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Abstract

Based on different views on the Jones polynomial, we review representation theoretic cate-
gorified link and tangle invariants. We unify them in a common combinatorial framework
and connect them via the theory of Soergel bimodules. The influence of these categorifi-
cations on the development of 2-representation theory and the interaction between topo-
logical invariants and 2-categorical structures is discussed. Finally, we indicate how cate-
gorified representations of quantum groups, on the one hand, and monoidal 2-categories of
Soergel bimodules, on the other hand, might lead to new interesting 4-dimensional TQFTs.
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1. Introduction

The study of Topological Quantum Field Theories (TQFTs) is a fruitful interac-
tion between physics and mathematics. The search for interesting TQFTs leads to many
developments in mathematical theories which are interesting on their own and also moti-
vates constructions presented in this report. A first mathematical formulation of TQFTs goes
back to Atiyah [6], influenced by Segal [129] and Witten [143]. A d -(dimensional) TQFT
is a symmetric monoidal functor F from a bordism category with objects being closed
.d � 1/-dimensional manifolds and morphisms d -dimensional bordisms to some symmetric
monoidal category, e.g., categories of vector spaces or chain complexes, or more complicated
categories.

Representation theory is a good source for TQFTs and monoidal categories. For
example, categories of group representations give Dijkgraaf–Witten TQFTs [38] for any d .
For d D 3, representations of quantum groups, i.e., quantized representations of Lie alge-
bras, provide rich and interesting TQFTs due to Reshetikhin–Turaev [119] and Turaev–Viro
[141]. They are often viewed as mathematical formulations of Chern–Simons theory [144] or
of a form of Ponzano–Regge state sum model from Quantum Gravity [112]. These theories
are closely related to (Laurent-)polynomial invariants of knots and links. In Chern–Simons
theory [144], for instance, the partition function is a 3-manifold invariant, but the expectation
values of nonlocal observables supported on one-dimensional defects, the Wilson lines, give
such an invariant of links. The Jones polynomial J.L/ arises in this way for the gauge group
SU.2/. In our setting J.L/ appears as the special sl2 example of the Reshetikhin–Turaev-
link invariants. While 3-manifolds are rather well-understood, new 4-TQFTs might help to
solve open 4-dimensional (smoothness) problems.

TQFTs provide not only numerical invariants for closed manifolds, but also enjoy
good locality properties. In order to compute their values on a complicated closed manifold,
one usually cuts along lower dimensional submanifolds, assigns data to them and recom-
bines this simpler data in a clever way. A cutting principle is common in representation
theory: representations are described by decomposing into smaller pieces, by finding simple
constituents and their multiplicities in a direct sum decomposition or a Jordan–Hölder filtra-
tion and by studying functors on these pieces. Encoding such information combinatorially as
character formulas, Poincaré polynomials or Kazhdan–Lusztig polynomials, etc., has a long
successful history. We call this process decategorification.

(Re)Combining or gluing conceptually is a rather new focus motivated partially by
TQFTs. In algebraic categorification, combinatorial data gets interpreted categorically by
gluing simple constituents in a predictedway, by realizing (Laurent-)polynomials as Poincaré
polynomials or Euler characteristics, groups as Grothendieck groups of categories and group
homomorphisms as the image of exact functors on a Grothendieck group, etc. Moreover,
functors are considered in families with relations between them described algebraically in
terms of (quantised) Lie algebra or Hecke algebra actions. Classical representation theo-
retic categories are now viewed as higher categories equipped with categorical actions.
As a byproduct, new invariants of links, surfaces or higher-dimensional manifolds emerge.
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We will summarize and bring together known categorifications of (Laurent-)polynomial
link invariants based on the Jones polynomial J.L/ and its colored version Jcol.L/ focusing
on algebraic-representation theoretic constructions around Soergel (bi)modules [131]. The
precise meaning of categorification will depend on the specific construction:

• Section 3.1: L turns into a complex of graded vector spaces with Euler character-
istic J.L/, link cobordisms turn into linear maps;

• Section 3.2: L turns into a complex of bigraded vector spaces whose Euler char-
acteristic is a 2-parameter polynomial which specializes to J.L/;

• Section 3.3: L is viewed as a tangle. Boundaries of tangles turn into graded linear
categories, tangles into functors, tangle cobordisms into natural transformations,
and J.L/ is the value at a specific element of a map betweenGrothendieck groups;

• Section 3.4: boundaries of colored tangles turn into graded linear categories of
possibly infinite global dimension, tangles into functors, and Jcol.L/ is the value
at a specific element of a map between completed Grothendieck groups.

In Section 2 we set up a framework on the decategorified level with different approaches
to the Jones polynomial, all coming from quantum groups and Hecke algebras. It unifies
and also stresses the differences of the later categorifications. The material is known, but
combined from several sources and carefully adapted. An unusual parameter � is introduced
in order to fit all the normalizations and categorified theories into one common setup.

In Section 3 the pioneering Khovanov invariant Kh [75] is described first. Recent
advances in categorified link invariants indicate that this theory has interesting topologi-
cal applications and the chance to provide a 4-TQFT [101]. The second categorification we
deal with is the triply graded Khovanov–Rozansky link invariant KR [78, 81], presented in
representation-theoretic terms. Its values are Laurent series in v over a polynomial ring in
two variables. A three parameter superpolynomial invariant of links was predicted on the
physics side in [39] and constructed for torus links via refined Chern–Simons theory [3].
Connections to double affine Hecke algebras indicated by the appearance of generalized
Verlinde algebras were explored mathematically, e.g., in [30,58]. For torus links, superpoly-
nomials can be matched with the KR invariants by explicit calculations which substantially
use categorified Young projectors. Such projectors were introduced in [33,52,125] in the con-
text of categorifications of colored Reshetikhin–Turaev link invariants [33, 52] and are now
important tools in the categorified representation theory of Hecke algebras. The third cate-
gorification we describe are the Lie theoretic Mazorchuk–Stroppel–Sussan tangle invariants
MSS˙ [105,136,139]which implicitly include the slk Khovanov–Rozansky link invariant [81] via
MSS�. Up to some sign issues which appear when passing from webs to matrix factorizations,
the two constructions are even connected by a functor. This follows from the Uniqueness
Theorem 3.45, Theorem 3.44, and [97]. The two Lie-theoretic constructions MSS˙ (connected
by Koszul duality) go one step further: tensor products of representations of quantum glk

are lifted to categories, the action of quantum glk to functors, and the resulting invariant of
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tangles has values in the homotopy category of some exact functors. Via a categorified q-
skew Howe duality, the action of tangles can again be expressed in terms of a quantum group
action. This allows putting the construction into the setup from [31,123]. This is an axiomatic
definition of categorifications of representations of Lie algebras and provides a conceptual
2-categorical framework, where also uniqueness results are established. Quantum group
representations and their tangle invariants are then, finally, turned into 2-representations
of categorified quantum groups introduced by Khovanov–Lauda [80] and Rouquier [123].

The MSSC-invariant is equivalent to the quantum slk version from [142] which deals
more generally with quantum invariants for any reductive Lie algebra. In comparison, [142]
is defined to fit into and substantially further developed the framework of 2-representations,
whereas MSSC leads naturally to and motivated the framework of 2-representations. In the
MSS-theory one should not expect generalizations to other Lie algebra as in [142], but rather
to braid groups of general type and to categorified representation theory of certain quantum
symmetric pairs via [41] and probably to Khovanov–Rozansky invariants for orthogonal Lie
algebras. Important for us is that MSS˙ directly connects to Soergel bimodules, a possible
source for an intriguing connection between KR and categorified colored tangle invariants
described as the fourth example. This connection and the complicated combinatorics of cat-
egorified colored link and tangle invariants [33,53,138,142] needs still to be explored.

In Section 4 we return to our motivation: we indicate two (partially conjectural)
new approaches towards potentially rich 4-TQFTs, one via categorified representations of
quantum groups, the other via semistrict monoidal 2-categories of Soergel bimodules.

Conventions. We denote N D Z>0, N0 D Z�0. We fix C as ground field. Let Sn be the
symmetric group on n letters with standard generators si D .i; i C 1/, 1 � i � n � 1, and
length function `. For a variable v and a 2 Z; let

Œa� WD
va � v�a

v � v�1
D va�1

C va�3
C � � � C v1�a

2 Z
�
v˙1

�
be the v-quantum number, a Laurent polynomial in v. By graded wemeanZ-graded, and hii
denotes the shift up in the grading, i.e., .M hii/n D .hiiM/n DMn�i . Similarly, we write Œi �

for the shift of complexes by i in the direction of the differential.When displaying complexes,
we indicate the homological degree zero by putting a box around the component. For an
additive category A, we denote by Kb.A/ the homotopy category of bounded complexes
inA.When describingmorphisms or functors diagrammatically, we read from bottom to top,
and composition is vertical stacking, whereas a monoidal product˝ is denoted by horizontal
juxtaposition, and identities are usually displayed by a vertical strand.

2. Four approaches to the Jones polynomial

We summarize four similar, but different, algebraic approaches to knot or link invari-
ants giving rise to the ZŒv˙1�-valued Jones polynomial. These approaches will later be
connected with four theories in the context of categorification. The third and fourth, RT and
wRT, are more involved and cover also tangles (a common generalization of links and braids).
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The first is best for computations, but the passage to tangles requires extra adjustments like
the use of skein algebras. The second does not cover tangles at all, but is probably the most
intuitive approach for categorifications. It works with link closures instead of planar projec-
tions of links. In the following, v denotes a (generic) variable.

I. Kauffman bracket of links. We fix an orientation of R3 and consider oriented knots or
links L in R3. Following Kauffman [72], we first ignore the orientation and assign to any
generic, i.e., with no triple intersections, no tangencies and no cusps, planar projection D

ofL, theKauffman bracket JDK 2ZŒv˙1�. It is characterized by themultiplicativity property
JD1 tD2K WD JD1KJD2K, i.e., the bracket of a disjoint union is the product of the brackets,
and the following normalization and local smoothing relation (which removes crossings):

J,K D v C v�1
D Œ2� and

r z
D

r z
� v

r z
; respectively: (2.1)

The assignment D 7! J.D/ WD .�1/n�.D/vnC.D/�2n�.D/JDK 2 ZŒv˙1�, where n˙.D/

denotes the number of positive respectively negative crossings in D, defines then an invari-
ant of oriented links, the Jones polynomial J.D/. It fulfils the following skein relation, with
a D v2 and P.D/ D J.D/,

aP
� �

� a�1P
� �

D .v � v�1/P
� �

: (2.2)

Example 2.1. For the Hopf link diagram D D the Kauffman bracket has the value
t |

� v

t |

� v

t |

C v2

t |

D Œ2�2 � vŒ2� � vŒ2�C v2Œ2�2 D vŒ4�„ ƒ‚ …
) Jones polynomial J.D/Dv3Œ4�

: (2.3)

II. Closures of braids. Due to Alexander’s theorem [4], every oriented link can be realized
as the closure of some upwards oriented braid, i.e., of an element in the usual braid group
Brn D hˇ1; : : : ; ˇn�1i for some n (see the Hopf link above with n D 2). AMarkov trace Tr
with values in some target Inv is a function Tr W

`
n�1 Brn! Inv satisfying the trace condi-

tion Tr.˛˛0/ D Tr.˛0˛/ and Tr.˛/ D Tr.˛ˇ˙1
n / for every ˛; ˛0 2 Brn, n � 1. By Markov’s

theorem (announced in [102], proved in [18]), Tr induces a well-defined map on isomorphism
classes of closures of braids, hence defines an invariant of oriented links. This is a conceptual
method to pass from braid invariants to (families) of link invariants. There is an impor-
tant Markov trace, the Ocneanu trace (3.6). Its link invariant is the HOMFLY-PT polynomial
P.L/.v; a/ 2 C.v/Œa˙1� introduced in [54, 113]. It satisfies (2.2) and P.L/.v; v2/ D J.v/,
see Remark 3.11.

