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Abstract

Noncommutative crepant resolutions (NCCRs) are noncommutative analogues of the usual
crepant resolutions that appear in algebraic geometry. In this paper we survey some results
around NCCRs.
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1. Introduction

In this paper we will give an introduction to noncommutative crepant resolutions
with some emphasis on our joint work with Špela Špenko about quotient singularities of
reductive groups. Other surveys are [96,115,131].

1.1. Notation and conventions
We fix a few notations and definitions which are mostly self explanatory. For sim-

plicity, we assume throughout that k is an algebraically closed field of characteristic zero,
although this is often not necessary. In Section 5 we put k D C when invoking Hodge theory.
For us an algebraic variety is a possibly singular integral separated scheme of finite type
over k.

Modules over rings or sheaves of rings are left modules. Right modules are indi-
cated by .�/ı. If ƒ is a ring then we denote by D.ƒ/ the unbounded derived category of
complexes of ƒ-modules and by Perf.ƒ/ its full subcategory of perfect ƒ-complexes. If ƒ

is noetherian then we write mod.ƒ/ for the category of finitely generated ƒ-modules. We
also put D.ƒ/ D Db.mod.ƒ//. We use similar notations in the geometric context. If X is
an Artin stack and ƒ is a quasicoherent sheaf of rings on X then DQch.ƒ/ is the unbounded
derived category of complexes of left ƒ-modules with quasicoherent cohomology. The cat-
egory of perfect ƒ-complexes is denoted by Perf.ƒ/, and we also put D.ƒ/ D Db.coh.ƒ//

when ƒ is noetherian. If ƒ D OX then we replace ƒ in the notations by X.
A finitely generated R-module M over a normal noetherian domain is said to be

reflexive if the canonical map M 7! M __ is an isomorphism where M _ D HomR.M; R/.
This implies in particular that M is torsion free. If R a commutative noetherian domain then
amaximal Cohen–Macaulay R-module is anR-moduleM such thatMm is maximal Cohen–
Macaulay as Rm-module for every maximal ideal m. If R is has finite injective dimension
then we say that R is Gorenstein. This implies that R is maximal Cohen–Macaulay.

1.2. Crepant resolutions and derived equivalences
Let X be a normal algebraic variety with Gorenstein singularities. A resolution of

singularities � W Y ! X is said to be crepant if ��!X D !Y . In some sense, a crepant
resolution is the tightest possible smooth approximation of an algebraic variety. Such crepant
resolutions need not exist, however. For starters, their existence implies that X has rational
singularities [89, Corollary 5.24] and this already strong restriction is far from sufficient. For
example, the three-dimensional hypersurface singularities

x2
C y2

C z2
C wn

D 0 .n � 2/ (1.1)

have crepant resolutions if and only if n is even [111, Corollary 1.16]. When crepant resolu-
tions do exist they are generally not unique. For example,

xy � zw D 0; (1.2)

which corresponds to n D 2 in (1.1), has two distinct crepant resolutions given by blowing
up .x; z/ and .x; w/. This is the so-called “Atiyah flop.”
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Nonetheless, experience has shown that such different crepant resolutions are
strongly related. In particular, we have the following result:

Theorem 1.1 ([6, 90], see also Section 5 below). Assume that X has canonical Gorenstein
singularities. Then the Hodge numbers of Y for a crepant resolution Y ! X are independent
of Y .

Kawamata and independently Bondal and Orlov in their lecture at ICM2002 con-
jectured an analogous categorical result, a variant1 of which we state below.

Conjecture 1.2 ([22, Conjecture 4.4], [76, Conjecture 1.2]). Assume X is a normal algebraic
variety with Gorenstein singularities and �i W Yi ! X for i D 1; 2 are two crepant resolu-
tions (by schemes or DM-stacks). Then there is an equivalence of triangulated categories
F W D.Y1/ Š D.Y2/, linear over X (cf. Remark 1.5 below).

The conjecture is known (under some probably unnecessary projectivity hypothe-
ses) in dimension � 3, by the work of Bridgeland [27] (see Section 1.4 below), and for toric
varieties, by the work of Kawamata [79]. For symplectic singularities [10], it is true, up to an
étale covering of X , by [72, Theorem 1.6]. Furthermore, it is known for many specific crepant
resolutions, e.g., those related by variation of GIT [5,59,60] (see also Section 4.2 below).

Remark 1.3. Conjecture 1.2 makes no statement about the nature of the equivalence
D.Y1/ Š D.Y2/. In the case of the Atiyah flop, one possible equivalence is given by the
Fourier–Mukai functor for the “fiber product kernel” OY1�X Y2 [21, Theorem 3.6] (see also
[18]) but this is far from the only possibility. Furthermore, OY1�X Y2 does not always work as
Example 1.4 below shows.

It is now understood, thanks to intuition from mirror symmetry, that the equiva-
lences in Conjecture 1.2 should be canonically associated to paths connecting two points
in a topological space called the “stringy Kähler moduli space” (SKMS). In the case of the
Atiyah flop, the SKMS is given byP 1 � ¹0;1;1º [48,59]. See also [63] and Section 4.3 below.
The fact that the asserted equivalence in Conjecture 1.2 is expected to be noncanonical by
itself might be the reason that the conjecture seems difficult to prove.

Below Gr.d; n/ is the Grassmannian of d -dimensional subspaces of the n-dimen-
sional vector space kn.

Example 1.4. The cotangent bundles T � Gr.d; n/ and T � Gr.n � d; n/, for complementary
Grassmannians with d � n=2 are crepant resolutions of B.d/ WD ¹X 2 Mn.k/ j

X2 D 0; rk X � dº (e.g., [37, §6.1]). According to [37, §6], there is an equivalence
F W D.T � Gr.d; n// ! D.T � Gr.n � d; n//, but it is not given by the fiber product kernel
(see [77,103] for the case .k; n/ D .2; 4/).

1 We have omitted the projectivity hypotheses which appear in the original context and
extended the conjecture to DM-stacks which is the natural context as will become clear
below.
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Remark 1.5. As said, one requires the derived equivalence F in Conjecture 1.2 to be linear
over X . On the most basic level, this means the following: let Perf.X/ be the category of
perfect complexes on X . Then D.Y1/, D.Y2/ are Perf.X/-modules, where A 2 Perf.X/

acts as L��
i A

L
˝Yi

�, for i D 1; 2, and we want natural isomorphisms F.L��
1 A

L
˝Y1 �/ Š

L��
2 A

L
˝Y2 F.�/ satisfying the appropriate compatibilities. To simplify the exposition, we

will implicitly assume in the rest of this paper that all constructions satisfy the appropriate
linearity hypotheses.

1.3. Noncommutative rings
Most of the results below will be based on the interplay between algebraic geom-

etry and noncommutative rings. The relation between those subjects was first observed by
Beilinson [11]. The connection is via tilting complexes.

Definition 1.6. Let Y be a noetherian scheme. A partial tilting complex T on Y is a perfect
complex such that ExtiY .T ; T / D 0 for i ¤ 0. A tilting complex is a partial tilting complex
that generates DQch.Y / in the sense that its right orthogonal is zero, i.e., RHomY .T ;F / D 0

implies F D 0. A (partial) tilting bundle is a (partial) tilting complex which is a vector
bundle.

Below we will also use tilting complexes in slightly more general contexts (e.g.,
DM-stacks). Very general results concerning tilting complexes are [82, Theorems 1,2]. For
simplicity, we state a slightly dumbed down version of them, although below we will some-
times silently rely on the stronger results in [82]. See also [19,114].

Theorem 1.7 ([82, Theorems 1,2]). If T is a tilting complex on a noetherian scheme Y then
RHomY .T ; �/ defines an equivalence of categories between DQch.Y / and D.ƒı/ for
ƒ D EndY .T /. Moreover, if Y is regular then ƒ has finite global dimension. If, further-
more, ƒ is right noetherian then RHomY .T ; �/ restricts to an equivalence of categories
D.Y / Š D.ƒı/.

So a tilting complex reduces the homological algebra of Y to the usually non-
commutative ring ƒ D EndY .T /. In the case of projective space P n, one can take
T D O ˚ O.1/ ˚ � � � ˚ O.n/ [11].

1.4. Bridgeland’s result
1.4.1. Flops
Let us return to Conjecture 1.2. In the absence of any specific conjectural construc-

tion of the asserted derived equivalence (see Remark 1.3), one may try to use the fact that
if �1, �2 are projective then Y1, Y2 are connected by a sequence of “flops” [78, Theorem 1],
so that it is then sufficient to prove the conjecture for flops. Recall that crepant resolutions
�1 W Y1 ! X , �2 W Y2 ! X form a flop if X has terminal singularities [89, Definition 2.12]
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and there is a line bundle L on Y1, relatively ample for �1, such that the corresponding2 line
bundle L0 on Y2 is antiample.

In [27] Bridgeland proves that Conjecture 1.2 is true for three-dimensional flops (see
also [38]). The key point is that the fibers of �1, �2 have dimension � 1. In the next section
we explain a reinterpretation of Bridgeland’s proof, following [129].

1.4.2. Maps with fibers of dimension � 1

Assume that � W Y ! X is a projective map between noetherian schemes. We
impose the following conditions:

(1) R��OY D OX .

(2) The fibers of � have dimension � 1.

To simplify the discussion, we will restrict ourselves, furthermore, to the case that
X D SpecR is affine.3 It turns out that in this case coh.Y / contains a tilting bundle which
is of the form T WD OY ˚ T0 where T0 is obtained as an extension

0 ! Or
Y ! T0 ! L ! 0; (1.3)

where L is an ample line bundle on OY generated by global sections and (1.3) is associated
to an arbitrary finite set of generators of H 1.Y; L�1/ as R-module (see [129, (3.1)]).

Remark 1.8. Note that by hypothesis (1), OX , L are partial tilting bundles on Y such that
OX ˚ L generates DQch.Y / [129, Lemma 3.2.2]. Moreover, (2) and the fact that L is generated
by global sections imply Ext>0

Y .OY ; L/ D 0. Likewise, (2) implies Ext>1
Y .L; OY / D 0. The

construction of the tilting bundle T is based on the principle of “killing the remaining back-
ward Ext1” in the sequence .OX ;L/ by a so-called “semiuniversal extension.” This principle
extends to longer sequences. See, e.g., [61, Lemma 2.4], [62, Lemma 3.1]. See also Section 3.4
below for another application.

So if we put ƒ D EndY .T /, then we have EndY .T _/ D ƒı, and from Theorem 1.7
we obtain equivalences4

RHomY .T ; �/ W D.Y / Š D.ƒı/; RHomY .T _; �/ W D.Y / Š D.ƒ/: (1.4)

To understand (1.4), we can ask what ƒ looks like.

Example 1.9. Consider again the Atiyah flop (1.2). In this case R D kŒx; y; z; w�=

.xy � zw/. This is a toric singularity, and one can check that its class group is Z with

2 This makes sense since Y1 and Y2 are isomorphic in codimension one.
3 In [129] X is assumed to be quasiprojective.
4 It is a fact that T is tilting if and only if T _ is tilting. The only nontrivial part is the gen-

eration property. To this end one may use that T generates DQch.Y / if and only if Perf.Y /

is the smallest épaisse subcategory of DQch.Y / containing T [105, Lemma 2.2], together
with the fact that .�/_ is an autoequivalence of Perf.Y /.
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generator I D .x; z/. The inverse of I is the fractional ideal I �1 D x�1.x; w/. The ring ƒ

turns out to be the same (up to isomorphism) for both crepant resolutions of SpecR,

ƒ D

 
R I

I �1 R

!
: (1.5)

Interestingly,ƒ is built up from the three indecomposable gradedmaximal Cohen–Macaulay
R-modules:R, I , and I �1. In particular,ƒ is itself Cohen–Macaulay asR-module. This last
fact turns out to be true more generally.

Theorem 1.10. Assume that X D SpecR is a normal Gorenstein variety. Assume that there
exists a projective crepant resolution of singularities � W Y ! X such that the dimensions
of the fibers of � are � 1. Let T be the tilting bundle defined above5 and put T D �.Y; T /.
Then ƒ D EndY .T / D EndR.T /. Furthermore, ƒ and T are maximal Cohen–Macaulay
R-modules.

Proof. The fact that ƒ D EndY .T / is maximal Cohen–Macaulay follows from [129, Lemma

3.2.9] (see also [70, Theorem 1.5], stated as Theorem 2.6 below). Now T is maximal Cohen–
Macaulay because it is a direct summand of ƒ as R-modules. Functoriality yields a map
i W ƒ ! EndR.T / which is an isomorphism in codimension one (since the singular locus
of X has codimension � 2, as X is normal). Since ƒ is maximal Cohen–Macaulay, it is
reflexive and hence i must be an isomorphism.

This result applies in particular if X has dimension 2 or if it is of dimension 3 with
terminal singularities since then the condition on the dimension of the fibers is automatic.

