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Abstract

[This paper is a (modified, self contained) chapter in my recent book on computational
complexity theory [176], called Mathematics and Computation, available online at https://
www.math.ias.edu/avi/book].
We survey some concrete interaction areas between computational complexity theory
and different fields of mathematics. We hope to demonstrate here that hardly any area of
modern mathematics is untouched by the computational connection (which in some cases
is completely natural and in others may seem quite surprising). In my view, the breadth,
depth, beauty, and novelty of these connections is inspiring, and speaks to a great poten-
tial of future interactions (which indeed, are quickly expanding). We aim for variety. We
give short, simple descriptions (without proofs or much technical detail) of ideas, moti-
vations, results, and connections; this will hopefully entice the reader to dig deeper. Each
vignette focuses only on a single topic within a large mathematical field, and is meant to be
illustrative rather that comprehensive. We cover the following:

• Number Theory: Primality testing
• Combinatorial Geometry: Point-line incidences
• Operator Theory: The Kadison–Singer problem
• Metric Geometry: Distortion of embeddings
• Group Theory: Generation and random generation
• Statistical Physics: Monte Carlo Markov chains
• Analysis and Probability: Noise stability
• Lattice Theory: Short vectors
• Invariant Theory: Group actions on matrix tuples (and beyond)
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1. Introduction

The Theory of Computation (ToC) lays out the mathematical foundations of com-
puter science. I am often asked if ToC is a branch of Mathematics, or of Computer Science.
The answer is easy: it is clearly both (and in fact, much more). Ever since Turing’s 1936
definition of the Turing machine, we have had a formal mathematical model of computation
that enables the rigorous mathematical study of computational tasks, algorithms to solve
them, and the resources these require. At the same time, the simple description of the Turing
machine allowed its simple logical structure to be implemented in hardware, and its universal
applicability fueled the rapid development of computer technology, which now dominates
our life.

Computation was part mathematics from its origins, and motivated many of its
developments. Algorithmic questions have occupied mathematicians throughout history (as
elaborated in the introduction to the book [176]), and this naturally grew considerably when
computers arrived. However, the advent of computational complexity theory over the past
few decades has greatly expanded and deepened these connections. The study of new diverse
models generated and studied in complexity theory broadened the nature of mathematical
problems it encountered and formulated, and the mathematical areas and tools which bear
upon these problems. This expansion has led to numerous new interactions that enrich both
disciplines. This survey tells the stories of some of these interactions with different mathe-
matical fields, illustrating their diversity.

We note in passing that a similar explosion of connections and interactions is under-
way between ToC and practically all sciences. These stem from computational aspects of
diverse natural processes, which beg for algorithmic modeling and analysis. As with mathe-
matics, these interactions of ToC with the sciences enrich both sides, expose computation as
a central notion of intellectual thought, and highlight its study as an independent discipline,
whose mission and goals expand way beyond those emanating from its parent fields of Math
and CS. But this is the subject of a different survey (which I partly provide in the last chapter
of [176]).

Back to the interactions of computational complexity theory and different areas of
math. I have chosen to focus on essentially one problem or development within each mathe-
matical field. Typically, this touches only a small subarea, and does not do justice to a wealth
of other connections. Thus each vignette should be viewed as a demonstration of a larger
body of work and even bigger potential. Indeed, while in some areas the collaborations are
quite well established, in others they are just budding, with lots of exciting problems waiting
to be solved and theories to be developed. Furthermore, the connections to algorithms and
complexity (which I explain in each) are quite natural in some areas, but quite surprising
in others. While the descriptions of each topic are relatively short, they include background
and intuition, as well as further reading material. Indeed, I hope these vignettes will tempt
the reader to explore further.

We note that new connections are discovered at a rapid pace. A strong case in point
is the recent complexity-theoretic breakthrough of MIP �

D RE [100], establishing the sur-
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prising power of quantum, multiprover interactive proof systems. This paper had already
discussed several surprising applications resolving key conjectures in different mathemati-
cal areas, including operator algebras, quantum information theory, and group theory, and
now more implications of the techniques and results are being pursued.

The sections below can be read in any order. The selection of fields and foci was
affected by my personal taste and limited knowledge. More connections to other fields like
Combinatorics, Optimization, Logic, Topology, Coding Theory, and Information Theory
appear in parts of the book [176].

2. Number theory

As mentioned, the need to efficiently compute mathematical objects has been cen-
tral to mathematicians and scientists throughout history, and, of course, the earliest subject is
arithmetic. Perhaps the most radical demonstration is the place value system we use to repre-
sent integers, which is in place for millenia precisely due to the fact that it supports extremely
efficient manipulation of arithmetic operations. The next computational challenge in arith-
metic, since antiquity, was accessing the multiplicative structure of integers represented this
way.

Here is an except from C. F. Gauss’ appeal1 to the mathematics community of his
time (in article 329 of Disquisitiones Arithmeticae (1801)), regarding the computational
complexity of testing primality and integer factorization. The importance Gauss assigns to
this computational challenge, his frustration of the state-of-the-art, and his imploring the
mathematical community to resolve it shine through!

The problem of distinguishing prime numbers from composite numbers, and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to discuss the problem at length.
Nevertheless, we must confess that all methods that have been proposed thus far are either
restricted to very special cases or are so laborious and difficult that even for numbers that
do not exceed the limits of tables constructed by estimable men, they try the patience of even
the practiced calculator. And these methods do not apply at all to larger numbers … the
dignity of the science itself seems to require that every possible means be explored for the
solution of a problem so elegant and so celebrated.

We briefly recount the state-of-the-art of these two basic algorithmic problems in
number theory. A remarkable response to Gauss’ first question, efficiently deciding primality,
was found in 2002 by Agrawal, Kayal, and Saxena [8]. The use of symbolic polynomials for
this problem is completely novel. Here is their elegant characterization of prime numbers.

Theorem 2.1 ([8]). An integer N � 2 is prime if and only if

1 Which is, of course, in Latin. I copied this English translation from a wonderful survey of
Granville [82] on the subject matter of this section.
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• N is not a perfect power,

• N does not have any prime factor � .log N /4,

• For every r; a < .log N /4, we have the following equivalence of polynomials over
ZN ŒX�:

.X C a/N
� XN

C a mod .X r
� 1/:

It is not hard to see that this characterization gives rise to a simple algorithm for
testing primality that is deterministic, and runs in time that is polynomial in the binary
description length of N . Previous deterministic algorithms either assumed the generalize
Riemann hypothesis [133] or required slightly superpolynomial time [5]. The AKS deter-
ministic algorithm came after a sequence of efficient probabilistic algorithms [4,80,150,163],
some elementary and some requiring sophisticated use and development of number-theoretic
techniques. These probabilistic and deterministic algorithms were partly motivated by and
are important to the field of cryptography.

What is not so well-known, even for those who did read the beautiful, ingenious
proof in [8], is that AKS developed their deterministic algorithm by carefully “derandomiz-
ing” a previous probabilistic algorithm for primality of [7] (which uses polynomials). We note
that derandomization, the conversion of probabilistic algorithms into deterministic ones, is
by now a major area in computational complexity with a rich theory, and many other simi-
lar successes as well as challenges. The stunning possibility that every efficient probabilistic
algorithm has a deterministic counterpart is one of the major problems of computational
complexity, and there is strong evidence supporting it (see [94]). Much more on this can be
found in the randomness chapters of [176].

Gauss’ second challenge, of whether efficiently factoring integers is possible, re-
mains open. But this very challenge has enriched computer science, both practical and the-
oretical, in several major ways. Indeed, the assumed hardness of factoring is the main guar-
antee of security in almost all cryptographic and e-commerce systems around the world
(showing that difficult problems can be useful!). More generally, cryptography is an avid
consumer of number theoretic notions, including elliptic curves, Weil pairings, and more,
which are critical to a variety of cryptographic primitives and applications. These develop-
ments shatter Hardy’s view of number theory as a completely useless intellectual endeavor.

There are several problems on integers whose natural definitions depend on factor-
ization, but can, nevertheless, be solved efficiently, bypassing the seeming need to factor.
Perhaps the earliest algorithm ever formally described is Euclid’s algorithm for computing
the GCD (greatest common divisor) of two given integers2 m and n. Another famous such
algorithm is for computing the Legendre–Jacobi symbol . m

n
/ via Gauss’ law of quadratic

reciprocity.
A fast algorithm for factoring may come out of left-field with the new development

of quantum computing, the study of computers based on quantum-mechanical principles,

2 It extends to polynomials, and allows for an efficient way of computing multiplicative
inverses in quotient rings of Z and F Œx�.
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which we discussed in the quantum chapter of the book [176]. Shor has shown in [158] that
such computers are capable of factoring integers in polynomial time. This result led gov-
ernments, companies, and academia to invest billions in developing technologies which will
enable building large-scale quantum computers, and the jury is still out on the feasibility
of this project. There is no known theoretical impediment for doing so, but one possible
reason for failure of this project is the existence of yet-undiscovered principles of quantum
mechanics.

Other central computational problems include solving polynomial equations in finite
fields, for which one of the earliest efficient (probabilistic) algorithms was developed by
Berlekamp [32] (it remains a great challenge to derandomize this algorithm!). Many other
examples can be found in the Algorithmic Number Theory book [26].

3. Combinatorial geometry

What is the smallest area of a planar region which contains a unit length segment
in every direction? This is the Kakeya needle problem (and such sets are called Kakeya
sets), which was solved surprisingly by Besicovich [33] who showed that this area can be
arbitrarily close to zero! Slight variation on his method produces a Kakeya set of Lebesque
measure zero. It makes sense to replace “area” (namely, Lesbegue measure) by the more
robust measures, such as the Hausdorff and Minkowski dimensions. This changes the picture:
Davies [48] proved that a Kakeya set in the plane must have full dimension (D 2) in both
measures, despite being so sparse in Lebesgue measure.