III. Quantum invariants. The Jones polynomial of oriented links can also arise as the
(Witten–)Reshetikhin–Turaev (RT) invariant [118] associated with quantum glk in the special
case k D 2. An oriented link is a special case of an oriented tangle, i.e., a disjoint embed-
ding of finitely many arcs and circles into R2 � Œ0; 1� (sending endpoints of arcs to boundary
points) modulo ambient isotopy fixing the boundary points. The RT invariant assigns to
each generic horizontal cut of a tangle a tensor product of modules for the quantum group
Uv.glk/, and to each tangle a homomorphism in a consistent way, see Overview 1.
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Overview 1

Hopf link: The RT invariant (see Section 2.III) and its web version (see Section 2.IV) with categorifications (see
Section 3.3)

C.v/
Vk W ˝

Vk W OOc
.k;k/

.g2k /OO
.k;k/
c .g2k /

W ˝W � W ˝
Vk W ˝

Vk�1 W OOc
k�1;k;1

.g2k /OO
1;k;k�1
c .g2k /

W ˝W ˝W �˝W � W ˝W ˝
Vk�1 W ˝

Vk�1 W OOc
k�1;k�1;1;1

.g2k /OO
1;1;k�1;k�1
c .g2k /

W ˝W ˝W �˝W � W ˝W ˝ ^k�1 W ˝
Vk�1 W OOc

k�1;k�1;1;1
.g2k /OO

1;1;k�1;k�1
c .g2k /

W ˝W ˝W �˝W � W ˝W ˝
Vk�1 W ˝

Vk�1 W OOc
k�1;k�1;1;1

.g2k /OO
1;1;k�1;k�1
c .g2k /

W ˝W � W ˝
Vk W ˝

Vk�1 W OOc
k�1;k;1

.g2k /OO
1;k;k�1
c .g2k /

C.v/
Vk W ˝

Vk W OOc
.k;k/

.g2k /OO
.k;k/
c .g2k /

coev

id˝ coev˝ id

ˇ

ˇ

id˝ ev˝ id

ev

g
1;k�1
k

id˝g
1;k�1
k

˝ id

ˇ

ˇ

id˝fk
1;k�1

˝ id

fk
1;k�1

Oincl

Oincl

(3.16)

(3.16)

OZ

OZ

RT wRT MSS� MSSC

(ˇ D �vkH �1
1 ) for W D V� W for W D VC W

To make this more precise, we consider a tangle as a morphism in the monoidal
category Tan of oriented tangles with stacking as composition and juxtaposition as tensor
product. The quantum group Uv.glk/ is a deformation of the universal enveloping Hopf
algebra of glk and is often described as the C.v/-algebra with generators Ei ; Fi ; D˙1

j ,
1 � i � k � 1, 1 � j � k “quantizing” the usual matrix units Ei;iC1, EiC1;i ,˙Ei;i , modulo
quantized Serre relations, see, e.g., [24] for a definition. It is still a Hopf algebra, but nowwith
an interesting noncocommutative comultiplication (due to the appearance of some Dj ’s):

�.Ei / D Ei ˝ 1CDi D
�1
iC1 ˝Ei ; �.Fi / D 1˝ Fi C Fi ˝D�1

i DiC1;

�.D˙1
j / D D˙1

j ˝D˙1
j :

(2.4)

Every finite-dimensional representation of glk quantizes to a Uv.glk/-module. As often in
quantum algebra, there are different choices for such a quantization, but for irreducible rep-
resentations they only differ by a one-dimensional twist. We encode the choice by a function
� W ¹1; : : : ; kº ! ¹˙1º such that the spectrum of Dj is contained in �.j /vZ. To capture dif-
ferent normalizations of link invariants, we at least need to consider the additive monoidal
subcategory generated by the irreducibles corresponding to constant � D ˙1. These signs,
although annoying in practice, often have a deeper meaning in categorifications.

Example 2.2. The quantization V˙ D V˙;glk
of the natural representation of glk for the

constant functions � D ˙1 can be realized as the k-dimensional C.v/-vector space with
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basis er , 1 � r � k, and the following Uv.glk/-actions

VC W Ei er D ıi;rerC1; Fi erC1 D ıi;rer ; Dj er D vıj;r er ;

V� W Ei erC1 D ıi;rer ; Fi er D �ıi;rerC1; Dj er D �vıj;r er :
(2.5)

A crucial observation behind the invention of quantum groups was that the permu-
tation action of the symmetric group on tensor products of representations quantizes (i.e.,
lifts) to an action of the braid group. A modern formulation is thatRepk is (non symmetric!)
braided monoidal. In particular, Brn acts on V�

˝n by Uv.glk/-homomorphisms. Explicitly,
ˇi acts on the i th and .i C 1/th tensor factor of V�

˝n for constant � D ˙1 as

Hi W ea ˝ eb 7!

8̂̂<̂
:̂

eb ˝ ea if a > b;

eb ˝ ea C .v�1 � v/ea ˝ eb if a < b;


ea ˝ ea if a D b, with 
 WD �v��:

(2.6)

These actions factor through C.v/˝ZŒv˙1� Hn, where Hn is the Hecke algebra. We define
Hn as the ZŒv˙1�-algebra quotient of the group algebra ZŒv˙1�ŒBrn� by the following
quadratic relation, and denote the image of ˇi in Hn or C.v/ ˝ZŒv˙1� Hn by abuse of
notation also Hi :

� ˇi C ˇ�1
i D v � v�1; or equivalently; .ˇi C v/.ˇi � v�1/ D 0: (2.7)

Set W D V� . Following [118], the (Witten)–Reshetikhin–Turaev functor associated with W

is now a monoidal functor RT D RTW W T an!Repk . It sends an oriented tangle t with, say,
m endpoints at the bottom and n endpoints at the top to a Uv.glk/-homomorphism

RT.t/ W W "1 ˝ � � � ˝W "m ! W "0
1 ˝ � � � ˝W "0

n ; (2.8)

whereW "i DW orW "i DW �, respectively, depending whether the i th strand on the bottom
of t is oriented up- or downwards, similarly for the top usingW "0

i . Now RTW is determined by
the values on the elementary tangles , , , , , . These are sent
to the corresponding evaluations, coevaluations, and to the morphism �v�kHi from (2.6)
and its inverse �vkH �1

i , respectively. To compute RT.t/; one first reads a chosen generic
tangle projection from bottom to top as a vertical composition of basic tangle diagrams, i.e.,
of those which differ from an elementary one just by adding some strands to the left or right,
see Overview 1. Each basic tangle diagram is sent to the value of the elementary diagram
with identities tensored on the left or right. Finally, RT.t/ is the composition of the values of
the basic tangle diagrams. If t is a link, the result is an endomorphism f ofC.v/. Evaluating
at 1 gives f .1/ 2 C.v/ which equals J.L/ in case k D 2, W D V�. The Hecke relation (2.7)
implies the glk-skein relation (2.2) with a D vk . The RT constructions work for arbitrary
reductive Lie algebras, not only glk , and thus provide several families of tangle invariants.

Remark 2.3. The (unusual) choice of V� over VC has the advantage that the unknot has the
value Œk� 2 NŒv˙1� (with nonnegative coefficients!) instead of .�1/k�1Œk�.

Remark 2.4. The construction also works if we pick an irreducible representation for each
component of t and gives the colored RT tangle invariant of framed tangles from [118] and
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the colored Jones polynomial for links if kD 2. Coloring only with V� makes life easier, e.g.,
one can avoid framings and all constructions are defined over ZŒv˙1�, see Example 3.53.

IV. Webs and spin networks. A fourth way to get the Jones polynomial is via webs or spin
networks and their evaluations. Following Penrose [111], a web is a certain labeled graph
built from trivalent vertices, where a vertex may be interpreted as an event in which either a
single unit splits into two or two units collide and join into a single one. More precisely, let
� 2 ¹˙1º. The universal gl-web category is the monoidalC.v/-linear categoryW� which is
the linear additive closure of the strict monoidal category generated (as monoidal category)
by the set of objects N, and on the level of morphisms by diagrams

a b

aCb

(from aC b to a˝ b),

a b

aCb

(from a˝ b to aC b), (2.9)

modulo the following associativity and coassociativity relations and thin square switches

a b c

aCbCc

D

cba

aCbCc

;

a b c

aCbCc

D

cba

aCbCc

;

a

a

b

b

1

1

�

a

a

b

b

1

1

D .��/a�b�1Œa�b�

a

a

b

b

:

By convention, thin square switches include the digon removals (2.10) as degenerate a D 0

(or b D 0) cases. Together with (co)associativity, one obtains thick square switches express-
ing .a; r; b/ � .a; r; b/ from (2.11) as a sum over thinner squares, see, e.g., [27].

a�1 1

a

a

D .��/a�1Œa�

a

a

D 1 a�1

a

a

(2.10)

.a; r; b/ WD

a

a

b

b

r

.a; r; b/ WD

a

a

b

b

r

: (2.11)

An object inW� is just a finite sequence of nonnegative integers including the empty
sequence as tensor unit; a morphism is a linear combination of webs obtained by gluing hor-
izontally and vertically the generating pieces (2.9) with identities drawn by vertical lines.
For fixed k 2N, let W

�

k
be the quotient of W� by all morphisms factoring through an object

involving a number > k. We will see that this category provides a concrete graphical pre-
sentation of the monoidal category of Uv.glk/-modules generated by quantizations of the
fundamental representations of glk . Thus it continues pioneering works on graphical pre-
sentations, e.g., via spiders [85], spin networks [73], or plane graphs [107].

Remark 2.5. Digon removal is used to evaluate closed webs in W
�

k
, i.e., diagrams with

boundary labels equal to k only can be simplified to a ZŒv˙1�-multiple of identity diagrams.
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Remark 2.6. The category W
�
2 (allowing labels 1 and 2) is a gl2-analogue of the usual

Temperley–Lieb category attached to sl2 (where 2 equals the (empty) unit object).

We connect now W� with (quantized) fundamental representations or (quantized)
exterior powers

Vd
W , d � 1, of the Uv.glk/-modules W D V˙. The latter is zero if d > k

and otherwise defined as the simultaneous .�
�1/-eigenspace inside W ˝d for the action of
the braid group generators via (2.6). It has the expected explicit basis, namely

ei WD ei1 ^ � � � ^ eid WD

X
w2Sd

.�
/�`.w/ew.i1/ ˝ � � � ˝ ew.id / .k � i1 > � � � > id � 1/;

(2.12)

indexed by d -tuples i. For �D˙1; letFund�

k
be the monoidal category generated by all non-

trivial exterior powers ofW , i.e., objects are tensor products of
Vd

W , 1� d � k inclusively
the empty product as monoidal unit. Important morphisms are q-wedging and q-shuffling:

“q-wedging” faCb
a;b
W

â
W ˝

b̂
W �

âCb
W W ga;b

aCb
“q-shuffling.” (2.13)

For example, with � WD ı�;�1vk�1, e WD e.1;:::;k/; and e.s/ the same tuple but with s omitted,

fk
1;k�1

�
es ˝ e.j /

�
D ıs;j .�
/s�k�e; g1;k�1

k
.e/ D

kX
sD1

.�
/s�1��1es ˝ e.s/;

fk
k�1;1

�
e.j /˝ es

�
D ıs;j .�
/1�s�e; gk�1;1

k
.e/ D

kX
sD1

.�
/k�s��1e.s/˝ es :

(2.14)

We have (for any k) the smoothing relation g1;1
2 ı f2

1;1 C 
 idDH1, see (2.6). This directly
implies with quantized Schur–Weyl duality the first part of the following (where � 2 ¹˙1º/:

Proposition 2.7. There is a dense full monoidal functor ˆ� W W
� ! Fund�

k
which sends

a generating object d to
Vd

W and a generating web from (2.9) to the corresponding q-
wedging respectively q-shuffling. It induces a monoidal equivalence W

�

k
' Fund�

k
.

This result provides a purely diagrammatic description of Fund�

k
. It implies in par-

ticular that the asymmetric braiding morphisms can be expressed in terms of webs, e.g.,

ˇa;b W
â

W ˝
b̂

W !
b̂

W ˝
â

W;

8<:
Pa

rD0 
a�r .a; r; b/ if a � b,Pb
rD0 
b�r .a; r; b/ if a � b:

(2.15)

Proposition 2.7 is a reformulation of results from [27]. The authors work, in fact,
with a larger pivotal version, where in the target category one also includes the duals and
in the source additionally incorporates flow-lines on webs. From the perspective of tangle
invariants, it suffices to work with Fund�

k
by a clever trick. Namely, we can copy the RT

construction above, but replace W � with
Vk�1

W , the trivial representation with
Vk

W and
the cup and cap by the morphisms (2.14). This then provides a monoidal functor wRT� from
oriented tangles toFund�

k
. An advantage of this construction is that it stays completely inside

Fund�

k
and avoids taking duals. This simplifies the situation from a categorification point of

view, see Remark 3.51. The invariant of an oriented linkL is an endomorphism f of a tensor

1320 C. Stroppel



product of the kth exterior powers. Evaluation at the tensor product of the top degree wedges
e gives an element in C.v/ which agrees with J.L/ in case of Fund�

k for k D 2.

Example 2.8. To compute f D fHopf for the Hopf link, we first translate nested cups (and
similarly caps) into webs. Each cup gives rise to copies of

Vk
W depending on the size

(indicated by dotted lines). Reading through the webs, see Overview 1, defines the morphism

 

k k

1k�11 k�1

 fHopf W
V2

W ˝
V2

W
d // W ˝4

H �2
1 // W ˝4 e //

V2
W ˝

V2
W

e ˝ e
� // v3Œ4�e ˝ e:

(2.16)

The construction of this invariant and the more general HOMFLY-PT polynomial via
webs and exterior powers is due to [107, 113]. As common in the literature, they work with
quantum slk which produces the same invariant as wRT�. We prefer to use glk , mainly to
make categorifications functorial, see, e.g., [42]. In addition, the weight combinatorics and
branching rules are much easier, but most importantly, skew Howe duality holds.