Let us now assume thatX in Conjecture 1.2 is 3-dimensional and �1, �2 form a flop
(see Section 1.4.1). We will still be assuming that X D SpecR is affine for simplicity. For
i D 1;2, we then have tilting bundles Ti on Yi defined via (1.3), usingL on Y1 and .L0/�1 on
Y2 (see Section 1.4.1 for L; L0). Let .ƒi /iD1;2 be the corresponding endomorphism rings.
In this case Conjecture 1.2 follows from

D.Y1/
(1.4)
Š D.ƒı

1/; D.Y2/
(1.4)
Š D.ƒ2/; ƒı

1

Morita
Š ƒ2:

The asserted Morita equivalence is obtained in [129, §4.4] using the local structure of
3-dimensional terminal singularities (see [88, Example 2.3]). Nowadays wemay use [67, Corol-
lary 8.8] (see also [68, Theorem 1.5]) combined with [70, Theorem 1.5] (stated as Theorem 2.6
below) to obtain that in any case ƒ1, ƒı

2 are derived equivalent.
At the end of the day, we find that the two crepant resolutions Y1, Y2 ofX are derived

equivalent to the same noncommutative ring (either ƒı
1 or ƒ2). It turns out to be fruitful to

think of this intermediate noncommutative ring as a third crepant resolution of X , or of R,
namely a noncommutative crepant resolution.

5 As we have stated in Section 1.2, the fact that X has a crepant resolution implies that it has
rational singularities by [89, Corollary 5.24]. Thus in particular R��OY D OX .
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2. Noncommutative (crepant) resolutions

2.1. Generalities
Below R is a normal noetherian domain with quotient field K. We denote by ref.R/

the category of reflexive R-modules and if ƒ is a reflexive R-algebra then ref.ƒ/ is the cate-
gory of ƒ-modules which are reflexive as R-modules. A reflexive Azumaya algebra [98] ƒ is
a reflexiveR-algebra which is Azumaya in codimension one. A reflexive Azumaya algebraƒ

is said to be trivial if it is of the form EndR.M/ for M a reflexive R-module. In that case
ref.R/ and ref.ƒ/ are equivalent. This is a particular case of “reflexive Morita equivalence”
which is defined in the obvious way.

Definition 2.1. A twisted noncommutative resolution of R is a reflexive Azumaya algebra
ƒ over R such that gl dimƒ < 1. If ƒ is trivial then ƒ is said to be a noncommutative
resolution (NCR) of R.

Definition 2.2. Assume that R is Gorenstein. A twisted noncommutative crepant resolu-
tion ƒ of R is a twisted NCR of R which is in addition a Cohen–Macaulay R-module. If ƒ

is an NCR then such a ƒ is said to be a noncommutative crepant resolution (NCCR) of R.

The point of these definitions is that they provide reasonable noncommutative sub-
stitutes for “regularity,” “birationality,” and “crepancy.” This is explained in more detail in
[129, §4].

Remark 2.3. We will sometimes use the concepts introduced in Definitions 2.1, 2.2 for
schemes, possibly nonaffine. It is then understood that they reduce to the affine concepts,
when restricting to open affine subschemes.

Remark 2.4. In the sequel we will be mostly concerned with NCCRs and thus the other
definitions are mainly provided for context. Twisted NCCRs are natural generalizations of
NCCRs, but the good properties of NCCRs (sometimes conjectural) are usually not shared
by twisted NCCRs. See, e.g., Example 5.11 below. The definition of a (twisted) NCR is more
tentative. In particular, the normality and reflexivity hypotheses do not seem very relevant.
For example, there is a nice theory of noncommutative resolutions of nonnormal singularities
in dimension one [96].

Example 2.5. It follows from Theorem 1.10 and Theorem 1.7 that if there exists a projective
crepant resolution of singularities � W Y ! X such that the dimensions of the fibers of � are
� 1 then R has an NCCR.

Wemention the following theoremwhich gives another indication that the definition
of an NCCR is the “correct one.”

Theorem 2.6 ([70, Theorem 1.5]). Let f W Y ! SpecR be a projective birational morphism
between Gorenstein varieties. Suppose that Y is derived equivalent to some ring ƒ, then f

is a crepant resolution if and only if ƒ is an NCCR of R.

The following conjecture is a natural extension of Conjecture 1.2.
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Conjecture 2.7 ([128, Conjecture 4.6]). All crepant resolutions of X (commutative as well
as noncommutative) are derived equivalent.

We have the following result which is proved in the same way as the 3-dimensional
McKay correspondence [28].

Proposition 2.8 ([128, Theorem 6.3.1, Proposition 6.2.1]). If X has three-dimensional Goren-
stein singularities and it has an NCCR ƒ, then it has a projective crepant resolution Y ! X

such that ƒ and Y are derived equivalent.

Proposition 2.9. Conjecture 2.7 is true if X has dimension three, if we restrict to projective
crepant resolutions.

Proof. If X has an NCCR ƒ then by Proposition 2.8 ƒ is derived equivalent to a crepant
resolution. Hence we are reduced to Bridgeland’s result (see Section 1.4.1). Alternatively, to
have a very nice direct argument that any two NCCRs are derived equivalent in dimension
three, we may use [67, Corollary 8.8] (see also [68, Theorem 1.5]).

Proposition 2.8 is false for arbitrary three-dimensional Gorenstein singularities as
was shown by Dao [41].

Proposition 2.10 ([41, Theorem 3.1, Remark 3.2]). Assume S is a regular local ring which is
equicharacteristic or unramified, 0 ¤ f 2 S and R D S=.f / is normal. If dimR D 3 and
R is factorial then R has no NCCR.

Example 2.11. It turns out that there are 3-dimensional factorial hypersurface singularities
that admit a crepant resolution. A concrete example is given by R D kŒŒx0; x1; x2; x3��=

.x4
0 C x3

1 C x3
2 C x3

3/ [100, Theorem A,B]. In particular, a crepant resolution of such R does
not admit a tilting complex by Theorem 2.6.

If X is a normal Gorenstein algebraic variety with a crepant resolution then it has
rational singularities [89, Corollary 5.24]. A similar result is true for NCCRs.

Theorem 2.12 ([122, Theorem 1.1]). Let R be a normal finitely generated Gorenstein k-alge-
bra. If R has a twisted NCCR then it has rational singularities.

The actual result proved in [122] applies in a more general context and this has been
further exploited in [64,65] (see also [42, Corollary 1.7]).

Remark 2.13. In order to deal with singularities with a singular minimal model, Iyama and
Wemyss generalize the definition of an NCCR [69,70,132] to certain rings, of possibly infinite
global dimension, called maximal modification algebras (MMAs). Remarkably, many of the
results about NCCRs extend to MMAs. However, in this overview we will restrict ourselves
for simplicity to NCCRs.

1361 Noncommutative crepant resolutions, an overview



2.2. Relation with crepant categorical resolutions
We conjecture that noncommutative crepant resolutions are examples of “strongly

crepant categorical resolutions” as introduced by Kuznetsov in [93]. However, we can only
prove this in special cases.

Let X be an algebraic variety. A categorical resolution [93] of D.X/ is a “smooth”
triangulated category QD together with functors

�� W QD ! D.X/; ��
W Perf.X/ ! QD

which are adjoint (i.e., Hom QD
.��A; B/ Š HomD.X/.A; ��B/ for A 2 Perf.X/, B 2 QD)

such that the natural transformation idPerf.X/ ! ����, obtained by putting B D ��A, is
an isomorphism. This implies in particular that �� is fully faithful. There is some variation
possible in the definition of smoothness. For us it means that QD is equivalent to the derived
category of perfect modules over a smooth DG-algebra [75, Definition 2.23].

Remark 2.14. If � W Y ! X is a resolution of singularities of X then .D.Y /; R��; L��/

is a categorical resolution of D.X/ if and only if X has rational singularities. Remarkably,
however, it has been shown in [94] that D.Y / can be suitably enlarged to yield a categorical
resolution. On the other hand, this result cannot be extended to more general dg-categories
[54].

Following [93], we say that a categorical resolution . QD ; ��; ��/ of D.X/ is weakly
crepant if �� is both a left and a right adjoint to ��.

There is also a notion of a strongly crepant categorical resolution for which we need
the notion of a relative Serre functor. To define this, assume that X is Gorenstein and that QE

is a smooth triangulated category which is a Perf.X/-module. We will denote the action of
A 2 Perf.X/ onB 2 QE asA ˝X B and we assume that� ˝ � is exact in both arguments. We
also assume that the functor Perf.X/ ! QE W A 7! A ˝X B has a right adjoint QE ! D.X/

which we denote by RHom QE=X
.B; �/. That is, for C 2 QE we have functorial isomorphisms

Hom QE
.A ˝X B; C / Š HomX

�
A;RHom QE=X

.B; C /
�
:

An autoequivalence S QE=X
W QE ! QE is said to be a relative Serre functor for QE=X if there are

functorial isomorphisms

RHomX

�
RHom QE=X

.B; C /; OX

�
Š RHom QE=X

.C; S QE=X
B/

for B; C 2 QE . We say that QE=X is strongly crepant if the identity functor QE ! QE is a relative
Serre functor.

A strongly crepant categorical resolution ofX is a quadruple . QD ;��;��;˝X / such
that . QD ; ��; ��/ is a categorical resolution of X , � ˝X � is a Perf.X/-module structure
on QD such that QD=X is strongly crepant and �� is ˝X -linear. The last condition means that
for A;B 2 Perf.X/ we have functorial isomorphisms A ˝X ��B Š ��.A ˝X B/ satisfying
the appropriate compatibilities.

It is shown in [93, §3] that a strongly crepant categorical resolution is weakly
crepant, and, moreover, that if � W Y ! X is a crepant resolution in the usual sense then
.D.Y /; R��; L��; L��.�/ ˝Y �/ is a strongly crepant categorical resolution of X .
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The following easy lemma, which is an extension of [102, Example 5.3], shows that,
under suitable conditions, rings of the form EndR.M/ form crepant categorical resolutions.
If M is an R-module then add.M/ is the category spanned by modules which are direct
summands of some M ˚n.

Lemma 2.2.1. Assume that X D Spec R is an algebraic variety and let M be a finitely
generated R-module such that ƒ D EndR.M/ has finite global dimension. Then D.ƒ/ is
smooth. Assume in addition that R 2 add.M/. Then

Perf.R/ ! D.ƒ/ W N 7! M
L
˝R N (2.1)

yields a categorical resolution of singularities of X (since Perf.R/ Š Perf.X/). Moreover,
assuming furthermore that R is normal Gorenstein:

(1) if M is maximal Cohen–Macaulay then this categorical resolution is weakly
crepant;

(2) if ƒ is an NCCR then this categorical resolution is strongly crepant.

Note that if (2) holds then M is maximal Cohen–Macaulay since we have assumed
that R 2 add.M/.

The hypotheses of Lemma 2.2.1 are actually too strong. For example, an NCCR is
always a strongly crepant categorical resolution in dimension � 3. This follows from Propo-
sition 2.15 below which can be proved using the methods of [67,68].

Proposition 2.15. Assume that ƒ D EndR.M/ is an NCCR and dimR � 3 then

Extiƒ.M; M/ D 0 for i > 0: (2.2)

Proof. For the benefit of the reader, we give a proof. We may assume that R is local of
dimension 3 (the case dim � 2 is easy). By the Auslander–Buchsbaum formula [67, Propo-

sition 2.3] ƒ has global dimension 3. Since M is reflexive, it has depth � 2, and hence,
again by the Auslander–Buchsbaum formula, it has projective dimension � 1 over ƒ and,
moreover, it is projective over ƒ in codimension 2.

Hence we have a projective resolution of M as ƒ-module

0 ! P1 ! P0 ! M ! 0:

Applying Homƒ.�; M/, we get a long exact sequence of R-modules

0 ! R ! Homƒ.P0; M/ ! Homƒ.P1; M/ ! Ext1ƒ.M; M/ ! 0: (2.3)

Assume Ext1ƒ.M; M/ ¤ 0. Since M is projective over ƒ in codimension two, Ext1ƒ.M; M/

is finite dimensional and hence it has depth 0 as R-module. On the other hand, since
Homƒ.Pi ;M/ is reflexive as R-module, it has depth � 2. Finally, R being maximal Cohen–
Macaulay has depth 3. One may verify that these depth restrictions are incompatible with
(2.3).
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It seems too much to hope for that (2.2) would always be true, but the lack of time
has prevented us from seriously looking for a counterexample. On the other hand, we are
sufficiently optimistic to make the following conjecture.

Conjecture 2.16. If X D SpecR is a normal algebraic variety with Gorenstein singularities
then an NCCR of R always yields a strongly crepant categorical resolution of X .

To prove this conjecture, one would have to construct for an NCCR ƒ of R a partial
tiling complex P � of ƒ-modules such that RHomƒ.P �; P �/ D R.

Remark 2.17. The strongly crepantness of E=X as defined above is independent of the
resolution property. One may check that if ƒ=R is a twisted NCCR then D.ƒ/ is strongly
crepant over SpecR. But one may also check that it is not a categorical resolution.