It is natural to extend this problem to higher dimensions. However, obtaining anal-
ogous results (namely, that the Hausdorff and Minkowski dimensions are full) turns out to
be extremely difficult. Despite the seemingly recreational flavor, this problem has significant
importance in a number of mathematical areas (Fourier analysis, wave equations, analytic
number theory, and randomness extraction), and has been attacked through a considerable
diversity of mathematical ideas (see [169]).

The following finite field analogue of the above Euclidean problem was suggested
by Wolff [177]. Let F denote a finite field of size q. A set K � Fn is called Kakeya if it
contains a line in every direction. More precisely, for every direction b 2 Fn there is a point
a 2 Fn such that the line ¹a C bt W t 2 Fº is contained in K. As above, we would like to
show that any such K must be large (think of the dimension n as a large constant, and the
field size q as going to infinity).

Conjecture 3.1. Let K � Fn be a Kakeya set. Then jKj � Cnqn, where Cn is a constant
depending only on the dimension n.

The best exponent of q in such a lower bound intuitively corresponds to the Haus-
dorff and Minkowski dimensions in the Euclidean setting. Using sophisticated techniques
from arithmetic combinatorics, Bourgain, Tao, and others improved the trivial bound of n=2

to about 4n=7.
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Curiously, the exact same conjecture arose, completely independently, within ToC,
from the work [122] on randomness extractors, an area which studies the “purification” of
“weak random sources” (see, e.g., the survey [171] on this important notion). In [122] Wolff’s
conjecture takes a probabilistic form, asking about the (min)-entropy of a random point
on a random line in a Kakeya set. With this motivation, Dvir [61] brilliantly proved the
Wolff conjecture (sometimes called the Finite Field Kakeya conjecture), using the (algebraic-
geometric) “polynomial method” (which is inspired by techniques in decoding algebraic
error-correcting codes). Many other applications of this technique to other geometric prob-
lems quickly followed, including the Guth–Katz [87] resolution of the famous Erdős distance
problem, as well as for optimal randomness extraction and more (some are listed in Dvir’s
survey [62]).

Subsequent work determined the exact value of the constant Cn above (up to a factor
of 2) [63].

Theorem 3.2 ([63]). Let K � Fn be a Kakeya set. Then jKj � .q=2/n. On the other hand,
there exist Kakeya sets of size � 2 � .q=2/n.

Many other problems regarding incidences of points and lines (and higher-dimen-
sional geometric objects) have been the source of much activity and collaboration between
geometers, algebraists, combinatorialists, and computer scientists. The motivation for these
questions in the computer science side come from various sources, e.g., problems on local
correction of errors [27] and derandomization [64, 105]. Other incidence theorems, e.g.,
Szemerédi–Trotter [168] and its finite field version of Bourgain–Katz–Tao [37] have been
used, e.g., in randomness extraction [28] and compressed sensing [85].

4. Operator theory

The following basic mathematical problem of Kadison and Singer from 1959 [102]

was intended to formalize a basic question of Dirac concerning the “universality” of mea-
surements in quantum mechanics. We need a few definitions. Consider B.H /, the algebra of
continuous linear operators on a Hilbert space H . Define a state to be a linear functional f

on B.H /, normalized to f .I / D 1, which takes nonnegative values on positive semidefinite
operators. The states form a convex set, and a state is called pure if it is not a convex com-
bination of other states. Finally, let D be the subalgebra of B.H / consisting of all diagonal
operators (after fixing some basis).

Kadison and Singer asked if every pure state on D has a unique extension to B.H /.
This problem on infinite-dimensional operators found a host of equivalent formulations in
finite dimensions, with motivations and intuitions from operator theory, discrepancy theory,
Banach space theory, signal processing, and probability. All of them were solved affirma-
tively in recent work of Marcus, Spielman, and Srivastava [127] (which also surveys the many
related conjectures). Here is one statement they prove, which implies the others.
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Theorem 4.1 ([127]). For every " > 0, there is an integer k D k."/ so that the following
holds. Fix any n and any n � n matrix A with zeros on the diagonal and of spectral norm 1.
Then there is a partition of ¹1; 2; : : : ; nº into k subsets, S1; S2; : : : ; Sk , so that each of the
principal minors Ai (namely A restricted to rows and columns in Si ) has spectral norm at
most ".

This statement clearly implies that one of the minors has linear size, at least n=k.
This consequence is known as the Restricted Invertibility Theorem of Bourgain and Tzafriri
[38], itself an important result in operator theory.

How did computer scientists get interested in this problem? Without getting into
too many details, here is a sketchy description of the meandering path which led to this
spectacular result.

A central computational problem, at the heart of numerous applications, is solv-
ing a linear system of equations. While Gaussian elimination does the job quite efficiently
(the number of arithmetic operations is about n3 for n � n matrices), for large n this is
still inefficient. Thus faster methods are sought, hopefully nearly linear in the number of
nonzero entries of the given matrix. For Laplacian3 linear systems (arising in many graph
theory applications, such as computing electrical flows and random walks), Spielman and
Teng [165] achieved precisely that! A major notion they introduced was spectral sparsifiers
of matrices (or equivalently, weighted graphs).

A sparsifier of a given matrix is another matrix, with far fewer (indeed, linear)
nonzero entries, which, nevertheless, has essentially the same (normalized) spectrum as the
original (it is not even obvious that such a sparse matrix exists). We note that a very special
case of sparsifiers of complete graphs are by definition expander graphs4 (see much more
about this central concept of expanders in [93, 176]). The algorithmic applications led to a
quest for optimal constructions of sparsifiers for arbitrary Laplacian matrices (in terms of
trade-off between sparsity and approximation), and these were beautifully achieved in [29]

(who also provided a deterministic polynomial time algorithm to construct such sparsifiers).
This in turn has led [164] to a new proof, with better analysis, of the Restricted Invertibility
theorem mentioned above, making the connection to the Kadison–Singer problem.

However, the solution to Kadison–Singer seemed to require another detour. The
same team [126] first resolved a bold conjecture of Bilu and Linial [34] on the spectrum
of “signings” of matrices.5 This conjecture was part of a plan for a simple, iterative con-
struction of Ramanujan graphs, the best6 possible expander graphs. Ramanujan graphs were
introduced and constructed in [124,128], but rely on deep results in number theory and alge-

3 Simply, symmetric PSD matrices with zero row sum.
4 All nontrivial eigenvalues of the complete graph (or constant matrix) are 0, and an expander

is a sparse graph in which all nontrivial eigenvalues are tiny.
5 Simply, this beautiful conjecture states that for every d -regular graph, there exist ¹�1; 1º

signs of the edges which make all eigenvalues of the resulting signed adjacency matrix lie in
the “Ramanujan interval” Œ�2

p
d � 1; 2

p
d � 1�.

6 With respect to the spectral gap. This is one of a few important expansion parameters to
optimize.
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braic geometry (believed by some to be essential for any such construction). Bilu and Linial
sought instead an elementary construction, and made progress on their conjecture, show-
ing how their iterative approach gives yet another way to construct “close to” Ramanujan
expanders.

To prove the Bilu–Linial conjecture (and indeed produce bipartite Ramanujan
graphs of every possible degree—something the algebraic constructions could not provide),
[126] developed a theory of interlacing polynomials that turned out to be the key technical
tool for resolving Kadison–Singer in [127]. In both cases, the novel view is to think of these
conjectures probabilistically, and analyze the norm of a random operator by analyzing the
average characteristic polynomial. That this method makes sense and actually works is deep
and mysterious. Moreover, it provides a new kind of existence proofs for which no efficient
algorithm (even probabilistic) of finding the desired objects is known. The analysis makes
heavy use of the theory of real stable polynomials, and the inductive process underlying
it is reminiscent (and inspired by) Gurvits’ [86] remarkable proof of the van der Waerden
conjecture and its generalizations.7

5. Metric geometry

How close one metric space is to another is captured by the notion of distortion,
measuring how distorted distances of one become when embedded into the other. More pre-
cisely,

Definition 5.1. Let .X; d/ and .X 0; d 0/ be two metric spaces. An embedding f W X ! X 0

has distortion � c if for every pair of points x; y 2 X we have

d.x; y/ � d 0
�
f .x/; f .y/

�
� c � d.x; y/:

When X is finite and of size n, we allow c D c.n/ to depend on n.

Understanding the best embeddings between various metric and normed spaces has
been a long endeavor in Banach space theory and metric geometry. An example of one major
result in this area is Bourgain’s embedding theorem [36].

Theorem 5.2 ([36]). Every metric space of size n can be embedded into Euclidean space L2

with distortion O.log n/.

The first connection between these structural questions and computational com-
plexity was made in the important paper of Linial, London, and Rabinovich [120]. They
asked for efficient algorithms for actually finding embeddings of low distortion, and noticed
that for some such problems it is natural to use semidefinite programming. They applied

7 This is yet another example of a structural result (on doubly stochastic matrices) whose
proof was partly motivated by algorithmic ideas. The connection is the use of hyper-
bolic polynomials in optimization (more specifically, as barrier functions in interior point
methods.
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this geometric connection to get old and new results for algorithmic problems on graphs
(in particular, the sparsest cut problem we will soon discuss. Another motivation they dis-
cuss (which quickly developed into a major direction in approximation algorithms) is that
some computations (e.g., finding nearest neighbors) are more efficient in some spaces than
others, and so efficient, low-distortion embedding may provide useful reductions from harder
to easier space. They describe such an efficient algorithm implementing Bourgain’s Theo-
rem 5.2 above, and also prove that his bound is best possible (the metric proving it is simply
the distance between points in any constant-degree expander graph8).

The next shift in the evolution of this field, and in the level of interactions between
geometers and ToC researchers, came from trying to prove “hardness of approximation”
results. One example is the Goemans–Linial conjecture [78, 119], studying the sparsest cut
problem, about the relation between L1 and the “negative type” metric space L2

2 (a general
class of metrics which arise naturally in several contexts). Roughly, these are metrics on Rn

in which Euclidean distances are squared. More precisely, a metric .X;d/ is of negative type
(namely, in L2

2), if .X;
p

d/, is isometric (has no distortion) to a subset of L2.

