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Abstract

This article highlights historical achievements in the partition theory of countable homo-
geneous relational structures, and presents recent work, current trends, and open problems.
Exciting recent developments include new methods involving logic, topological Ramsey
spaces, and category theory. The paper concentrates on big Ramsey degrees, presenting
their essential structure where known and outlining areas for further development. Cog-
nate areas, including infinite dimensional Ramsey theory of homogeneous structures and
partition theory of uncountable structures, are also discussed.
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1. Introduction

Ramsey theory is a beautiful subject which interrelates with a multitude of mathe-
matical fields. In particular, since its inception, developments in Ramsey theory have often
been motivated by problems in logic; in turn, Ramsey theory has instigated some seminal
developments in logic. The intent of this article is to provide the general mathematician
with an introduction to the intriguing subject of Ramsey theory on homogeneous structures
while being detailed enough to describe the state-of-the-art and the main ideas at play. We
present historical highlights and discuss why solutions to problems on homogeneous struc-
tures require more than just straightforward applications of finite structural Ramsey theory.
In the following sections, we map out collections of recent results and methods which were
developed to overcome obstacles associated with forbidden substructures. These new meth-
ods involve applications from logic (especially forcing but also ideas from model theory),
topological Ramsey spaces, and category theory.

The subject of Ramsey theory on infinite structures begins with this lovely theorem.

Theorem 1.1 (Ramsey, [58]). Given positive integers k and r and a coloring of the k-element
subsets of the natural numbers N into r colors, there is an infinite set of natural numbers
N � N such that all k-element subsets of N have the same color.

There are two natural interpretations of Ramsey’s theorem in terms of infinite struc-
tures. First, letting < denote the standard linear order on N, Ramsey’s theorem shows that
given any finite coloring of all linearly ordered substructures of .N; </ of size k, there is
an isomorphic substructure .N; </ of .N; </ such that all linearly ordered substructures
of .N; </ of size k have the same color. Second, one may think of the k-element subsets
of N as k-hyperedges. Then Ramsey’s theorem yields that, given any finite coloring of the
k-hyperedges of the complete k-regular hypergraph on infinitely many vertices, there is an
isomorphic subgraph in which all k-hyperedges have the same color.

Given this, one might naturally wonder about other structures.

Question 1.2. Which infinite structures carry an analogue of Ramsey’s theorem?

The rational numbers .Q; </ as a dense linearly ordered structure (without end-
points) was the earliest test case. It is a fun exercise to show that given any coloring of the
rational numbers into finitely many colors, there is one color-class which contains a dense
linear order, that is, an isomorphic subcopy of the rationals in one color. Thus, the rationals
satisfy a structural pigeonhole principle known as indivisibility.

The direct analogy with Ramsey’s theorem ends, however, when we consider pairs
of rationals. It follows from the work of Sierpiński in [65] that there is a coloring of the
pairs of rationals into two colors so that both colors persist in every isomorphic subcopy of
the rationals. Sierpiński’s coloring provides a clear understanding of one of the fundamen-
tal issues arising in partition theory of infinite structures not occurring in finite structural
Ramsey theory. Let ¹qi W i 2 Nº be a listing of the rational numbers, without repetition, and
for i < j define c.¹qi ; qj º/ D blue if qi < qj , and c.¹qi ; qj º/ D red if qj < qi . Then in
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each subset Q � Q forming a dense linear order, both color classes persist; that is, there are
pairs of rationals in Q colored red and also pairs of rationals in Q colored blue. Since it is
impossible to find an isomorphic subcopy of the rationals in which all pairsets have the same
color, a direct analogue of Ramsey’s theorem does not hold for the rationals.

The failure of the straightforward analogue of Ramsey’s theorem is not the end,
but rather just the beginning of the story. Galvin (unpublished) showed a few decades later
that there is a bound on the number of unavoidable colors: Given any coloring of the pairs
of rationals into finitely many colors, there is a subcopy of the rationals in which all pairs
belong to the union of two color classes. Now one sees that Question 1.2 ought to be refined.

Question 1.3. For which infinite structures S is there a Ramsey-analogue in the following
sense: Let A be a finite substructure of S. Is there a positive integer T such that for any
coloring of the copies of A into finitely many colors, there is a subcopy S0 of S in which
there are no more than T many colors for the copies of A?

The least such integer T , when it exists, is denoted T .A/ and called the big Ramsey
degree of A in S, a term coined in Kechris–Pestov–Todorcevic (2005). The “big” refers to
the fact that we require an isomorphic subcopy of an infinite structure in which the number
of colors is as small as possible (in contrast to the concept of small Ramsey degree in finite
structural Ramsey theory).

Notice how Sierpiński played the enumeration ¹qi W i 2 Nº of the rationals against
the dense linear order to construct a coloring of pairsets of rationals into two colors, each of
which persists in every subcopy of the rationals. This simple, but deep idea sheds light on
a fundamental difference between finite and infinite structural Ramsey theory. The interplay
between the enumeration and the relations on an infinite structure has bearing on the number
of colors that must persist in any subcopy of that structure. We will see examples of this at
work throughout this article and explain the general principles which have been found for
certain classes of structures with relations of arity at most two, even as the subject aims
towards a future overarching theory of big Ramsey degrees.

2. The questions

Given a finite relational language L D ¹Ri W i < kº with each relation symbol Ri

of some finite arity, say, ni , an L-structure is a tuple A D hA; RA
0 ; : : : ; RA

k�1
i, where A ¤ ;

is the universe of A and for each i < k, RA
i � Ani . For L-structures A and B, an embed-

ding from A into B is an injection e W A ! B such that for all i < k, RA
i .a1; : : : ; ani

/ $

RB
i .e.a1/; : : : ; e.ani

//. The e-image of A is a copy of A in B. If e is the identity map, then A
is a substructure of B. An isomorphism is an embedding which is onto its image. We write
A � B exactly when there is an embedding of A into B, and A Š B exactly when A and B
are isomorphic.

A class K of finite structures for a relational language L is called a Fraïssé class
if it is hereditary, satisfies the joint embedding and amalgamation properties, contains (up
to isomorphism) only countably many structures, and contains structures of arbitrarily large
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finite cardinality. Class K is hereditary if whenever B 2 K and A � B, then also A 2 K;
K satisfies the joint embedding property if for any A; B 2 K , there is a C 2 K such that
A � C and B � C; K satisfies the amalgamation property if for any embeddings f W A ! B
and g W A ! C, with A; B; C 2 K , there is a D 2 K and there are embeddings r W B ! D
and s W C ! D such that r ı f D s ı g. A Fraïssé class K satisfies the strong amalgamation
property (SAP) if given A; B; C 2 K and embeddings e W A ! B and f W A ! C, there
is some D 2 K and embeddings e0 W B ! D and f 0 W C ! D such that e0 ı e D f 0 ı f ,
and e0ŒB� \ f 0ŒC � D e0 ı eŒA� D f 0 ı f ŒA�. We say that K satisfies the free amalgamation
property (FAP) if it satisfies the SAP and, moreover, D can be chosen so that D has no
additional relations other than those inherited from B and C.

Let A;B;C be L-structures such that A � B � C. We use
�B

A
�

to denote the set of all
copies of A in B. The Erdős–Rado arrow notation C ! .B/A

k
means that for each coloring of�C

A
�

into k colors, there is a B0 2
�C

B
�

such that
�B0

A
�

is monochromatic, meaning every member
of

�B0

A
�

has the same color.