3. Constructions of noncommutative crepant resolutions

3.1. Quotient singularities
Here we will restrict ourselves to quotient singularities for finite groups. Quotient

singularities for (infinite) reductive groups will be covered in Section 4.
If G is a finite group and W is a faithful finite-dimensional unimodular (i.e.,

detW D k) representation of G then the skew group ring

Sym.W /#G D EndSym.W /G

�
Sym.W /

�
is an NCCR for R D Sym.W /G (which is Gorenstein because of the unimodularity hypoth-
esis).

In dimension� 3 such quotient singularities always have a crepant resolution by the
celebrated BKR-theorem [28]. In higher dimension this is not so. The simplest counterexam-
ple is given by Z2 acting with weights .�1; �1; �1; �1/ on W D k4 because in that case R

is Q-factorial and terminal. See, e.g., [1].

3.2. Crepant resolutions with tilting complexes
In case R is a normal Gorenstein domain and Y ! SpecR is a crepant resolution

and T is a tilting complex on Y then EndY .T / is an NCCR of R by Theorem 2.6. Con-
versely, assuming a crepant resolution exists, any NCCR has to be of this form if we accept
Conjecture 2.7 (T is the dual of the image of ƒ under the asserted derived equivalence
D.ƒ/ Š D.Y /).

This is a very general method for constructing NCCRs. Note, however, that even in
dimension three there may be crepant resolutions without tilting complex. See Example 2.11.
Furthermore, as indicated in Section 3.1, there are normal Gorenstein singularities that admit
an NCCR but not a crepant resolution.

Example 3.1. A textbook example where this method works very well is the case of deter-
minantal varieties [34,36]. Let n � 1 and 0 � l < n. Let Xl;n D SpecR be the varieties of
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matrices in Homk.kn; kn/ D Mn�n.k/ which have rank � l . It is a classical result that X is
Gorenstein. It is also well known that X has a crepant Springer type resolution given by

Y D
®
.�; V / j V 2 Gr.l; n/; � 2 Homk.kn; V /

¯
;

where � W Y ! X sends .�; V / to the composition of � with the inclusion V ,! kn. If R

denotes the universal subbundle on Gr.l; n/ then Y is the vector bundle Hom.kn; R/ (i.e.,
Y D Spec Sym..R˚n/_/). Using Bott’s theorem, one computes that the Kapranov tilting
bundle on Gr.l; n/ [73] (see also [35][53] for the case of finite characteristic) pulls back to a
tilting bundle on Y , which then gives an NCCR of R. For other approaches to this example,
see [49] and Theorem 4.10 below.

Alas, things are often more complicated. For determinantal varieties associated to
symmetric of skew-symmetric matrices, the Springer type resolutions are not crepant so a
tilting bundle on them only gives an NCR (see [136]). NCCRs of such generalized determi-
nantal varieties will be obtained in Section 4 using a different approach.

Example 3.2. Another beautiful and much deeper example [13, 16] is given by cotangent
bundles of (partial) flag varieties T �.G=P /. If P is a Borel subgroup of G then this is a
crepant resolution of the nilpotent cone in Lie.G/. In general, they are crepant resolutions of
closures of Richardson orbits [104]. It is shown in [13,16] that T �.G=P / has a tilting bundle
but it is not obtained as the pullback of a tilting bundle on G=P . In fact, the construction
of the tilting bundle is highly nontrivial. To explain the construction, it is useful to exhibit a
slightly different point of view on tilting bundles.

Let Y be a noetherian scheme. If A is a quasicoherent sheaf of algebras on Y and
A D �.Y; A/ then we say that A is derived affine if A D R�.Y; A/ and the right orthog-
onal to A in DQch.A/ is zero. In that case R�.Y; �/ defines an equivalence of categories
between DQch.A/ and D.A/. It is not difficult to see that a vector bundle T on Y which has
everywhere nonzero rank is a tilting bundle, provided EndY .T / is derived affine.

We say that Y is derived D-affine if DY is derived affine where DY is the sheaf of
differential operators on Y . In characteristic> 0wemean byDY the sheaf of crystalline dif-
ferential operators, i.e., differential operators whichmay be expressed in terms of derivations,
without using divided powers.

Now let Z D G=P . The Bernstein–Beilinson theorem [12], valid in characteristic
zero, states that Z is even “D-affine” meaning that the equivalence R�.Z; �/ is also com-
patible with the natural t-structures. This is false in characteristic > 0. However, Z is still
derived D-affine [16, Theorem 3.2] whenever p is strictly bigger than the Coxeter number,
which we will assume now.

We will give a rough sketch how this is used in [13,16] to construct a tilting bundle
on Y D T �Z. Let us first assume that the characteristic of k is p > 0. To indicate this,
we will adorn our notations with .�/p . In that case DZp is coherent as a module over its
center which is equal to .SymZp

Ep/.1/ where .�/.1/ denotes the Frobenius twist, and Ep is
the tangent bundle on Zp . Hence we may view DZp as a sheaf of coherent algebras QD on
Spec.SymZp

Ep/.1/ D Y
.1/

p where Yp D T �Zp . The sheaf QD is still derived affine.
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Now QD is not of the form End
Y

.1/
p

.T
.1/

p /. However, if we let OYp be the formal com-

pletion of Yp at the zero section then it turns out that the restriction OD of QDp to OY
.1/

p is of the
form End OYp

. OTp/.1/ for a vector bundle OTp on OYp . Moreover, OD is still derived affine and so
OTp is a tilting bundle on OYp . Then one uses deformation theory6 to lift OTp to a tilting bundle
OT in characteristic zero. Finally, one may use the fact that Y D T �Z (as a vector bundle)
admits a nice Gm action to conclude by [72, Theorem 1.8] that OT is actually the completion of
a tilting bundle T on Y .

Hidden behind this construction is the fact that DZ is, in some sense, a canonical
noncommutative deformation of the symplectic variety T �Z. If Y is a general symplectic
variety then one may try to construct a noncommutative deformation using Fedosov quanti-
zation. This general idea has been used by Bezrukavnikov and Kaledin to prove an analogue
of the BKR theorem [28] for crepant resolutions of symplectic quotient singularities [14] and
by Kaledin to prove a suitable version of Conjecture 1.2 [72] for general symplectic sin-
gularities. To apply the method, one needs to be able to do Fedosov quantization in finite
characteristic, a problem which has been solved to some extent in [15].

3.3. Resolutions with partial tilting complexes
Assume R is a normal Gorenstein domain with rational singularities and

Y ! SpecR is a resolution which is not crepant. A strengthening of Conjecture 2.7 inspired
by [93] is that NCCRs are minimal in a categorical sense, i.e., their derived category embeds
inside D.Y /. This means that they are obtained as EndY .T / for a partial tilting complex T

on Y . For a very general result in this direction, see [93, Theorem 2]. We will restrict ourselves
to a special case which will be useful in Section 5 and which can be easily proved directly.

Proposition 3.3 ([93]). Let Z be a smooth projective variety with ample line bundle OZ.1/

and let X D SpecR be the corresponding cone. Assume !Z D OZ.�n/ for n � 1. Then R

is Gorenstein. Moreover, a resolution of singularities � W Y ! X of X is given by the line
bundle over Z associated to OZ.1/. Assume E 2 D.Z/ is such that:

(1) ExtiZ.E; E.m// D 0 for i > 0 and m � 0;

(2) ExtiZ.E; E.m// D 0 for i � 0 and m 2 ¹�1; : : : ; �n C 1º;

(3) E ˚ E.1/ ˚ � � � ˚ E.n � 1/ is a generator for DQch.Z/.

Let 
 W Y ! Z be the projection map and put T D 
�E . Then EndY .T / is an NCCR of R.

Proof. We write T .m/ D 
�.E.m//. Then we have

RHomY

�
T ; T .m/

�
D

M
l�0

RHomZ

�
E; E.m C l/

�
: (3.1)

6 Tilting bundles have in particular vanishing Ext1;2. Hence by classical deformation theory
they are unobstructed and rigid.
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Using (1) and (2), we deduce in particular that NT WD T ˚ � � � ˚ T .�n C 1/ is partial tilting
(and hence this is also the case for T ). Furthermore, from (3) we obtain NT ? D 0. So NT

is in fact tilting. Put ƒ D EndY .T /, Nƒ D EndY . NT /. By Theorem 1.7, Nƒ has finite global
dimension.

Via the decomposition (3.1) ƒ is an N-graded ring. Put ƒ�u D
L

m�u ƒm. Then
(as ungraded rings) we have

Nƒ D

0BBBBBB@
ƒ ƒ�1 : : : ƒ�n�1

ƒ ƒ : : : ƒ�n�2

:::
:::

: : :
:::

ƒ ƒ : : : ƒ�1

ƒ ƒ : : : ƒ

1CCCCCCA :

If we put � D Mn.ƒ/ then Nƒ � � and, moreover, � is (left and right) projective over Nƒ

and in addition the multiplication map � ˝ Nƒ � ! � is an isomorphism (it is a surjective
map between projective �-modules of the same rank). We claim that � (and hence ƒ) has
finite global dimension. Indeed, if M is a right �-module and P � ! M is a finite projective
resolution of M as Nƒ-module (which exists since gl dim Nƒ < 1) then � ˝ Nƒ P � is a finite
�-projective resolution of � ˝ Nƒ M D � ˝ Nƒ � ˝� M Š M .

Moreover, for i > 0,

ExtiR
�
EndY .T /; !R

�
D ExtiX

�
�� EndY .T /; !X

�
D ExtiY

�
EndY .T /; !Y

�
D ExtiY

�
T ; T .�n C 1/

�
D 0;

where in the second line we have used Grothendieck duality, in the third line the easily
verified fact that !Y D 
�.!Z.1//, and in the fourth line (3.1) and (1)–(2). It follows that
EndY .T / is maximal Cohen–Macaulay over R.

3.4. Three-dimensional affine toric varieties
For simplicity, we define an affine toric variety as X D Spec R where

R D kŒ�_ \ M� where M is a lattice and �_ is a strongly convex full dimensional lat-
tice cone in MR. Such an R is Gorenstein if there exists m 2 M such that � (the dual cone
of �_) is spanned by lattice vectors x 2 M _ satisfying hx; mi D 1. The lattice polytope
associated to R is defined as P D � \ hm; �i.

In this case there is the following beautiful result by Broomhead [32, Theorem 8.6].

Theorem 3.4. The coordinate ring of a 3-dimensional Gorenstein affine toric variety admits
a toric NCCR.

By a toric NCCR we mean that the reflexive module defining the NCCR is isomor-
phic to a sum of ideals. Broomhead’s proof uses the theory of “dimer models” which is
possible thanks to the combinatorics [57,66]. A proof not using dimer models but using this
combinatorics directly was given in [120].
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A different method for constructing NCCRs for affine Gorenstein toric varieties was
given in [119] and is based on a standard fact from toric geometry:

Lemma 3.5. A subdivision of � obtained by a regular triangulation of P with no extra
vertices yields a projective crepant resolution of SpecR by a toric Deligne–Mumford stack
[24]. If dimX � 3 then such a crepant resolution has fibers of dimension � 1.

In dimension� 3 one may then, starting from a sequence of generating line bundles,
construct a tilting bundle using the principle of “killing backward Ext1’s” (see Remark 1.8).

While this method yields an NCCR, it generally does not yield a toric one. On the
other hand, it is also applicable to some higher dimensional toric singularities which do not
have a toric NCCR.

Example 3.6 ([116, §9.1], [119, Example 6.4]). Let T D G2
m be the two-dimensional torus and

(after the identifying the character group X.T / of T with Z2) consider the vector space
W with weights .3; 0/, .1; 1/, .0; 3/, .�1; 0/, .�3; �3/, .0; �1/. Put R WD Sym.W /T D

kŒx1; x2; x3; x4; x5; x6�T D kŒx2x4x6; x1x3x5; x1x3
4 ; x3x3

6 ; x3
2x5� Š kŒa; b; c; d; e�=

.a3b � cde/. Clearly, R is the coordinate ring of a 4-dimensional affine toric variety, but it
was shown in [116, §9.1] that R does not have a toric NCCR.

On the other hand, by [119, Proposition 6.1], R does have a nontoric NCCR. In [119,

Example 6.4] an explicit NCCR is constructed which is given by a reflexive module which is
the direct sum of 12 modules of rank 1 and 1 module of rank 2.

We conjecture:

Conjecture 3.7. An affine Gorenstein toric variety always has an NCCR.

Besides Theorem 3.4 this conjecture is also true for “quasisymmetric GIT quotients”
for tori. See Corollary 4.7 below.

By [119, Theorem A.1], the Grothendieck group of the DM-stack exhibited in Lem-
ma 3.5 has rank Vol.P /. This suggests the following conjecture:

Conjecture 3.8. The number of indecomposable summands in the reflexivemodule defining
an NCCR of R is equal to Vol.P /.

3.5. Mutations
It follows from the minimal model program that the number of crepant resolutions

of an algebraic variety is finite.7 On the other hand, NCCRs can be modified by a process
called “mutation” which is closely related to flopping of crepant resolutions. The difference
is that the mutation process generally leads to an infinite number of different NCCRs (see,
however, Example 3.12 below).