Conjecture 5.3. Every L2
2 metric can be embedded into L1 with constant distortion.

This conjecture was proved false by Khot and Vishnoi [110]:

Theorem 5.4 ([110]). For every n, there are n-point subsets ofL2
2 for which every embedding

to L1 requires distortion �.log log n/1=6.

Far more interesting than the result itself is its origin. Khot and Vishnoi were trying
to prove that the (weighted) “sparsest cut” problem is hard to approximate. They man-
aged to do so under a computational assumption, known as the Unique Games conjecture
of Khot [107] via a so-called PCP-reduction (see also [108, 176]). The elimination of this
computational assumption is the magical part that demonstrates the power and versatility
of reductions between computational problems. They apply their PCP reduction to a par-
ticular, carefully chosen unique games instance, which cannot be well approximated by
a certain semidefinite program. The outcome was an instance of the sparsest cut problem
which the same reduction ensures is hard to approximate by a semidefinite program. As dis-
cussed above, that outcome instance could be understood as a metric space, and the hardness
of approximation translates to the required distortion bound!

The exact distortion of embedding L2
2 into L1 has been determined precisely to

be
p

log n (up to lower order factors) in two beautiful sequences of works developing new
algorithmic and geometric tools; we mention only the final word for each, as these papers
contain a detailed history. On the upper bound side, the efficient algorithm approximating
nonuniform sparsest cut to a factor

p
log n log logn, which yields the same distortion bound,

was obtained by Arora, Lee, and Naor [20] via a combination of the so-called “chaining
argument” of [21] and the “measured descent” embedding method of [112]. A lower bound

8 The presence of such graphs in different sections illustrate how fundamental they are in
diverse mathematical areas, and the same holds for algorithms and complexity theory.
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of
p

log n on the distortion was very recently proved by Naor and Young [144] using a new
isoperimetric inequality on the Heisenberg group.

Another powerful connection between such questions and ToC is through (again)
expander graphs. A basic example is that the graph metric of any constant-degree expander
proves that Bourgain’s embedding theorem above is optimal! Much more sophisticated exam-
ples arise from trying to understand (and perhaps disprove) the Novikov and the Baum–
Connes conjectures (see [104]). This program relies on another, much weaker notion of coarse
embedding.

Definition 5.5. .X; d/ has a coarse embedding into .X 0; d 0/ if there is a map f W X ! X 0

and two increasing, unbounded real functions ˛; ˇ such that for every two points x; y 2 X ,

˛
�
d.x; y/

�
� d 0

�
f .x/; f .y/

�
� ˇ

�
d.x; y/

�
:

Gromov [83] was the first to construct a metric (the word metric of a group) which
cannot be coarsely embedded into a Hilbert space. His construction uses an infinite family
of Cayley expanders (graphs defined by groups). This result was greatly generalized by Laf-
forgue [114] and Mendel–Naor [130], who constructed graph metrics that cannot be coarsely
embedded into any uniformly convex space. It is interesting that while Lafforgue’s method
is algebraic, the Mendel–Naor construction follows the combinatorial zigzag construction of
expanders [155] from computational complexity.

Many other interaction projects regarding metric embeddings and distortion we did
not touch on include their use in numerous algorithmic and data structure problems like clus-
tering, distance oracles the k-server problem, as well as the fundamental interplay between
distortion and dimension reduction relevant to both geometry and CS, where so many basic
problems are open.

6. Group theory

Group theorists, much like number theorists, have been intrinsically interested in
computational problems since the origin of the field. For example, the word problem (given a
word in the generators of some group, does it evaluate to the trivial element?) is so fundamen-
tal to understanding any group one studies, that as soon as language was created to formally
discuss the computational complexity of this problem, hosts of results followed trying to
pinpoint that complexity. These include decidability and undecidability results once Turing
set up the theory of computation and provided the first undecidable problems, and these
were followed with N P -completeness results and efficient algorithms once P and N P

were introduced around 1970. Needless to say, these algorithmic results inform of structural
complexity of the groups at hand. And the word problem is but the first example. Another
demonstration is the beautiful interplay between algorithmic and structural advances over
decades, on the graph isomorphism problem, recently leading to breakthrough of Babai [24]!
A huge body of work is devoted to finding efficient algorithms for computing commuta-
tor subgroups, Sylow subgroups, centralizers, bases, representations, characters, and a host
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of other important substructures of a group from some natural description of it. Excellent
textbooks include [92,157].

Here we focus on two related problems, the generation and random generation
problems, and new conceptual notions borrowed from computational complexity which are
essential for studying them. Before defining them formally (below), let us consider an exam-
ple. Assume I hand you 10 invertible matrices, say 100 � 100 in size, over the field of size 3.
Can you tell me if they generate another such given matrix? Can you even produce con-
vincing evidence of this before we both perish? How about generating a random matrix in
the subgroup spanned by these generators? The problem, of course, is that this subgroup will
have size far larger than the number of atoms in the known universe, so its elements cannot be
listed, and typical words generating elements in the group may need to be prohibitively long.
Indeed, even the extremely special cases, for elements in Z�

p (namely one, 1 � 1 matrix), the
first question is related to the discrete logarithm problem, and for Z�

p�q it is related to the
integer factoring problem, both currently requiring exponential time to solve (as a function
of the description length).

Let us consider any finite group G and let n � log jGj be roughly the length of a
description of an element of G. Assume we are given k elements in G, S D ¹s1; s2; : : : ; skº.
It would be ideal if the procedures we describe would work in time polynomial in n and k

(which prohibits enumerating the elements of G, whose size is exponential in n).
The generation problem asks if a given element g 2 G is generated by S . How does

one prove such a fact? A standard certificate for a positive answer is a word in the elements
of S (and their inverses) which evaluates to g. However, even if G is cyclic, the shortest such
word may be exponential in n. An alternative, computationally motivated description, is to
give a program for g. Its definition shows that the term “program” suits it perfectly, as it has
the same structure as usual computer programs, only that instead of applying some standard
Boolean or arithmetic operations, we use the group operations of multiplication and inverse.

Definition 6.1. A program (over S ) is a finite sequence of elements g1; g2; : : : ; gm, where
every element gi is either in S , or is the inverse of a previous gj , or is the product of previous
gj ; g`. We say that it computes g simply if g D gm.

In the cyclic case, programs afford exponential savings over words in description
length, as a program allows us to write large powers by repeatedly squaring elements. What
is remarkable is that such savings are possible for every group. This discovery of Babai and
Szemerédi [25] says that every element of every group has an extremely succinct description
in terms of any set of elements generating it.

Theorem 6.2 ([25]). For every group G, if a subset of elements S generates another element
g, then there is a program of length at most n2 � .log jGj/2 which computes g from S.

It is interesting to note that the proof uses a structure which is very combinatorial and
counterintuitive for group theorists, namely that of a cube, which we will see again later. For
a sequence .h1; h2; : : : ; ht / of elements from G, the cube C.h1; h2; : : : ; ht / is the (multi)set
of 2t elements ¹h

"1
1 ; h

"2
2 ; : : : ; h

"t
t º, with "i 2 ¹0; 1º. Another important feature of the proof
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is that it works in a very general setting of “black-box” groups—it never needs an explicit
description of the host group, only the ability to multiply elements and take their inverses.
This is a very important paradigm for arguing about groups, and will be used again below.

How does one prove that an element g is not generated by S? It is possible that
there is no short “classical” proof! This question motivated Babai to define Arthur–Merlin
games—a new notion of probabilistic, interactive proofs (simultaneously with Goldwasser,
Micali, and Rackoff [81], who proposed a similar notion for cryptographic reasons), and
showed how nonmembership can be certified in this new framework. The impact of the defi-
nition of interactive proofs on the theory of computation has been immense, and is discussed
in, e.g., in the books [19,79,176].

Returning to the generation problem, let us now consider the problem of random
generation. Here we are given S , and would like a randomized procedure which will quickly
output an (almost) uniform distribution on the subgroup H of G generated by S . This prob-
lem, besides its natural appeal, is often faced by computational group theorists, being a
subroutine in many group-theoretic algorithms. In practice often heuristics are used, like
the famous “product replacement algorithm” and its variants, which often work well in prac-
tice (see, e.g., the recent [22] and references). We will discuss here provable bounds.

It is clear that sufficiently long random words in the elements of S and its inverses
will do the job, but just as with certificates, sufficiently long is often prohibitively long. In a
beautiful paper, Babai [23] describes a certain process generating a random program which
computes a nearly-uniform element of H , and runs in time n5 � .log jGj/5 steps. It again
uses cubes, and works in the full generality of black-box groups. This paper was followed
by even faster algorithms with simpler analysis by Cooperman and by Dixon [45,58], and the
state-of-the-art is an algorithm whose number of steps is remarkably the same as the length
of proofs of generation above—in other words, randomness roughly achieves the efficiency
of nondeterminism for this problem. Summarizing:

Theorem 6.3 ([23, 45, 58]). For every group G, there is a probabilistic program of length
poly.n/ � poly.log jGj/ that, given any generating set S for G, produces with high proba-
bility a (nearly) uniformly random element of G.

7. Statistical physics

The field of statistical physics is huge, and we focus here mainly on connections of
statistical mechanics with the theory of computation. Numerous mathematical models exist
of various physical and chemical systems, designed to understand basic properties of differ-
ent materials and the dynamics of basic processes. These include such familiar models as
Ising, Potts, monomer–dimer, spin-glass, percolation, etc. A typical example explaining the
connection of such mathematical models to physics and chemistry, and the basic problems
studied is the seminal paper of Heilmann and Lieb [90].

Many of the problems studied can be viewed in the following general setting. We
have a huge (exponential) space of objects called � (these objects may be viewed as the
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different configurations of a system). Each object is assigned a nonnegative weight (which
may be viewed as the “energy” of that state). Scaling these weights gives rise to a probability
distribution (often called the Gibbs distribution) on �, and to study its properties (phase
transitions, critical temperatures, free energy, etc.) one attempts to generate samples from
this distribution. Note that if the description of a state takes n bits, then brute-force listing
of all probabilities in question is exponentially prohibitive. Thus efficiency of the sampling
procedure is essential to this study.