Definition 2.1. A Fraïssé class K has the Ramsey property if for any two structures A � B
in K and any k � 2, there is a C 2 K with B � C such that C ! .B/A

k
.

Many Fraïssé classes, such as the class of finite graphs, do not have the Ramsey
property. However, by allowing a finite expansion of the language, often by just a linear order,
the Ramsey property becomes more feasible. Letting < be a binary relation symbol not in
the language L of K , an L [ ¹<º-structure is in K< if and only if its universe is linearly
ordered by < and its L-reduct is a member of K . A highlight is the work of Nešetřil and
Rödl in [51] and [52], proving that for any Fraïssé class K with FAP, its ordered version K<

has the Ramsey property. The recent paper [40] by Hubička and Nešetřil presents the state-
of-the-art in finite structural Ramsey theory. Examples of Fraïssé classes with the Ramsey
property include the class of finite linear orders, and the classes of finite ordered versions
of graphs, digraphs, tournaments, triangle-free graphs, posets, metric spaces, hypergraphs,
hypergraphs omitting some irreducible substructures, and many more.

A structure K is called universal for a class of structures K if each member of
K embeds into K. A structure K is homogeneous if each isomorphism between finite sub-
structures of K extends to an automorphism of K. Unless otherwise specified, we will write
homogeneous to mean countably infinite homogeneous, such structures being the focus of
this paper. The age of an infinite structure K, denoted Age.K/, is the collection of all finite
structures which embed into K. A fundamental theorem of Fraïssé from [31] shows that each
Fraïssé class gives rise to a homogeneous structure via a construction called the Fraïssé limit.
Conversely, given any countable homogeneous structure K, Age.K/ is a Fraïssé class and,
moreover, the Fraïssé limit of Age.K/ is isomorphic to K. The Kechris–Pestov–Todorcevic
correspondence between the Ramsey property of a Fraïssé class and extreme amenability of
the automorphism group of its Fraïssé limit in [41] propelled a burst of discoveries of more
Fraïssé classes with the Ramsey property.

First we state an esoteric but driving question in the area.
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Question 2.2. What is a big Ramsey degree?

What is the essential nature of a big Ramsey degree? Why is it that given a Fraïssé
class K satisfying the Ramsey property, its Fraïssé limit usually fails to carry the full ana-
logue of Ramsey’s Theorem 1.1 (i.e., all big Ramsey degrees being one)? A theorem of
Hjorth in [37] showed that for any homogeneous structure K with jAut.K/j > 1, there is a
structure in Age.K/ with big Ramsey degree at least two. While much remains open, we now
have an answer to Question 2.2 for FAP and some SAP homogeneous structures with finitely
many relations of arity at most two, and these results will be discussed in the following
sections.

We say that S has finite big Ramsey degrees if T .A/ exists for each finite substructure
A of S. We say that exact big Ramsey degrees are known if there is either a computation of
the degrees or a characterization from which they can be computed. Indivisibility holds if
T .A/ D 1 for each one-element substructure A of S. The following questions progress in
order of strength: A positive answer to (3) implies a positive answer to (2), which in turn
implies a positive answer to (1).

Question 2.3. Given a homogeneous structure K,

(1) Does K have finite big Ramsey degrees? That is, can one find upper bounds
ensuring that big Ramsey degrees exist?

(2) If K has finite big Ramsey degrees, is there a characterization of the exact big
Ramsey degrees via canonical partitions? If yes, calculate or find an algorithm
to calculate them.

(3) Does K carry a big Ramsey structure?

Part (2) of this question involves finding canonical partitions.

Definition 2.4 (Canonical Partition, [44]). Given a Fraïssé class K with Fraïssé limit K, and
given A 2 K , a partition ¹Pi W i < nº of

�K
A
�

is canonical if the following hold: For each finite
coloring of

�K
A
�
, there is a subcopy K0 of K such that for each i < n, all members of Pi \

�K0

A
�

have the same color; and persistence: For every subcopy K0 of K and each i < n, Pi \
�K0

A
�

is nonempty.

Canonical partitions recover an exact analogue of Ramsey’s theorem for each piece
of the partition. In practice such partitions are characterized by adding extra structure to K,
including the enumeration of the universe of K and a tree-like structure capturing the rela-
tions of K against the enumeration.

Part (3) of Question 2.3 has to do with a connection between big Ramsey degrees
and topological dynamics, in the spirit of the Kechris–Pestov–Todorcevic correspondence,
proved by Zucker in [70]. A big Ramsey structure is essentially a finite expansion K� of K so
that each finite substructure of K� has big Ramsey degree one, and, moreover, the unavoid-
able colorings cohere in that for A; B 2 Age.K/ with A embedding into B, the canonical
partition for copies of B when restricted to copies of A recovers the canonical partition for
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copies of A. Big Ramsey structures imply canonical partitions. The reverse is not known
in general, but certain types of canonical partitions are known to imply big Ramsey struc-
tures (Theorem 6.10 in [8]), and it seems reasonable to the author to expect that (1)–(3) are
equivalent.

Canonical partitions and big Ramsey structures are really getting at the question
of whether we can find an optimal finite expansion K� of a given homogeneous structure
K so that K� carries an exact analogue of Ramsey’s theorem. In this sense, big Ramsey
degrees are not quite so mysterious, but are rather saying that an exact analogue of Ramsey’s
theorem holds for an appropriately expanded structure. The question then becomes: What is
the appropriate expansion?

3. Case study: the rationals

The big Ramsey degrees for the rationals were determined by 1979. Laver in 1969
(unpublished, see [10]) utilized a Ramsey theorem for trees due to Milliken [50] (Theorem 3.2)
to find upper bounds. Devlin completed the picture in his PhD thesis [10], calculating the
big Ramsey degrees of the rationals. These surprisingly turn out to be related to the odd
coefficients in the Taylor series of the tangent function: The big Ramsey degree for n-element
subsets of the rationals is T .n/ D .2n � 1/Šc2n�1, where ck is the kth coefficient in the Taylor
series for the tangent function, tan.x/ D

P1

kD0 ckxk . As Todorcevic states, the big Ramsey
degrees for the rationals “characterize the Ramsey theoretic properties of the countable dense
linear ordering .Q; </ in a very precise sense. The numbers T .n/ are some sort of Ramsey
degrees that measure the complexity of an arbitrary finite coloring of the n-element subsets
of Q modulo, of course, restricting to the n-element subsets of X for some appropriately
chosen dense linear subordering X of Q.” (page 143, [66], notation modified)

We present Devlin’s characterization of the big Ramsey degrees of the rationals and
the four main steps in his proof. (A detailed proof appears in Section 6.3 of [66].) Then we
will present a method from [8] using coding trees of 1-types which bypasses nonessential
constructs, providing what we see as a satisfactory answer to Question 2.2 for the rationals.