The following definitions and results are taken from [69]. Let R be a normal Goren-
stein ring. Let M be a reflexive R-module such that ƒ D EndR.M/ is an NCCR and let

7 I thank Shinnosuke Okawa for explaining to me how this follows from [17].
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0 ¤ N 2 add.M/. Let K0 be defined by the short exact sequence

0 ! K0 ! N0 ! M;

where N0 2 add.N / is a right approximation of M , i.e., any other map N 0
0 ! M with

N 0
0 2 add.N / factors throughN0. One defines the right mutation ofM atN to be�C

N .M/ WD

N ˚ K0. The left mutation of M at N is defined via duality as ��
N .M/ D .�C

N _.M _//_.
We also put �˙

N .ƒ/ D EndR.�˙
N .M//. Note, however, that the passage from �˙

N .M/ to
�˙

N .ƒ/ loses some information.

Remark 3.9. Needless to say that �˙
N .M/ is only determined up to additive closure (i.e.,

up to taking add.�/). However, if R is complete local then we can make a minimal choice
for �C

N .M/ which we will do silently.

Theorem 3.10 ([69, Theorems 1.22, 1.23]). Let M; N; ƒ be as above.

(1) �˙
N .M/ define NCCRs.

(2) ƒ, �C

N .ƒ/ and ��
N .ƒ/ are all derived equivalent.

(3) �C

N and ��
N are mutually inverse operations (this statement makes sense since

N 2 add.�˙
N .M//).

If R is complete local of dimension 3, things simplify. Let us call a reflexive
R-module basic if every indecomposable summand appears occurs only once.

Theorem 3.11 ([69, Theorems 1.25]). Assume that R is complete local of dimension 3.
Let M be a basic reflexive R-module defining an NCCR, having at least two nonisomor-
phic indecomposable summands and let Mi be such an indecomposable summand. Then
�C

M=Mi
.M/ Š ��

M=Mi
.M/.

Example 3.12 ([63,71,133]). IfR is complete local ringwith a 3-dimensional terminal Goren-
stein singularity then the basic reflexive modules yielding an NCCR correspond to the max-
imal cells in an affine hyperplane arrangement of dimension rk Cl.R/ with mutations at
indecomposable summands corresponding to wall crossings [133, Theorem 4.4]. The group
Cl.R/ acts by translation on this hyperplane arrangement and the quotient consists of a finite
number of cells which correspond to the NCCRs of R. The number of such NCCRs is gen-
erally higher than the number of crepant resolutions.

It is an interesting problem to understand this for other types of 3-dimensional sin-
gularities.

Remark 3.13. If ƒ D EndR.M/ is an NCCR then because of the reflexive Morita equiva-
lence ref.ƒ/ D ref.R/ the mutation procedure may also be defined on the level of reflexive
ƒ-modules (see [67, §5]). The resulting procedure also works for twisted NCCRs, where there
is no reflexive Morita equivalence.

We now describe a different point of view on mutations, taken from [47]. For Q

a quiver with n vertices let bkQ be the completion of the path algebra of Q at path length.
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A potential w 2 bkQ is a convergent sum of cycles considered up to rotation (or, equivalently,
w 2 bkQ=ŒbkQ;bkQ�O). If w is a potential then .@w/ denotes the (completed) two sided ideal
generated by the cyclic derivatives @xw of w with respect to the arrows in Q, where for a
cyclic path m we have @xm WD

P
mDuxv vu (note that this is invariant under path rotation).

The completed Jacobi algebra associated to .Q; w/ is defined as OJ .Q; w/ WD bkQ=.@w/.
We say that w is reduced if it only contains cycles of length � 3. We can also consider the
uncompleted version J.Q;w/ WD kQ=.@w/, in casew is a finite sum.We have the following
result.

Theorem 3.14 ([130, Theorems A&B]). If ƒ is a basic (i.e., ƒ= radƒ Š k˚n) twisted NCCR
of a 3-dimensional normal Gorenstein complete local ring then ƒ is a completed Jacobi
algebra OJ .Q; w/ with w reduced.

If Q does not have loops or 2-cycles then the mutations of ƒ WD OJ .Q; w/ can be
obtained by an alternative procedure described in [47]. The procedure to mutate at a vertex i

of Q yields a new Jacobi algebra OJ .Q0; w0/ defined as follows (see [83, §2.4]).

(1) For each arrow ˇ with target i and each arrow ˛ with source i , add a new arrow
Œ˛ˇ� from the source of ˇ to the target of ˛.

(2) Replace each arrow ˛ with source or target i with an arrow ˛� in the opposite
direction.

The new potential w0 is the sum of two potentials w0
1 and w0

2. The potential w0
1 is obtained

from w by replacing each composition ˛ˇ (up to cyclic rotation) by Œ˛ˇ�, where ˇ is an
arrow with target i . The potential w0

2 is given by

w0
2 D

X
˛;ˇ

Œ˛ˇ�ˇ�˛�;

where the sum ranges over all pairs of arrows ˛ and ˇ such that ˇ ends at i and ˛ starts at i .
It follows from [83, Theorem 3.2] that this mutation coincides with the mutation defined in
[69] and described above.

It may be thatw0 is not reduced, i.e., it contains 2-cycles. In that case the correspond-
ing relations allow one to eliminate some arrows in Q0. By doing this, we find that the Jacobi
algebra OJ .Q0; w0/ can be more economically written as J..Q0/red; .w0/red/ where .w0/red is
reduced.

If we are lucky that .Q0/red does not contain any 2-cycles (it cannot contain loops)
then we can repeat the mutation procedure at arbitrary vertices. If we can keep doing this
forever then we call the original potential w nondegenerate.

Note that if .Q0/red does not contain 2-cycles, it can be obtained from Q0 by simply
deleting all 2-cycles, so that the mutation procedure becomes to some extent combinato-
rial [81]. For a nondegenerate potential, this nice property persists under iterated mutations.
The catch, however, is that in general it is not clear how to check that a potential is nonde-
generate. A useful criterion, based on the theory of graded mutations [2], is given in [44].
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Theorem 3.15 ([44, Corollary 1.3]). Assume:

(1) Q is a Z-graded quiver such that .kQ/�0 is finite dimensional.

(2) Q has at least three vertices.

(3) w is a homogeneous reduced potential of degree r (in particular, it is a finite
sum).

(4) ƒ D J.Q;w/ is a twisted NCCR whose center is 3-dimensional with an isolated
singularity.

(5) ƒ=Œƒ;ƒ� does not contain any elements whose degree is in the interval Œ1; r=2�.

Then w is nondegenerate.

Note that (5) is automatic if r D 1. This gives an alternative proof why the poten-
tials associated to “rolled up helix algebras” of Del Pezzo surfaces are nondegenerate (see
[30, Theorem 1.7], [44, Theorem 4.2.1]). Theorem 3.15 also applies to many skew group rings
ƒ D kŒx; y; z�#.Z=nZ/. For example, n D 5 and N1 acting with weights .1=5; 2=5; 2=5/ (see
[67, §7]).

4. Quotient singularities for reductive groups

4.1. NCCRs via modules of covariants
In this section we discuss some results from [116]. Also G will always be a reductive

group. Let S be the coordinate ring of a smooth affine G-variety X . Then SG is the coor-
dinate ring of the categorical quotient X==G. We will be interested in constructing (twisted)
NCCRs for SG . In the particular case when G is finite and X is a faithful unimodular
G-representation, this was discussed in Section 3.1. An NCCR for SG is given by the skew
group ring ƒ D S#G. However, ƒ can be described in a different way. For U a finite dimen-
sional G-representation, put M.U / WD .U ˝ S/G . Then M.U / is a reflexive SG module (in
fact, it is maximal Cohen–Macaulay). If every irreducible representation of G occurs at least
once in U then ƒ is Morita equivalent to EndSG .M.U //. Hence M.U / defines an NCCR
of SG .

The modules M.U / we introduced are the so-called modules of covariants [31] and
they make perfect sense for general reductive groups. A mild obstacle is that modules of
covariants do not have to be reflexive in general [31]. This is not a serious problem, but if
we want to avoid it anyway, we can restrict the pairs .G; X/ we consider. We will say that G

acts generically on a smooth affine variety if the locus of points with closed orbit and trivial
stabilizer is nonempty and its complement has codimension � 2. If W is a G-representation
then we will say that .G; W / is generic if G acts generically on Spec SymW Š W �. We
then have in particular

EndSG

�
M.U /

�
D M

�
End.U /

�
: (4.1)
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It is reasonable to search for NC(C)Rs of the form EndSG .M.U //. However, if G

is not finite there are nontrivial obstacles:

(1) There are an infinite number irreducible representations so we cannot just take
the sum of all of them. We need to make a careful selection.

(2) Modules of covariants are usually not Cohen–Macaulay and so demanding
that EndSG .M.U // D M.End.U // (cf. (4.1)) is Cohen–Macaualay is a severe
restriction on U .

The first issue is handled in [116, §10] where we construct certain nice complexes relating
different modules of covariants (see also [135, Chapter 5]). The second issue is handled using
results from [124] (see also [123,125–127]).

Before we discuss NCCRs let us give a result on NCRs.

Proposition 4.1 ([116, Corollary 1.3.5]). Assume that .G; W / is generic. Then there exists
a finite dimensional G-representation U containing the trivial representation such that
ƒ D EndSG .M.U // is an NCR for SG .

Remark 4.2. The fact that U contains the trivial representation implies that ƒ defines a
categorical resolution by Lemma 2.2.1. It turns out that NCRs are easier to construct than
NCCRs since it is sufficient to take U big enough, in a suitable sense.

To state our results about (twisted) NCCRs, we need to introduce some notation.
Let G be a connected8 reductive group. Let T � B � G be respectively a maximal torus
and a Borel subgroup of G, with W D N.T /=T being the corresponding Weyl group. Put
X.T / D Hom.T; Gm/ and let ˆ � X.T / be the roots of G. By convention the roots of B are
the negative roots ˆ� and ˆC D ˆ � ˆ� is the set of positive roots. We write N� 2 X.T /R

for half the sum of the positive roots. Let X.T /C

R be the dominant cone in X.T /R and let
X.T /C D X.T /C

R \ X.T / be the set of dominant weights. For � 2 X.T /C, we denote the
simple G-representation with highest weight � by V.�/.

Let W be a finite-dimensional G-representation of dimension d and put
S D Sym.W /, X D Spec Sym.W / D W �. Let .ˇi /

d
iD1 2 X.T / be the T -weights of W .

Put

† D

²X
i

ai ˇi j ai 2 ��1; 0�

³
� X.T /R:

The elements of the intersectionX.T /C \ .�2 N� C †/ are called strongly critical (dominant)
weights for G.

Theorem 4.3 ([116, Theorem 3.4.3][124]). Assume that X contains a point with closed orbit
and finite stabilizer. Let � 2 X.T /C be a strongly critical weight and U D V.�/. Then
M.U �/ is a Cohen–Macaulay SG-module.

8 In [116] we also consider the nonconnected case.

1372 M. Van den Bergh



If we look at (4.1) and observe that the weights of End.U / are very roughly speaking
about twice those of U , then Theorem 4.3 suggests that to construct an NCCR we should
restrict ourselves to representations whose highest weights are approximately contained in
� N� C .1=2/†. This idea works for the class of “quasisymmetric” representations, which
includes the class of self dual representations.

We say that W is quasisymmetric if for every line ` � X.T /R through the origin
we have

P
ˇi 2` ˇi D 0. This implies in particular that W is unimodular and hence SG is

Gorenstein if W is generic by a result of Knop [87].
From now onwe assume that .G;W / is generic andW is quasisymmetric. Deviating

slightly from [116], following [59], we introduce a certain affine hyperplane arrangement on
X.T /W

R . Let NH be the collection of affine hyperplanes spanned by the facets of� N� C .1=2/ N†.
We consider the hyperplane arrangement in9 X.T /W

R given by

H D

[
H2 NH

�
�H C X.T /

�
\ X.T /W

R : (4.2)

Remark 4.4. The hyperplane arrangement (4.2) may be degenerate in the sense that
X.T /W

R � �H C � for some � 2 X.T /.

Example 4.5. We give a simple example where degeneration occurs. LetG D SL.2/. If V is
the standard representation andW D V n with n even, then .1=2/† is the interval ��n=2;n=2Œ

(identifying X.T / Š Z). Moreover, N� D 1. Hence the “hyperplanes” �H C X.T / are given
by the integers. Furthermore, X.T /W

R D 0. Thus the induced hyperplane arrangement in
X.T /W

R is indeed degenerate. If n is odd, on the other hand, then it is nondegenerate. See
[116, Theorem 1.4.5] for a complete treatment of the case G D SL.2/.

This hyperplane arrangement is such that if ı is the complement of H then

.� N� C ı C 1=2@ N†/ \ X.T / D ;:

The following result is a slight variation on [116, Theorem 1.6.4].