As � may be highly unstructured, the most common approach to this sampling prob-
lem is known as “Monte Carlo Markov Chain” (or “MCMC”) method. The idea is to build
a graph on the objects of �, with a pair of objects connected by an edge if they are similar
in some sense (e.g., sequences which differ only in a few coordinates). Next, one starts from
any object, and performs a biased random walk on this graph for some time, and the object
reached is the sample produced. In many settings it is not hard to set up the random walk
(often called Glauber dynamics or the Metropolis algorithm) so that the limiting distribution
of the Markov chain is indeed the desired distribution. The main question in this approach
is when to stop the walk and output a sample; when are we close enough to the limit? In
other words, how long does it take the chain to converge to the limit? In most cases, these
decisions were taken on intuitive, heuristic grounds, without rigorous analysis of conver-
gence time. The exceptions where rigorous bounds were known were typically structured,
e.g., where the chain was a Cayley graph of a group (e.g., [11,56]).

This state of affairs has changed considerably since the interaction in the past couple
of decades with the theory of computation. Before describing it, let us see where computa-
tional problems even arise in this field. The two major sources are optimization and counting.
That the setting above suits many instances of optimization problems is easy to see. Think of
� as the set of solutions to a given optimization problem (e.g., the values of certain param-
eters designed to satisfy a set of constraints), and the weights representing the quality of a
solution (e.g., the number of constraints satisfied). So, picking at random from the associated
distribution favors high-quality solutions. The counting connection is more subtle. Here �

represents a set of combinatorial objects one wants to count or approximate (e.g., the set of
perfect matchings in a graph, or satisfying assignments to a set of constraints). It turns out
that for very general situations of this type, sampling an object (approximately) at random is
tightly connected to counting their number; it often allows a recursive procedure to approx-
imate the size of the set [99]. An additional observation is that viewing a finite set as a fine
discretization of a continuous object (e.g., fine lattice points in a convex set) allows one to
compute volumes and more generally integrate functions over such domains.

Around 1990, rigorous techniques were introduced [12, 39, 65, 161] to analyze the
convergence rates of such general Markov chains arising from different approximation algo-
rithms. They establish conductance bounds on the Markov chains, mainly via canonical
paths or coupling arguments (a survey of this early work is [96]). Collaborative work was
soon able to formally justify the physical intuition behind some of the suggested heuris-
tics for many models, and, moreover, drew physicists to suggest such ingenious chains for
optimization problems. The field drew in probabilists and geometers as well, and by now is
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highly active and diverse. We mention two results to illustrate rigorous convergence bounds
for important problems of this type.

Theorem 7.1 ([97]). The permanent of any nonnegative n � n matrix can be approximated,
to any multiplicative factor .1 C "/, in polynomial time in n=".

The importance of this approximation algorithm stems from the seminal result of
Valiant [173] about the permanent polynomial (that notorious sibling of the determinant poly-
nomial, that looks identical except that the permanent has no signs; for more see [159,176]).
Valiant proved that the permanent is universal, capturing (via efficient reductions) essentially
all natural counting problems, including those arising in the statistical physics models and
optimization and counting problems above. So, unlike determinant, computing the perma-
nent exactly is extremely difficult (harder than N P -complete).

Theorem 7.2 ([65]). The volume of any convex set in n dimensions can be approximated, to
any multiplicative factor .1 C "/, in polynomial time in n=".

The volume, besides its intrinsic interest, captures as well natural counting prob-
lems, e.g., the number of linear extensions of a given partially ordered set. The analysis
of this algorithm, as well as its many subsequent improvements, has used and developed
purely structural results of independent interest in differential and convex geometry. It also
led to generalizations, like efficiently sampling from any log-concave distribution (see the
survey [174]).

Another consequence of this collaboration was a deeper understanding of the rela-
tion between spacial properties (such as phase transitions, and long-range correlations
between distant sites in the Gibbs distribution) and temporal properties (such as speed of
convergence of the sampling or approximately counting algorithms, like Glauber dynamics).
This connection (surveyed, e.g., in [66]) was established by physicists for spin systems since
the 1970s. The breakthrough work of Weitz [175] on the hard core model gave an determin-
istic algorithm which is efficient up to the phase transition, and this was complemented by
a hardness result of Sly [162] beyond the phase transition. These phase transition of compu-
tational complexity, at the same point as the phase transition of the Gibbs distribution are
striking, and the generality of this phenomenon is still investigated.

More generally, the close similarity between statistical physics models and optimiza-
tion problems, especially on random instances, is benefitting both sides. Let us mention a
few exciting developments. It has unraveled the fine geometric structure of the space of solu-
tions at the phase transition, pinpointing it, e.g., for k-SAT in [1]. At the same time, physics
intuition based on such ideas as renormalization, annealing, and replica symmetry breaking
has led to new algorithms for optimization problems, some of them now rigorously analyzed,
e.g., as in [98]. Others, like one of the fastest (yet unproven) heuristics for such problems as
Boolean Satisfiability (which is N P -complete in general) are based on the physics method
of “survey propagation” of [131]. Finally, new algorithmic techniques for similar physics
and optimization problems, originate from an unexpected source, the Lovasz Local Lemma
(LLL). The LLL is a probabilistic proof technique for the existence rare events in a proba-
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bility space. Its efficient versions, formulating it algorithmically as a directed, nonreversible
Markov chains, starting with the works of Moser [136,137], have led to approximate counting
and sampling versions for such events (see, e.g., [84]). A completely different, deterministic
algorithm of Moitra [135] for the LLL regime (of rare events) promises many more appli-
cations: it works even when the solution space (and hence the natural Markov chain) is not
connected!

We conclude this story with the recent breakthrough connection between high-
dimensional expanders and the analysis of MCMC of Anari, Liu, Gharan, and Vinzant [18].
The theory of high-dimensional expanders (generalizing that of expander graphs to higher
dimensional complexes – see the survey [123]), which easily merits a separate vignette, has
been rapidly developing in the past decade within combinatorics and complexity theory, fol-
lowing deep roots in the theory of Bruhat–Tits buildings, connections with several areas of
math, and new applications. Anari et al. realized that the local-to-global principle underlying
high-dimensional expansion can be used for an inductive analysis of the convergence rate of
many families of Markov chain-based algorithms. Their first application resolves a 30-year
old conjecture, proving

Theorem 7.3 ([18]). The number of bases of anymatroid on n elements can be approximated,
to any multiplicative factor .1 C "/, in polynomial time in n=".

The revolutionary impact and future potential of this connection (and further ideas),
in just a couple of years, to problems of approximate counting and random sampling in opti-
mization and statistical physics, can be appreciated, e.g., from these papers and the references
therein [16,17,121].

8. Analysis and probability

This section gives a taste of a growing number of families of inequalities—large
deviation inequalities, isoperimetric inequalities, etc.—that have been generalized beyond
their classical origins due to a variety of motivations in the theory of computing and discrete
mathematics. Further, the applications sometimes call for stability versions of these inequali-
ties, namely an understanding of the structures which make an inequality nearly sharp. Here
too these motivations pushed for generalizations of classical results and many new ones.
Most of the material below, and much more on the motivations, applications, and develop-
ments in this exciting area of the analysis of Boolean functions, can be found in the book [145]

by O’Donnell.
The following story can be told from several angles. One is the noise sensitivity of

functions. We restrict ourselves to the Boolean cube endowed with the uniform probability
measure, but many of the questions and results extend to arbitrary product probability spaces.
Let f W ¹�1; 1ºn ! R, which we assume is balanced, namely EŒf � D 0. When the image
of f is ¹�1; 1º, we can think of f as a voting scheme, translating the binary votes of n

individuals into a binary outcome. One natural desire from such a voting scheme may be
noise stability—that typically very similar inputs (vote vectors) will yield the same outcome.
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While natural in this social science setting, such questions also arise in statistical physics
settings, where natural functions such as bond percolation turn out to be extremely sensitive
to noise [31]. Let us formally define noise stability.

Definition 8.1. Let � 2 Œ0; 1� be a correlation parameter. We say two vectors x;y 2 ¹�1; 1ºn

are �-correlated if they are distributed as follows. The vector x is drawn uniformly at random,
and y is obtained from x by flipping each bit xi independently with probability .1 � �/=2.
Note that for every i the correlation EŒxi yi � D �. The noise sensitivity of f at �, S�.f /, is
simply defined as the correlation of the outputs, EŒf .x/f .y/�.

It is not hard to see that the function maximizing noise stability is any dictatorship
function, e.g., f .x/ D x1, for which S�.f / D �. But another natural social scientific con-
cern is the influence of players in voting schemes [30], which prohibits such solutions (in
democratic environments). The influence of a single voter9 is the probability with which it
can change the outcome given that all other votes are uniformly random (so, in a dictatorship
it is 1 for the dictator and 0 for all others). A fair voting scheme should have no voter with
high influence. As we define influence for real-valued functions, we will use the (conditional)
variance to measure a player’s potential effect given all other (random) votes.

Definition 8.2. A function f W ¹�1; 1ºn ! R has influence � if for every i , VarŒxi jx�i � � �

for all i (where x�i denotes the vector x without the i th coordinate).

For example, the majority function has influence O.1=
p

n). The question of how
small the influence of a balanced function can be is extremely interesting, and leads to a
highly relevant inequality for our story (both in content and techniques). As it turns out,
ultimate fairness (influence 1=n per player) is impossible— the authors of [103] show that
every function has a player with nonproportional influence, at least �.log n=n/. At any rate,
one can ask which of the functions with small influence is most stable, and it is natural to
guess that majority should be the best.10

The conjecture that this is the case, called the Majority is Stablest conjecture, arose
from a completely different and surprising angle—the field of optimization, specifically
“hardness of approximation.” A remarkable paper [109] has shown that this conjecture
implies11 the optimality of a certain natural algorithm for approximating the maximum cut of
a graph (i.e., the partition of vertices that maximizes the number of edges between them).12

This connection is highly nontrivial, but by now we have many examples showing how the
analysis of certain (semidefinite programming-based) approximation algorithms for a vari-

9 This seminal paper [30] also studies the influences of coalitions of players, extremely
natural in game theory, which arises in and contributes to other areas of computational
complexity (including circuit complexity, learning and pseudorandomness), and raises other
analytic questions which we will not discuss here.