We use some standard mathematical logic notation, providing definitions as needed
for the general mathematician. The set of all natural numbers ¹0; 1; 2; : : : º is denoted by
!. Each natural number k 2 ! is equated with the set ¹0; : : : ; k � 1º and its natural linear
ordering. For us k 2 ! and k < ! are synonymous. For k 2 !, k<! denotes the tree of
all finite sequences with entries in ¹0; : : : ; k � 1º, and !<! denotes the tree of all finite
sequences of natural numbers. Finite sequences with any sort of entries are thought of as
functions with domain some natural number. Thus, for a finite sequence t the length of t ,
denoted jt j, is the domain of the function t , and for i 2 dom.t/, t .i/ denotes the i th entry
of the sequence t . For ` 2 !, we write t � ` to denote the initial segment of t of length ` if
` � jt j, and t otherwise. For two finite sequences s and t , we write s v t when s is an initial
segment of t , and we write s @ t when s is a proper initial segment of t , meaning that s v t

and s ¤ t . We write s ^ t to denote the meet of s and t , that is, the longest sequence which
is an initial segment of both s and t . Given a subset S of a tree of finite sequences, the meet
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closure of S , denoted cl.S/, is the set of all nodes in S along with the set of all meets s ^ t ,
for s; t 2 S .

A Ramsey theorem for trees, due to Milliken, played a central role in Devlin’s work
and has informed subsequent approaches to finding upper bounds for big Ramsey degrees.
In this area, a subset T � !<! is called a tree if there is a subset LT � ! such that T D

¹t � ` W t 2 T; ` 2 LT º. Thus, a tree is closed under initial segments of lengths in LT , but not
necessarily closed under all initial segments in !<! . The height of a node t in T , denoted
htT .t/, is the order-type of the set ¹s 2 T W s @ tº, linearly ordered by @. We write T .n/ to
denote ¹t 2 T W htT .t/ D nº. For t 2 T , let SuccT .t/ D ¹s � .jt j C 1/ W s 2 T and t @ sº,
noting that SuccT .t/ � T only if jt j C 1 2 LT .

A subtree S � T is a strong subtree of T if LS � LT and each node s in S branches
as widely as T will allow, meaning that for s 2 S , for each t 2 SuccT .s/ there is an extension
s0 2 S such that t v s0. For the next theorem, define

Q
i<d Ti .n/ to be the set of sequences

.t0; : : : ; td�1/ where ti 2 Ti .n/, the product of the nth levels of the trees Ti . Then letO
i<d

Ti WD

[
n<!

Y
i<d

Ti .n/: (3.1)

The following is the strong tree version of the Halpern–Läuchli theorem.

Theorem 3.1 (Halpern–Läuchli, [34]). Let d be a positive integer, Ti � !<! (i < d ) be
finitely branching trees with no terminal nodes, and r � 2. Given a coloring c W

N
i<d Ti ! r ,

there is an increasing sequence hmn W n < !i and strong subtrees Si � Ti such that for all
i < d and n < !, Si .n/ � Ti .mn/, and c is constant on

N
i<d Si .

The Halpern–Läuchli theorem has a particularly strong connection with logic. It
was isolated by Halpern and Lévy as a key juncture in their work to prove that the Boolean
Prime Ideal Theorem is strictly weaker than the Axiom of Choice over the Zermelo–Fraenkel
Axioms of set theory. Once proved by Halpern and Läuchli, Halpern and Lévy completed
their proof in [35].

Harrington (unpublished) devised an innovative proof of the Halpern–Läuchli theo-
rem which used Cohen forcing. The forcing helps find good nodes in the trees Ti from which
to start building the subtrees Si . From then on, the forcing is used ! many times, each time
running an unbounded search for finite sets Si .n/ which satisfy that level of the Halpern–
Läuchli theorem. Being finite, each Si .n/ is in the ground model. The proof entails neither
passing to a generic extension nor any use of Shoenfield’s Absoluteness Theorem.

A k-strong subtree is a strong subtree with k many levels. The following theorem
is proved inductively using Theorem 3.1.

Theorem 3.2 (Milliken, [50]). Let T � !<! be a finitely branching tree with no terminal
nodes, k � 1, and r � 2. Given a coloring of all k-strong subtrees of T into r colors, there
is an infinite strong subtree S � T such that all k-strong subtrees of S have the same color.

For more on the Halpern–Läuchli and Milliken theorems, see [21, 46, 66]. Now we
look at Devlin’s proof of the exact big Ramsey degrees of the rationals, as it has bearing on
many current approaches to big Ramsey degrees.
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The rationals can be represented by the tree 2<! of binary sequences with the lexi-
cographic order G defined as follows: Given s; t 2 2<! with s ¤ t , and letting u denote s ^ t ,
define s G t to hold if and only if (juj < jsj and s.juj/ D 0) or .juj < jt j and t .juj/ D 1).
Then .2<! ; G/ is a dense linear order. The following is Definition 6.11 in [66], using the
terminology of [62]. For jsj < jt j, the number t .jsj/ is called the passing number of t at s.

Definition 3.3. For A; B � !<! , we say that A and B are similar if there is a bijection
f W cl.A/ ! cl.B/ such that for all s; t 2 cl.A/,

(a) (preserves end-extension) s v t , f .s/ v f .t/,

(b) (preserves relative lengths) jsj < jt j , jf .s/j < jf .t/j,

(c) s 2 A , f .s/ 2 B ,

(d) (preserves passing numbers) t .jsj/ D f .t/.jf .s/j/ whenever jsj < jt j.

Similarity is an equivalence relation; a similarity equivalence class is called a sim-
ilarity type. We now outline the four main steps to Devlin’s characterization of big Ramsey
degrees in the rationals. Fix n � 1.

I. (Envelopes) Given a subset A � 2<! of size n, let k be the number of levels in
cl.A/. An envelope of A is a k-strong subtree E.A/ of 2<! such that A � E.A/. Given any
k-strong subtree S of 2<! , there is exactly one subset B � S which is similar to A. This
makes it possible to transfer a coloring of the similarity copies of A in 2<! to the k-strong
subtrees of 2<! in a well-defined manner.

II. (Finite Big Ramsey Degrees) Apply Milliken’s theorem to obtain an infinite
strong subtree T � 2<! such that every similarity copy of A in T has the same color. As
there are only finitely many similarity types of sets of size n, finitely many applications
of Milliken’s theorem results in an infinite strong subtree S � 2<! such that the color-
ing is monochromatic on each similarity type of size n. This achieves finite big Ramsey
degrees.

III. (Diagonal Antichain for Better Upper Bounds) To obtain the exact big Ramsey
degrees, Devlin constructed a particular antichain of nodes D � 2<! such that .D; G/ is a
dense linear order and no two nodes in the meet closure of D have the same length, a property
called diagonal. He also required .�/: All passing numbers at the level of a terminal node
or a meet node in cl.D/ are 0, except of course the rightmost extension of the meet node.
Diagonal antichains turn out to be essential to characterizing big Ramsey degrees, whereas
the additional requirement (�) is now seen to be nonessential when viewed through the lens
of coding trees of 1-types.

IV. (Exact Big Ramsey Degrees) To characterize the big Ramsey degrees, Devlin
proved that the similarity type of each subset of D of size n persists in every subset D0 � D

such that .D0; G/ is a dense linear order. The similarity types of antichains in D thus form
a canonical partition for linear orders of size n. By calculating the number of different
similarity types of subsets of D of size n, Devlin found the big Ramsey degrees for the
rationals.
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Figure 1

Coding tree S.Q/ of 1-types for .Q; </ and the linear order represented by its coding nodes.