Theorem 4.6. Let .G; W / be generic and assume that W is quasisymmetric. Let ı be an
element of the complement of H . Put

Lı D X.T /C
\
�
� N� C ı C .1=2/ N†

�
; (4.3)

Uı D

M
�2Lı

V.�/; (4.4)

ƒı D EndSG

�
M.Uı/

�
: (4.5)

If Lı ¤ ; then ƒ is an NCCR for Sym.W /G .

It is easy to see that Lı and hence Uı depend only on the connected component of
the complement of H to which ı belongs.

9 Note that X.T /W is just the character group X.G/ of G.
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We obtain some evidence for Conjecture 3.7.10

Corollary 4.7 ([116, Theorem 1.6.2]). If G D T is a torus and W is quasisymmetric then
Sym.W /T has a (toric) NCCR.

Remark 4.8. For reference we note that there is extension of Theorem 4.6 that may allow
one to construct twisted NCCRs [116, Theorem 1.6.4].

We now state some consequences of these results for determinantal varieties.

Theorem 4.9 ([116, Theorem 1.4.1]). For l < n, let Xl;n be the variety of n � n-matrices of
rank � l . Then kŒXl;n� has an NCCR.

The variety Xl;n was already discussed in Example 3.1 and the NCCR obtained in
[116] is the same as that we obtain in Theorem 4.9. To prove Theorem 4.9, we use the classical
description of kŒXl;n� as an invariant ring [134]. Put G D GL.l/ and let V be the standard
representation ofG. PutW D V n ˚ .V �/n. Then kŒXl;n� D Sym.W /G , and we show in [116]

that Theorem 4.9 follows from Theorem 4.6. For the benefit of the reader, we describe the
actual module of covariants that gives the NCCR. Let Bl;n�l be the set of partitions that fit
in a rectangle of size l � .n � l/. In [116] it is shown that the following module of covariants
defines an NCCR for R:

M D

M
�2Bl;n�l

M.S�V /; (4.6)

where S�V denotes the Schur functor indexed by � applied to V .

Theorem 4.10. For 2l < n, let X�
2l;n

be the variety of skew-symmetric n � n matrices of
rank � 2l . If n is odd then kŒX�

2l;n
� has an NCCR.

This time we put G D Sp.2l/ and W D V n where V is the standard representation
of G.

Theorem 4.11 ([116, Theorem 1.4.1]). For l < n, let XC

l;n
be the variety of symmetric n � n

matrices of rank � l . If l and n have opposite parity then kŒXC

l;n
� has an NCCR. If l and n

have the same parity then kŒXC

l;n
� has a twisted NCCR.

Here we put G D O.l/ and again W D V n where V is the standard representa-
tion of G. A complication arises since O.l/ is not connected, so we cannot directly apply
Theorem 4.6. So we have to perform a more refined analysis which is carried out in [116,

§6]. Twisted NCCRs appear because SO.l/, the connected component of O.l/, is not simply
connected.

The NCCRs given in Theorems 4.10, 4.11 have been crucial for establishing homo-
logical projective duality [91] for determinantal varieties of skew-symmetric matrices by
Rennemo and Segal [113]. The corresponding results for symmetric matrices are work in
progress by the same authors [112].

10 This is stated in [116] for W generic. However, one easily reduces to this case.
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Even ifW is not quasisymmetric then it is still possible that Sym.W /G has anNCCR
given by a module of covariants but we are unaware of a general rule like Theorem 4.6 for
constructing them. Three-dimensional affine toric varieties (see Section 3.4) are an example
of this, since they can be written as Sym.W /G where W is generally not quasisymmetric.
Another example is given by the recent work of Doyle:

Example 4.12 ([51, Theorem 3.11]). Let 0 < l < n be integers such that gcd.l; n/ D 1. Let V

be the standard representation of G D SL.l/ and put W D V n.
Then R WD Sym.W /G is the homogeneous coordinate ring of the Grassmannian

Gr.l; n/ for the Plücker embedding. Let Pl;n�l be the set of partitions whose young tableaux
are above the diagonal in a rectangle of size l � .n � l/. In [51] it is shown that the following
module of covariants defines an NCCR for R:

M D

M
�2Pl;n�l

M.S�V /

(compare with (4.6)).

We reiterate that even if an NCCR exists, there does not have to be one given by a
module of covariants. See Example 3.6.

4.2. NCCRs via crepant resolutions obtained by GIT
Here we discuss some results from [59] that shows that in certain cases the NCCRs

for the categorical quotients X==G that we constructed in Section 4 can be obtained as the
endomorphisms of a tilting bundle on a crepant resolution, i.e., the method of Section 3.2.
This crepant resolution is constructed using a geometric invariant theory. It turns out that we
have to allow crepant resolutions by Deligne–Mumford stacks. This occurred already before
in Lemma 3.5 and Example 3.6.

Remark 4.13. To construct a resolution of X==G using geometric invariant theory, one
needs a linearized line bundle onX . Since hereX is a representation, the onlyG-equivariant
line bundles on X are those obtained from characters of G. If G is semisimple then there
are no (nontrivial) characters so we cannot proceed. Thus we can, for example, not deal
with determinantal varieties of symmetric and skew-symmetric matrices (see Theorems 4.10
and 4.11). In those cases the relevant groups were respectively Sp.2l/ and the connected
component SO.l/ of O.l/, both of which are semisimple. On the other hand, ordinary deter-
minantal varieties are fine since in that case G D GL.l/ which has a nontrivial character
given by the determinant, which may be used to construct a crepant resolution.

Remark 4.14. Geometric invariant theory is still helpful for constructing a resolution of
X==G via a procedure invented by Kirwan [52,85,110]. However, these resolutions are usually
not crepant. Consistent with expected minimality of NCCRs (see Section 3.3), we are able
to show that some NCCRs embed inside them [118].

We retain the notations and assumptions of the previous section. We assume that W

is a quasisymmetric representation of G and X D Spec Sym.W / D W �. Recall that for a
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character � 2 X.G/ D X.T /W we may define a G-invariant open subset of X as

X ss;�
D
®
x 2 X j 9k > 0 and s 2 �.OX ˝ �k/G such that s.x/ ¤ 0

¯
:

The variety X ss;� admits a good quotient11 X ss;�==G which is proper over X==G. For
U a representation of G, we write M.U / for the vector bundle on X ss;�=G given by
U ˝ OXss;�=G . The global sections of M.U / are equal to M.U /.

Below we let H0 be the central hyperplane arrangement on X.G/R D X.T /W
R cor-

responding to the affine hyperplane arrangementH introduced in (4.2). Thus the hyperplanes
in H0 are the hyperplanes which are induced from central hyperplanes in X.T /R which are
parallel to the facets of N†.

Proposition 4.15 ([59, Proposition 2.1]). Assume that the action of T on X has generically
finite stabilizers and let � 2 X.G/ be in the complement of H0. Then X ss;�=G is a Deligne–
Mumford stack.

Lemma 4.16. Assume that .G; W / is generic. Then the canonical map X ss;�=G ! X==G

is crepant.

Proof. This is proved in [119, Lemma 4.5] in the case that G is a torus, but this assumption is
not relevant for the proof.

The following is one of the main results of [59]. It is proved using similar combina-
torics as in [116].

Theorem 4.17 ([59]). Assume that the action of T on X has generically finite stabilizers and
let � 2 X.G/ be in the complement of H0. Let Uı be as in the statement of Theorem 4.6.
Then M.Uı/ is a tilting bundle on X ss;�=G such that EndXss;�=G.M.Uı// D M.End.Uı//.

Proof. This follows from combining [59, Theorem 1.2] with [59, Lemma 2.9].

In this way we obtain more evidence for Conjecture 1.2.

Corollary 4.18 ([59, Corollary 1.3]). Under the hypotheses of Theorem 4.17, if �;�0 2 X.G/

are in the complement of H0 and the complement of H is nonempty (i.e., H is nondegenerate)
then D.X ss;�=G/ Š D.X ss;�0

=G/.

We also obtained the promised description of NCCRs via resolutions.

Corollary 4.19. Assume that .G; W / is generic and let ƒ be an NCCR constructed via
Theorem 4.6. Let � be in the complement of H0. Then ƒ is the endomorphism ring of a
tilting bundle on the DM stack X ss;�=G.

Remark 4.20. Hidden behind what is discussed in Sections 4.1 and 4.2 is the idea of win-
dows, pioneered in [49]. This is based on the fact that we have a restriction map

Res W D.X=G/ ! D.X ss;�=G/:

11 A G-equivariant map Z ! Y is a good quotient if locally on Y it is of the form U ! U==G

for U affine.
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It is then natural to try to find a full subcategory D � D.X=G/ such that the restriction of
Res to D yields an equivalence D Š D.X ss;�=G/. A very general result in this direction
is [58, Theorem 1.1], see also [5].

In concrete cases one may hope to define D as the full subcategory of D.X=G/

which is split generated by U ˝ OX=G for a suitable G-representation U whose highest
weights are restricted to a certain subset L of X.T /C (a “window”). This is precisely what
happens in Theorem 4.17, where we take L D Lı . The resulting category D is a concrete
realization of [58, Theorem 1.1], see [59, Lemma 3.5].

One does not actually need to have nontrivial X ss;�=G to apply the window prin-
ciple. The proof of Theorem 4.6, is based on the fact that mod.ƒı/ embeds in coh.X=G/ as
the abelian category with a projective generator Uı ˝ OX=G .

4.3. Local systems, the SKMS, and schobers
In this slightly informal section we assume that the hypotheses of Theorem 4.17

hold. While Corollary 4.18 implies that two different D.X ss;�=G/, D.X ss;�0

=G/ are
derived equivalent, the actual derived equivalence depends on the choice of ı in the com-
plement of H . Moreover, by considering compositions D.X ss;�=G/

ı
�! D.X ss;�00

=G/
ı 0

�!

D.X ss;�0

=G/, we may produce more derived equivalences. This is consistent with the asser-
tion in Remark 1.3 that there is no “god-given” derived equivalence between different crepant
resolutions. A different way of saying this is that a crepant resolution may have a large group
of derived autoequivalences.

If M is a Calabi–Yau variety then homological mirror symmetry predicts the exis-
tence of a space S (the “stringy Kähler moduli space,” or SKMS) such that �1.S/ acts on
D.M/. More precisely, S is the moduli space of complex structures on the mirror dual M _

of M . In many cases there are good heuristic descriptions of M _ and S .
Even without access to the full mirror symmetric context, which may be technically

challenging or even only heuristic, it turns out to be very illuminating to represent the derived
autoequivalences of an algebraic variety (or stack) as elements of �1.S/ for a suitable topo-
logical space S . Alternatively, we may think of such a representation as a local system of
triangulated categories on S . Understanding this for D.X ss;�=G/ was, according to the
authors, one of the main motivations for writing [59]. Indeed, when X is a quasisymmetric
representation, under hypotheses of Theorem 4.17, one may take

S D
�
X.G/C � HC

�
=X.G/;

where HC denotes the complexification of the real hyperplane arrangement H [59, Proposi-

tion 6.6].
In this case there is a nice way to understand that action of �1.S/ on D.X ss=G/

[59, §6], [117]. Using Theorem 4.17 again, we may just as well describe the action of �1.S/

on D.ƒı/ for ı contained in the complement of H and ƒı D M.End.Uı//.
For ı 2 X.G/R, define Uı as in (4.4) and put Dı D D.ƒı/. Now H defines a cell

decomposition of X.G/R and it is easy to see that Uı only depends on the cell to which ı

belongs. Hence for a cell C let us write ƒC WD ƒı , DC WD Dı for ı 2 C . We will refer to
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the cells of maximal dimension as chambers. These are also the connected components of
the complement of H .

If C 0 is a face of C then there is an idempotent eC;C 0 2 ƒC 0 such that ƒC D

eC;C 0ƒC 0eC;C 0 . If C ¤ C 00 are distinct adjacent chambers, sharing a codimension one face

C 0 then the functor eC 00;C 0ƒC 0eC;C 0

L
˝ƒC

� defines an equivalence of categories �C;C 00 W

DC ! DC 00 .
Put QS D X.G/C � HC and let …1. QS/ be the groupoid whose objects are the cham-

bers and whose morphisms are given by the homotopy classes of paths in X.G/C � HC

connecting the chambers. Then …1. QS/ is equivalent to the fundamental groupoid of
X.G/C � HC . If C , C 00 are adjacent chambers separated by a hyperplane H 2 H such that
H.C 00/ > 0 then there is a canonical (up to homotopy) minimal path �C;C 00 in X.G/C � HC

going from C to C 00 and passing through ¹ImHC > 0º. Sending C to DC and �C;C 00 to
�C;C 00 defines a representation of the groupoid …1. QS/ in triangulated categories.

If � 2 X.G/ then tensoring by � defines an equivalence DC ! DC C� and in this
way the representation of …1. QS/ may be extended to a representation of …1. QS/ Ì X.G/ and
the latter is equivalent to the fundamental groupoid …1.S/ of S D QS=X.G/ [33, Chapter 11],
[59, §6]. Hence, fixing a “base chamber” C , we get an action of �1;C .S/ on DC .

