjee and Jafarov on lattice string trajectories
and Yang–Mills theory [71,72,74,149]. Good entry points to the subject for probabilists include
Chatterjee’s recent survey [73] and Thierry Lévy’s recent books about continuum Yang–
Mills theory in two dimensions [164–166]. The 1986 article by Bridges, Giffen, Durhuus, and
Fröhlich may also be read as a first step toward realizing Polyakov’s vision [64].
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