Now we present the characterization of the big Ramsey degrees for the rationals
using coding trees of 1-types. Coding trees on 2<! were first developed in [13] to solve
the problem of whether or not the triangle-free homogeneous graph has finite big Ramsey
degrees. The presentation given here is from [8], where the notion of coding trees was honed
using model-theoretic ideas. We hope that presenting this view here will set the stage for a
concrete understanding of big Ramsey degree characterizations discussed in Section 5.

Fix an enumeration ¹q0; q1; : : : º of Q. For n < !, we let Q � n denote the substruc-
ture .¹qi W i 2 nº;</ of .Q;</, which we refer to as an initial substructure. One can think of
Q � n as a finite approximation in a construction of the rationals. The definition of a coding
tree of 1-types in [8] uses complete realizable quantifier-free 1-types over initial substruc-
tures. Here, we shall retain the terminology of [8] but (with apologies to model-theorists)
will use sets of literals instead, since this will convey the important aspects of the construc-
tions while being more accessible to a general readership. For now, we call a set of formulas
s � ¹.qi < x/ W i 2 nº [ ¹.x < qi / W i 2 nº a 1-type over Q � n if (a) for each i < n exactly
one of the formulas .qi < x/ or .x < qi / is in s, and (b) there is some (and hence infinitely
many) j � n such that qj satisfies s, meaning that replacing the variable x by the rational
number qj in each formula in s results in a true statement. In other words, s is a 1-type if s

prescribes a legitimate way to extend Q � n to a linear order of size n C 1.

Definition 3.4 (Coding Tree of 1-Types for Q, [8]). For a fixed enumeration ¹q0; q1; : : : º of
the rationals, the coding tree of 1-types S.Q/ is the set of all 1-types over initial substructures
along with a function c W ! ! S.Q/ such that c.n/ is the 1-type of qn over Q � n. The tree-
ordering is simply inclusion.
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Given s 2 S.Q/ let jsj D j C 1 where j is maximal such that one of .x < qj / or
.qj < x/ is in s. For each i < jsj, we let s.i/ denote the formula from among .x < qi / or
.qi < x/ which is in s. The coding nodes c.n/, in practice usually denoted by cn, are special
distinguished nodes representing the rational numbers; cn represents the rational qn, because
cn is the 1-type with parameters from among ¹qi W i 2 nº that qn satisfies. Notice that this
tree S.Q/ has at most one splitting node per level. The effect is that any antichain of coding
nodes in S.Q/ will automatically be diagonal. (See Figure 1, reproduced from [8].)

Fix an ordering <lex on the literals: For i < j , define .x < qi / <lex .qi < x/ <lex

.x < qj /. Extend <lex to S.Q/ by declaring for s; t 2 S.Q/, s <lex t if and only if s and t

are incomparable and for i D js ^ t j, s.i/ <lex t .i/.

Definition 3.5. For A; B sets of coding nodes in S.Q/, we say that A and B are similar if
there is a bijection f W cl.A/ ! cl.B/ such that for all s; t 2 cl.A/, f satisfies (a)–(c) of
Definition 3.3 and (d0) s <lex t ” f .s/ <lex f .t/,

When B is similar to A, we call B a similarity copy of A. Condition (d) in Defini-
tion 3.3 implies that the lexicographic order on 2<! is preserved, and, moreover, that passing
numbers at meet nodes and at terminal nodes are preserved. In (d0) we only need to preserve
lexicographic order.

Extending Harrington’s method, forcing is utilized to obtain a pigeonhole principle
for coding trees of 1-types in the vein of the Halpern–Läuchli Theorem 3.1, but for colorings
of finite sets of coding nodes, rather than antichains. Via an inductive argument using this
pigeonhole principle, we obtain the following Ramsey theorem on coding trees.

Theorem 3.6 ([8]). Let S.Q/ be a coding tree of 1-types for the rationals. Given a finite set
A of coding nodes in S.Q/ and a finite coloring of all similarity copies of A in S.Q/, there
is a coding subtree S of S.Q/ similar to S.Q/ such that all similarity copies of A in S have
the same color.

Fix n � 1. By applying Theorem 3.6 once for each similarity type of coding nodes
of size n, we prove finite big Ramsey degrees, accomplishing step II while bypassing step I in
Devlin’s proof. Upon taking any antichain D of coding nodes in S.Q/ representing a dense
linear order, we obtain better upper bounds which are then proved to be exact, accomplishing
steps III and IV.

Big Ramsey degrees of the rationals. In [8], we show that given n � 1, the big Ramsey
degree T .n/ for linear orders of size n in the rationals is the number of similarity types of
antichains of coding nodes in S.Q/.

What then is the big Ramsey degree T .n/ in the rationals? It is the number of differ-
ent ways to order the indexes of an increasing sequence of rationals ¹qi0 < qi1 < � � � < qin�1º

with incomparable 1-types along with the number of ways to order the first differences of
their 1-types over initial substructures of Q. The first difference between the 1-types of the
rationals qi and qj occurs at the least k such that qi < qk and qk < qj , or vice versa.
This means that qi and qj are in the same interval of Q � k but in different intervals of
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Q � .k C 1/. Concretely, T .n/ is the number of <-isomorphism classes of .2n � 1/-tuples of
integers .i0; : : : ; in�1; k0; : : : ; kn�2/ with the following properties: ¹qi0 < qi1 < � � � < qin�1º

is a set of rationals in increasing order, and for each j < n � 1, qij < qkj
< qij C1

where
kj < min.ij ; ij C1/ and is the least integer satisfying this relation.

4. Historical highlights, recent results, and methods

We now highlight some historical achievements, and present recent results and
the main ideas of their methods. For an overview of results up to the year 2000, see the
appendix by Sauer in Fraïssé’s book [32]; for an overview up to the year 2013, see Nguyen
Van Thé’s habilitation thesis [54]. Those interested in open problems intended for under-
graduate research may enjoy [18].

The Rado graph is the second example of a homogeneous structure with nontrivial
big Ramsey degrees which has been fully understood in terms of its partition theory. The
Rado graph R is up to isomorphism the homogeneous graph on countably many vertices
which is universal for all countable graphs. It was known to Erdős and other Hungarian
mathematicians in the 1960s, though possibly earlier, that the Rado graph is indivisible. In
their 1975 paper [30], Erdős, Hajnal, and Pósa constructed a coloring of the edges in R into
two colors such that both colors persist in each subcopy of R. Pouzet and Sauer later showed
in [57] that the big Ramsey degree for edge colorings in the Rado graph is exactly two. The
complete characterization of the big Ramsey degrees of the Rado graph was achieved in a
pair of papers by Sauer [62] and by Laflamme, Sauer, and Vuksanovic [44], both appearing
in 2006, and the degrees were calculated by Larson in [45]. The two papers [62] and [44]

in fact characterized exact big Ramsey degrees for all unrestricted homogeneous structures
with finitely many binary relations, including the homogeneous digraph, homogeneous tour-
nament, and random graph with finitely many edges of different colors. Milliken’s theorem
was used to prove existence of upper bounds, alluding to a deep connection between big
Ramsey degrees and Ramsey theorems for trees. These results are discussed in Section 5.1.