Skew Howe duality. The crucial observation behind Proposition 2.7 is that a quantum ver-
sion, established in [27, 89], of a classical tool from invariant theory, namely skew Howe
duality, can be used to describe all morphisms in Fund�

k
:

Proposition 2.9 (q-skew Howe duality). There is an isomorphism of Uv.glk/-modules
�̂

.W ˝C.v/m/ Š
M

d2Nm
0

d̂
W with

d̂
W WD

d̂1

W ˝ � � � ˝
d̂m

W: (2.17)

By turningC.v/m into aUv.glm/-module, one gets commuting mutually centralizing actions

Uv.glk/ Õ X˙ WD
�̂

.V˙;glk
˝ V˙;glm

/ Ô Uv.glm/op: (2.18)

Example 2.10. Let k D 3 and m D 2. Then
V3

.V˙;gl3
˝ V˙;gl2

/ is, as Uv.glk/-module,
isomorphic to the following direct sum of modules. Each summand becomes a weight space
for Uv.glm/ with the action of the generators E D E1, F D F1 indicated via webs:

E W

ai

ai C1

aiC1

aiC1�1

1
 [ Ei

P1a

V.0;3/
VC

0

1

3

2

1

&&

˚
V.1;2/

VC

1

2

2

1

1

$$

1

0

2

3

1

bb
˚

V.2;1/
VC

2

3

1

0

1

$$

2

1

1

2

1

bb
˚

V.3;0/
VC

3

2

0

1

1

bb

�F W

ai

ai �1

aiC1

aiC1C1

1

.��/�  [ Fi
P1a:

(2.19)
The labels on the webs encode the glm-weights.
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The bimodules X WD X˙ inherit some nice symmetry. Namely, the weight spaces
for theUv.glm/-action are direct summands for theUv.glk/-action, and vice versa. As label-
ing sets we can use their classical weight, i.e., m-tuples (respectively k-tuples) c of integers.
Such tuples, in fact, also index the summands of X from (2.17) and, indeed, there is an
isomorphism of vectors spaces d˙

Xc Š dX c˙ . Here, the indices at the top encode the sum-
mands and at the bottom the weight space. The left and right position refers to Uv.glk/ and
Uv.glm/; respectively, and d˙ just means we reverse the tuple d if the module is V�.

Remark 2.11. The q-skew Howe duality describes naturally the action of Ei and Fi after
projection 1d onto a weight space. These projections can be encoded conceptually by passing
from Uv.glm/ to Lusztig’s idempotent version PUv.glm/ of Uv.glm/ [94], where idempotent
generators P1d are added such that weight modules of Uv.glm/ correspond to modules for
PUv.glm/. The fundamental problem in invariant theory of determining the kernels of the
actions is easy in terms of PUv.gln/, n 2 ¹k; mº. By [27], the kernels are the ideals Ik and Im

respectively, generated by all P1d, where d falls outside the respective weight support of X .

Altogether, Fund�

k
including its action, braiding, and corresponding wRT-tangle invariants

is completely controlled by actions of (Lusztig’s idempotent version) of quantum groups.

Remark 2.12. There exist variants of q-skewHowe dualities, e.g., versions for .i/ symmetric
powers [121], .ii/ general linear Lie superalgebras [115,140], .iii/ orthogonal and symplectic
Lie algebras [127] (replacing Hn by some Brauer algebra), or .iv/ quantum symmetric pairs
(replacing Hn with a Hecke algebras of Coxeter types BCD) [41]. In (iii) the dual partner is
only a quantum symmetric pair for a fixed point Lie algebra of Langlands dual type inside
gl2m, see [127]; and (iv) involves two quantum symmetric pairs for the fixed point Lie algebras
glk ˚glk � gl2k and glm˚glm� gl2m, [41]. This version sits nicely between the ones from
Proposition 2.9 for .glk ; gl2m/ and .gl2k ; glm/ via restriction/inclusion. It is connected via
Hecke algebras of types BC with invariants of knots in an annulus or a disc with a puncture
[56,57]. A disc with an order-two orbifold point can be treated using type D following [5].

Q1: Can Hecke algebras of complex reflection groups treat orbifold points of any order?

3. Four approaches to categorifications

We now sketch representation theoretic categorifications of link and tangle invari-
ants related to the four different views on the Jones polynomial.

3.1. Ad I: Khovanov homology
The first categorification of link invariants is given in the work of Khovanov [75]

and assigns to an oriented link L a complex Kh.L/ of finite-dimensional graded C-vector
spaces. It realizes the Jones polynomial J.L/ as the graded Euler characteristic �.Kh.L// of
Kh.L/. Thus, Kh.L/ relates to the Jones polynomial of L as a topological space relates to its
Betti numbers. Stipulated by the Kauffman bracket, Kh assigns to the unknot a graded vector
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spaceA, viewed as complex concentrated in homological degree zero, with Poincaré polyno-
mial v C v�1 D Œ2�. Each additional crossing produces a complex one step longer. To make
the assignment well defined, one has to work in the homotopy category Kb.C-modZ.v// of
the category C-modZ.v/ of finite-dimensional Z-graded vector spaces (with grading shift v).

Then the Khovanov invariant is an assignment

Kh W
®
oriented links in R3 up to isotopy

¯
! Kb.C-modZ.v// with �

�
Kh.L/

�
D J.L/:

Its cohomology, the Khovanov (co)homology, and the Khovanov polynomial

PKh.L/ WD
X

d;j 2Z

dimHj
�
Kh.L/

�
d

tj vd
2 Z

�
v˙1; t˙1

�
;

are invariants as well. The definition of Kh relies on a categorified Kauffman bracket D 7!

JDKcat with values in Kb.C-modZ.v// whose Euler characteristic is the Kauffman bracket
from Section 2.I. This bracket is characterized by

(i) the multiplicativity property JD1 tD2Kcat D JD1Kcat ˝C JD2Kcat,

(ii) the normalization
q

,
y
cat D A, and

(iii) the local smoothing complex
s {

cat
D

s {

cat

ı
 

s {

cat
Œ1�h1i.

Local smoothing means that the bracket of a diagram involving a crossing can be expressed
as the total complex of a 2-term complex with entries in Kb.C-modZ.v// given respectively
by the bracket of the first and second smoothing (with the shift suggested by �v D .�1/v1

in (2.1)). Since this decreases the number of crossings, by induction one may reduce to the
case of no crossing (i.e., circles only), where the functor is specified by .i/ and .ii/. For
the construction of the differential ı, Khovanov identifies Ah1i with CŒx�=.x2/ DH.CP 1/

(with x in degree 2), which has additionally a Frobenius algebra structure. The (co)multipli-
cation provide mapsA˝A

m�

 Ah1i,A
m
 A˝Ah1i. Applied locally (with appropriate sign

rules) they define a map ı which is then a differential due to the Frobenius algebra properties
and sign choices. As for the Jones polynomial one obtains from the bracket a link invariant
after incorporating appropriate shifts, i.e., Kh.D/ D JDKŒn��hnC � 2n�i.

Khovanov homology is, as expected, a stronger invariant than the Jones polynomial.
Even more striking, Khovanov [77] and Jacobsson [67] could prove that a surface bounded
by two links induces a chain map between the Khovanov complexes defining an invariant of
the surface, up to signs. The sign issue is fixed in various ways, in [19] via foams, in [32] via
surfaces with disorientation lines, and in [42] via a sign adaption of Khovanov’s construction.
The latter, see also [13], provides an explicit sign adaption of the involved differential.

Theorem 3.1. The sign-adjusted construction of the Khovanov invariant defines a functor

Khsgn W
®
oriented links in R3

¯
! Kb.C-modZ.v// with homology PKhsgn D PKh : (3.1)

This functoriality is crucial for topological applications, e.g., to prove Milnor’s con-
jecture on slice genus of torus knots [116] or unknot detection by Khovanov homology [84].
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Remark 3.2. The (categorified) Kauffman bracket works well for links. For tangles, an
additional direction of composition has to be reflected in the target category of a possi-
ble invariant. Instead of working with the category of vector spaces, one has to pass to, e.g.,
categories of bimodules over (generalized) Khovanov arc algebras [29, 76, 137], operads and
canopolis [11], or various topological incarnations related to foam categories. An analogue,
although not very practical, of the Kauffman bracket for glk , k > 2, can be given via (2.15).

Remark 3.3. In practice one often considers all complete smoothings at once and arranges
their values as vertices in the famous cube of resolutions [10,75], with the differential on the
edges. However, the interpretation of (2.1) in terms of a 2-term complex was chosen to high-
light the important role played by such complexes in algebraic(-geometric) categorifications.
They do not only appear in crucial definitions (like coherent sheaves or other Serre quotient
categories), but also provide technical toolkits for categorical actions, for instance, in form
of spherical twists, spherical functors, or Rickard complexes.

Remark 3.4. Although odd Khovanov homology and Lee homology are often called vari-
ants of Kh, they are rather different theories from our point of view. Instead of gl2, they are
connected with the Lie (super) algebras osp.1j2/ [49] and gl1 � gl1 [122], respectively.

Q2: Which surfaces are distinguished by Khovanov homology? Does it provide a 4-TQFT?

3.2. Ad II: Triply graded link homology
A categorification of link invariants using braid closures and traces is the triply

graded Khovanov–Rozansky homology. It was originally constructed using matrix factoriza-
tions [81] and then reinterpreted [78] in representation theoretic terms via Soergel bimodules.
To sketch the construction, we viewˇ 2Brn as a special tangle with n bottom and n top points
or as a “map” from n inputs to n outputs. We associate variables x1; : : : ; xn to the inputs
and consider the categoryRn-mod of modules over the polynomial ringRnDCŒx1; : : : ; xn�.
To ˇ we assign a certain (complex of) Rn-bimodule(s) X.ˇ/ which defines a “map”
X.ˇ/ ˝Rn _ W Rn-mod ! Rn-mod. Taking the closure Ǒ of ˇ connects or identifies the
points at the bottom with those at the top, see Example 2.1. Categorically this corresponds
to identifying the left with the right action of Rn on X.ˇ/. Algebraically one takes (derived)
coinvariants, i.e., Hochschild homology of X.ˇ/. This Hochschild homology is a bigraded
vector space with gradings coming from the Hochschild and homological grading. It is even
triply graded if one works with graded Rn-modules.

To be more rigorous, consider R WD Rn as a graded ring with deg.xi / D 2 and let
Sn act on R by permuting the variables. Given any subset I � Sn of simple transpositions,
let RI D RWI � R be the ring of invariants under the action of I or, equivalently, under the
parabolic subgroup WI generated by I inside W D Sn.

Example 3.5. Obviously, RW is the ring of symmetric polynomials and R; D R. In case
I D ¹siº; we obtain Rsi WD R¹si º D CŒx1; : : : ; xi�1; xi C xiC1; xi xiC1; xiC2; : : : ; xn�.
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To any word Rw D si1si2 : : : sir in simple transpositions from Sn, there is an associ-
ated Soergel bimodule BS. Rw/ D R ˝R

si1 R ˝R
si2 � � � ˝R

sir Rh�`. Rw/i which is the Bott–
Samelson bimodule for Rw, see Remark 3.18. We have in particular, BS.si /DR˝Rsi Rh�1i

and BS.;/ D R.
The category of Soergel bimodules �Bimn [131, 132] is defined as the Karoubian

closure of the additive category generated byBott–Samelson bimodules and its grading shifts
(inside the category of all graded bimodules with degree zeromaps). It is an additive category
and closed under _ ˝R _, i.e., it is monoidal with unit R. Next, the generating Rouquier
complexes associated with ˇi and ˇ�1

i 2 Brn are

X.ˇi / W
�
Rh1i ! BS.si /

�
; and X.ˇ�1

i / W
�
BS.si / ! Rh�1i

�
with differentials given by 1 7! .xi � xiC1/˝ 1C 1˝ .xi � xiC1/ and 1˝ 1 7! 1; respec-
tively.

To an element ˇ 2 Brn written as a word Ř D ˇ
"1

i1
� � � ˇ

"r

ir
in the ˇ˙1

i , Rouquier
[124] attaches the corresponding tensor product X. Ř/ WD X.ˇ

"1

i1
/˝R � � � ˝R X.ˇ

"r

ir
/ (with

the convention that the identity braid in Brn is sent to R) in Kb.�Bimn/. He then proves the
following important result which allows one to use the notation X.ˇ/.

Theorem 3.6. If two words Ř and Ř0 represent the same element in Brn, then the Rouquier
complexes X. Ř/ and X. Ř0/ are canonically isomorphic in Kb.�Bimn/.

Remark 3.7. Rouquier [124] in fact constructed a genuine braid group action onKb.�Bimn/

by these Rouquier complexes. Explicit rigidity maps (even over Z) were determined in [46].

To categorify braid closures and traces, consider the Hochschild homology functor

HH. _ / WD
M
i2N0

HHi .R ; _ / WD
M
i2N0

Tori .R ; _ /

from the category of Z-graded R-bimodules to the category of .N0 �Z/-graded (viewed as
Z � Z-graded) vector spaces. For a complex C of finitely generated graded R-bimodules,
let HH.C / denote the complex of bigraded abelian groups obtained by applying the functor
HH to the components and differentials of C . Set HHH.C / WD H�.HH.C //. This is an object
in the category C-modZ.t;v;h/ of triply graded vector spaces with t , v and h referring to the
homological, internal and Hochschild degree, respectively (with shift functors Œ��, h�i, ¹�º).
Its (3-parameter) Poincaré series is a Laurent series in v with coefficients in ZŒh˙1; t˙1�:

P
�
HHH.C /

�
WD

X
d;i;j 2Z

dim
�
Hj

�
HHi .C /

�
d

�
tj hi vd

2 Z
�
h˙1; t˙1

��
.v/

�
: (3.2)

We have to work here with Laurent series in v, indicated by ..v//, since R is infinite-dimen-
sional, but the expression makes sense since the components are finite in each fixed triple
degree. Evaluating t D �1 gives the graded Euler characteristic �.HHH.C // 2 ZŒh˙�..v//.