10 This noise sensitivity tends, as n grows, to S�.Majorityn/ D
2
� arcsin �.

11 Assuming another, complexity-theoretic, conjecture called the “Unique Games” conjecture
of [107] (discussed already in the metric geometry section above; see also [108,176]).

12 Maximum Cut is a basic optimization problem whose exact complexity is N P -complete.
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ety of optimization problems raise many new isoperimetric questions,13 greatly enriching
this field.

The Majority is Stablest conjecture was proved in a strong form by [138] shortly after
it was posed. Here is a formal statement (which actually works for bounded functions).

Theorem 8.3 ([138]). For every (positive correlation parameter) � � 0 and " > 0, there exists
(an influence bound) � D �.�; "/ such that for every n and every f W ¹�1; 1ºn ! Œ�1; 1� of
influence at most � , S�.f / � S�.Majorityn/ C ".

The proof reveals another angle on the story—large deviation inequalities and
invariance principles. To see the connection, recall the Berry–Esseen theorem [70], gen-
eralizing the standard central limit theorem to weighted sums of independent random signs.
In this theorem, influences arise very naturally. Consider

Pn
iD1 ci xi . If we normalize the

weights ci to satisfy
P

i c2
i D 1, then ci is the influence of the i th voter, and � D maxi jci j.

The quality of this central limit theorem deteriorates linearly with the influence � . Linde-
berg’s proof of Berry–Esseen uses an invariance principle, showing that for linear functions,
the cumulative probability distribution PrŒ

Pn
iD1 ci xi � t � (for every t ) is unchanged (up

to � ), regardless of the distribution of the variables xi , as long as they are independent and
have expectation 0 and variance 1. Thus, in particular, they can be taken to be standard
Gaussian, which trivializes the problem, as the weighted sum is a Gaussian as well!

To prove their theorem, [138] first observed that also in the noise stability problem,
the Gaussian case is simple. If the xi ; yi are standard Gaussians with correlation �, the sta-
bility problem reduces to a classical result of Borell [35]: that noise stability is maximized by
any hyperplane through the origin. Note that here the rotational symmetry of multidimen-
sional Gaussians, which also aids the proof, does not distinguish “dictator” functions from
majority—both are such hyperplanes. Given this theorem, an invariance principle whose
quality depends on � would do the job. They next show that it is sufficient to prove the prin-
ciple only for low degree multilinear polynomials (as the effect of noise decays with the
degree). Finally, they prove this nonlinear extension of Berry–Esseen for such polynomials,
a form of which we state below. They also use their invariance principle to prove other con-
jectures, and since the publication of their paper, quite a number of further generalizations
and applications were found.

Theorem 8.4 ([138]). Let xi be any n independent random variables with mean 0, vari-
ance 1, and bounded 3rd moments. Let gi be n independent standard Gaussians. Let Q be
any degree d multilinear n-variate polynomial of influence � . Then for any t ,ˇ̌

Pr
�
Q.x/ � t

�
� Pr

�
Q.g/ � t

�ˇ̌
� O.d�1=d /:

We now only seem to be switching gears… To conclude this section, let me give
one more, very different demonstration of the surprising questions (and answers) regarding

13 Many over continuous domains, like the unit cube or Gaussian space, where the connection
between noise stability and isoperimetry may be even clearer.
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noise stability and isoperimetry, arising from the very same computational considerations of
optimization of hardness of approximation. Here is the question:What is the smallest surface
area of a (volume 1) body which tiles Rd periodically along the integer lattice Zd? Namely,
we seek a d -dimensional volume 1 subset B � Rd such that B C Zd D Rd , such that its
boundary has minimal .d � 1/-dimensional volume.14 Let us denote this infimum by s.d/.
The curious reader can stop here a bit and test your intuition, what do you expect the answer
to be, asymptotically in d?

Such questions originate from the late 19th century study by Thomson (later Lord
Kelvin) of foams in 3 dimensions [170], further studied, generalized, and applied in mathe-
matics, physics, chemistry, material science, and even architecture. However, for this very
basic question, where periodicity is defined by the simplest integer lattice, it seems that, for
large d , the trivial upper and lower bounds on s.d/ were not improved on for over a century.
The trivial upper bound on s.d/ is provided by the unit cube, which has surface area 2d .
The trivial lower bound on s.d/ comes from ignoring the tiling restriction, and considering
only the volume – here the unit volume ball has the smallest surface area,

p
2�ed . Where

in this quadratic range does s.d/ lie? In particular, can there be “spherical cubes,” with
s.d/ D O.

p
d/?

The last question became a central issue for complexity theorists when [69] related
it directly to the important Unique Games conjecture, and optimal inapproximability proofs
of combinatorial problems (in particular, the maximum cut problem) discussed above. The
nontrivial connection, which the paper elaborates and motivates, goes through attempts to
find the tightest version of Raz’ [151] celebrated parallel repetition theorem.15 A limit on how
“strong” a parallel repetition theorem can get was again provided by Raz [152]. Extending his
techniques [111] to the geometric setting, resolved the question above, proving that “spherical
cubes” do exist!

Theorem 8.5 ([111]). For all d , s.d/ �
p

4�d .

A simple proof, and various extensions of this result were given subsequently in [14].
We note that all known proofs are probabilistic. Giving an explicit construction, that might
better illustrate how a “spherical cube” (even with much worse parameters) looks like, seems
a challenging problem.

9. Lattice theory

Lattices in Euclidean space are among the most “universal” objects in mathematics,
in that besides being natural (e.g., arising in crystalline structures) and worthy of study in
their own right, they capture a variety of problems in different fields such as number theory,

14 Note that the volume of B ensures that the interiors of B C v and B C u are disjoint for any
two distinct integer vectors u; v 2 Zd , so this gives a tiling.

15 A fundamental information theoretic inequality of central importance to “amplification” of
Probabilistically Checkable Proofs (PCPs).
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analysis, approximation theory, Lie algebras, convex geometry, and more. Many of the basic
results in lattice theory, as we shall see, are existential (namely supply no efficient means for
obtaining the objects whose existence is proved), which in some cases has limited progress
on these applications.

This section tells the story of one algorithm, of Lenstra, Lenstra, and Lovász [117],
often called the LLL algorithm, and some of its implications on these classical applications
as well as modern ones in cryptography, optimization, number theory, symbolic algebra, and
more. But we had better define a lattice16 first.

Let B D ¹b1; b2; : : : ; bnº be a basis of Rn. Then the lattice L.B/ denotes the set
(indeed, Abelian group) of all integer linear combinations of these vectors, i.e., L.B/ D

¹
P

i zi bi W zi 2 Zº; B is also called a basis of the lattice. Naturally, a given lattice can
have many different bases, e.g., the standard integer lattice in the plane, generated by
¹.0; 1/; .1; 0/º, is equally well generated by ¹.999; 1/; .1000; 1/º. A basic invariant asso-
ciated with a lattice L is its determinant d.L/, which is the absolute value of det.B/ for any
basis B of L (this is also the volume of the fundamental parallelpiped of the lattice). For
simplicity and without loss of generality, we will assume that B is normalized so that we
only consider lattices L of d.L/ D 1.

The most basic result about lattices, namely that they must contain short vectors (in
any norm) was proved by Minkowski (who initiated Lattice Theory, and with it, the Geometry
of Numbers) [134].

Theorem 9.1 ([134]). Consider an arbitrary convex set K in Rn which is centrally symmet-
ric17 and has volume > 2n. Then, every lattice L (of determinant 1) has a nonzero point
in K.

This innocent theorem, which has a simple, but existential (pigeonhole) proof, turns
out to have numerous fundamental applications in geometry, algebra, and number theory.
Among famous examples this theorem yields with appropriate choice of norms and lattices,
results like Dirichlet’s Diophantine approximation theorem and Lagrange’s four-squares the-
orem, and (with much more work) the finiteness of class numbers of number fields (see, e.g.,
[148]).

From now on we will focus on short vectors in the (most natural) Euclidean norm.
A direct corollary of Minkowski’s theorem when applying it to the cube K D Œ�1;1�n yields:

Corollary 9.2. Every lattice L of determinant 1 has a nonzero point of Euclidean norm at
most

p
n.

Digressing a bit, we note that very recently, a century after Minkowski, a strong con-
verse of the above corollary18 conjectured by Dadush (see [47]) for computational motivation
has been proved in [154]. This converse has many structural consequences, on the covering

16 We only define full-rank lattices here, which suffice for this exposition.
17 Namely, x 2 K implies that also �x 2 K. Such sets are precisely balls of arbitrary norms.
18 Which has to be precisely formulated.

1410 A. Wigderson



radius of lattices, arithmetic combinatorics, Brownian motion, and others. We will not elab-
orate here on this new interaction of computational complexity and optimization with lattice
theory and convex geometry. The papers above beautifully motivate these connections and
applications, and the history of ideas and technical work needed for this complex proof.

Returning to Minkowski’s corollary for the Euclidean norm, the proof is still exis-
tential, and the obvious algorithm for finding such a short vector requires exponential time in
n. The breakthrough paper [117] describe the LLL algorithm, an efficient, polynomial-time
algorithm, which approximates the length of the shortest vector in any n-dimensional lattice
by a 2n factor.

Theorem 9.3 ([117]). There is a polynomial time algorithm, which, given any lattice L, pro-
duces a vector in L of Euclidean length at most 2n factor longer than the shortest vector
in L.