In [43], for each n � 2, Laflamme, Nguyen Van Thé, and Sauer calculated the big
Ramsey degrees of Qn, the rationals with an equivalence relation with n many equivalence
classes each of which is dense in Q. This hinged on proving a “colored version” of Milliken’s
theorem, where the levels of the trees are colored, to achieve upper bounds. Applying their
result for Q2, they calculated the big Ramsey degrees of the dense local order, denoted S.2/.
In his PhD thesis [38], Howe proved finite big Ramsey degrees for the generic bipartite graph
and the Fraïssé limit of the class of finite linear orders with a convex equivalence relation.

A robust and streamlined approach applicable to a large class of homogeneous struc-
tures, and recovering the previously mentioned examples (except for S.2/), was developed
by Coulson, Patel, and the author in [8], building on ideas in [13] and [12]. In [8], it was shown
that homogeneous structures with relations of arity at most two satisfying a strengthening
of SAP, called SDAPC, have big Ramsey structures which are characterized in a simple
manner, and therefore their big Ramsey degrees are easy to compute. The proof proceeds
via a Ramsey theorem for colorings of finite antichains of coding nodes on diagonal coding
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trees of 1-types. This approach bypasses any need for envelopes, the theorem producing of
its own accord exact upper bounds. Moreover, the Halpern–Läuchli-style theorem, which is
proved via forcing arguments to achieve a ZFC result and used as the pigeonhole principle in
the Ramsey theorem, immediately yields indivisibility for all homogeneous structures satis-
fying SDAPC, with relations of any arity. These results and their methods are discussed in
Section 5.1.

The k-clique-free homogeneous graphs, denoted Gk , k � 3, were constructed by
Henson in his 1971 paper [36], where he proved these graphs to be weakly indivisible. In
their 1986 paper [42], Komjáth and Rödl proved that G3 is indivisible, answering a question
of Hajnal. A few years later, El-Zahar and Sauer gave a systematic approach in [24], proving
that for each k � 3, the k-clique-free homogeneous graph Gk is indivisible. In 1998, Sauer
proved in [60] that the big Ramsey degree for edges in G3 is two. Further progress on big
Ramsey degrees of G3, however, needed a new approach. This was achieved by the author
in [13], where the method of coding trees was first developed. In [12], the author extended
this work, proving that Gk has finite big Ramsey degrees, for each k � 3. In [13] and [12],
the author proved a Ramsey theorem for colorings of finite antichains of coding nodes in
diagonal coding trees. These diagonal coding trees were designed to achieve very good upper
bounds and directly recover the indivisibility results in [42] and [24], discovering much of
the essential structure involved in characterizing their exact big Ramsey degrees. (Milliken-
style theorems on nondiagonal coding trees which fully branch at each level do not directly
prove indivisibility results, and produce looser upper bounds.) In particular, after a minor
modification, the trees in [13] produced exact big Ramsey degrees for G3, as shown in [14].
Around the same time, exact big Ramsey degrees for G3 were independently proved by
Balko, Chodounský, Hubička, Konečný, Vena, and Zucker, instigating the collaboration of
this group with the author.

Given a finite relational language L, an L-structure A is called irreducible if each
pair of its vertices are in some relation of A. Given a set F of finite irreducible L-structures,
Forb.F / denotes the class of all finite L-structures into which no member of F embeds.
Fraïssé classes of the form Forb.F / are exactly those with free amalgamation. Zucker in
[71] proved that for any Fraïssé class of the form Forb.F /, where F is a finite set of irre-
ducible substructures and all relations have arity at most two, its Fraïssé limit has finite
big Ramsey degrees. His proof used coding trees which branch at each level and a forcing
argument to obtain a Halpern–Läuchli-style theorem which formed the pigeonhole prin-
ciple for a Milliken-esque theorem for these coding trees. An important advance in this
paper is Zucker’s abstract, top-down approach, providing simplified and relatively short
proof of finite big Ramsey degrees for this large class of homogeneous structures. On the
other hand, his Milliken-style theorem does not directly recover indivisibility (more work is
needed afterwards to show this), and the upper bounds in [71] did not recover those in [13]

or [12] for the homogeneous k-clique-free graphs. However, by further work done in [6], by
Balko, Chodounský, Hubička, Konečný, Vena, Zucker, and the author, indivisibility results
are proved and exact big Ramsey degrees are characterized. Thus, the picture for FAP classes
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with finitely many relations of arity at most two is now clear. These results will be discussed
in Section 5.2.

Next, we look at homogeneous structures with relations of arity at most two which
do not satisfy SDAPC and whose ages have strong (but not free) amalgamation. Nguyen
Van Thé made a significant contribution in his 2008 paper [53], in which he proved that
the ultrametric Urysohn space QS has finite big Ramsey degrees if and only if S is a finite
distance set. In the case that S is finite, he calculated the big Ramsey degrees. Moreover, he
showed that for an infinite countable distance set S , QS is indivisible if and only if S with
the reverse order as a subset of the reals is well ordered. His proof used infinitely wide trees
of finite height and his pigeonhole principle was actually Ramsey’s theorem. All countable
Urysohn metric spaces with finite distance set were proved to be indivisible by Sauer in [63],
completing the work that was initiated in [55] in relation to the celebrated distortion problem
from Banach space theory and its solution by Odell and Schlumprecht in [56].

Mašulović instigated the use of category theory to prove transport principles show-
ing that finite big Ramsey degrees can be inferred from one category to another. After proving
a general transport principle in [47], he applied it to prove finite big Ramsey degrees for many
universal structures and also for homogenous metric spaces with finite distance sets with a
certain property which he calls compact with one nontrivial block. Mašulović proved in [48]

that in categories satisfying certain mild conditions, small Ramsey degrees are minima of big
Ramsey degrees. In the paper [49] with Šobot (not using category theory), finite big Ramsey
degrees for finite chains in countable ordinals were shown to exist if and only if the ordinal
is smaller than !! . Dasilva Barbosa in [9] proved that categorical precompact expansions
grant upper bounds for big and small Ramsey degrees. As an application, he calculated the
big Ramsey degrees of the circular directed graphs S.n/ for all n � 2, extending the work in
[43] for S.2/.

Hubička recently developed a new method to handle forbidden substructures utiliz-
ing topological Ramsey spaces of parameter words due to Carlson and Simpson [7]. In [39],
he applied his method to prove that the homogeneous partial order and Urysohn S -metric
spaces (where S is a set of nonnegative reals with 0 2 S satisfying the 4-values condition)
have finite big Ramsey degrees. He also showed that this method is quite broad and can be
applied to yield a short proof of finite big Ramsey degrees in G3. Beginning with the upper
bounds in [39], the exact big Ramsey degrees of the generic partial order have been charac-
terized in [5] by Balko, Chodounský, Hubička, Konečný, Vena, Zucker, and the author. Also
utilizing techniques from [39], Balko, Chodounský, Hubička, Konečný, Nešetřil, and Vena in
[2] have found a condition which guarantees finite big Ramsey degrees for binary relational
homogeneous structures with strong amalgamation. Examples of structures satisfying this
condition include the S -Urysohn space for finite distance sets S , ƒ-ultrametric spaces for a
finite distributive lattice, and metric spaces associated to metrically homogeneous graphs of
a finite diameter from Cherlin’s list with no Henson constraints.