Khovanov showed in [78] that (3.2) gives, up to some rescaling, an invariant of ori-
ented links (here ". Ř/ denotes the sum of the exponents of the ˇi appearing in Ř):

1325 Categorification: tangle invariants and TQFTs



Theorem 3.8. For a braid word Ř in Brn, the normalized Poincaré series

KR. Ǒ/ WD .th/
1
2 .". Ř/�n/v". Ř/ P

�
HHH

�
X. Ř/

��
(3.3)

only depends on the braid closure Ǒ. Thus there is a well-defined assignment

KR W
®
oriented links in R3 up to isotopy

¯
! Z

�
h˙ 1

2 ; t˙ 1
2
��

.v/
�
; Ǒ 7! KR. Ǒ/: (3.4)

The invariant KR. Ǒ/ is called the triply graded Khovanov–Rozansky homology of Ǒ.

Example 3.9. We calculate KR.,/, i.e., ˇ is for n D 1 the identity braid in Brn with
X.ˇ/DRnDRDCŒx1�. TheHochschild homology can easily be computed asHH0.R/DR,
HH1.R/ D Rh2i, HH�2.R/ D ¹0º from the Koszul resolution CŒy� ˝ CŒy0�

.y�y0/�
!

CŒy� ˝ CŒy0� of R D CŒx1� (with y; y0 7! x1). Since the Poincaré series of R equals
P.R/ D 1

1�v2 , we obtain

KR.,/ D t� 1
2 h� 1

2 P
�
HHH.R/

�
D t� 1

2 h� 1
2

1C hv2

1 � v2
2 ZŒh˙; t˙�

�
.v/

�
: (3.5)

For general n, HH.Rn/ Š Rn ˝
V�

.�1; : : : ; �n/, where each �i is of v-degree 2 and h-
degree 1, and HHH.Rn/ D HH.Rn/. As expected, the identity braid gives with (3.3), KR.,/n.

Crucial for the proof of Theorem 3.8 are isomorphisms HHH.X.˛/ ˝R X.ˇn// Š

HHH.X.˛//h�1i, HHH.X.˛/ ˝ X.ˇ�1
n // Š HHH.X.˛//h1iŒ1�¹1º and the trace property

HHH.X.˛/ ˝R X.˛0// Š HHH.X.˛0/ ˝R X.˛// for ˛; ˛0 2 Brn � BrnC1. The latter follows
directly from the canonical isomorphism HH.M ˝R N / D HH.N ˝R M/ noting that for
Soergel bimodules one does not need to derive the tensor product, since they are by stan-
dard invariant theory free as one-sided modules. The formulas imply that Ǒ ! �.HHH.X.ˇ///

factors through a ZŒv˙1�-linear trace function � W
`

n�1 Hn ! ZŒh˙1�..v// such that

�.1/ D
1C hv2

1 � v2
; �.xH ˙1

n / D z˙�.x/ 8x 2 Hn with zC D v�1 and z� D �hv; (3.6)

where Hi is the image of ˇi in Hn. With the normalization (3.3), � becomes a Markov trace.
By introducing a homological 1

2
Z-grading, even HHH can be turned into an invariant, see [124].

Remark 3.10. Since trace functions � on
`

n�1 Hn are classified by the pair .�.1/; zC/

as in (3.6), one can identify � from (3.6), up to normalization of �.1/ with the (Jones–)-
Ocneanu trace [69]. In [86] it is proved that for any finitely generated Coxeter group, with
the more general definition of Soergel bimodules and Hecke algebra from Theorem 3.19, the
Euler characteristic of the KR-homology provides a Markov trace on the Hecke algebra.

Remark 3.11. To get nicer formulas, we make a change of variables by setting aD v.ht/
1
2 .

Then KR. Ǒ/ 2 ZŒa˙1; t˙1�..v//. For example, KR.,/ D v a�1Cat�1

1�v2 D
a�1Cat�1

v�1�v
. Setting t D

�1 gives a�a�1

v�v�1 and the characterizing skein relation (2.2) of the HOMFLY-PT polynomial holds.
With aD v2, we obtain the Jones polynomial, e.g., vC v�1 here and v3Œ4� in Example 3.13.

Theorem 3.12. KR. Ǒ/2ZŒa˙1; t˙1�..v// specializes for t D�1 to the HOMFLY-PT polynomial
associated with Ǒ.
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Example 3.13. For L the Hopf link from (2.1), we get �.KR.L// D v2�.H 2
1 /. By (2.7),

�.H 2
1 / D �.1/C .v�1 � v/�.H1/ D �2 C .v�1 � v/v�1� with � WD �.1/.

Remark 3.14. The appearance of Hn here is not surprising because Soergel originally
invented his bimodules to understand the Kazhdan–Lusztig basis in the Hecke algebra Hn.
To formulate this more precisely, let K˚

0 .�Bimn/ be the split Grothendieck ring of the
additive category of Soergel bimodules. That is the free ZŒv˙1�-module generated by iso-
morphism classes ŒM � of objects M in �Bimn modulo relations ŒM ˚ N � D ŒM �C ŒN �,
vŒM�D ŒM h1i�; and multiplication ŒM �ŒN �D ŒM ˝R N �. In [131], Soergel proved an influ-
ential categorification theorem which is crucial for all representation theoretic constructions
of categorified link invariants: there is an isomorphism of ZŒv˙1�-algebras

‡n W Hn ! K˚
0 .�Bimn/; Hi C v 7�!

�
B.i/

�
: (3.7)

which moreover identifies the Kazhdan–Lusztig basis with classes of indecomposables
bimodules. We observe that Hi corresponds hereby to a virtual object only. This can be
fixed by identifying K˚

0 .�Bimn/ with the Grothendieck group of the triangulated cate-
gory Kb.�Bimn/, since then ŒX.ˇi /� D ‡.Hi /. This shows that Rouquier’s braid group
action, despite its faithfulness [82], is honestly a categorical Hecke algebra action which also
descends to aHecke algebra action on theGrothendieck group. The relations (2.1), (2.2), (2.7)
indicate that the presented invariants should be rather connected with the Hecke algebra
instead of the braid group.

In contrast to Kh, computing KR is usually hard, although the resulting values might
be more conceptual and expressible using generating series. Important progress was how-
ever made recently for the torus links t.p;q/ which are the closure of . p̌�1 � � � ˇ2ˇ1/q

(with the Hopf link as special case .p; q/ D .2; 2/). An important first step is done in
[65] with the observation that KR.t.n;q// stabilizes for q ! 1 to a limit isomorphic to
CŒu1; : : : ; un�˝

V�
Œ�1; : : : �n� with ui in h-degree zero and �i in h-degree 1 (cf. HH.Rn/ in

Example 3.9). This limit is identified in [65]with the derived endomorphism ring of a certain
categorified Young idempotent in the Hecke algebra Hn. This idempotent provides a bridge
to categorified colored RT -invariants, Remark 3.54 and Conjecture 3.58, since it acts on
.V�;gl2

/˝n as a projector, the V�;gl2
-version of the Jones-Wenzl projector (3.21) below.

In [44], KR.t.p;q// is determined via a beautiful recursive formula in case p D q,
and extended to general .p; q/ in [66]. They both use categorifications of idempotents in
Hn which are interesting tools on their own, e.g., for developing a categorified representa-
tion theory of Hn. For general links, computing KR seems still to be out of reach. Instead
of studying the invariant via its original definitions [78, 81], alternative constructions were
proposed, e.g., the following involving Hilbert schemes and Cherednik algebras with their
underlying combinatorics of symmetric functions and Macdonald polynomials.

Remark 3.15. The approach of [108, 109] starts by viewing a torus link L D t.p;q/ as an
algebraic link, i.e., as the intersection of a planar curve C WD Cp;q � C2 (defined by the
polynomial f D xp � yq 2CŒx;y�) with a sufficiently large sphere around the origin inC2.
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Attached toC is theHilbert schemeC Œr� of r points onC which, as a set, is given by all ideals
I � CŒx; y� of codimension r containing f . In [109] it is proved for coprime p, q that the
Euler characteristic of KR.t.p;q//, i.e., the HOMFLY-PT polynomial, equals up to a normalization
the Euler characteristic of the disjoint union of all nested Hilbert schemes

C Œd;dCi�
WD

®
.I; J / j I � .x; y/ � J � I

¯
� C Œd�

� C ŒdCi�

with d and i encoding the v- respectively a-degree. For a generalization to algebraic links,
see [103]. In [108] it is conjectured that replacing the Euler characteristic with the virtual
Poincaré polynomial (see [108] for the definition) provides the triply graded Khovanov
homology. For torus links, this is proved in [110]. In general, this conjecture is still open.

Remark 3.16. As indicated in the introduction, KR is related to double affine Hecke algebras
(DAHAs) and their rational degenerations from [50]. The rational DAHA Hc D Hc.Sn/ with
parameter c 2 C is the quotient of Chxi ; yi j 1 � i � ni Ì Sn modulo

Œxi ; xj � D 0 D Œyi ; yj �; Œxi ; yj � D c � .i; j /; Œxi ; yi � D 1 � c
X
j 6Di

.i; j /

for any i 6D j with .i; j / 2 Sn. It is a flat deformation of H0 D D Ì Sn, where D is the
algebra of differential operators on Cn. If c D p

q
with .p; q/ 2 Z2 coprime, there is a unique

irreducible finite-dimensional H p
q
-module Lp;q [15]. When restricting the Hc-action to Sn,

this module decomposes into direct summands. Let 1i Lp;q be the isotypic component ofVi Cn�1 using the reflection representation Cn�1. The internal grading on Hc realised by
the eigenvalues of the Euler operator eu D

Pn
iD1 xi yi (and encoding the difference of the

polynomial degree in the x’s and the y’s) induces a grading on Lp;q and 1i Lp;q . In [60], the
Poincaré polynomial P.M/ of M WD

L
i 1i Lp;q is identified with the HOMFLY-PT polynomial

of t.p;q/ up to renormalization. Here, i contributes to the a-degree and eu to the v-degree.
The identification is achieved by matching known formulas for the HOMFLY-PT polynomial
with the character formula for Lp;q from [15]. In [60], a filtration on M is predicted such that
KR.t.p;q// arises as P.grM/ for the associated graded grM . This is verified in [110] in terms
of a geometric perverse filtration, after realizing 1i Lp;q (with the action of the spherical
Hecke algebra 1i H p

q
1i ) as

L
d H.C Œd;dCi�/ (with the action of certain Hecke–Nakajima

operators). The comparison and identification of P.grM/ with KR.t.p;q// is again done by
matching explicit formulas from [44,66].

Q3: Is there a combinatorial model to compute KR? For which cobordisms is KR functorial?

3.2.1. Interlude: Hecke categories
The quantum glk-invariants and the construction of the fundamental representa-

tions (2.12) use heavily the monoidal structure of Repk . By (2.7), the action of the braid
group on .V˙/˝n factors through an Hn-action preserving the weight spaces of .V˙/˝n. To
get categorified tangle invariants, one might therefore categorify these Hecke algebra actions
in terms of a monoidal category acting via functors on a category, ideally with an extension
to categorified quantum group actions and q-skew Howe duality (2.18). To motivate the
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Overview 2

The geometric, algebraic, and Lie-theoretic Hecke categories

Hecke algebra  Hecke category
Theorem 3.19
' Soergel bimodules

Remark 3.24
' Projective functors

Hn; Hn.q/ H
geo
n �Bimn Pn

origin of such actions we go back to the original definition of Hecke algebras arising from
split reductive groups G defined over a finite field Fq with a choice T � B � G of a max-
imal torus and Borel subgroup and the finite group G.Fq/ of Fq-points. Most finite simple
groups, in particular of Lie type, arise in this way. For us the case of G D GLn suffices with
the choice of diagonal matrices inside the upper triangular matrices and their correspond-
ing finite groups Gq WD GLn.Fq/ � Bq � Tq . The Weyl group W D NGq .Tq/=Tq can be
identified with the group Sn � Gq of permutation matrices.

The associated Iwahori–Hecke algebra Hn.q/ is the vector space FuncBq�Bq .Gq;C/

of complex valued functions f onGq invariant under both the left and the right action ofBq ,
i.e., f .bg/D f .g/D f .gb/ for all g 2 Gq , b 2 Bq , equipped with the convolution product

.f ? g/.x/ D
1

jBqj

X
y2Gq

f .xy�1/g.y/: (3.8)

The indicator functions hw , w 2 W , for the double cosets BqwBq form a basis of Hn.q/ by
the Bruhat decomposition (or just Gauss elimination) Gq D

F
w2W BqwBq . In this basis,

the structure constants of the multiplication are polynomial in q D jFqj and thus one can
replace q by a generic variable and “treat all q at once.” Then the resulting algebra Hn.q/

becomes isomorphic to Hn via q 7! v�2, hsi
7! v�1Hi after adjoining a square root of q.

Remark 3.17. The construction allows vast generalizations, e.g., by replacing Fq by a local
field with finite residue field (to get Iwahori–Hecke algebras arising in number theory), by
working with topological groups, or with convolution products in homology theories.

The usual Grothendieck function–sheaf correspondence, see, e.g., [88], indicates
that a categorification is given by a certain category of .B�B/-equivariant sheaves on G.
Since .B�B/-equivariant functions on G can be identified with B-equivariant functions on
G =B, a categorification might therefore work with B-equivariant sheaves on G =B.