This exponential bound may seem excessive at first, but the number and diversity of
applications is staggering. First, in many problems, the dimension n is a small constant (so
the actual input length arises from the bit-size of the given basis). This leads, for instance, to
Lenstra’s algorithm for (exactly solving) Integer Programming [118] in constant dimensions.
It also leads to Odlyzko and Riele’s refutation [146] of Mertens’ conjecture about cancella-
tions in the Möbius function, and to the long list of number-theoretic examples in [160]. But
it turns out that even when n is arbitrarily large, many problems can be solved in poly.n/-
time as well. Here is a list of examples of old and new problems representing this variety,
some going back to the original paper [117]. In all, it suffices that real number inputs are
approximated to poly(n) digits in dimension n.

• Diophantine approximation. While the best possible approximation of one real
number by rationals with bounded denominator is readily solved by its (efficiently
computable) continued fraction expansion, no such procedure is known for simul-
taneous approximation. Formally, given a set of real numbers, say ¹r1; r2; : : : ; rnº,
a bound Q and " > 0, find integers q � Q and p1; : : : ; pn such that all
jri � pi =qj � ". Existentially (using Minkowski), the Dirichlet “box-principle”
shows that " < Q1=n is possible. Using LLL, one efficiently obtains " < 2n2

Q1=n

which is meaningful for Q described by poly.n/ many bits.

• Minimal polynomials of algebraic numbers. Here we are given a single real
number r and a degree bound n, and are asked if there is a polynomial g.x/

with integer coefficients, of degree at most n of which r is a root (and also to pro-
duce such a polynomial g if it exists). Indeed, this is a special case of the problem
above with ri D r i . While the algorithm only outputs g for which g.r/ � 0, it is
often easy to check that it actually vanishes. Note that by varying n we can find
the minimal such polynomial.

• Polynomial factorization over rationals. Here the input is an integer polynomial h

of degree n, and we want to factor it over Q. The high level idea is to first find an
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(approximate) root r of h (e.g., using Newton’s method), feed it to the problem
above, which will return a minimal g having r as a root, and thus divides h. We
stress that this algorithm produces the exact factorization, not an approximate one!

• Small integer relations between reals. Given reals r1; r2; : : : ; rn, and a bound Q,
determine if there exist integers jzi j < Q such that

P
i zi ri D 0 (and if so, find

these integers). As a famous example, LLL can find an integer relation among
arctan.1/ � 0:785398, arctan.1=5/ � 0:197395, and arctan.1=239/ � 0:004184,
yielding Machin’s formula

arctan.1/ � 4 arctan.1=5/ C arctan.1=239/ D 0:

• Cryptanalysis. Note that a very special case of the problem above (in which the
coefficients zi must be Boolean) is the “Knapsack problem,” a famous N P -com-
plete problem. The point here is that in the early days of cryptography, some
systems were based on the assumed “average case” hardness of Knapsack. Many
such systems were broken by using LLL, e.g., [115]. LLL was also used to break
some versions of the RSA cryptosystem (with “small public exponents”).

It is perhaps a fitting epilogue to the last item that lattices cannot only destroy cryp-
tosystems, but also create them. The problem of efficiently approximating short vectors up to
polynomial (as opposed to exponential, as LLL produces) factors is believed to be computa-
tionally hard. Here are some major consequences of this assumption. First, Ajtai showed in
a remarkable paper [9] that such hardness is preserved “on average”, over a cleverly-chosen
distribution of random lattices. This led to a new public-key encryption scheme by Ajtai and
Dwork [10] based on this hardness, which is arguably the only one known that can poten-
tially sustain quantum attacks (Shor’s efficient quantum algorithms can factor integers and
compute discrete logarithms [158]). In another breakthrough work of Gentry [77], this hard-
ness assumption is used to devise fully homomorphic encryption, a scheme which allows not
only to encrypt data, but to perform arbitrary computations directly with encrypted data. See
more in this excellent survey [147].

10. Invariant theory (and more)

This section is somewhat longer than the rest. One reason is that much of it has been
a primary research interest of mine in recent years, and indeed is the subject of my ICM lec-
ture. Another reason is that the connections revealed here are considerably richer. On the
one hand, several different areas within the theory of computation play a role, including
algebraic complexity theory, derandomization, and optimization. On the other, while invari-
ant theory is central in these developments, connections and implications are revealed to and
between other mathematical areas, including noncommutative algebra, analysis, represen-
tation theory, quantum information theory, statistics, and operator theory. We will explore
some of these here.
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Invariant theory, born in an 1845 paper of Cayley [43], is major branch of algebra,
with important natural connections to algebraic geometry and representation theory, but also
to many other areas of mathematics. We will see some here, as well as some new connec-
tions with computational complexity, leading to new questions and results in this field. We
note that computational efficiency was always important in invariant theory, which is rife
with ingenious algorithms (starting with Cayley’s Omega process), as is evident from the
books [46,49,167].

Invariants are familiar enough, from examples like the following:

• In high school physics we learn that energy and momentum are conserved (namely,
are invariants) in the dynamics of general physical systems.

• In chemical reactions the number of atoms of each element is preserved as one
mixture of molecules is transformed to yield another (e.g., as combining sodium
hydroxide (NaOH) and hydrochloric acid (HCl) yields the common salt sodium
chloride (NaCl) and water (H2O)).

• In geometry, a classical puzzle asks when can a plane polygon be “cut and pasted”
along straight lines to another polygon. Here the obvious invariant, area, is the
only one!19 However, in generalizing this puzzle to 3-dimensional polyhedra, it
turns out that besides the obvious invariant, volume, there is another invariant,
discovered by Dehn.20

More generally, questions about the “topological equivalence” of two topological objects
(e.g., knots), whether two groups are isomorphic, or whether two points are in the same orbit
of a dynamical system, etc., all give rise to similar questions and treatment. A canonical way
to give negative answers to such questions is through invariants, namely quantities preserved
under some action on an underlying space.

We will focus on invariants of linear groups acting linearly on vector spaces. Let
us present some notation. Fix a field F (while problems are interesting in every field, results
mostly work for infinite fields only, and sometimes just for characteristic zero or algebraically
closed ones). We will also suppress some technicalities. Let G be a group, and V a repre-
sentation of G, namely an F -vector space on which G acts: for every g; h 2 G and v 2 V ,
we have gv 2 V and g.hv/ D .gh/v.

The orbit under G of a vector (or point) v 2 V , denoted Gv, is the set of all other
points that v can be moved to by this action, namely ¹gv W g 2 Gº. Understanding the orbits
of a group objects is a central task of this field. A basic question capturing many of the
examples above is, given two points u; v 2 V , do they lie in the same G-orbit, namely if
u 2 Gv. A related basic question, which is even more natural in algebraic geometry (when

19 And so, every two polygons of the same area can be cut to produce an identical (multi)sets
of triangles.

20 So there are pairs of 3-dimensional polyhedra of the same volume, which cannot be cut to
identical (multi)sets of tetrahedra.

1413 Interactions of computational complexity theory and mathematics



the field F is algebraically closed of characteristic zero) is whether the closures21 of the two
orbits intersect, namely if some point in V can be approximated arbitrarily well by points in
both Gu and Gv. We will return to specific incarnations of these questions.

When G acts on V , it also acts on F ŒV �, the polynomial functions on V , also called
the coordinate ring of V . In our setting V will have finite dimension (say m), and so F ŒV �

is simply F Œx1; x2; : : : ; xm� D F ŒX�, the polynomial ring over F in m variables. We will
denote by gp the action of a group element g 2 G on a polynomial p 2 F ŒV �.

A polynomial p.X/ 2 F ŒX� is invariant if it is unchanged by this action, namely
for every g 2 G we have gp D p. All invariant polynomials clearly form a subring of F ŒX�,
denoted F ŒX�G , called the ring of invariants of this action. Understanding the invariants of
group actions is the main subject of Invariant Theory. A fundamental result of Hilbert [91]
shows that in our linear setting,22 all invariant rings will be finitely generated as an algebra.23

Finding the “simplest” such generating set of invariants is our main concern here.
Two familiar examples of perfect solutions to this problem follow:

• In the first, G D Sm, the symmetric group on m letters, is acting on the set of
m formal variables X (and hence the vector space they generate) by simply per-
muting them. Then the ring of invariants is simply all symmetric polynomials,
and a (minimal) set of generating invariants is the first m elementary symmetric
polynomials in X .

• In the second, G D SLn.F/, the special linear group of matrices with determi-
nant 1, is acting on the vector space Mn.F/ of n � n matrices (so m D n2), simply
by left matrix multiplication. In this case all polynomial invariants are generated
by a single polynomial, the determinant of this m-variable matrix X .

In these two cases, which really supply a complete understanding of the invariant ring F ŒX�G ,
the generating sets are good in several senses. There are few generating invariants, they all
have low degree, and they are easy to compute24—all these quantities are bounded by a
polynomial in m, the dimension of the vector space.25 In such good cases, one has efficient
algorithms for the basic problems regarding orbits of group actions. For example, a funda-
mental duality theorem of Geometric Invariant Theory [143] (see Theorem A.1.1), shows how
generating sets of the invariant ring can be used for the orbit closure intersection problem.

21 One can take closure in either the Euclidean or the Zariski topology (the equivalence in this
setting was proved by Mumford [142]).

22 The full generality under which this result holds is actions of reductive groups, which we
will not define here, but includes all examples we discuss.

23 This means that there is a finite set of polynomials ¹q1; q2; : : : ; qt º in F ŒX�G so
that for every polynomial p 2 F ŒX�G there is a t -variate polynomial r over F so that
p D r.q1; q2; : : : ; qt /.

24 For example, have small arithmetic circuits or formulae.
25 There are additional desirable structural qualities of generating sets that we will not dis-

cuss, e.g., completely understanding algebraic relations between these polynomials (called
syzygies).
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Theorem 10.1 ([143]). For an algebraically closed field F of characteristic 0, the following
are equivalent for any two u; v 2 V and generating set P of the invariant ring F ŒX�G:

• The orbit closures of u and v intersect.

• For every polynomial p 2 P , p.v/ D p.u/.