Remark 4.21. It is shown in [117] that the family of triangulated categories .DC /C for all
cells C is a so-called X.G/-equivariant perverse schober. This is a categorification of a
perverse sheaf on X.G/C=X.G/ [74] (see also [20, 48]). Note that X.G/C=X.G/ is a torus
and S is the complement of a “toric hyperplane arrangement.” If G is itself a torus T then
X.T /C=X.T / may be identified with the dual torus T _.

Remark 4.22. The X.G/-equivariant hyperplane arrangement constructed by Halpern–
Leistner and Sam in [59] is very similar to the Cl.R/-equivariant hyperplane arrangement
associated to a 3-dimensional terminal complete Gorenstein ring R constructed by Iyama
and Wemyss (see Example 4.12). One would expect there to be an associated equivariant
schober also in this case. In the case of a single curve flop this is essentially contained in
[50, §3].

Remark 4.23. As explained we have an action of �1.S/ on DC for a chamber C and hence
also an action of �1.S/ on K0.DC /C . In other words, we have a local system L on S . It
is then a natural question if this local system occurs as the solutions of a natural system of
differential equations. In the case that G is a torus we show in [121] that a generic “equiv-
ariant” deformation of L is obtained as the solution of a well-known system of differential
equations introduced by Gel’fand, Kapranov, and Zelevinsky [55]. This starts from a com-
putation by Kite [86] which shows that the hyperplane arrangement constructed in [59] is up
to translation defined by the so-called “principal A-determinant,” an important ingredient in
the theory developed Gel’fand, Kapranov, and Zelevinsky. For more information, see [115].

Remark 4.24. The themes touched upon in this section occur in many different contexts.
See, e.g., [3,23,29].
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5. NCCRs and stringy E-functions

In this section we discuss some ongoing work of Timothy De Deyn (see [43]). Let X
be an algebraic variety over C. The cohomology groups H i

c .X; C/ carry a natural mixed
Hodge structure. We denote by hp;q.H i

c .X;C// the dimension of the .p;q/-type component
of H i

c .X; C/. The Hodge polynomial of X is defined by

E.X; u; v/ D

X
p;q;i

.�1/i hp;q
�
H i

c .X; C/
�
upvp:

The Hodge polynomial defines a ring homomorphism from the Grothendieck ring of alge-
braic varieties K0.Var =C/ to ZŒu; v�.

We put e.X/ D E.X; 1; 1/, i.e.,

e.X/ D

X
i

.�1/i
X
p;q

hp;q
�
H i

c .X; C/
�

D

X
i

.�1/i dimH i
c .X; C/:

In other words, e.X/ is the Euler characteristic (with compact support12) of X . It defines a
ring homomorphism from K0.Var =C/ to Z.

Definition 5.1 ([6, Definition 3.1]). Assume that X is a normal Q-Gorenstein algebraic
variety=C with at most log-terminal singularities and let � W Y ! X be a resolution of
singularities whose exceptional locus is a normal crossing divisor. Let D1; : : : ; Dr be the
irreducible components of the exceptional locus and put I D ¹1; : : : ; rº. For any subset J � I

we set DJ D
T

j 2J Dj , Dı
J WD DJ n

S
j 2InJ Dj . The stringy E-function of X is defined

as
Est .X; u; v/ WD

X
J �I

E.Dı
J ; u; v/

Y
j 2J

uv � 1

.uv/aj C1 � 1
; (5.1)

where the numbers aj 2 Q \ ��1; 1Œ are defined by

KY D ��KX C

rX
j D1

aj Dj :

Putting est .X/ D limu;v!1 Est .X; u; v/ defines the stringy Euler characteristic
of X , with the formula

est .X/ D

X
J �I

e.Dı
J /
Y
j 2J

1

aj C 1
:

It follows from the theory of motivic integration (see, e.g., [8, 40, 45, 90, 95]) that
Est .X; u; v/ is independent of the chosen resolution Y [6, Theorem 3.4]. Indeed, Est .X; u; v/

may be obtained by integrating over the arc space associated to X [45]. In a similar vein,
Est .X; u; v/ D Est .Y; u; v/ holds for birational maps � W Y ! X satisfying ��KX D KY

[6, Theorem 3.12].
If X is smooth then the stringy E-function coincides with the Hodge polynomial.

Hence one has

12 If X is smooth then, by Poincaré duality, the Euler characteristic with compact support
coincides with the usual Euler characteristic

P
i .�1/i dimH i .X; C/.
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Theorem 5.2 ([6, Theorem 3.12]). If X has a crepant resolution Y then the stringy E-function
of X coincides with the Hodge polynomial of Y . In particular, it is a polynomial. Similarly,
the stringy Euler characteristic of X coincides with the usual Euler characteristic of Y and
hence it is an integer.

The following conjecture seems natural:

Conjecture 5.3 ([43]). IfX is a normal Gorenstein variety=C with an NCCR then its stringy
E-function is a polynomial.

We give some evidence for this conjecture below, but at this point it is probably
safer to regard it as a question. We illustrate below in Remark 5.8 and Example 5.11 that
reasonable extensions of this conjecture are false.

Example 5.4. Quotient varieties of the form Cn==G for G � SL.n/ finite always have a
stringy E-function which is a polynomial by [9], [46, Theorem 3.6]. They also have an NCCR
by Section 3.1. So in this case Conjecture 5.3 is true.

Example 5.5. Batyrev proves in [8, Proposition 4.4] that the stringy E-function of any toric
variety with Gorenstein singularities is a polynomial. Hence Conjecture 5.3 is compatible
with Conjecture 3.7.

A good test for Conjecture 5.3 is given by cones over Fano varieties.

Proposition 5.6 ([43]). Let Z be a smooth projective variety=C with ample line bundle
OZ.1/ and let X D SpecR be the corresponding cone. Assume !Z D OZ.�n/ for n � 1.
Then R is Gorenstein and

Est .X; u; v/ D E.Z; u; v/
.q � 1/qn

qn � 1
(5.2)

with q D uv. In particular,
est .X/ D

e.Z/

n
: (5.3)

Example 5.7. Consider the Grassmannian Z WD Gr.d; n/. Then (e.g., [25, Proposition A.4])

Est .Z; u; v/ D

 
n

d

!
q

; (5.4)

where  
n

d

!
q

D
.qn � 1/.qn�1 � 1/ � � � .qn�dC1 � 1/

.q � 1/.q2 � 1/ � � � .qd � 1/
:

Hence

est .Z/ D

 
n

d

!
: (5.5)

Let X be the cone over Z with respect to the Plucker embedding and let R be the coordi-
nate ring of X . Using (5.2) and (5.4), it is shown in [43] that in this case Est .X; u; v/ is
a polynomial precisely when gcd.d; n/ D 1. On the other hand, by [51, Theorem 3.11] (see
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Example 4.12 above), R has an NCCR when gcd.d; n/ D 1. So Conjecture 5.3 is true in this
case.

Remark 5.8. It is shown in [43, §4.2] that the cone over an arbitrary Grassmannian Gr.d; n/

always has a weakly crepant categorical resolution (see Section 2.2). Hence it follows that
Conjecture 5.3 is false for weakly crepant categorical resolutions. On the other hand, it seems
reasonable to extend Conjecture 5.3 to strongly crepant categorical resolutions.

Remark 5.9. In view of Theorem 5.2, onemay naively ask if it is true thatEst .X;u;v/ being
a polynomial implies that X has a crepant resolution. Not unexpectedly, this fails drastically.
Finite group quotients and affine toric varieties have a polynomial stringy E-function, as we
have seen above, but they need not have a crepant resolution. In fact, the example C4==Z2

given in Section 3.1 of a Gorenstein singularity with an NCCR but without a crepant resolu-
tion, lives in both classes. On the other hand, these classes of counterexamples are not very
convincing since they admit crepant resolutions by smooth Deligne–Mumford stacks, which
is just as good. In the case of finite quotient singularities this is clear, and for toric varieties
it follows from Lemma 3.5.

In contrast, one may show that forX as in Example 5.7 there is no crepant resolution
by a smooth DM-stack (this is mainly becauseR is factorial). So in some sense it is a “better”
counterexample (when gcd.d; n/ ¤ 1).

GIT quotients form an important class of toric varieties (see [39, Corollary 14.2.16]).
So in view of Example 5.5, as well as Example 5.4, the following question by Batyrev sug-
gests itself:

Question 5.10 ([6, Question 5.5]). Does aGIT quotient ofCn for a linear action ofG � SL.n/

always have a stringy E-function that is a polynomial?

Alas, the answer is negative. Indeed, Example 5.7 for gcd.d; n/ ¤ 1 gives a simple
counterexample since the cone over a Grassmannian is a GIT quotient for SL.d/ acting on
n copies of its standard representation.

The first counterexample, however, was constructed much earlier in [84].

Example 5.11. Let W be given by three copies of the adjoint representation of G D SL.2/.
Then by a quite involved computation it is shown in [84, Corollary 1.2] that the stringy E-
function of SpecR forR D Sym.W /G is not a polynomial. This example is interesting since,
by [116, Theorem 1.4.5], R has a twisted NCCR. In other words, Conjecture 5.3 is also false
for twisted NCCRs.

As a side remark, we note that this twisted NCCR is a rather classical object. It is
the trace ring generated by 3 generic traceless 2 � 2 matrices [4,97,99,107–109].

In the setting of Theorem 5.2, the Euler characteristic of Y can be computed
using periodic cyclic homology, thanks to the Hochschild–Kostant–Rosenberg theorem.
Below we define the Euler characteristic e.ƒ/ of an algebra ƒ or a sheaf of algebras as

1381 Noncommutative crepant resolutions, an overview



dim HPeven.ƒ/ � dim HPodd.ƒ/. If ƒ is a quasicoherent sheaf of algebras then we use
HP�.ƒ/ WD HP�.Perfdg ƒ/ (where Perfdg.ƒ/ is a standard dg-enhancement of Perf.ƒ/).
The following conjecture appears plausible.

Conjecture 5.12. The stringy Euler characteristic of a normal Gorenstein variety can be
computed as the Euler characteristic of an NCCR, computed via periodic cyclic homology.

Remark 5.13. One can again not expect this conjecture to hold for twisted NCCRs. An
interesting example is given in [26]. It was shown by [22,92] that for a generic complete inter-
section Y of n quadrics in P 2n�1 one has a derived equivalence between Y and .P n�1; B0/

where B0 is the even part of the universal Clifford algebra corresponding to the quadrics
defining Y . Because of the derived equivalence, we then have e.Y / D e.B0/ [80]. One may
show that B0 is a twisted NCCR of its center which is a double cover Z of P n�1 [26, §1]. It is
shown in [26] that in general e.Y / ¤ est .Z/ and hence e.B0/ ¤ est .Z/. So Conjecture 5.12
does not extend to twisted NCCRs.

In suitable “local” contexts (e.g., [130, Theorem 9.1]) Conjecture 5.12 leads to a more
concrete conjecture:13

Conjecture 5.14 ([43]). Let R a normal Gorenstein ring which is either a complete local
ring, or else connected N-graded (i.e., R0 D C). Assume that R has an NCCR EndR.M/.
Then the number of nonisomorphic indecomposable summands of M is equal to est .X/ for
X D SpecR.

Example 5.15. If X D SpecR is an affine toric variety as in Section 3.4, with Gorenstein
singularities, then Batyrev [6, Proposition 4.10] proves that est .X/ is equal to the volume of
the associated polytope P (see Section 3.4). So Conjecture 5.14 is compatible with Conjec-
ture 3.8.

Example 5.16. For varieties of the form X D W==G D SpecCŒW �G for G � SL.n/ finite
and W a finite dimensional representation of G, it follows from [7, Theorem 8.4] that est .X/

is equal to the number of conjugacy classes in G. This number is in turn equal to the number
of irreducible representations of G and hence equal to the number of nonisomorphic inde-
composable summands of the reflective CŒW �G-module CŒW � which defines an NCCR for
CŒW �G by Section 3.1. So Conjecture 5.14 is true in this specific example.

Example 5.17. Let X be the cone over Gr.d; n/ as in Example 5.7. Then by (5.3) and (5.5)
we have

est .X/ D
1

n

 
n

d

!
:

13 To handle the complete case, one has to use a “completed” version of periodic cyclic
homology. See [130].
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We check that Conjecture 5.14 is compatible with the NCCR constructed by Doyle in [51,

Theorem 3.11] (see Example 4.12 above). Conjecture 5.14 amounts to

jPd;n�d j D
1

n

 
n

d

!
;

which is indeed true by [101, §12.1].

Example 5.17 can be put in a more general context. Let us first state a lemma.

Lemma 5.18. Let Z be a smooth projective variety with a tilting complex. Then one has
e.Z/ D rkK0.Z/.

Proof. Let T be the tilting complex and put A D EndZ.T /. We have:

(1) Euler characteristics may be computed with periodic cyclic homology.