For a first categorification, see Overview 2, we use the related geometry overC with
G WD GLn.C/, B WD B.C/, T WD T.C/; and the algebraic variety F D G=B of all full flags
¹F1 � � � � � Fn D Cn j dim.Fi / D iº of vector subspaces in Cn. The bounded equivariant
derived category Db

B.F ; C/ of sheaves of C-vector spaces [17], is a monoidal category with
a convolution product ?, [133].

The geometric Hecke category H
geo
n is defined as the full subcategory ofDb

B.F ;C/

generated by the constant sheavesCPi
onPi DBsi BDBsi B [B �G under convolution?,

homological shifts Œ1�, finite direct sums and direct summands. Concretely, the objects in
H

geo
n are shifts of objects BSgeo. Rw/ D CPi1

? � � � ? CPir
Œ�r� for any word Rw D si1 : : : sir in
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simple transpositions, and finite direct sums and summands of those. The shift functors Œi �

turn H
geo
n into a graded category. Note the similarity to �Bimn with shift functors hii.

Remark 3.18. The objects BSgeo. Rw/ have a nice alternative description in terms of the Bott–
Samelson varieties Z. Rw/ D Pi1 � � � � � PirC1=Br , where y D .y1; : : : ; yr / 2 Br acts as
y:.p1; : : : ; pr /D .p1y�1

1 ; y1p2y�1
2 ; : : : ; yrprC1/. If Rw is a reduced expression for w 2W ,

then the multiplication map � W Z. Rw/! G=B , .p1; : : : ; pr / 7! p1 � � �pr is known to be a
resolution of singularities for the Schubert variety BwB=B , first studied in the context of
compact Lie groups byBott and Samelson. It is not hard to see that BSgeo. Rw/Š��CZ. Rw/ and
that the Bott–Samelson bimodules arise as T -equivariant cohomologyHT .Z. Rw//ŠBS. Rw/.

Soergel’s categorification result, Remark 3.14, arises now naturally:

Theorem 3.19. There is an equivalence H
geo
n ' �Bimn of graded monoidal categories

sending BSgeo. Rw/ to BS. Rw/. In particular, K˚
0 .H

geo
n / Š Hn as ZŒv˙1�-algebras.

Remark 3.20. Theorem 3.19 can be proved by identifying both, H geo
n [120] and �Bimn [48],

with the Karoubian closure DBimn of a diagrammatic monoidal category DBim0
n invented

in [45, 48] and proved to be equivalent to the full subcategory of �Bimn given by Bott–
Samelson bimodules. Strikingly, this category DBim0

n has a presentation with generators
and relations. Prominently applied is this in the proof of the long outstanding positivity con-
jecture for Kazhdan–Lusztig polynomials of an arbitrary Coxeter system and an algebraic
proof of the Kazhdan–Lusztig conjectures for reductive complex Lie algebras in [47].

3.3. Ad IV: Categorification of the web calculus and its tangle invariant
We reverse the order from Section 2 and pass to categorifications for wRT˙ which are

further developed than for RT. A categorification of the quantum gln tangle invariant wRT˙ is
constructed by Mazorchuk and the author [105, 136] and Sussan [139], using highest weight
categories of infinite-dimensional representations of the (again, but now in a different role!)
general linear Lie algebras glN .C/. It categorifies Fund˙ and even skew Howe duality:
objects

Vd
V˙ as in (2.17) are realized as Grothendieck groups of categories, and actions and

morphisms are lifted to functors with relations realized by specific natural transformations.
This construction is part of a major change of perspective in representation theory in recent
years. The starting point goes back to Crane and Frenkel [34], who proposed the idea ofHopf
categories to construct 4-TQFTs based on categorified quantum groups and canonical bases.
Categorified quantum groups were then defined in [80,123] as certain 2-categories. We will
indicate later how they arise naturally in the context of categorified tangle invariants.

Let h � b � g D gN WD glN .C/ be the Cartan and Borel subalgebra given by all
diagonal respectively upper triangular matrices. Equip h� with the standard basis ı1; : : : ; ıN ,
such that ıi picks out the i th diagonal matrix entry, and with the symmetric bilinear form
.ıi ; ıj / D ıi;j . We identify the lattice hint WD Zı1 ˚ � � � ˚Zın of integral weights with ZN

via �$ .�1; : : : ; �N /, where �i D .�C �; ıi / with � D
PN

j D1.N � j C 1/ıj . The group
SN acts on ZN D hint by permuting components and defines the Bruhat ordering generated
by � < � if � differs from � by swapping a pair �i ; �j such that �i < �j and i < j .
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We set up now a dictionary between standard basis vectors Ee 2
Vd

V˙ of
Vd

V˙ (for
fixed ˙) and a subset ƒd � ZN of gN -weights (with N D

Pm
iD1 di ). Each tensor product

Ee of basis vectors (2.12) is identified with an element wt.Ee/ 2 ¹1; 2; : : : ; kºN � ZN via

Ee D e
.1/
i ˝ � � � ˝ e

.m/
i 7! wt.Ee/ WD .i

.1/
1 ; : : : ; i

.1/

d1
; i

.2/
1 ; : : : ; i

.m/

dm
/ 2 ƒd: (3.9)

Let ƒd be the image. Note that a weight space in
Vd

V˙ corresponds to an SN -orbit c in ƒd.
Now we construct a category Od whose Grothendieck group has a basis naturally

labeled by ƒd. For this consider the BGG category O of all finitely generated g-modules
M which are locally finite over b and have a weight space decomposition with only inte-
gral weights � 2 hint. This is an abelian finite length category, where the irreducible objects
are exactly the irreducible highest weight modules L.�/ of highest weight � 2 hint, i.e., the
irreducible quotients of the Verma modules �.�/ for � 2 hint. Objects in O which have a
�-flag, i.e., a finite filtration with subquotients isomorphic to Verma modules, form an exact
additive subcategory O� which is closed under direct summands and contains all projec-
tive objects. Even more, category O is a highest weight category, see, e.g., [26], for the set
hint D ZN viewed as poset with standard objects the �.�/. Technically this means that the
projective cover ofL.�/ surjects onto�.�/, and�.�/ surjects ontoL.�/, and the kernel has
a �-flag with subquotients some �.�/ where � > �, respectively a Jordan–Hölder filtration
with subquotients L.�/’s with � < �. As a consequence, the canonical maps induce iso-
morphisms between Grothendieck groups for (i) the additive category of projectives, (ii) the
exact category O�, (iii) the abelian category O; and (iv) the triangulated bounded derived
category Db.O/:

K˚
0

�
Proj.O/

�
D K0.O�/ D K0.O/ D K0

�
Db.O/

�
: (3.10)

To ƒd we associate simply the Serre subcategory Od of O generated by all L.�/

with � 2 ƒd. More concretely, this is just a direct summand, specified by k, of the full
subcategory Opd of O of all modules which are locally finite over the standard parabolic
subalgebra pd with Levi factor gld1

˚ � � � ˚ gldm
. Sending Ee 2

Vd
V˙ from (3.9) to the class

of the pd-parabolic Verma module �pd.wt.Ee// (a standard object for the induced highest
weight structure onOd) with highest weight wt.Ee/ defines an isomorphism of abelian groups� d̂

V Z
˙

�
˝ZŒv˙1� Z Š K0.Od/ D K0

�
Db.Od/

�
; Ee 7!

�
�pd

�
wt.Ee/

��
: (3.11)

Here Z is a ZŒv˙1�-module via v 7! 1 2 Z and V Z
˙

denotes the ZŒv˙1�-module in V˙

spanned by the vectors ei . We like to find functors realizing the Uv.glk/-action and also
incorporate v.

Tensoring with finite-dimensional representations of g provides exact endofunctors
ofO. These functors and their direct summands form themonoidal categoryPN of projective
functors. Describing their effect on Verma modules is easy (but hard on other objects):

Example 3.21. If U is a finite-dimensional representation of g, then �.�/ ˝ U 2 O�.
The subquotients in a �-flag are the �.� C �/, where � runs through the multiset P.U /

of weights � of U with multiplicity dim U� . Thus, Œ�.�/ ˝ U � D
P

�2P.U /Œ�.� C �/�
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in K0.O�/. Important examples are U D CN with Œ�.�/ ˝ U � D
PN

iD1Œ�.� C ıi /� or
U D .CN /� with Œ�.�/˝ U � D

PN
iD1Œ�.� � ıi /�.

Lemma 3.22. The functors E;F W O 7! O; M 7!M ˝ U with U D CN and U D .CN /�,
respectively, decompose into direct summands E D

L
i2Z Ei , F D

L
i2Z Fi with�

Ei �.�/
�
D

X
¹j j�j Diº

�
�.�C ıj /

�
;

�
Fi �.�/

�
D

X
¹j j�j DiC1º

�
�.� � ıj /

�
: (3.12)

This is an easy consequence of Example 3.21 and the fact that O decomposes into
summands Oc labeled by SN -orbits c in ZN . Here Oc denotes the Serre subcategory of O

generated by L.�/ with � 2 c. Under (3.11), Od \ Oc corresponds to a weight space. By
definition, the functors Ei and Fi preserve Opd , even Od if 1 � i � k � 1. Formulas (3.12)
resemble Lie algebra actions. Generalized formulas from Example 3.21 for Od imply that
the induced action on K0.Od/ agrees via (3.11) with the (v 7! 1) specialized Uv.glk/-action
on

Vd
V Z

C . (Note the positive signC here!)

Remark 3.23. Inside PN , the Hecke category appears naturally: It is known that PN is the
Karoubian closure of the additive monoidal category generated by Ei , Fi . The proof relies
on a monoidal equivalence PN ' HCN with a certain category HCN of Harish-Chandra
bimodules. Via Soergel’s functor V from [131] and its extension in [135], PN is equivalent to
a category of singular Soergel bimodules. By restriction to endofunctors of O0 WD Oc with
0 2 c, one gets f.�BimN / ' f.HN

geo/ as a full monoidal subcategory, where f means that
we forget the grading. Remarkably, a classification of indecomposable projective functors for
the categories Od was only recently obtained [83], based on advances in the 2-representation
theory of Hecke algebras, i.e., the representation theory of categorified Hecke algebras.

To incorporate v, we work with a graded version OO of O and its Serre subcategories
as defined in [12], i.e., with graded modules over the endomorphism ring A of a minimal
projective generator of O equipped with the Koszul grading from [12].

Remark 3.24. The origin of the grading is an equivalence of additive categories between
Proj.O0/ and the full subcategory of Rn-mod of Soergel modules C ˝RW M for M 2

f.�BimN / which has an obvious graded lift. We get a graded version of Proj.O0/ and then
also of O0. Note that �BimN obviously acts on this category by tensoring over R from the
right. With some extra work, all Lie theoretic categories and functors used here can be lifted
to a graded version. A general approach to lift modules (e.g., (parabolic) Verma modules)
and the above functors to the graded setting is developed in [134].

Lemma 3.25. Any choice of graded lift O�pd.wt.Ee// of �pd.wt.Ee// lifts (3.11) to an isomor-
phism of ZŒv˙1�-modules (V Z

˙
denotes the ZŒv˙�-submodule of V˙ spanned by the ei ):

‰ W
d̂

V Z
˙ Š K0. OOd/ D K0

�
Db. OOd/

�
; Ee 7!

�
O�pd

�
wt.Ee/

��
: (3.13)

We realized now
Vd

V Z
˙

as the Grothendieck group of a category and want to lift
morphisms and the Uv.glm/-action from (2.19) to functors. We first consider

Vd
V Z

C . If
pd0 � pd are two standard parabolic subalgebras in glN , then there is the exact inclusion
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functor incl and its left adjoint Zuckerman functor Z of taking the largest quotient in the target
category, incl W Od � Od0

W Z. Now incl and the derived functor LZ induce morphisms on
K0 which we connect to (2.14). Recall Proposition 2.7 and observe that WC is generated as
category by basic webs which look like a generator from (2.9) with identities to the left and
right. To each basic web t we associate a functor MSSC.t/, which is, up to an overall shift, the
obvious graded lift Oincl or L OZ of the inclusion respectively the derived Zuckerman functor
(with hopefully self-explanatory notation)

bd0

d WD
OinclŒ�ab�h�abi W Db. OOd/

..
Db. OOd0

/nn W L OZ DW
cd

d0 : (3.14)

To each composition t of basic web diagrams assign the composition MSSC.t/ of functors.

Example 3.26. Let k D 2 and consider the webs (2.9) for a D b D 1 with induced mor-
phismsf.1;1/

.2;0/
W
V.2;0/

V Z
C �

V.1;1/
V Z

C W f
.2;0/

.1;1/
. To e2 ^ e1 we associate�p.2;0/..2;1//which

is just the trivial gl2-module C. The BGG resolution �p.1;1/..1; 2//! �p.1;1/..2; 1// of
C implies that inclŒ�1� induces the linear map e2 ^ e1 7! �v�1.e2 ˝ e1 � ve1 ˝ e2/ with
vD 1 on the Grothendieck group. On the other hand,LZ�p.1;1/..2;1//D Z�p.1;1/..2;1//D

�p.2;0/..2; 1// and LZ �.1;1/..1; 2// D �p.1;1/..2; 1//Œ�1� induce e2 ˝ e1 7! e2 ^ e1;

e1˝ e2 7! �v with vD 1. We can obtain now formulas (2.14) by picking appropriate graded
lifts O�p.2;0/..2; 1//, O�p.1;1/..1; 2//, O�p.1;1/..2; 1// with a morphism O�p.1;1/..1; 2//h1i !