10.1. Geometric complexity theory
We now briefly explain one direction from which computational complexity became

interested in these algebraic problems, in work that has generated many new questions and
collaboration between the fields. First, some quick background on the main problem of
arithmetic complexity theory (see that chapter in [176] for definitions and more discussion).
In [173], Valiant defined arithmetic analogs VP and VN P of the complexity classes P

and N P , respectively, and conjectured that these two arithmetic classes are different. He
further proved (via surprising completeness results) that to separate these classes it is suf-
ficient to prove that the permanent polynomial on n � n matrices does not project to the
determinant polynomial on m � m matrices for any m D poly.n/. Note that this is a pure
and concrete algebraic formulation of a central computational conjecture.

In a series of papers, Mulmuley and Sohoni introduced Geometric Complexity
Theory (GCT) to tackle this major open problem.26 This program is surveyed by Mul-
muley here [139,140], as well as in Landsberg’s book [116]. Very concisely, the GCT program
starts off as follows. First, a simple “padding” of the n � n permanent polynomial makes it
have degree m and act on the entries of an m � m matrix. Consider the linear group SLm2

action on all entries of such m � m matrices. This action extends to polynomials in those
variables, and so in particular the two we care about: determinant and modified permanent.
The main connection is that the permanent projects to the determinant (in Valiant’s sense)
if and only if the orbit closures of these two polynomials intersect. Establishing that they do
not intersect (for m D poly.n/) naturally leads to questions about finding representation-
theoretic obstructions to such intersection (and hence, to the required computational lower
bound). This is where things get very complicated, and describing them is beyond the scope
of this survey. We note that to date, the tools of algebraic geometry and representation theory
were not sufficient even to improve the quadratic bound on m of Mignon and Ressayre [132].
Indeed, some recent developments show severe limitations to the original GCT approach
(and perhaps guiding it in more fruitful directions); see [42] and its historical account. Nev-
ertheless, this line of attack (among others in computational complexity) has lead to many
new questions in computational commutative algebra and to growing collaborations between
algebraists and complexity theorists—we will describe some of these now.

To do so, we will focus on two natural actions of linear groups on tuples of matri-
ces, simultaneous conjugation and the left–right action. Both are special cases of quiver

26 Origins of using invariant theory to argue computational difficulty via similar techniques go
back to Strassen [166].
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representations (see [55, 74]).27 For these two group actions, we will discuss, respectively
in Sections 10.2, 10.3, the classical questions and results on the rings of invariants, and
recent advances motivated by computational considerations. Section 10.4 will be devoted
to significant extensions of the algorithmic technique developed for the left–right action.
And in Section 10.5 we will close full circle and discuss yet another central problem on
matrix tuples, namely the Symbolic Determinant Identity Testing (SDIT) problem, which
ties together many aspects we have seen and suggest further interesting challenges in the
interface of computational complexity with invariant theory and algebraic geometry.

10.2. Simultaneous conjugation
Consider the following action of SLn.F/ on d -tuples of n � n matrices. We have

m D dn2 variables arranged as d n � n matrices X D .X1; X2; : : : ; Xd /. The action of a
matrix Z 2 SLn.F/ on this tuple is by simultaneous conjugation, by transforming it to the
tuple .Z�1X1Z;Z�1X2Z; : : : ;Z�1Xd Z/. Now, the general question above, for this action,
is which polynomials in the variables X are invariant under this action?

The work of Procesi, Formanek, Razmyslov, and Donkin [60,72,149,153] provides a
good set (in most aspects discussed above) of generating invariants (over algebraically closed
fields of characteristic zero). The generators are simply the traces of products of length at
most n2 of the given matrices,28 namely the set®

Tr.Xi1Xi2 � � � Xit / W t � n2; ij 2 Œd �
¯
:

These polynomials are explicit, have small degree, and are easily computable. The one short-
coming is the exponential size of this generating set. For example, using it to decide the
intersection of orbit closures will only lead to an exponential time algorithm.

By Hilbert’s so-called “Noether’s normalization lemma” [91],29 we know that the
size of this set of generating invariants can, in principle (as the proof is existential), be
reduced to dn2 C 1. Indeed, when the group action is on a vector space of dimension m,
taking m C 1 “random” linear combinations of any finite generating set will result (with
probability 1) in a small generating set. However, as we start with an exponential number of
generators above, this procedure is both inefficient and also not explicit (it is not clear how
to make it deterministic). One can get an explicit generating set of minimal size determinis-
tically using the Gröbner basis algorithm (see [129] for the best known complexity bounds)
but this will take doubly exponential time in n.

27 We will not elaborate on the theory of quiver representations here, but only remark that
reductions and completeness occur in this study as well! The left–right quiver is com-
plete in a well defined sense (see [50, Section 5]). Informally, this means understanding
its (semi)invariants implies the same understanding of the (semi)invariants of all acyclic
quivers.

28 Convince yourself that such polynomials are indeed invariant.
29 We remark that this is the same foundational paper which proved the finite basis and Null-

stellensatz theorems. It is interesting that Hilbert’s initial motivation to formulate and prove
these cornerstones of commutative algebra was the search for invariants of linear actions.
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The works above [71,141] reduce this complexity to polynomial time! This happened
in two stages. First, Mulmuley [141] gave a probabilistic polynomial time algorithm, by clev-
erly using the structure of the exponentially many invariants above (using which one can
obtain sufficiently random linear combinations using only polynomially many random bits
and in polynomial time). He then argues that using conditional derandomization results (dis-
cussed in the chapter on randomness in [176]), one can derive a deterministic polynomial time
algorithm under natural computational hardness assumptions. Shortly afterwards, Forbes
and Shpilka [71] derandomized a variant of Mulmuley’s algorithm without any unproven
assumption, yielding an unconditional deterministic polynomial time algorithm for the prob-
lem! Their algorithm uses the derandomization methodology: very roughly speaking, they
first notice that Mulmuley’s probabilistic algorithm can be implemented by a very restricted
computational model (a certain read-once branching program), and then use an efficient
pseudorandom generator for this computational model. Here is one important algorithmic
corollary (which can be extended to other quivers).

Theorem 10.2 ([71, 141]). There is a deterministic polynomial time algorithm to solve the
following problem: given two tuples of rationalmatrices .A1;A2; : : : ;Ad /; .B1;B2; : : : ;Bd /,
determine if the closure of their orbits under simultaneous conjugation intersect.

It is interesting to remark that if we only consider the orbits themselves (as opposed
to their closure), namely ask if there is Z 2 SLn.F/ such that for all i 2 Œd � we have
Z�1Ai Z D Bi , this becomes the module isomorphism problem over F . For this impor-
tant problem, there is a deterministic algorithm (of a very different nature than above, using
other algebraic tools) that can solve the problem over any field F using only a polynomial
number of arithmetic operations over F [40].

10.3. Left–right action
Consider now the following action of two copies, SLn.F/ � SLn.F/ on d -tuples of

n � n matrices. We still have m D dn2 variables arranged as d n � n matrices
X D .X1; X2; : : : ; Xd /. The action of a pair of matrices .Z; W / 2 SLn.F/ � SLn.F/ on
this tuple is by left–right action, transforming it to the tuple .Z�1X1W; Z�1X2W; : : : ;

Z�1Xd W /. Again, for this action, which polynomials in the variables X are invariant
under this action? Despite the superficial similarity to the to simultaneous conjugation, the
invariants here have entirely different structure, and bounding their size required different
arguments.

The works of [6, 54, 59, 156] provides an infinite set of generating invariants. The
generators (again, over algebraically closed fields) are determinants of linear forms of the
d matrices, with matrix coefficients Ci of arbitrary dimension. Namely the following set
generates all invariants:®

det.C1 ˝ X1 C C2 ˝ X2 C � � � C Cd ˝ Xd / W Ci 2 Mk.F/; k 2 N
¯
:

These generators, while concisely described, fall short on most goodness aspects
above, and we now discuss improvements. First, by Hilbert’s finite generation, we know
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in particular that some finite bound k on the dimension of the matrix coefficients Ci exist.
A quest to find explicit bounds on k ensued. A quadratic upper bound k � n2 was obtained by
Derksen and Makam [50] after a long sequence of improvements described there. Still, there
is an exponential number30 of possible matrix coefficients of this size exist. However, it is
easy to see that picking the Ci at random leads to a probabilistic polynomial time algorithm
for the orbit closure intersection for this left–right action. A sequence of developments which
we describe below and in the next subsection, eventually led to a deterministic polytime
algorithm for this problem over the complex numbers by Allen-Zhu, Garg, Li, Oliveira, and
Wigderson [13]. A different, simpler algorithm which works for all fields was later found by
Derksen and Makam [51]).

Theorem 10.3 ([13,51]). There is a deterministic polynomial time algorithm to solve the fol-
lowing problem: given two tuples of matrices .A1;A2; : : : ;Ad /; .B1;B2; : : : ;Bd /, determine
if the closure of their orbits under the left–right action intersect.

In the remainder we discuss an important special case of this problem, namely when
all Bi D 0, for which deterministic polynomial time algorithms were found first, which were
key to the general result above. While this problem is in commutative algebra, this algorithm
surprisingly has implications in analysis, noncommutative algebra, computational complex-
ity, quantum information theory, and other areas. We will mention some of these, but let us
start by defining the problem.

For an action of a linear group G on a vector space V , define the nullcone of the
action to be the set of all points v 2 V such that the closure of the orbit Gv contains 0.
The points in the nullcone are sometimes called unstable. The nullcone is of fundamental
importance in invariant theory! Some examples of nullcones for actions we have discussed
are the following. For the action of SLn.C/ on Mn.C/ by left multiplication, it is the set
of singular matrices. For the action of SLn.C/ on Mn.C/ by conjugation, it is the set of
nilpotent matrices. As you would guess (and follows from Theorem 10.1), the nullcone is
precisely the set of points in V which vanish under all invariant polynomials. Thus if we
have a good generating set, one can use them to efficiently test membership in the nullcone.
However, we are not in this situation for the left–right action. Despite that, deterministic
polynomial-time algorithms were obtained, independently, by Garg, Gurvits, Oliveira, and
Wigderson [75] (which is analytic in nature) over the complex numbers, and by Ivanyos,
Qiao, and Subrahmanyam [95] (which is algebraic in nature) and works for all fields. These
two algorithms have different properties, and use in different ways the upper bounds on the
dimension of matrix coefficients in the invariants.31

Theorem 10.4 ([75,95]). There is a deterministic polynomial time algorithm that, on a given
tuple of matrices .A1; A2; : : : ; Ad / in Mn.F/, determines if it is in the nullcone of the left–
right action.