For homogeneous structures with free amalgamation, a recent breakthrough of
Sauer proving indivisibility in [64] culminates a long line of work in [25–28, 61]. Comple-
mentary work appeared in [8], where it was proved that for finitely many relations of any
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arity, SDAPC implies indivisibility. On the other hand, big Ramsey degrees of structures
with relations of arity greater than two has only recently seen progress, beginning with
[3] and [4], where Balko, Chodounský, Hubička, Konečný, and Vena found upper bounds
for the big Ramsey degrees of the generic 3-hypergraph. Work in this area is ongoing and
promising.

5. Exact big Ramsey degrees

This section presents characterizations of exact big Ramsey degrees known at the
time of writing. These hold for homogeneous structures with finitely many relations of arity
at most two. Two general classes have been completely understood: Structures satisfying a
certain strengthening of strong amalgamation called SDAPC (Section 5.1) and structures
whose ages have free amalgamation (Section 5.2). Lying outside of these two classes, the
generic partial order has been completely understood in terms of exact big Ramsey degrees
and will be briefly discussed at the end of Section 5.2. These characterizations all involve the
notion of a diagonal antichain, in various trees or spaces of parameter words, representing a
copy of an enumerated homogeneous structure. Here, we present these notions in terms of
structures, as they are independent of the representation.

Let K be an enumerated homogeneous structure with universe ¹vn W n < !º. Let
A � K be a finite substructure of K, and suppose that the universe of A is ¹vi W i 2 I º for
some finite set I � !. We say that A is an antichain if for each pair i < j in I there is a
k.i; j / < i such that the set ¹k.i; j / W i; j 2 I and i < j º is disjoint from I , and

K � .¹v` W ` < k.i; j /º [ ¹vi º/ Š K � .¹v` W ` < k.i; j /º [ ¹vj º/; (5.1)

K � .¹v` W ` � k.i; j /º [ ¹vi º/ 6Š K � .¹v` W ` � k.i; j /º [ ¹vj º/: (5.2)

An antichain A is called diagonal if ¹k.i; j / W i < j � mº has cardinality m. We call k.i; j /

the meet level of the pair vi ; vj .
The notion of diagonal antichain is central to all characterizations of big Ramsey

degrees obtained so far. It seems likely that antichains will be essential to all characteriza-
tions of big Ramsey degrees. However, preliminary work shows that some homogeneous
binary relational structures, such as two or more independent linear orders, will have char-
acterizations in their trees of 1-types involving antichains which are not diagonal, but could
still be characterized via products of finitely many diagonal antichains.

The indexing of the relation symbols ¹R` W ` < Lº in the language L of K induces a
lexicographic ordering on trees representing relational structures. Here, we present this idea
directly on the structures. For m ¤ n, we declare vm <lex vn if and only if ¹vm; vnº is an
antichain and, letting k be the meet level of the pair vm; vn, and letting ` denote the least
index in L such that vm and vn disagree on their R`-relationship with vk , either R`.vk ; vn/

holds while R`.vk ; vm/ does not, or else R`.vn; vk/ holds while R`.vm; vk/ does not.
Two diagonal antichains A and B in an enumerated homogeneous structure K are

similar if they have the same number of vertices, and the increasing bijection from the uni-
verse A D ¹vmi

W i � pº of A to the universe B D ¹vni
W i � pº of B induces an isomorphism
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from A to B which preserves <lex and induces a map on the meet levels which, for each
i < j � p, sends k.mi ; mj / to k.ni ; nj /. This implies that the map sending the coding node
cmi

to cni
(i � p) in the coding tree of 1-types S.K/ (see Definition 3.4) induces a map on

the meet-closures of ¹cmi
W i � pº and ¹cni

W i � pº satisfying Definition 3.5.
Similarity is an equivalence relation, and an equivalence class is called a similarity

type. We say that K has simply characterized big Ramsey degrees if for A 2 Age.K/, the
big Ramsey degree of A is exactly the number of similarity types of diagonal antichains
representing A. In the next subsection, we will see many homogeneous structures with simply
characterized big Ramsey degrees.

5.1. Exact big Ramsey degrees with a simple characterization
The decades-long investigation of the big Ramsey degrees of the Rado graph cul-

minated in the two papers [62] and [44]. These two papers moreover characterized the big
Ramsey degrees for all unrestricted binary relational homogeneous structures. Unrestricted
binary relational structures are determined by a finite language L D ¹R0; : : : ;Rl�1º of binary
relation symbols and a nonempty constraint set C of L-structures with universe ¹0; 1º with
the following property: If A and B are two isomorphic L-structures with universe ¹0;1º, then
either both are in C or neither is in C . We let HC denote the homogeneous structure such
that each of its substructures with universe of size two is isomorphic to one of the structures
in C . Examples of unrestricted binary relational homogeneous structures include the Rado
graph, the generic directed graph, the generic tournament, and random graphs with more
than one edge relation.

Given a universal constraint set C , letting k D jC j, Sauer showed in [62] how to form
a structure, call it UC , with nodes in the tree k<! as vertices, such that HC embeds into UC .
Fix a bijection � W C ! k. Given two nodes s; t 2 k<! with jsj < jt j, declare that t .jsj/ D j

if and only if the induced substructure of UC on universe ¹s; tº is isomorphic to the structure
�.j / in C , where the isomorphism sends s to 0 and t to 1. For two nodes s; t 2 k<! of the
same length, declare that for s lexicographically less than t , the induced substructure of UC

on universe ¹s; tº is isomorphic to the structure �.0/ in C , where the isomorphism sends s

to 0 and t to 1. As a special case, a universal graph is constructed as follows: Let each node
in 2<! be a vertex. Define an edge relation E between vertices by declaring that, for s ¤ t in
2<! , s E t if and only if jsj ¤ jt j and (jsj < jt j H) t .jsj/ D 1). Then .2<! ; E/ is universal
for all countable graphs. In particular, the Rado graph embeds into the graph .2<! ; E/, and
vice versa.

In trees of the form k<! , the notion of similarity is exactly that of Definition 3.3, and
steps I–IV discussed in Section 3 outline the proof of exact big Ramsey degrees contained
in the pair of papers [62] and [44]. Milliken’s theorem was used to prove existence of upper
bounds via strong tree envelopes. For step III, Sauer constructed in [62] a diagonal antichain
D � k<! such that the substructure of UC restricted to universe D is isomorphic to HC ,
achieving upper bounds shown to be exact in [44], finishing step IV. The big Ramsey degree
of a finite substructure A of HC is exactly the number of distinct similarity types of subsets
of D whose induced substructure in UC is isomorphic to A.
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The work in [62] and [44] greatly influenced the author’s development of coding
trees and their Ramsey theorems in [13] and [12] (discussed in Section 5.2). Those papers
along with a suggestion of Sauer to the author during the Banff 2018 Workshop on Unifying
Themes in Ramsey Theory, to try moving the forcing arguments in those papers from coding
trees to structures, informed the approach taken in the paper [8], which is now discussed.

Let K be an enumerated Fraïssé structure with vertices ¹vn W n < !º. For n < !, we
let Kn denote K � ¹vi W i < nº, the induced substructure of K on its first n vertices, and call
Kn an initial substructure of K. We write 1-type to mean complete realizable quantifier-free
1-type over Kn for some n.

