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Abstract

We survey some recent results in the theory of measurable graph combinatorics. We also
discuss applications to the study of hyperfiniteness and measurable equidecompositions.

Mathematics Subject Classification 2020

Primary 03E15; Secondary 05C21, 22F10, 28A75, 37A20, 52B45

Keywords

Descriptive set theory, measurable graph combinatorics, Borel graph, amenability, Borel
equivalence relations, hyperfiniteness, asymptotic dimension, equidecomposition, tilings,
Lovasz Local Lemma

©2022 International Mathematical Union
Proc. Int. Cong.Math. 2022, Vol. 3, pp. 1488–1502
DOI 10.4171/ICM2022/157

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. Introduction

Measurable graph combinatorics focuses on finding measurable solutions to combi-
natorial problems on infinite graphs. This study involves ideas and techniques from combi-
natorics, ergodic theory, probability theory, descriptive set theory, and theoretical computer
science. We survey some recent progress in this area, focusing on the study of locally finite
graphs: graphs where each vertex has finitely many neighbors. We also discuss applications
to the study of hyperfiniteness of Borel actions of groups, and measurable equidecomposi-
tions.

Without any constraints such as measurability conditions, combinatorial problems
on locally finite graphs often simplify to studying their restriction to finite subgraphs. This is
the case with the problem of graph coloring. Recall that if G D .V; E/ is a graph, a (proper)
Y -coloring of G is a map cW V ! Y so that for every two adjacent vertices ¹x; yº 2 E,
the colors assigned to these two vertices are distinct, c.x/ ¤ c.y/. The chromatic number
�.G/ of G is the smallest cardinality of a set Y so there is a Y -coloring of G. A classical
theorem of De Bruijn and Erdős states that for a locally finite graphG, the chromatic number
of G is equal to the supremum of the chromatic number of all finite subgraphs of G. That
is, �.G/ D supfinite H � G �.H/. The proof of this theorem is a straightforward compactness
argument using the Axiom of Choice.

In contrast, many phenomena can influence measurable chromatic numbers beyond
just the constraints imposed by finite subgraphs. We illustrate this change in behavior with
a simple example. Let S1 be the circle, let T W S1 ! S1 be an irrational rotation, and let �

be Lebesgue measure on S1. Consider the graph GT with vertex set S1 and where x; y are
adjacent if T .x/ D y or T .y/ D x. Every vertex in GT has degree 2 and every connected
component of GT is infinite. Hence, by alternating between two colors, it is easy to see that
the classical chromatic number of GT is 2. However, there can be no Lebesgue measurable
2-coloring of GT . Suppose cW S1 ! ¹0; 1º was a Lebesgue measurable coloring of GT , and
A0 D ¹x W c.x/ D 0º and A1 D ¹x W c.x/ D 1º were the two color sets. Then since the
coloring must alternate between the two colors, we must have T .A0/ D A1, and since T is
measure preserving and A0 and A1 are disjoint and cover S1, we therefore have �.A0/ D

�.A1/ D
1
2
. However, the transformation T 2 is also an irrational rotation and hence T 2 is

ergodic, meaning any set invariant under T 2 must be null or conull. Since T 2.A0/ D A0,
A0 must be null or conull. Contradiction!

In this paper we focus on the study of combinatorial problems on Borel graphs:
graphs where the set V of vertices is a standard Borel space and where the edge relation
E is Borel as a subset of V � V . In the setting where each vertex has at most countably
many neighbors, this is equivalent to saying that there are countably many Borel functions
f0; f1; : : : W V ! V that generate G in the sense that x E y if and only if fi .x/ D y for
some i . The equivalence follows from the Lusin–Novikov theorem [28, 18.15]. An important
example of a Borel graph is the following type of Schreier graph. If a is a Borel action of a
countable group � on a standard Borel space X and S is a symmetric set of generators for � ,
then let G.a; S/ be the graph on the vertex set V D X where x; y 2 V are adjacent if there
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is a  2 S such that  � x D y. For example, the graph associated to the irrational rotation
described above is a graph of this form.

For more comprehensive surveys of this area, the reader should consult the papers
[30,44]. A notable recent development we will not discuss is the connections that have been
found between measurable combinatorics and the study of distributed algorithms in theoret-
ical computer science, particularly the LOCAL model. This model of computing takes place
on a large graph where each vertex represents a computer which is assigned a unique iden-
tifier, and each edge is a communication link. These processors execute the same algorithm
in parallel, communicating with their neighbors in rounds to construct a global solution to
some combinatorial problem. Recent work [2, 3, 6, 17] has established some precise connec-
tions between measurable combinatorics and LOCAL algorithms which have already led to
new theorems in both areas (see, e.g., [2,4]).