30 Well, a possibly infinite number, but it can be reduced to exponential.
31 Yet a third algorithm, quite different than the two above, was very recently developed by

Hamada and Hirai [88].
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We will focus in what follows on the first algorithm. We discuss its broad extensions
in the next subsection. Here we discuss some of its diverse consequences to basic problems
in different fields (reflecting the many different mathematical objects that can be represented
by matrix tuples). All the precise definitions of the notions below, as well as the proofs,
interconnections and the meandering story leading to it can be found in [75,76].

Theorem 10.5 ([75, 76]). There are deterministic polynomial-time algorithms to solve the
following problems:

• (Analysis) The feasibility problem for Brascamp–Lieb inequalities, and more gen-
erally, computing the optimal constant for each one.

• (Noncommutative algebra) The word problem over the free skew field (of rational
functions in noncommuting variables).

• (Quantum information theory) Testing if a completely positive quantum operator
is rank-decreasing.

• (Arithmetic complexity) Approximating the commutative rank of a symbolic
matrix to within a factor of two.32

We note that this algorithm also inspired purely structural results, both in the areas
mentioned above, but also in others. In frame theory, it led to the complete resolution of the
central Paulsen problem [89,113]. In statistics, it has led to complete understanding of when
Maximum Likelihood Estimates (MLE) exist, and when they are unique, first for matrix
random models [15,52] and then for tensor random models [53].

10.4. Nullcones, moment polytopes, geodesic convexity, and noncommutative
optimization
Reflecting on the algorithm of [75] from the previous section marked several features

which merited further investigation. For one, it is an analytic/numerical algorithm, very dif-
ferent that the typical algebraic/symbolic algorithms so common for problems of invariant
theory and algebraic geometry, and in the applications above. This algorithm is a special
case of a general heuristic called alternate minimization, common in optimization, statistics,
and machine learning, where the input evolves via a sequence of local, greedy steps. In gen-
eral, convergence of such algorithms, let alone fast convergence, may not be guaranteed or
is hard to establish, whereas here it always converges, and in polynomial time! The analysis
uses the fact that the evolution above happens along the orbit of the input by the left–right
group action, and tracks a measure called capacity which this evolution minimizes. And fast
convergence to a unique optimum occurs despite the fact that both the domain (a pair of
continuous linear groups) and the optimized function are patently nonconvex.

Understanding the power of such continuous optimization algorithms for a larger
and larger classes of nullcone problems (capturing other problems, in discrete optimization,

32 Computing this rank exactly is the central PIT problem, discussed at the last subsection.
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quantum information, representation theory, and other areas) progressed in a series of papers,
culminating in a general theory, that applies in principle to any linear (reductive) group
action [41]. The paper contains a detailed account of the history, background, theory, and
applications, and we relate below just the highlights, partly explaining the mysteries above.

First, nullcone problems may be viewed as optimization problems for general group
actions, where the capacity being minimized is simply the minimum norm of any element in
the orbit of the input. This viewpoint then benefits from a beautiful noncommutative duality
theory (the Kempf–Ness theorem [106], which greatly expends linear programming duality in
the commutative case). Underlying this theorem are notions of geodesic convexity (extending
the Euclidean one) and moment maps (extending the Euclidean gradient). Thus, the seeming
nonconvexity of these problems mentioned above only stems from the wrong representation:
viewed with the correct metric on the Riemannian manifold which is the acting group makes
both the domain and optimization goal (geodesically) convex, explaining convergence to a
unique optimal point, which determines membership in the nullcone.

Using these tools, it turns out that the most basic tools of convex optimization in
Euclidean space extend to the far more general setting of Riemannian manifolds that arise
from the symmetries of noncommutative groups. The paper develops “geodesic” first- and
second-order algorithms in this setting, and analyzes their performance in general. Prov-
ing convergence bounds requires making quantitative the duality theory above, which uses
significant algebraic and analytic machinery. However, the bounds themselves depend in
an elegant way on few natural geometric “smoothness” parameters (arising from the given
group action), in analogy with the Euclidean (commutative) case.

These algorithms can actually be modified to solve a significant generalization of the
nullcone membership problem, namely computing membership in so-called moment poly-
topes, implicitly defined polyhedral bodies associated with any linear group action. These
capture a variety of “scaling problems,” such as marginal problems in classical and quantum
information theory, as well as basic combinatorial optimization problem such as the matroid
intersection problem.

10.5. Symbolic determinants, varieties, and circuit lower bounds
We now return to a another basic computational question on matrix tuples, the Sym-

bolic Determinant Identity Testing (SDIT) problem (of interest over any field F ): Given a
tuple of n � n matrices .A1; A2; : : : ; Ad /, determine if the symbolic determinant
det.

P
i xi Ai / vanishes as a polynomial in the variables xi . This problem has a several

different formulations, and has arisen independently in different fields. We mention a few.
One equivalent formulation comes from considering the linear space

¹
P

i ci Ai W ci 2 Fº arising from all possible evaluations of the variables xi . Then SDIT
asks if this matrix space contains only singular matrices. In algebraic geometry, it arises in
close connection with certain sheaves on projective space [68]. In topology, it arises naturally
in connection to linearly independent vector fields on spheres, which led to the development
of the Adams operations on topological K-theory [2,3]. In invariant theory, they were used
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by Dieudonné [57] to classify the symmetries of the determinant, recovering a result of
Frobenius [73].

Another equivalent formulation brings up beautiful connections between the
cases of commuting and noncommuting variables xi . Consider the symbolic matrix
A.x/ D

P
i xi Ai . In this terminology SDIT becomes the question of the invertibility of

this symbolic matrix A.x/ over the field F.x/ of rational functions in the (commuting) vari-
ables xi . In his seminal work on the (noncommutative) free skew field, Cohn [44] proved
that the elements of this field can be described as inverses of such symbolic matrices in non-
commuting variables xi . Thus the noncommutative analog of SDIT is the word problem for
this field.33 Another connection mentioned in Section 10.3 above is that the noncommutative
SDIT problem is equivalent to the nullcone problem for the left–right action! Recalling the
generating invariants for this group action from Section 10.3, one observes that (commuta-
tive) SDIT is the question of vanishing of the lowest possible invariant, k D 1.

SDIT played a crucial role in algorithms and computational complexity. It was ini-
tially raised by Edmonds [67] in the context of combinatorial optimization. Another interpre-
tation of Valiant’s completeness result is that SDIT captures the general Polynomial Identity
Testing (PIT) problem (see the survey [159]). Noting that SDIT has a simple fast probabilistic
algorithm over large fields (namely, assign random values to the variables and evaluate the
resulting numeric determinant), finding an efficient deterministic algorithm became one of
the most basic derandomization challenges, which has been under attack now for half a cen-
tury. The difficulty (and importance) of finding such a deterministic algorithm was clarified
(bigtime) by the following remarkable result of Kabanets and Impagliazzo [101].

Theorem 10.6 ([101]). If there is a deterministic polynomial time algorithm for SDIT, then
either VP ¤ VN P , or N EXP has no polynomial size Boolean circuits.

In simpler words, such a derandomization will result in a major breakthrough in
computational complexity, providing explicit lower bounds either in arithmetic or Boolean
complexity, each in the ballpark of proving P ¤ N P . Even the logical nature of this theorem
statement demands attention: it states that an efficient algorithm for one problem (SDIT) will
mean that host of other natural problems have no efficient algorithm!

On the other hand, this theorem suggests a concrete algorithmic attack on these
lower bound questions (and in particular, VP vs. VN P ) discussed in Section 10.1—simply
design a deterministic algorithm for SDIT. The past decades have seen much progress on
designing such algorithms for a variety of special cases of SDIT (and the more general PIT),
which is far too large to survey here. We conclude here with the possibility of finding such
an algorithm via the new algorithmic techniques described in Section 10.4 above. This is
explored in [125], and we only summarize what is currently known.

First, let us note that the set of singular matrices is an algebraic variety. Thus SDIT
is a special case of a very large class of natural problems. Fix an algebraic variety in U � Fm

33 Valiant’s completeness result [172], mentioned in Section 10.1, analogously makes SDIT
the word problem for the commutative field F.x/.
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(e.g., for SDIT, m D dn2). Given a point u 2 Fm (e.g., for SDIT u is a matrix tuple), deter-
mine if u 2 U . Of course, it is natural to work here with algebraically closed fields, e.g.,
F D C.

Such membership problems in algebraic varieties obviously arise naturally in numer-
ous settings. One way to view the developments of the previous section is that if the variety
U is actually the nullcone of a (nice) group action, then continuous, convex optimization
methods (extended to the geodesic setting), such a gradient descent, may be far more efficient
than symbolic, algebraic algorithms, and indeed in some cases may have polynomial-time
convergence. Thus, a first question to ask is whether SDIT itself is the nullcone of some
group action. Unfortunately, it is not (unless d � 2 or n � 2), again possibly helping to
understand its difficulty.

Theorem 10.7 ([125]). For d;n � 3, SDIT for a d -tuple of n � n matrices is not the nullcone
of any linear group action.

A central part of the proof of this theorem is the characterization the symmetries
of the SDIT variety, extending to d -tuples for any d the aforementioned theorem of Frobe-
nuis [73] for the case d D 1. Among some of the natural directions suggested by this work we
name three basic ones: (1) Find methods of determining the symmetries of naturally given
algebraic varieties; (2) Find methods to determine if a given algebraic variety is the null-
cone of a linear group action; (3) Extend the convex optimization methods of Section 10.4
to prove membership in other algebraic varieties, beside nullcones.
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