Definition 5.1 (Coding Tree of 1-Types, [8]). The coding tree of 1-types S.K/ for an enu-
merated Fraïssé structure K is the set of all 1-types over initial substructures of K along with
a function c W ! ! S.K/ such that c.n/ is the 1-type of vn over Kn. The tree-ordering is
simply inclusion.

A substructure A of K with universe A D ¹vn0 ; : : : ; vnmº is represented by the set
of coding nodes ¹c.n0/; : : : ; c.nm/º as follows: For each i � m, since c.ni / is the quantifier-
free 1-type of vni

over Kni
, substituting vni

for the variable x into each formula in c.ni /

which has only parameters from ¹vnj
W j < iº uniquely determines the relations in A on the

vertices ¹vnj
W j � iº. In [8], we formulated the following strengthening of SAP in order to

extract a general property ensuring that big Ramsey degrees have simple characterizations.

Definition 5.2 (SDAP). A Fraïssé class K has the Substructure Disjoint Amalgamation
Property (SDAP) if K has strong amalgamation, and the following holds: Given A; C 2 K ,
suppose that A is a substructure of C, where C extends A by two vertices, say v and w. Then
there exist A0; C0 2 K , where A is a substructure of A0 and C0 is a disjoint amalgamation of
A0 and C over A, such that letting v0; w0 denote the two vertices in C 0 n A0 and assuming (1)
and (2), the conclusion holds:

(1) Suppose B 2 K is any structure containing A0 as a substructure, and let � and
� be 1-types over B satisfying � � A0 D tp.v0=A0/ and � � A0 D tp.w0=A0/,

(2) Suppose D 2 K extends B by one vertex, say v00, such that tp.v00=B/ D � .

Then there is an E 2 K extending D by one vertex, say, w00, such that tp.w00=B/ D � and
E � .A [ ¹v00; w00º/ Š C.

This amalgamation property can, of course, be presented in terms of embeddings,
but the form here is indicative of how it is utilized. A free amalgamation version called SFAP
is obtained from SDAP by restricting to FAP classes and requiring A0 D A and C0 D C. Both
of these amalgamation properties are preserved under free superposition. A diagonal subtree
of S.K/ is a subtree such that at any level, at most one node branches, the branching degree
is two, and branching and coding nodes never occur on the same level. Diagonal coding
trees are subtrees of S.K/ which are diagonal and represent a subcopy of K. The property
SDAPC holds for a homogeneous structure K if (a) its age satisfies SDAP, (b) there is a
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diagonal coding subtree of S.K/, and (c) a technicality called the Extension Property which
in most cases is trivially satisfied. Classes of the form Forb.F / where F is a finite set of
3-irreducible structures, meaning each triple of vertices is in some relation, satisfy SFAP;
their ordered versions satisfy SDAPC.

A version of the Halpern–Läuchli theorem for diagonal coding trees was proved in
[8] using the method of forcing to obtain a ZFC result, with the following theorem as an
immediate consequence.

Theorem 5.3 ([8]). Let K be a homogeneous structure satisfying SDAPC, with finitely many
relations of any arity. Then K is indivisible.

For relations of arity at most two, an induction proof then yields a Ramsey theo-
rem for finite colorings of finite antichains of coding nodes in diagonal coding trees. This
accomplishes steps I–III simultaneously and directly, without any need for envelopes, pro-
viding upper bounds which are then proved to be exact, finishing step IV.

Theorem 5.4 ([8]). Let K be a homogeneous structure satisfying SADPC, with finitely many
relations of arity at most two. Then K admits a big Ramsey structure and, moreover, has
simply characterized big Ramsey degrees.

Theorem 5.4 provides new classes of examples of big Ramsey structures while
recovering results in [10,38,43,44] and special cases of the results in [71]. Theorem 5.3 provides
new classes of examples of indivisible Fraïssé structures, in particular for ordered structures
such as the ordered Rado graph, while recovering results in [24, 27,42] and certain cases of
Sauer’s results in [64] for FAP classes, while providing new SAP examples with indivisibility.

5.2. Big Ramsey degrees for free amalgamation classes
An obstacle to progress in partition theory of homogeneous structures had been

the fact that Milliken’s theorem is not able to handle forbidden substructures, for instance,
triangle-free graphs. Most results up to 2010 had either utilized Milliken’s theorem or a
variation (as in [43,62]) or else used difficult direct methods (as in [60]) which did not lend
naturally to generalizations. The idea of coding trees came to the author during the her stay
at the Isaac Newton Institute in 2015 for the programme, Mathematical, Foundational and
Computational Aspects of the Higher Infinite, culminating in the work [13]. The ideas behind
coding trees included the following: Knowing that at the end of the process one will want a
diagonal antichain representing a copy of G3, starting with a tree where vertices in G3 are
represented by special nodes on different levels should not hurt the results. Further, by using
special nodes to code the vertices of G3 into the trees, one might have a chance to prove
Milliken-style theorems on a collection of trees, each of which codes a subcopy of G3.

The author had made a previous attempt at this problem starting early in 2012. Upon
stating her interest this problem, Todorcevic (2012, at the Fields Institute Thematic Program
on Forcing and Its Applications) and Sauer (2013, at the Erdős Centenary Meeting) each
told the author that a new kind of Milliken theorem would need to be developed in order to
handle triangle-free graphs, which intrigued her even more. Though unknown to her at the
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time, a key piece to this puzzle would be Harrington’s forcing proof of the Halpern–Läuchli
theorem, which Laver was kind enough to outline to her in 2011. (At that time, the author was
unaware of the proof in [67].) While at the INI in 2015, Bartošová reminded the author of her
interest in big Ramsey degrees of G3. Having had time by then to fill out and digest Laver’s
outline, it occurred to the author to try approaching the problem first with the strongest tool
available, namely forcing.

Forcing is a set-theoretic method which is normally used to extend a given universe
satisfying a given set of axioms (often ZFC) to a larger universe in which the same set of
axioms hold while some other statement or property is different than in the original universe.
The beautiful thing about Harrington’s proof is that, while it does involve the method of
forcing, the forcing is only used as a search engine for an object which already exists in the
universe in which one lives. In the context of the Fraïssé limit K of a class Forb.F /, where
F is a finite set of finite irreducible structures, by carefully designing forcings on coding
trees with partial orders ensuring that new levels obtained by the search engine are capable
of extending a given fixed finite coding tree to a subcoding tree representing a copy of K, one
is able to prove Halpern–Läuchli-style theorems for coding trees. These form the pigeonhole
principles of various Milliken-style theorems for coding trees.

As the results and main ideas of the methods in [12,13,71] have been discussed in the
previous section, we now present the characterization of big Ramsey degrees in [6].

Theorem 5.5 ([6]). Let K be a homogeneous structure with finitely many relations of arity at
most two such that Age.K/ D Forb.F / for some finite set F of finite irreducible structures.
Then K admits a big Ramsey structure.

Given a Fraïssé class K D Forb.F / with relations of arity at most two, where F

is a finite set of finite irreducible structures, let K denote an enumerated Fraïssé limit of K .
Coding trees for K appearing in various papers are all essentially coding trees of 1-types.
The proof of Theorem 5.5 uses the upper bounds of Zucker in [71] as the starting point. It then
proceeds by constructing a diagonal antichain of coding nodes which represent the structure
K, with additional requirements if there are any forbidden irreducible substructures of size
three or more. While the exact characterization in its full generality is not short to state, the
simpler version for the structures Gk include the following: All coding nodes cn 2 A code
an edge with vm for some m < n and have the following property: If B is any finite graph
which has the same relations over Gk � jcnj as cn does, then B has no edges. Furthermore,
changes in the sets of structures which are allowed to extend a given truncation of A (as a
level set in the coding tree) happen as gradually as possible. From the characterization in [6],
one can make an algorithm to compute the big Ramsey degrees.