O�p.1;1/..2; 1// lifting the BGG resolution.

The following summarizes results from [41,105,139] and categorifies q-skew Howe
duality from Proposition 2.9:

Theorem 3.27. Let t be a basic web from d0 to d with corresponding homomorphism ˆC.t/

from Proposition 2.7. Then there are choices of graded lifts in (3.13) and of (3.12) such that
the following diagram commutes for 1 � i � k � 1 (also for Ei replaced by Fi ):

Vd0

V Z
C

‰

,,

ˆC.t/

//

Ei

��

Vd
V Z

C

Ei

��

‰
// K0. OOd/

Œ OEi �

��

D K0

�
Db. OOd/

�
oo

ŒMSSC.t/�

Œ OEi �

��

K0

�
Db. OOd0

/
�

Œ OEi �

��

D K0. OOd0

/

Œ OEi �

��Vd0

V Z
C

ˆC.t/
//

‰

33

Vd
V Z

C

‰ // K0. OOd/ D K0

�
Db. OOd/

�
oo

ŒMSSC.t/�
K0

�
Db. OOd0

/
�
D K0. OOd0

/:

Moreover, the family of functors OEi , OFi naturally commutes with the functors MSSC.t/

associated with webs. On the Grothendieck group they induce skew Howe duality (2.18)

U Z
v .glk/ Õ X WD

�̂�
V Z

C .k/˝ V Z
� .m/

�
Ô

�
U Z

v .glm/
�op (3.15)

(with Z referring to Lusztig’s integral version of the quantum group). The action of Dj is
hereby categorified by an appropriate grading shift on each categorified weight space.
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Example 3.28. We turned each summand from (2.19) into a category Dd WD Db. OOd/, the
Uv.glk/-action into functors OEi , OFi and the action by E and �F into functors from (3.14):

D.2;1;0/

L OZDid
��

D.1;1;1/

L OZ
��

D.0;1;2/

L OZ
��

D.3;0/
++

inclŒ�2�h�2i

55

˚ D.2;1/
++

inclŒ�1�h�1i

55

incl
uu

kk ˚ D.1;2/
++

incl
55

inclŒ�1�h�1i

uu

kk ˚ D.0;3/:kk

inclŒ�2�h�2i

uu
D.2;1;0/

L OZ

\\

D.1;1;1/
L OZ

\\

D.0;1;2/
L OZ

\\

In this categorified q-skew Howe duality, the two sides seem to be asymmetric. The
action of U Z

v .glk/ is given by exact functors on the abelian categories, whereas U Z
v .glm/

acts by derived functors (note VC versus V�). This asymmetry is explained nicely via Koszul
(self-)duality [12,104]. This directly gives an analogue of the theorem for V� instead of VC.

Remark 3.29. Koszul dualitymeans an equivalence Db. OO
pd
c /'Db. OO

pc
d / which swaps the

two types of functors [104]. Passing to the Grothendieck groups, it induces an isomorphism
of groups

V�
.V Z

C .k/˝ V Z
� .m//Š

V�
.V Z

� .k/˝ V Z
C .m//. The parameters v; 
; � from Sec-

tion 2.III reflect important properties of this duality: it does not commute with grading shifts
(v 7! �v encoded by �) nor preserves the standard t -structures [104] (encoded by 
 ).

Under Koszul duality, the derived functors MSSC.t/ from (3.14) turn into exact projec-
tive functors MSS�.t/ between the corresponding abelian categories. We use now these easier
functors to construct tangle invariants with values in the homotopy categories Kb. OOd; OOd0

/

of exact functors from OOd to OOd0 . From [105] it follows that the relations in W� can be inter-
preted in terms of isomorphisms of functors MSS�.t/. Thus we have (cf. (2.8)) an exact functor
assigned to any basic tangle diagram except the crossings to which we assign the following
complexes (possibly with identity strands added) given by canonical adjunction morphisms:

MSS�
� �

W
�
idh1i ! MSS�. /

�
h�ki; MSS�

� �
W

�
MSS�. /! idh�1i

�
hki: (3.16)

The following is proved in [105] and the Koszul dual version in [139]:

Theorem 3.30. Let t be an oriented tangle with a planar projection t1 � � � tr written in terms
of basic tangle diagrams. Let wRT�.t1 � � � tr / W

Vd
V Z

� !
Vd0

V Z
� . Then the composition

MSS�.t1/ � � � MSS�.tr / 2 Kb. OOd; OOd0

/ (3.17)

is independent of the chosen projection. Thus, t 7! MSS�.t/ provides an invariant of oriented
tangles. The induced morphismK0.Db.Od//!K0.Db.Od0

// agrees via (3.13)with appro-
priate graded lifts with wRT�.t/. Analogously for wRTC.t/ using the Koszul dual functors.

Corollary 3.31. In case t is a link, the categories OOd, OOd0 in (3.17) can be identified cano-
nically with the category of graded vector spaces. Thus we obtain a bigraded link homology.

Remark 3.32. Let k D 2. Then the invariant MSS� was first defined in [136] based on [16],
where it was observed that for nonquantized gl2, the action of the Temperley–Lieb algebra on
.C2/˝n can be categorified using categoryO. In [137] it is shown that the Khovanov complex
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for an oriented link agrees with the value of MSS� by an explicit description of the involved
categories asmodules over (an extension of)Khovanov’s arc algebra. Using [24], one can also
match MSS� with Khovanov’s tangle invariant [76] via an equivalence of categories. Via [1,98]

which realizes the extended arc algebra from [137] in terms of Fukaya–Seidel categories, a
rigorous categorical equivalence from MSS� to the symplectic Khovanov invariant from [130]

holds. A weaker combinatorial identification, the equality of the bigraded homology groups,
is established (in fact, for all known algebraic-geometric link homologies) in [96].

Remark 3.33. For k D 2, functoriality (as in (3.1)) of MSS˙ is reduced to that of Khsgn. For
general k; we expect functoriality to follow from the functoriality results in [43].

Remark 3.34. We focused here on defining the involved functors and describing their action
on the Grothendieck group, although all defining relations in the quantum group or web
category can, in fact, be turned into actual relations, i.e., isomorphisms, between functors.

Remark 3.35. Formula (2.15) is implicitly categorified via MSS�.ˇa;b/: For a D b D 1; this
holds by (3.16). A composition of those, cf. illustration in (4.1), gives the braiding morphism
for W ˝a ˝W ˝b and restriction to OO.a;b/ then MSS�.ˇa;b/. One can verify purely combinato-
rially based on [105] that the complex MSS�.ˇa;b/ of exact functors can be written with entries
encoded by (2.15). Lie-theoretically MSS�.ˇa;b/ is easy to describe as the derived functor of
a classical shuffling functor [105,136] which gets reinterpreted in terms of the explicit com-
plexes. This is opposite to most categorifications, where the braiding is defined by explicit
complexes indicated by (2.15), e.g., [114, 145]. The construction of categorified braid group
actions from categorified Lie algebra actions using Rickard complexes goes back to [31].

Remark 3.36. Categorifications of (parts of) q-skew Howe duality were obtained and used
in many ways in recent years. The significance of the above construction is the fact that
both quantum group actions are visible. This is in particular not the case in diagrammatic or
foam based categorifications, since a (diagrammatic) replacement of the derived functors is
missing. It would be nice to find a general theory towards categorifications of dualities, in
particular for those in Remark 2.12 where a categorification so far only exists for (iv) [41].

Q4: Are there other interesting Koszul self-dual categories? What do they categorify?

3.3.1. Towards 2-representation theory: categorical actions
Two basic questions arise from the above construction: is there a conceptual source

for isomorphisms specifying the desired relations between the functors (topologically speak-
ing the values for tangle cobordisms)? To which extent are such categorifications unique?
Both questions are addressed with the concept of categorical Lie algebra actions [31, 123],
which we try to motivate based on our example. The categorified quantum groups due to
Khovanov–Lauda [80] and Rouquier [123] occur in this context naturally. Adjunction mor-
phisms between functors are used to specify commutation relations (e.g., for Ei and Fi ) and
most tangle cobordisms. More involved are the Serre relations between the Ei which arise
from endomorphisms (D natural transformations) of (powers of) ED _˝CN whichwe con-
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struct below. In the general construction [80, 123], such morphisms constitute 2-morphisms
of a 2-category.

An obvious choice for s 2 End.E2/ is the flip morphism given on g-modules M by
sM WM ˝CN ˝CN !M ˝CN ˝CN , m˝ u1˝ u2 7!m˝ u2˝ u1. The action maps
xM WM ˝CN !M ˝CN of the Casimir element �D

PN
i;j D1 Ei;j ˝ Ej;i 2 g˝ g define

an endomorphism x 2 End.E/. More generally, define endomorphisms xj , sj of En, n � 0,
via

.xj /M WD En�j .xEj �1.M// and .sj /M WD En�j �1.sEj �1.M//: (3.18)

One easily verifies that these endomorphisms satisfy the defining relations of a
degenerate affine Hecke algebra Hdaff

n . This means that the xi commute (defining a subal-
gebra CŒx1; : : : ; xn�), the si satisfy the Coxeter relations of the symmetric groups (defining
a subalgebra CŒSn�), and the two sets of generators interact via the degenerate semidirect
product relations sj xj C1 D xj sj C 1 and sj xl D xlsj for l 6D j; j C 1.

Amazingly (although easy to verify with Example 3.21), Ei from (3.12) equals the
(generalized) i -eigenspace subfunctor for x of E, i.e., Ei .M/ D

P
l�0 ker..xM � i/l /. To

(re)define Fi consistently, we use that F is right adjoint to E. With a fixed counit c W EF! id
and unit c� W id! FE; we define elements x0 2 End.F/ and s0 2 End.F2/ following [123]:

x0
WD F.c/ ı F.x/F ı c�

F; s0
WD F2.c/ ı F2 E.c/F ı F2.s/F2 ı E.c�/EF2f ı cF2 : (3.19)

Then F inherits a decomposition into i -eigenspace functors Fi , 1 � i � k, for x0. By [123],
the biadjointness of Ei and Fi follows. Thus, these functors are exact, send projectives to
projectives, and provide a based categorification, i.e., induce on the Grothendieck group
K˚

0 .Proj.Od//˝Z C the structure of an integrable slk-module
Vd

V C, where the classes
of the indecomposable projectives are (a basis of) weight vectors. We work here with slk to
agree with the existing literature.

These ingredients and properties listed here were axiomatized in [123]:

Definition 3.37. Let C be a C-linear abelian finite length category with enough projectives.
Then, a categorical slk-action on C (categorifying C ) consists of

• an endofunctor E with a right adjoint F specified by a counit c and a unit c�, and

• an element s 2 End.E2/ and an endomorphism x 2 End.E/

which satisfy E D
Lk

iD1 Ei , where Ei is the i -eigenspace subfunctor for x, the endomor-
phisms sj , xj defined via (3.18) satisfy the relations of Hdaff

n , the functor F is right adjoint
to E, and finally with the definition of Fi as i -eigenspace functor for x0 as in (3.19), the
functors Ei and Fi define a based categorification of an integrable slk-module C .

We get categorifications of the tensor products
Vd

V C of slk exterior powers:

Theorem 3.38. The constructions (3.18) and (3.11) define a categorical slk-action on Od.

Remark 3.39. Definition 3.37 is the easiest example from the theory of categorical actions
of Kac–Moody Lie algebras gKM [80,123]. The degenerate affine Hecke algebra gets replaced
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by a more general quiver Hecke algebra (or KLR algebra) which is used to define a certain
graded 2-category 2 PUv.gKM/ categorifying PUv.gKM/; cf. Remark 2.11. The definition is via
generators and relations, algebraically [123] or diagrammatically [80], and matched in [21].

Application 3.40. A nice situation occurs when the morphisms (3.18) generate the endo-
morphism ring of an object En.M/ and the kernel is controlled by a cyclotomic quotient
of Hdaff

n . Then this ring can be determined explicitly. If, moreover, every indecomposable
projective object in C arises as a summand of En.M/ for n � 0, one might construct
equivalences by determining and matching endomorphism rings of projective generators
instead of providing a functor. This idea is applied, e.g., in [25] to the category F .ajb/ of
finite-dimensional representations of the linear supergroup GL.ajb/: F .ajb/ is equivalent
to the category of modules for an infinite-dimensional analogue of Khovanov’s arc algebra,
Remarks 3.2, 3.32. The notion higher Schur–Weyl duality [22] formalizes such nice Lie-
theoretic situations.

Definition 3.37 significantly rigidifies the involved category C. If C is finite-dimen-
sional irreducible of highest weight �, its weight space decomposition implies a decomposi-
tion ofC into direct summandsC� (cf. withOd) and theUniqueness Theorem, a very special
case of Rouquier’sUniversality Theorem, holds [31,123]: aminimal (i.e.,C� 'Vect) categori-
fication of such C is unique up to strong equivalence,meaning an equivalence of categories
� W C! C0 with an isomorphism � W � EŠ E� satisfying the expected compatibilities with
x, s. Uniqueness allows establishing abstractly equivalences of categories.

Application 3.41. The Uniqueness Theorem is powerful even for sl2-modules. It is used in
[31] to prove Broué’s abelian defect group conjecture for symmetric groups, one of the most
famous conjectures in modular representation theory of finite groups.