(2) Periodic cyclic homology is invariant under derived equivalence [80], and so are
Grothendieck groups;

(3) HP�.A/ D HP�.A= radA/ by Goodwillie’s theorem [56, Theorem II.5.1], and the
standard fact that K0.A/ D K0.A= radA/.

So we conclude
e.Z/

.1;2/
D e.A/

.3/
D rkK0.A/

.2/
D rkK0.Z/:

Let us go back to the setting of Proposition 5.6 but assume now in addition that Z

has a tilting complex. Then by (5.3) combined with Lemma 5.18, we get

est .X/ D
rkK0.Z/

n
:

Assuming that R has a graded NCCR ƒ, Conjecture 5.14 implies

rkK0.ƒ/ D
rkK0.Z/

n
: (5.6)

Example 5.19. This formula holds for the NCCRs constructed via Proposition 3.3. Indeed,
rkK0.ƒ/ is given by the number u of nonisomorphic indecomposable summands of E . On
the other hand, D.Z/ has a semiorthogonal decomposition consisting of n parts whose K0

also has rank u. So (5.6) does indeed hold, and we obtain again some evidence for Conjec-
ture 5.14.

Remark 5.20. One way to think of this example as the realization of the (conjectured)
“motivic” identity (5.6) via semiorthogonal decompositions of derived categories. See [106]

for another (deeper) instance of this principle.

Acknowledgments

First and foremost, I am grateful to my coauthor and friend Špela Špenko for contributing
much of the mathematics of our joint work. Without her input this survey would have been
a lot shorter.

1383 Noncommutative crepant resolutions, an overview



Furthermore, I thank Shinnosuke Okawa for readily answering all my questions about the
minimal model program. Likewise I thank Michael Wemyss for input on the noncommuta-
tive geometry of cDV singularities.

Funding

This work was partially supported by the Advanced ERC grant 885203 “Schobers, Muta-
tions and Stability”.

References

[1] Quotient singularities with no crepant resolution?, 2011, https://mathoverflow.net/
questions/66657/quotient-singularities-with-no-crepant-resolution/66702.

[2] C. Amiot and S. Oppermann, Cluster equivalence and graded derived equivalence.
Doc. Math. 19 (2014), 1155–1206.

[3] R. Anno, R. Bezrukavnikov, and I. Mirković, Stability conditions for Slodowy
slices and real variations of stability. Mosc. Math. J. 15 (2015), no. 2, 187–203,
403.

[4] M. Artin, On Azumaya algebras and finite dimensional representations of rings.
J. Algebra 11 (1969), 532–563.

[5] M. Ballard, D. Favero, and L. Katzarkov, Variation of geometric invariant theory
quotients and derived categories. J. Reine Angew. Math. 746 (2019), 235–303.

[6] V. V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical
singularities. In Integrable systems and algebraic geometry (Kobe/Kyoto, 1997),
pp. 1–32, World Sci. Publ., River Edge, NJ, 1998.

[7] V. V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-
terminal pairs. J. Eur. Math. Soc. (JEMS) 1 (1999), no. 1, 5–33.

[8] V. V. Batyrev, Stringy Hodge numbers and Virasoro algebra. Math. Res. Lett. 7
(2000), no. 2–3, 155–164.

[9] V. V. Batyrev and D. I. Dais, Strong McKay correspondence, string-theoretic
Hodge numbers and mirror symmetry. Topology 35 (1996), no. 4, 901–929.

[10] A. Beauville, Symplectic singularities. Invent. Math. 139 (2000), no. 3, 541–549.
[11] A. Beilinson, Coherent sheaves on P n and problems of linear algebra. Funct.

Anal. Appl. 12 (1978), 214–216.
[12] A. Beilinson and J. Bernstein, Localisation de g-modules. C. R. Acad. Sci. Paris

Sér. I Math. 292 (1981), 15–18.
[13] R. Bezrukavnikov, Noncommutative counterparts of the Springer resolution. In

International Congress of Mathematicians. Vol. II, pp. 1119–1144, Eur. Math.
Soc., Zürich, 2006.

[14] R. Bezrukavnikov and D. Kaledin, McKay equivalence for symplectic resolutions
of quotient singularities. Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom.
Metody, Svyazi i Prilozh., 20–42.

1384 M. Van den Bergh

https://mathoverflow.net/questions/66657/quotient-singularities-with-no-crepant-resolution/66702
https://mathoverflow.net/questions/66657/quotient-singularities-with-no-crepant-resolution/66702


[15] R. Bezrukavnikov and D. Kaledin, Fedosov quantization in positive characteristic.
J. Amer. Math. Soc. 21 (2008), no. 2, 409–438.

[16] R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a
semisimple Lie algebra in prime characteristic. Ann. of Math. (2) 167 (2008),
no. 3, 945–991, With an appendix by Bezrukavnikov and Simon Riche.

[17] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal
models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), no. 2,
405–468.

[18] A. Bodzenta and A. Bondal, Flops and spherical functors. 2015,
arXiv:1511.00665v2.

[19] A. Bondal, Representations of associative algebras and coherent sheaves. Math.
USSR, Izv. 34 (1990), no. 1, 23–42.

[20] A. Bondal, M. Kapranov, and V. Schechtman, Perverse schobers and birational
geometry. Selecta Math. (N.S.) 24 (2018), no. 1, 85–143.

[21] A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties.
1995, arXiv:alg-geom/9506012.

[22] A. Bondal and D. Orlov, Derived categories of coherent sheaves. In Proceed-
ings of the International Congress of Mathematicians, Vol. II (Beijing, 2002),
pp. 47–56, Higher Ed. Press, Beijing, 2002.

[23] L. A. Borisov and R. P. Horja, Mellin–Barnes integrals as Fourier–Mukai trans-
forms. Adv. Math. 207 (2006), no. 2, 876–927.

[24] L. Borisov, L. Chen, and G. Smith, The orbifold Chow ring of toric Deligne–
Mumford stacks. J. Amer. Math. Soc. 18 (2005), no. 1, 193–215.

[25] L. Borisov and A. Libgober, Stringy E-functions of Pfaffian-Grassmannian
double mirrors. Algebr. Geom. 6 (2019), no. 4, 486–515.

[26] L. Borisov and C. Wang, On stringy Euler characteristics of Clifford non-
commutative varieties. Adv. Math. 349 (2019), 1117–1150.

[27] T. Bridgeland, Flops and derived categories. Invent. Math. 147 (2002), no. 3,
613–632.

[28] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equiva-
lence of derived categories. J. Amer. Math. Soc. 14 (2001), no. 3, 535–554.

[29] T. Bridgeland, Y. Qiu, and T. Sutherland, Stability conditions and the A2 quiver.
Adv. Math. 365 (2020), 107049.

[30] T. Bridgeland and D. Stern, Helices on del Pezzo surfaces and tilting Calabi–Yau
algebras. Adv. Math. 224 (2010), no. 4, 1672–1716.

[31] M. Brion, Sur les modules de covariants. Ann. Sci. Éc. Norm. Supér. (4) 26
(1993), 1–21.

[32] N. Broomhead, Dimer models and Calabi–Yau algebras. Mem. Amer. Math. Soc.
215 (2012), no. 1011, viii+86 pp.

[33] R. Brown, Topology and groupoids. BookSurge, LLC, Charleston, SC, 2006.

1385 Noncommutative crepant resolutions, an overview

https://arxiv.org/abs/1511.00665v2
https://arxiv.org/abs/alg-geom/9506012


[34] R.-O. Buchweitz, G. J. Leuschke, and M. Van den Bergh, Non-commutative
desingularization of determinantal varieties I. Invent. Math. 182 (2010), no. 1,
47–115.

[35] R.-O. Buchweitz, G. J. Leuschke, and M. Van den Bergh, On the derived category
of Grassmannians in arbitrary characteristic. Compos. Math. 151 (2015), no. 7,
1242–1264.

[36] R.-O. Buchweitz, G. J. Leuschke, and M. Van den Bergh, Non-commutative
desingularization of determinantal varieties, II: arbitrary minors. Int. Math. Res.
Not. IMRN 9 (2016), 2748–2812.

[37] S. Cautis, J. Kamnitzer, and A. Licata, Derived equivalences for cotangent bun-
dles of Grassmannians via categorical sl2 actions. J. Reine Angew. Math. 675
(2013), 53–99.

[38] J.-C. Chen, Flops and equivalences of derived categories for threefolds with only
terminal Gorenstein singularities. J. Differential Geom. 61 (2002), no. 2, 227–261.

[39] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties. Grad. Stud. Math. 124,
American Mathematical Society, Providence, RI, 2011.

[40] A. Craw, An introduction to motivic integration. In Strings and geometry,
pp. 203–225, Clay Math. Proc. 3, Amer. Math. Soc., Providence, RI, 2004.

[41] H. Dao, Remarks on non-commutative crepant resolutions of complete intersec-
tions. Adv. Math. 224 (2010), no. 3, 1021–1030.

[42] H. Dao, O. Iyama, R. Takahashi, and M. Wemyss, Gorenstein modifications and
Q-Gorenstein rings. J. Algebraic Geom. 29 (2020), no. 4, 729–751.

[43] T. De Deyn, A note on affine cones over Grassmannians and their stringy
E-functions. 2022, arXiv:2203.06040.

[44] L. de Thanhoffer de Völcsey and M. Van den Bergh, Some new examples of non-
degenerate quiver potentials. Int. Math. Res. Not. IMRN 20 (2013), 4672–4686.

[45] J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic
integration. Invent. Math. 135 (1999), no. 1, 201–232.

[46] J. Denef and F. Loeser, Motivic integration, quotient singularities and the McKay
correspondence. Compos. Math. 131 (2002), no. 3, 267–290.

[47] H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their rep-
resentations. I. Mutations. Selecta Math. (N.S.) 14 (2008), no. 1, 59–119.

[48] W. Donovan, Perverse schobers on Riemann surfaces: constructions and exam-
ples. Eur. J. Math. 5 (2019), no. 3, 771–797.

[49] W. Donovan and E. Segal, Window shifts, flop equivalences and Grassmannian
twists. Compos. Math. 150 (2014), no. 6, 942–978.

[50] W. Donovan and M. Wemyss, Stringy Kähler moduli, mutation and monodromy.
2019, arXiv:1907.10891.

[51] B. Doyle, Homological Projective Duality for the Plücker embedding of the Grass-
mannian. 2021, arXiv:2110.10589.

[52] D. Edidin and D. Rydh, Canonical reduction of stabilizers for Artin stacks with
good moduli spaces. Duke Math. J. 170 (2021), no. 5, 827–880.

1386 M. Van den Bergh

https://arxiv.org/abs/2203.06040
https://arxiv.org/abs/1907.10891
https://arxiv.org/abs/2110.10589


[53] A. I. Efimov, Derived categories of Grassmannians over integers and modular rep-
resentation theory. Adv. Math. 304 (2017), 179–226.

[54] A. I. Efimov, Categorical smooth compactifications and generalized Hodge-to-de
Rham degeneration. Invent. Math. 222 (2020), no. 2, 667–694.

[55] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Hypergeometric functions
and toric varieties. Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, 12–26.

[56] T. G. Goodwillie, Cyclic homology, derivations, and the free loopspace. Topology
24 (1985), no. 2, 187–215.

[57] D. R. Gulotta, Properly ordered dimers, R-charges, and an efficient inverse algo-
rithm. J. High Energy Phys. 10 (2008), 14.

[58] D. Halpern-Leistner, The derived category of a GIT quotient. J. Amer. Math. Soc.
28 (2015), no. 3, 871–912.

[59] D. Halpern-Leistner and S. Sam, Combinatorial constructions of derived equiva-
lences. J. Amer. Math. Soc. 33 (2020), 735–773.

[60] D. Halpern-Leistner and I. Shipman, Autoequivalences of derived categories via
geometric invariant theory. Adv. Math. 303 (2016), 1264–1299.

[61] W. Hara, On the Abuaf–Ueda flop via non-commutative crepant resolutions,
SIGMA Symmetry Integrability Geom. Methods Appl. 17 (2021), Paper No. 044,
22 pp.

[62] L. Hille and M. Perling, Tilting bundles on rational surfaces and quasi-hereditary
algebras. Ann. Inst. Fourier (Grenoble) 64 (2014), no. 2, 625–644.

[63] Y. Hirano and M. Wemyss, Stability conditions for 3-fold flops. 2019,
arXiv:1907.09742.

[64] C. Ingalls and T. Yasuda, Log centres of twisted noncommutative crepant reso-
lutions are Kawamata log terminal: remarks on a paper of Stafford and Van den
Bergh. Preprint, 2013.

[65] C. Ingalls and T. Yasuda, Logarithmic centres of twisted noncommutative crepant
resolutions are Kawamata log terminal, 2013, https://people.math.carleton.ca/
~cingalls/research/presentations/cmsWinter2013.pdf.

[66] A. Ishii and K. Ueda, Dimer models and the special McKay correspondence.
Geom. Topol. 19 (2015), no. 6, 3405–3466.