As a concrete example, we present the exact characterization for triangle-free
graphs. In Figure 2, on the left is the beginning of G3 with some fixed enumeration of
the vertices as ¹vn W n < !º. The nth coding node in the tree S D S.G3/ � 2<! represents
the nth vertex vn in G3, where passing number 0 represents a nonedge and passing number 1

represents an edge. Equivalently, S is the coding tree of 1-types for G3, as the left branch at
the level of cn represents the literal .x 6Evn/ and the right branch represents .xEvn/.
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Figure 2

Coding tree S.G3/ and the triangle-free graph represented by its coding nodes.

Given an antichain A � K, we say that A is a diagonal substructure if, letting I be
the set of indices of vertices in A, the following hold: (a) For each i 2 I , vi has an edge with
vm for some m < i ; let mi denote the least such m. (b) If i < j are in I with vi 6Evj and
mj < i , then there is some n 2 i such that vi Evn and vj Evn, and the least such n, denoted
n.i; j / is not in I . (c) For each i; j; k; ` 2 I (not necessarily distinct) with i < j , k < `,
.i; j / ¤ .k; `/, nj < i , and n` < k, we have n.i; j / ¤ n.k; `/. Given a finite triangle-free
graph A, the big Ramsey degree T .A/ in G3 is the number of different diagonal substructures
representing a copy of A.

We conclude this section by mentioning the exact big Ramsey degrees in the generic
partial order in [5]. This result begins with the upper bounds proved by Hubička in [39] and
then proceeds by taking a diagonal antichain D representing the generic partial order with
additional structure of interesting levels built into D. A level ` of D is interesting if there
are exactly two nodes, say s; t , in that level so that .�/ for exactly one relation � 2 ¹<; >; ?º,
given any s0; t 0 2 D extending s; t , respectively, s0� t 0, while there is no such relation for the
pair s � .` � 1/, t � .` � 1/. Since an interesting level for a pair of nodes s; t predetermines the
relations between any pair s0; t 0 extending s; t , respectively, passing numbers are unnecessary
to the characterization. The big Ramsey degree of a given finite partial order P is then the
number of different diagonal antichains A � D representing P along with the order in which
the interesting levels are interspersed between the splitting levels and the nodes in A.

6. Open problems and related directions

Section 2 laid out the guiding questions for big Ramsey degrees. Here we discuss
some of the major open problems in big Ramsey degrees and ongoing research in cognate
areas.
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Problem 6.1. For which SAP Fraïssé classes does the Fraïssé limit have finite big Ramsey
degrees?

Subquestions are the following: Given an SAP Fraïssé class with finitely many rela-
tions and a finite set of forbidden substructures, does its Fraïssé limit have finite big Ramsey
degrees? Results in [40] give evidence for a positive answer to this question. For such classes
with relations of arity at most two, do big Ramsey degrees always exist? We would like a
general condition on SAP classes characterizing those with finite big Ramsey degrees. We
point out that Problem 6.1 in its full generality is still open for small Ramsey degrees

Problem 6.2. For results whose proofs use the method of forcing, find new proofs which
are purely combinatorial.

This has been done for the triangle-free graph by Hubička in [39], but new methods
will be needed for k-clique-free homogeneous graphs for k � 4 and other such FAP classes.

The next problem has to do with topological dynamics of automorphism groups of
homogeneous structures. The work of Zucker in [70] has established a connection but not a
complete correspondence yet.

Problem 6.3. Does every homogeneous structure with finite big Ramsey degrees also
carry a big Ramsey structure? Is there an exact correspondence, in the vein of the KPT-
correspondence, between big Ramsey structures and topological dynamics?

The hope in Problem 6.3 is to obtain as complete a dynamical understanding of big
Ramsey degrees as we have for small Ramsey degrees, where a result of [69] shows that given
a Fraïssé class K with Fraïssé limit K, then K has finite small Ramsey degrees if and only
if the universal minimal flow of Aut.K/ is metrizable.

Finally, we mention several areas of ongoing study related to the main focus of this
paper. Computability-theoretic and reverse mathematical aspects have been investigated by
Anglès d’Auriac, Cholak, Dzhafarov, Monin, and Patey. In their treatise [1], they show that
the Halpern–Läuchli theorem is computably true and find reverse-mathematical strengths
for various instances of the product Milliken theorem and the big Ramsey structures of the
rationals and the Rado graph. As these structures both have simply characterized big Ramsey
degrees, it will be interesting to see if different reverse mathematical strengths emerge for
structures such as the triangle-free homogeneous graph or the generic partial order.

Extending Harrington’s forcing proof to the uncountable realm, Shelah in [59]

showed that it is consistent, assuming certain large cardinals, that the Halpern–Läuchli
theorem holds for trees 2<� , where � is a measurable cardinal. Džamonja, Larson, and
Mitchell applied a slight modification of his theorem to characterize the big Ramsey degrees
for the �-rationals and the �-Rado graph in [22] and [23]. Their characterizations have as
their basis the characterizations of Devlin and Laflamme–Sauer–Vuksanovic for the ratio-
nals and Rado graph, respectively, but also involve well-orderings of each level of the tree
2<� , necessitated by � being uncountable. The field of big Ramsey degrees for uncountable
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homogeneous structures is still quite open, but the fleshing out of the Ramsey theorems on
trees of uncountable height has seen some recent work in [19,20,68].

The next problem comes from a general question in [41].

Problem 6.4. Develop infinite-dimensional Ramsey theory on spaces of copies of a homo-
geneous structure.

For a set N � !, let ŒN �! denote the set of all infinite subsets of N , and note
that Œ!�! represents the Baire space. The infinite-dimensional Ramsey theorem of Galvin
and Prikry [33] says that given any Borel subset X of the Baire space, there is an infinite
set N such that ŒN �! is either contained in X or is disjoint from X. Ellentuck’s theorem
in [29] found optimality in terms of sets with the property of Baire with respect to a finer
topology. The question in [41] asks for extensions of these theorems to subspaces of Œ!�! ,
where each infinite set represents a copy of some fixed homogeneous structure. A Galvin–
Prikry-style theorem for spaces of copies of the Rado graph has been proved by the author
in [17]. By a comment of Todorcevic in Luminy in 2019, the infinite-dimensional Ramsey
theorem should ideally also recover exact big Ramsey degrees. Such a theorem is being
written down by the author for structures satisfying SDAPC with relations of arity at most
two. This is one instance where coding trees are necessitated to be diagonal in order for the
infinite dimensional Ramsey theorem to directly recover exact big Ramsey degrees.

We close by mentioning that structural Ramsey theory has been central in inves-
tigations of ultrafilters which are relaxings of Ramsey ultrafilters in the same way that big
Ramsey degrees are relaxings of Ramsey’s theorem. An exposition of recent work appearing
in [16] will give the reader yet another view of the power of Ramsey theory.
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