Application 3.42. By the Universality Theorem, the k � 3 generalizations [95,97] of Kho-
vanov’s arc algebras are Morita equivalent to certain cyclotomic quotients of Hdaff

n . These
algebras should provide an algebraic construction of the MSS� invariants as in Remark 3.32.

3.3.2. Tensor product categorifications
The Uniqueness Theorem heavily relies on the fact that finite-dimensional irre-

ducible modules are generated by their highest weight vectors and thus does not directly
apply to tensor products as in Theorem 3.38. A general theory for the process of taking
tensor products of categorifications is still missing. The naive outer tensor product of cat-
egorical slk-actions has the desired K0, but only a categorical action of slk ˚ slk instead
of slk . For a given tensor product, an axiomatic definition of a categorification was first
formulated by Losev and Webster in [91].

Their definition uses the reverse dominance ordering on weights in a tensor product.
Concretely, consider again the slk-module

Vd
V C with d D .d1; : : : ; dm/. View its weights

as tuples � D .�1; : : : ; �m/ of slk-weights, and � � � if �1C � � � C�m D �1C � � � C�m

and �1 C � � � C �i � �1 C � � � C �i (in the usual ordering on slk-weights) for each i < m.
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Via (3.9), this ordering translates into the Bruhat ordering on ƒd. The following is a refor-
mulation of the original definition [91] following closely [23].

Definition 3.43. A tensor product categorification of the slk-module
Vd

V C is the same
data as in Definition 3.37, but with the last property on based categorification replaced by

• C is a highest weight category with respect to the poset ƒd,

• the exact functors Ei and Fi send objects with �-flags to objects with �-flags,

• under the isomorphism
Vd

V C Š K0.C/˝Z C, Ee 7! Œ�C.wt.Ee//� as in (3.11),
the actions of Ei and Fi correspond to the actions of ŒEi � and ŒFi �, respectively.

Theorem 3.44. The highest weight category Od defines with the data from Theorem 3.38,
the poset ƒd, (3.12) and (3.11) a tensor product categorification of the slk-module

Vd
V C.

By the following result from [91] this is the only one up to strong equivalence:

Theorem 3.45. A tensor product categorification of the slk-module
Vd

V C is unique.

Remark 3.46. Definition 3.43 is again a special case of a more general definition [91]which
works for any Kac–Moody Lie algebra gKM instead of slk and any integrable highest weight
module of gKM for each tensor factor. It requires the following adjustments. On the one hand,
the action of the degenerate affine Hecke algebra gets replaced by a quiver Hecke algebra
from Remark 3.39 or an even more general Webster algebra [142]. On the other hand, the
highest weight category gets replaced by a fully stratified category. For the general theory of
such generalisations of highest weight categories see [26].

Remark 3.47. Let us return to the graded setting to obtain categorifications of the Uv.glk/-
modules

Vd
VC. One can turn OOd into a graded additive C-linear 2-category. For this, note

that HomOd.M; N / D
L

j 2Z Hom OOd. OM; ON hj i/ for M , N 2 Od which have graded lifts
OM , ON 2 OOd; similarly for functors. Objects in this 2-category are weights c of

Vd
VC, but

thought of as the corresponding summands in OOd via (3.13). Morphisms are generated by .i/

the functors 1c which are the identity on c and zero otherwise, .ii/ the functors OEi 1c viewed
as morphisms from c to cC ˛i where ˛i is the corresponding simple root for glk , and .iii/
fixed right adjoints of .ii/ which are the 1c OFi up to shifts. The 2-morphisms are generated
by the homogeneous components of the natural transformations (3.18). From [123] it follows
that this data defines a (strong) 2-representation of slk . By [28], it extends to an action of
2 PUv.q/, called a 2-representation of PUv.q/, for qD slk and also for glk by adding a grading
shifting operator.

Remark 3.48. The original definition in [91] connects Theorem 3.44 with naive outer tensor
products: For � 2 ƒd , there are Serre subcategories OdŒ< �� � OdŒ� �� in Od generated
by all L.�/ with � < � respectively � � �. The associated graded

L
� OdŒ� ��=OdŒ< ��

of Od formed from the subquotients can be identified with the naive tensor product of the
categorifications of the factors

Vdi V C, see [126] for an explicit identification. The highest
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weight structure, explicitly the posetƒd, creates a desired asymmetry, namely the asymmetry
in the tensor factors (2.4) when passing to the graded/quantized setting as in Remark 3.47.

Application 3.49. Categorical actions are often used in (specifically modular and super)
representation theory to create interesting gradings or to determine decomposition numbers.
We sketch an example directly connected to our framework. In [23], tensor product categorifi-
cations were defined for the limit Lie algebra slZ and constructed forM WD V

˝a

1 ˝ .V
�

1/˝b ,
very similar to above, using category O for the Lie superalgebra glajb . Here, V 1 D CZ is
the natural representation of slZ and V

�

1 its restricted dual. The basis vectors in CZ labeled
by a length k interval in Z span an slk-module V

˝a

C ˝ .
Vk�1

V C/˝b . Theorems 3.44
and 3.45 allow translating properties from O.glaC.k�1/b/ to the super side [23]. This finally
implies that the (integral blocks of) categoryO for gl.ajb/ and the categoryF .ajb/ of finite-
dimensional representation of GL.ajb/ can be equipped with a Koszul grading. Moreover,
the graded decomposition numbers are given by parabolic Kazhdan–Lusztig polynomials.
In case of F .ajb/; this grading agrees with the explicit construction in [25] from Applica-
tion 3.40. For a generalization to the more involved orthosymplectic supergroups, see [40].

3.4. Ad III: Categorified colored tangle invariants and projectors
The colored framed tangle invariant RT from Remark 2.4 involves ultimately tensor

products of arbitrary finite-dimensional irreducible Uv.glk/-modules, not only exterior
powers. A categorification of all such tensor products exists for slk andUv.slk/ [52,126,142],
and by [142] even for any simple complex Lie algebra gs. Webster [142] also ensures the exis-
tence of tensor product categorifications for gs. He uses categories of graded modules over
graded algebras which generalize quiver Hecke and quiver Schur algebras. These algebras
are defined diagrammatically, so that all calculations are elementary, but usually not easy.
The grading allows to get categorifications of Uv.gs/-modules as in Remark 3.47 [142] with
a direct generalization of Theorem 3.30 to arbitrary gs. Instead of formulating this in detail,
we indicate phenomena which occur, even for gs D slk , when passing from tensor products
of fundamental representations to arbitrary irreducible ones. On the way we construct tensor
product categorifications for slk using the results from the previous section. The slk-action
extends by construction to a glk-action, even to a 2-representation of PUv.glk/when invoking
gradings. However, not all irreducible glk-modules occur in this way as tensor factors.

Any irreducible finite-dimensional slk-module is a quotient of some
Vd

V C as in
Section 3.3.2 such that its highest weight is the sum of the highest weights of the tensor fac-
tors. Taking tensor products

Vd.1/ V C ˝ � � � ˝
Vd.r/ V C � V .�1/˝ � � � ˝ V .�r / DW V .�/

realizes finite tensor products V .�/ also as quotients of some
Vd

V C which we consider
now. Via (3.11), the irreducible objects in Od give rise to a special basis (in fact, the v D 1-
specialized Lusztig dual canonical basis) of

Vd
V C. It turns out that the kernel of the quotient

to V .�/ is spanned by a subset of these special basis vectors. Fix 1 � j � r . Combinato-
rially, one can label standard basis vectors (2.12) in

Vd.j / V C canonically by column strict
tableaux and then basis vectors in V .�j / by the set Ij of semistandard tableaux, i.e., those
which are additionally weakly row strict. The shape is determined by d.j / or, equivalently,

1339 Categorification: tangle invariants and TQFTs



�j and fillings are from ¹1; : : : ; kº. Consider now the standard basis vectors Ee as in (3.9)
which correspond to m-tuples not in I1 � � � � � Ir . They define (by taking the irreducible
quotient of the corresponding parabolic Verma module in (3.13)) a set of irreducible objects
L.wt.Ee// 2 Od, thus a Serre subcategory �� in Od.

We obtain a categorification of V .�/ as constructed in [126] and implicitly in [142]:

Theorem 3.50. The Serre quotient Od=�� inherits a categorical slk-action from Od. This
is a tensor product categorification in the sense of [91] categorifying V .�/ with the ordering
on the labeling set of irreducible objects induced from ƒd. From OOd as in Remark 3.47, the
graded version OOd= O�� inherits an action of 2 PUv.glk/.

The quotient functors �� W
OOd ! OOd= O�� are exact and induce ZŒv˙1�-linear mor-

phism on the Grothendieck groups (which, however, usually do not split over ZŒv˙1�):

OOd ��
// //

_

K0

��

OOd= O��_

K0

��Vd
V Z

C

Œ�� �
// // V.�/Z

(3.20)

This categorifies in particular for kD 2 any V .�/with � Dm!1 where!1 is the fundamental
weight and m 2 Z�0, by realising it as a categorification of the Jones-Wenzl quotient

.V Z
C;gl2

/˝m

Œ�m�WDŒ�� �
-- --
V Z

C .�/:split ?ll
(3.21)

with categorificaton of the quotient map. Note that this quotient map splits over C.v/.

Remark 3.51. Theorem 3.50 requires a more general version of Definition 3.43 from [91],
see Remark 3.46, as the quotient category Od=�� might not be highest weight, but only
fully stratified. Combinatorially, this is reflected in higher-dimensional weight spaces of the
tensor factors of V .�/. Using only fundamental representations avoids this problem as they
are minuscule, and also avoids taking duals or inverses of determinant representations.

In contrast to OOd, the quotients Od=�� usually have infinite global dimension. Thus,
the computation of a derived left adjoint L�� to the quotient functor �� requires infinite
resolutions and unbounded derived categories. This becomes relevant in categorifications of
colored tangle invariants following the knot-theoretic coloring via cabling and projectors.
The idempotent functor pr� WD L�� �� is a categorified projector.

Remark 3.52. Working with infinite complexes is delicate, in particular when Grothendieck
groups or Euler characteristics are involved. To avoid an Eilenberg swindle and the collapse
of the Grothendieck groups, wework in the graded setting with certain subcategoriesDr. OO/

of the unbounded derived category such that K0.Dr. OO//Š K0. OO/˝ZŒv˙1� Z..v//, see [2]

for a precise definition. The functors �� , L�� induce then Z..v//-linear maps

Œ�� � W .V Z
C /˝m

˝ZŒv˙1� Z
�
.v/

�
� V.�/Z

˝ZŒv˙1� Z..v// W ŒL�� �: (3.22)
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Example 3.53. In case of Uv.gl2/, there is the quotient map Œ�2� from (3.21) to the biggest
irreducible quotient. Explicitly for m D 2 we have a basis of the quotient:

b1 WD Œ�2�.e1 ˝ e1/; b WD Œ�2�.e1 ˝ e2/ D v�1Œ�2�.e2 ˝ e1/; b2 WD Œ�2�.e2 ˝ e2/:

A split of Œ�2� overC.v/ is given by bi 7! ei ˝ ei and b 7! 1
Œ2�

.e2˝ e1C v�1e1˝ e2/. Inter-
preting the latter as .ve2 ˝ e1 C e1 ˝ e2/.1 � v2 C v4 � � � � / 2 .V Z

C /˝2 ˝ZŒv˙1� Z..v//,
we obtain the morphism ŒL�2� induced via (3.22) from L�2 (in fact without explicitly con-
structing L�2). Over Z

�
.v/

�
, a split (3.21) exists with a categorification. The functor pr2

then categorifies Œpr2�, which is the easiest example of a Jones-Wenzl projector.

Remark 3.54. In case of Uv.gl2/, the projector (3.21) from V ˝m
C;gl2

onto the biggest irre-
ducible summand is the famous Jones–Wenzl projector JWm. This was categorified the first
time in [52] using a Serre quotient functor, and independently in its Koszul dual V�;gl2

-
version in [33] using Bar-Natan’s approach to Khovanov homology, and in [125] using iterated
categorified full twists.

As a special case, the RT value of the unknot colored by the Uv.glk/-module V Z.�/

as in (3.20) can be categorified by taking the MSSC-value of
P

i di nested cups (viewed as a
derived functor) followed by pr� and followed by the value of

P
i di nested caps (the projector

pr� is displayed on the left and the categorified value of the colored unknot on the right):

L��

��

L��

��

� � �

� � �

� � �

� � �

: (3.23)

Example 3.55. In case k D 2 and V.�/ is 3-dimensional, the value of (3.23) can be realized
as a complex in the unbounded homotopy category K�.C-modZ.v//. A lengthy calculation
gives the graded Poincaré polynomial v2t2 C 1C v�2 C

v�6t�2.1Ct�1/

1�t�2v�4 2 ZŒt˙1�..v// [138].
Its Euler characteristic equals v2 C 1C v�2 D Œ3�; which is indeed the RTV.�/-value of the
unknot. By a uniqueness result of categorified Jones–Wenzl projectors from [33], the value of
the unknot from (3.23) or from Theorem 3.56 agrees with the Cooper–Krushkal categorified
value [33] of the colored unknot up to Koszul duality (i.e., a transformation v 7! t�1v�1).