[67] O. Iyama and I. Reiten, Fomin–Zelevinsky mutation and tilting modules over
Calabi–Yau algebras. Amer. J. Math. 130 (2008), no. 4, 1087–1149.

[68] O. Iyama and M. Wemyss, On the noncommutative Bondal–Orlov conjecture.
J. Reine Angew. Math. 683 (2013), 119–128.

[69] O. Iyama and M. Wemyss, Maximal modifications and Auslander–Reiten duality
for non-isolated singularities. Invent. Math. 197 (2014), no. 3, 521–586.

[70] O. Iyama and M. Wemyss, Singular derived categories of Q-factorial terminaliza-
tions and maximal modification algebras. Adv. Math. 261 (2014), 85–121.

[71] O. Iyama and M. Wemyss, Tits cones intersections and applications, 2021, https://
www.maths.gla.ac.uk/~mwemyss/MainFile_for_web.pdf.

1387 Noncommutative crepant resolutions, an overview

https://arxiv.org/abs/1907.09742
https://people.math.carleton.ca/~cingalls/research/presentations/cmsWinter2013.pdf
https://people.math.carleton.ca/~cingalls/research/presentations/cmsWinter2013.pdf
https://www.maths.gla.ac.uk/~mwemyss/MainFile_for_web.pdf
https://www.maths.gla.ac.uk/~mwemyss/MainFile_for_web.pdf


[72] D. Kaledin, Derived equivalences by quantization. Geom. Funct. Anal. 17 (2008),
no. 6, 1968–2004.

[73] M. M. Kapranov, On the derived categories of coherent sheaves on some homoge-
neous spaces. Invent. Math. 92 (1988), no. 3, 479–508.

[74] M. Kapranov and V. Schechtman. Perverse schobers 2015, arXiv:1411.2772.
[75] L. Katzarkov, M. Kontsevich, and T. Pantev, Hodge theoretic aspects of mirror

symmetry. In From Hodge theory to integrability and TQFT tt�-geometry,
pp. 87–174, Proc. Sympos. Pure Math. 78, Amer. Math. Soc., Providence, RI,
2008.

[76] Y. Kawamata, D-equivalence and K-equivalence. J. Differential Geom. 61
(2002), no. 1, 147–171.

[77] Y. Kawamata, In Derived equivalence for stratified Mukai flop on G.2; 4/, Mirror
symmetry. V, pp. 285–294, AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc., Prov-
idence, RI, 2006.

[78] Y. Kawamata, Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44
(2008), no. 2, 419–423.

[79] Y. Kawamata, Derived categories of toric varieties III. Eur. J. Math. 2 (2016),
no. 1, 196–207.

[80] B. Keller, On the cyclic homology of exact categories. J. Pure Appl. Algebra 136
(1999), no. 1, 1–56.

[81] B. Keller, Quiver mutation in JavaScript and Java, https://webusers.imj-prg.fr/
~bernhard.keller/quivermutation/.

[82] B. Keller and H. Krause, Tilting preserves finite global dimension. C. R. Math.
Acad. Sci. Paris 358 (2020), no. 5, 563–570.

[83] B. Keller and D. Yang, Derived equivalences from mutations of quivers with
potential. Adv. Math. 226 (2011), no. 3, 2118–2168.

[84] Y.-H. Kiem, The stringy E-function of the moduli space of rank 2 bundles
over a Riemann surface of genus 3. Trans. Amer. Math. Soc. 355 (2003), no. 5,
1843–1856.

[85] F. C. Kirwan, Partial desingularisations of quotients of nonsingular varieties and
their Betti numbers. Ann. of Math. (2) 122 (1985), no. 1, 41–85.

[86] A. Kite, Discriminants and quasi-symmetry. 2017, arXiv:1711.08940.
[87] F. Knop, Über die Glattheit von Quotientenabbildungen. Manuscripta Math. 56

(1986), no. 4, 419–427.
[88] J. Kollár, Flops. Nagoya Math. J. 113 (1989), 15–36.
[89] J. Kollár and S. Mori, Birational geometry of algebraic varieties. Cambridge

Tracts in Math. 134, Cambridge University Press, Cambridge, 1998. With the
collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese
original

[90] M. Kontsevich, Motivic integration. Lecture at Orsay, December 1995.
[91] A. Kuznetsov, Homological projective duality. Publ. Math. Inst. Hautes Études

Sci. 105 (2007), 157–220.

1388 M. Van den Bergh

https://arxiv.org/abs/1411.2772
https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/
https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/
https://arxiv.org/abs/1711.08940


[92] A. Kuznetsov, Derived categories of quadric fibrations and intersections of
quadrics. Adv. Math. 218 (2008), no. 5, 1340–1369.

[93] A. Kuznetsov, Lefschetz decompositions and categorical resolutions of singulari-
ties. Selecta Math. (N.S.) 13 (2008), no. 4, 661–696.

[94] A. Kuznetsov and V. A. Lunts, Categorical resolutions of irrational singularities.
Int. Math. Res. Not. 13 (2015), 4536–4625.

[95] E. León-Cardenal, J. Martín-Morales, W. Veys, and J. Viu-Sos, Motivic zeta func-
tions on Q-Gorenstein varieties. Adv. Math. 370 (2020), 107192.

[96] G. J. Leuschke, Non-commutative crepant resolutions: scenes from categorical
geometry. In Progress in commutative algebra 1, pp. 293–361, de Gruyter, Berlin,
2012.

[97] L. Le Bruyn, Trace rings of generic 2 by 2 matrices. Mem. Amer. Math. Soc. 66
(1987), no. 363, vi+100 pp.

[98] L. Le Bruyn, Quiver concomitants are often reflexive Azumaya. Proc. Amer.
Math. Soc. 105 (1989), no. 1, 10–16.

[99] L. Le Bruyn and M. Van den Bergh, Regularity of trace rings of generic matrices.
J. Algebra 117 (1988), no. 1, 19–29.

[100] H.-W. Lin, On crepant resolution of some hypersurface singularities and a crite-
rion for UFD. Trans. Amer. Math. Soc. 354 (2002), no. 5, 1861–1868.

[101] N. A. Loehr, In Bijective combinatorics, Discrete Math. Appl. (Boca Raton), CRC
Press, Boca Raton, FL, 2011.

[102] V. A. Lunts, Categorical resolution of singularities. J. Algebra 323 (2010), no. 10,
2977–3003.

[103] Y. Namikawa, Mukai flops and derived categories. II. In Algebraic structures and
moduli spaces, pp. 149–175, CRM Proc. Lecture Notes 38, Amer. Math. Soc.,
Providence, RI, 2004.

[104] Y. Namikawa, Induced nilpotent orbits and birational geometry. Adv. Math. 222
(2009), no. 2, 547–564.

[105] A. Neeman, The connection between the K-theory localization theorem of
Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield
and Ravenel. Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), no. 5, 547–566.

[106] A. Polishchuk and M. Van den Bergh, Semiorthogonal decompositions of the cat-
egories of equivariant coherent sheaves for some reflection groups. J. Eur. Math.
Soc. (JEMS) 21 (2019), no. 9, 2653–2749.

[107] C. Procesi, The invariant theory of n � n matrices. Adv. Math. 19 (1976), no. 3,
306–381.

[108] C. Procesi, A formal inverse to the Cayley–Hamilton theorem. J. Algebra 107
(1987), no. 1, 63–74.

[109] Ju. P. Razmyslov, Identities with trace in full matrix algebras over a field of char-
acteristic zero. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 723–756.

[110] Z. Reichstein, Stability and equivariant maps. Invent. Math. 96 (1989), no. 2,
349–383.

1389 Noncommutative crepant resolutions, an overview



[111] M. Reid, Minimal models of canonical 3-folds. In Algebraic varieties and analytic
varieties (Tokyo, 1981), pp. 131–180, Adv. Stud. Pure Math. 1, North-Holland,
Amsterdam, 1983.

[112] J. V. Rennemo, Homological projective duality for symmetric rank loci, lecture at
the conference “Workshop on Derived Categories, Moduli Spaces, and Deforma-
tion Theory”, June 2019.

[113] J. V. Rennemo and E. Segal, Hori-mological projective duality. Duke Math. J. 168
(2019), no. 11, 2127–2205.

[114] J. Rickard, Morita theory for derived categories. J. Lond. Math. Soc. (2) 39
(1989), 436–456.

[115] Š. Špenko, HMS symmetries and hypergeometric systems. In Proceeding of the
8th European Congres of Mathematics, 2021, to appear.

[116] Š. Špenko and M. Van den Bergh, Non-commutative resolutions of quotient sin-
gularities for reductive groups. Invent. Math. 210 (2017), no. 1, 3–67.

[117] Š. Špenko and M. Van den Bergh, A class of perverse schobers in geometric
invariant theory. 2019, arXiv:1908.04213.

[118] Š. Špenko and M. Van den Bergh, Comparing the Kirwan and noncommutative
resolutions of quotient varieties. 2019, arXiv:1912.01689.

[119] Š. Špenko and M. Van den Bergh, Non-commutative crepant resolutions for some
toric singularities I. Int. Math. Res. Not. IMRN 21 (2020), 8120–8138.

[120] Š. Špenko and M. Van den Bergh, Non-commutative crepant resolutions for some
toric singularities. II. J. Noncommut. Geom. 14 (2020), no. 1, 73–103.

[121] Š. Špenko and M. Van den Bergh, Perverse schobers and GKZ systems,
arXiv:2007.04924. To appear in Adv. Math., 2020.

[122] J. T. Stafford and M. Van den Bergh, Noncommutative resolutions and rational
singularities. Michigan Math. J. 57 (2008), 659–674.

[123] M. Van den Bergh, Modules of covariants. In Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 352–362, Birkhäuser,
1995.

[124] M. Van den Bergh, Cohen–Macaulayness of modules of covariants. Invent. Math.
106 (1991), 389–409.

[125] M. Van den Bergh, Cohen–Macaulayness of semi-invariants for tori. Trans. Amer.
Math. Soc. 336 (1993), no. 2, 557–580.

[126] M. Van den Bergh, A converse to Stanley’s conjecture for Sl2. Proc. Amer. Math.
Soc. 121 (1994), no. 1, 47–51.

[127] M. Van den Bergh, Local cohomology of modules of covariants. Adv. Math. 144
(1999), no. 2, 161–220.

[128] M. Van den Bergh, Non-commutative crepant resolutions. In The legacy of Niels
Henrik Abel, pp. 749–770, Springer, Berlin, 2004.

[129] M. Van den Bergh, Three-dimensional flops and noncommutative rings. Duke
Math. J. 122 (2004), no. 3, 423–455.

1390 M. Van den Bergh

https://arxiv.org/abs/1908.04213
https://arxiv.org/abs/1912.01689
https://arxiv.org/abs/2007.04924


[130] M. Van den Bergh, Calabi—Yau algebras and superpotentials. Selecta Math.
(N.S.) 21 (2015), no. 2, 555–603.

[131] M. Wemyss, Noncommutative resolutions. In Noncommutative algebraic geom-
etry, pp. 239–306, Math. Sci. Res. Inst. Publ. 64, Cambridge Univ. Press, New
York, 2016.

[132] M. Wemyss, Flops and clusters in the homological minimal model programme.
Invent. Math. 211 (2018), no. 2, 435–521.

[133] M. Wemyss, A lockdown survey on cDV singularities. 2021, arXiv:2103.16990.
[134] H. Weyl, The classical groups. Princeton University Press, 1946.
[135] J. Weyman, Cohomology of vector bundles and syzygies 149, Cambridge Univer-

sity Press, 2003.
[136] J. Weyman and G. Zhao, Noncommutative desingularization of orbit closures for

some representations of GLn. 2012, arXiv:1204.0488.

Michel Van den Bergh

Free University of Brussels, Pleinlaan 2, 1050 Brussel, Belgium, and
Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium, and
Research Foundation – Flanders, Egmontstraat 5, 1000 Brussel, Belgium,
michel.vandenbergh@uhasselt.be, michel.van.den.bergh@vub.be

1391 Noncommutative crepant resolutions, an overview

https://arxiv.org/abs/2103.16990
https://arxiv.org/abs/1204.0488
mailto:michel.vandenbergh@uhasselt.be, michel.van.den.bergh@vub.be

	1. Introduction
	1.1. Notation and conventions
	1.2. Crepant resolutions and derived equivalences
	1.3. Noncommutative rings
	1.4. Bridgeland's result
	1.4.1. Flops
	1.4.2. Maps with fibers of dimension ≤1


	2. Noncommutative (crepant) resolutions
	2.1. Generalities
	2.2. Relation with crepant categorical resolutions

	3. Constructions of noncommutative crepant resolutions
	3.1. Quotient singularities
	3.2. Crepant resolutions with tilting complexes
	3.3. Resolutions with partial tilting complexes
	3.4. Three-dimensional affine toric varieties
	3.5. Mutations

	4. Quotient singularities for reductive groups
	4.1. NCCRs via modules of covariants
	4.2. NCCRs via crepant resolutions obtained by GIT
	4.3. Local systems, the SKMS, and schobers

	5. NCCRs and stringy E-functions
	References