Let L be an oriented link with planar projection D and coloring col assigning some
V .�c/ to each components c ofD. Assume .V Z

C /˝mc� V Z.�c/ as in (3.20). ToD we attach
its color-cabled version Dcc: we first replace each strand in a component c by its cabling, i.e.,
bymc parallel strands oriented as before. Then wewrite the result as a composition t1 � � � tr of
basic tangle diagrams, and finally place for one upwards pointing original strand in D a pro-
jector (3.23) on its cabling. Let MSSC.Dcc/ be the associated composition of derived functors
given by MSSC with additionally pr� included when the projector occurs. Using the identifi-
cation from Corollary 3.31, we can apply this functor to the vector space C concentrated in
bidegree zero to get an object MSSC.Dcc/.C/ in DO.C-modZ.v// � K�.C-modZ.v//.
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The categorification [138] of the colored framed oriented tangle invariant with colors
irreducible Uv.slk/-modules (or their Uv.glk/-versions (3.20)) implies for links:

Theorem 3.56. The assignment D 7! MSSC.Dcc/.C/ defines an invariant MSSCcol of colored
framed oriented links. It induces on K0 the colored RT-invariant from Remark 2.4 for slk .

Remark 3.57. The colored knot invariants from Theorem 3.56 are usually infinite com-
plexes, even for the unknot. The Poincaré series of MSSC.Dcc/.C/ has values in ZŒt˙1�..v//.
This is similar to the HHH-invariant, but we believe it is even harder to compute. For k D 2,
these invariants should be directly connected to the invariants constructed in [30], where
impressive explicit examples are computed. The occurring infinite series are secretly rewrit-
ing quotients Œa�

Œb�
of quantum numbers, see Example 3.53. A realization of such quotients as

Euler characteristic of an infinite complex is called fractional Euler characteristic in [53].

Recall from Section 2 that the HOMFLY-PT polynomial recovers the quantum glk link
invariants RTV�

by specialization of a to vk . One might expect a similar connection for the
categorifications, i.e., between the triply graded KR link homologywhich, by Theorem 3.12, is
a categorification of the HOMFLY-PT-polynomial and MSS�. Naive specialization does not work,
but there is a spectral sequence connecting the two theories, predicted in [39] and established
in [117]. Also, recall from Section 3.2 that the approach to compute KR.t.n;q// and its limit
KR.t.n;1// for torus links uses categorified projectors. On the other hand, MSSC.,cc/.C/, or its
Koszul dual version MSS�.,cc/.C/, can be seen as a categorification of the closure of a pro-
jector. One again might expect a connection between KR.,/n from Example 3.9, KR.t.n;1//,
and MSS˙.,cc/.C/. The following reformulates conjectures from [59]:

Conjecture 3.58. The algebra B D CŒu1; : : : ; un� ˝
V�

Œ�1; : : : �n� can be turned into a
differential bigraded algebra .B; dk;˙/ with homology isomorphic to MSS˙.,cc/.C/ where
col D V˙.n!1/. The grading on B and the differential dk;˙ depends on k and the sign˙.

Remark 3.59. A conjectural grading and differential is formulated in [59] for �. In case
k D n D 2, Conjecture 3.58 follows up to an overall grading shift by a comparison of [33]
with the formulas in [59], see [138] for a precise statement. In general, the conjecture is still
open.

Q5: Is there a conceptual method to compute the categorified colored invariants?
Q6: To which extent is MSS˙col and its extension to framed tangles functorial?

Motivated by and based on constructions of link homologies in physics, invariants
of 3-manifolds are developed in, e.g., [61, 62]. On the mathematical side, first steps in this
direction are done in [53] by constructing categorified 3j - and 6j -symbols via fractional
Euler characteristics.
Q7: Do these colored slk-invariants give rise to some invariant of 3-manifolds?
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4. Two proposals toward 4-TQFTs

We sketch two promising routes towards 4-TQFT based on Soergel bimodules. The
first one is based on tensor product categorifications, the second one on the categorification
of Hecke algebras and braid groups using Soergel bimodules and Rouquier complexes.

Braided monoidal structure on 2-representations. Recall the starting point of algebraic
categorification: the proposal [34] for constructing a 4-dimensional TQFT via Hopf cate-
gories. We like to interpret this as the wish of constructing, via categorified representation
theory of quantum groups, a 0–1–2–3–4-theory [51], i.e., a theory for d D 4 which not only
evaluates at d - and .d � 1/-, but also at .d � 2/-; : : : ; 1- and 0-dimensional manifolds. To
express the gluing laws between these levels, one has to work [8], [92] in general with an
n-category of bordisms (viewed as .1; n/-category) and define a fully extended n-TQFT as
a functor from this symmetric monoidal category into some symmetric monoidal n- (respec-
tively .1; n/)-category. According to the cobordism hypothesis [8,92] such a fully extended
TQFT F is determined by the value F.pt/ at a point, see [7,92,128] for partial proofs.

Already the question what Chern–Simons theory attaches to a point is subtle and
depends on the perspective. Following [51,144], Chern–Simons theory or the related Witten–
Reshetikhin–Turaev theory can be viewed as an anomalous 0–1–2–3 theory of oriented
4-manifolds, i.e., a morphism from the trivial theory to an invertible fully extended 4-TQFT
F defined on oriented manifolds. A similar interpretation was proposed by Walker, and the
related invariant of a 4-manifold was combinatorially described in [35]. These interpretations
propose attaching a certain braided monoidal category F.pt/ to a point [51]. Coming back
to our setting, this suggests that a categorification of the braided monoidal category of rep-
resentations of a quantum group might arise as the value Fcat.pt/ of a point of an anomaly
Fcat, some fully extended (possibly partial) 5-TQFT with an anomalous 0–1–2–3–4-theory.

Remark 4.1. Some relevance [101] for 4-dimensional topology is already visible in Kh and
MSS�, i.e., in categorified intertwiners of Fund�

2 as in Remark 3.32, in particular via tangle
cobordisms for surfaces in dimension 4 [67,77] and for invariants of 4-manifolds [106].

Concretely, one seeks a monoidal structure on the 2-category of 2-representations
ofUv.q/ as in Remark 3.47 for qD glk or slk and say �D 1. Sections 3.3 and 3.4 presented
tensor product categorifications and indicated categorifications of the duals and the braiding
morphisms. The process of taking tensor products, i.e., the construction of a tensor product
or an inner hom for 2-representations is, however, more involved. Inspired by (bordered)
Heegard Floer theory, Manion and Rouquier [99, 100] give such a construction in case q is
the positive part gl.1j1/C of the Lie superalgebra gl.1j1/ (for the analogue of Remark 3.47
see [79]). The passage to gl.1j1/C surprisingly simplifies the situation. In contrast to qD gl2

or sl2, homotopical complications disappear. The result of [100] is supposed to connect (as
the value at an interval) to a slightly different type of TQFT and the theory predicted in [62].

Remark 4.2. This seemingly very different gl.1j1/C-theory is still related to Section 3.3 via
an interpretation in terms of subquotients of category O [87]. Only gl.1j1/C appears, since
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categorical actions of gl.1j1/ have not yet been defined. This might be connected with the
nonsemisimplicity of the finite-dimensional representation theory of gl.1j1/, see, e.g., [25].

Rouquier, however, announced (in an appropriate A1-setting) the existence of a
monoidal structure on the 2-category of 2-representations of Uv.q/ for an arbitrary Kac–
Moody Lie algebra q and a candidate for a braiding.

This result should provide the desired value Fcat.pt/. In the spirit of [34], we propose
to call the resulting 2-category with its braided monoidal structure the Hopf category of q

and reformulate ideas from [34] as:

Prediction 4.3. The Hopf category of q is the value Fcat.pt/ for an anomaly fully extended
(partially defined at the top) 5-TQFT with an anomalous 0–1–2–3–4-theory.

Soergel bimodules, braided monoidal 2-categories, and TQFT. We finish by proposing
another approach towards 4-TQFTs using more directly categories of Soergel bimodules.
This is again motivated by the idea that a braided monoidal category might occur as the
value F.pt/ at a point [51] in a 0–1–2–3-theory. We seek to increase the dimensions to a
0–1–2–3–4-theory with a braided monoidal bicategory as the value F.pt/ of some fully
extended 5-TQFT F . We sketch some first steps. This is current work with Paul Wedrich.

Remark 4.4. The first definition of a semistrict monoidal and a semistrict braided monoidal
2-category is due to [70,71]. It was then improved and put into a more concise definition in
[9] with a technical adjustment in [36]. The concepts also appear as (braided) Gray monoids
in [37]. By a braided monoidal bicategory we mean the less strict version from [63].

In the following let m; n 2 N0. Recall the category �Bimn of Soergel bimodules
from Section 3.2 with R0 WD C and �Bim0 finite-dimensional graded vector spaces. We
view �Bimn as a graded monoidal category with tensor product ı1 W .M; N / 7!M ˝Rn N .
If now M 2 �Bimm, N 2 �Bimn, then M � N WD M ˝C N is an Rm ˝C Rn D RmCn-
bimodule and by construction an object in �BimmCn. For morphisms f and g in �Bimm

and �Bimn, respectively, we define then f � g in the obvious way and set m� nDmC n.
To get the desired semistrictness we use the monoidal category DBimn ' �Bimn

[45,48] from Remark 3.20. We omit giving the definition of DBimn (it would not even fit on
a page) and just recall that DBimn is the Karoubian closure of a graded monoidal category
DBim0

n [48]. The definition of DBim0
n is via generators and relations in terms of diagrams

(similar to the usual string diagrams for higher categories). The morphism spaces come with
distinguished bases, often called light leaves bases. A picked basis allows one to mimic the
concept of coordinatized vector spaces from [70] and (semi)strictify the setup. Implicitly
we assume this now, not altering the notation. We obtain categories enriched in C-linear
categories (we use bicategories as in [14] and monoidal bicategories as, e.g., in [128]):

Theorem 4.5. There is a bicategory �Bim.2/ with objects N0 and nontrivial C-linear mor-
phism categories .2/�Bim.m;n/ only in case mD n, in which case �Bim.2/ .n;n/D �Bimn

with composition ı1. Similarly for DBim.2/ , but with �Bimn replaced by DBimn.
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Moreover, �Bim.2/ and DBim.2/ can be turned into monoidal bicategories with tensor func-
tor�, even into a semistrict monoidal 2-category in the sense of [9,36] in case of DBim.2/ .

Remark 4.6. An analogue of �Bim.2/ for singular Soergel bimodules as in Remark 3.23
exists as well (with the expected definition). For simplicity, we do not discuss this here.

The proof is done by explicitly constructing the required data and checking the
coherence relations. Replacing �Bimn with the graded dg-categoryC b.�Bimn/ of bounded
chain complexes of Soergel bimodules we get a category enriched in graded C-linear dg-
categories, similarly withC b.DBimn/ instead ofDBimn. Theorem 4.5 directly extends and
provides bicategories, denoted �Bim2 and DBim2 , now realized as categories enriched [55]

in the monoidal category of C-linear dg-categories [74].
We consider from now on only the stricter version DBim2 . To define a braiding, we

need in particular an adjoint equivalenceB W�)�op [9,63]. This data includes a braiding 1-
morphism B..a; b// in DBim2 .a� b D aC b; b� aD bC a/ for any a; b 2N0. Thinking
intuitively about this braiding 1-morphism gives us a candidate:

ˇD : : :

: : :: : :

: : :

a b

 
Rouquier complex X.ˇ/ with

Ř D .ˇb � � �ˇ1/ � � � .ˇiCb�1 � � �ˇi / � � � .ˇaCb�1 � � �ˇa/; (4.1)

namely the Rouquier complex X. Ř/ 2 C b.�BimaCb/ from Section 3.2 with Ř as in (4.1)
translated via the above equivalence to an object B..a; b// in C b.DBimaCb/.

Theorem 4.7. The proposed adjoint equivalence B satisfies the required naturality condi-
tions [90] for the generating 1- and 2-morphisms of DBim up to canonical homotopy.

To obtain an honest braiding, however, one has to pass to the homotopy categories
which loses quite a lot of information or to a category DBim2

1 enriched in1-categories
[55]. We construct such a category DBim2

1 by applying a (rather technical and not standard)
dg-nerve construction to the morphism categories. We expect this construction to satisfy:

Conjecture 4.8. DBim2
1 is a braided monoidal bicategory.

Remark 4.9. Braided monoidal 2-categories with linear hom-categories and finiteness con-
ditions should be objects in some symmetric monoidal 5-category which arises as next step
in the ladder of symmetric monoidal n-categories (made explicit in [20]: objects are certain
monoidal categories for n D 3 and certain braided monoidal categories for n D 4).

Remark 4.10. We can view DBim2
1 as a category object in1-categoriesCat1. We expect

this to be anE2-algebra in the1-category of .1;2/-categories [64,93]. HigherMorita theory
of En-algebras [68] provides a possible ambient .1; 5/-category for our hoped for TQFT.

Because of lacking finiteness conditions one should not expect n-dualisability [92]

of DBim2
1 for n > 3, but we hope it holds for nD 3; 4 for quotients arising from actions on

the glk-theories MSS� for fixed k 2N: An analogue of DBim2
1 defined using singular Soergel

bimodules, Remark 4.6, acts by Remark 3.24 on the 2-categories OOd from Remark 3.47 for
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any fixed k. We conjecture that the largest quotient DBim2
1 .k/ which still acts (for fixed k)

has the desired finiteness properties to provide a fully extended (partial) 5-TQFT:

Conjecture 4.11. Soergel bimodules give rise to a braided monoidal bicategory
DBim2

1 .k/, k 2 N, which is the value at a point of an anomaly with an anomalous
0–1–2–3–4-theory.
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