2. Measurable colorings

If G is a Borel graph, we define the Borel chromatic number �B.G/ of G to be
the smallest cardinality of a standard Borel space Y so that there is a Borel measurable Y -
coloring of G. We clearly have that �.G/ � �B.G/ where �.G/ is the classical chromatic
number ofG. Borel chromatic numbers were first studied in a foundational paper of Kechris,
Solecki, and Todorcevic [32].

Let G D .V; E/ be a graph. If x 2 V is a vertex, we let N.x/ D ¹y W ¹x; yº 2 Eº

denote the set of neighbors of x. The degree of x is the cardinality of N.x/. We say that a
graph is �-regular if every vertex has degree �. A basic result about graph coloring is that,
given any finite graphG of finite maximum degree�, there is a .� C 1/-coloring ofG. This
is easy to see by coloring the vertices of G one by one. If we have a partial coloring of G,
then any uncolored vertex x has at most � neighbors so there must be a color from the set
of � C 1 colors we can use to extend this partial coloring to x. The analogous fact remains
true about Borel colorings:

Theorem 2.1 (Kechris, Solecki, Todorcevic [32, Proposition 4.6]). If G is a Borel graph of
finite maximum degree �, then G has a Borel .� C 1/-coloring.

One method of proving this theorem is to adapt the greedy algorithm described
above. Recall that a set of vertices is independent if it does not contain two adjacent vertices.
First, we may find a countable sequence of Borel sets An such that each An is independent,
and their union is all vertices

S
n An D V.G/. Then we can iteratively construct a coloring

of G in countably many steps where at step n we color all the elements of An the least color
not already used by one of its neighbors. In general, the connection between algorithms for
solving combinatorial problems and measurable combinatorics is deep. Many techniques
for constructing measurable colorings are based on algorithmic ideas, since algorithms for
solving combinatorial problems will often yield an explicitly definable solutions to them.

The upper bound given by Theorem 2.1 is tight; a complete graph on� C 1 vertices
has maximum degree � and chromatic number � C 1. Surprisingly, the upper bound of
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Theorem 2.1 is also optimal even in the case of acyclic Borel graphs. Hence, for bounded
degree Borel graphs, the Borel chromatic number and classical chromatic number may be
very far apart since any acyclic graph has classical chromatic number at most 2.

Theorem 2.2 (Marks [38]). For every finite �, there is an acyclic Borel graph of degree �

with no Borel �-coloring.

The graphs used to establish Theorem 2.2 are quite natural, and arise from Schreier
graphs of actions of free products of � many copies of Z=2Z. Theorem 2.2 is proved using
Martin’s theorem of Borel determinacy [41]which states that in any infinite two-player game
of perfect information with a Borel payoff set, one of the two players has a winning strategy.
The direct use of Borel determinacy to prove this theorem leads to an interesting question
of reverse mathematics since Borel determinacy requires a great deal of set-theoretic power
to prove: the use of uncountably many iterates of the powerset of R [19]. We currently do
not know of any simpler proof of Theorem 2.2 that avoids the use of Borel determinacy or
can be proved in second-order arithmetic (which suffices for most theorems of descriptive
set theory).

Problem 2.3. Is Theorem 2.2 provable in the theory Z2 of full second-order arithmetic?

Recently, Brandt, Chang, Grebík, Grunau, Rozhoň, andVidnyánszky [6] have shown
that characterizing the set of Borel graphs of maximum degree � � 3 that have no Borel
.� C 1/-coloring is as hard as possible in a precise sense: the set of such graphs is †1

2

complete. Here†1
2 completeness is a logical measurement of the complexity of this problem.

The proof of their theorem combines the techniques of [39] with earlier work of Todorcevic
and Vidnyánszky [48] proving †1

2 completeness for the set of locally finite Borel graphs
generated by a single function that have finite Borel chromatic number. In contrast to the
work of [6] for� � 3, in the case� D 2, a dichotomy theorem of Carroy, Miller, Schrittesser,
and Vidnyánszky [8] characterizes the 2-colorable Borel graphs in a simple way as those
for which there is no Borel homomorphism from a canonical non-Borel-2-colorable graph
known as L0.

This type of theorem—proving it is hard to characterize the set of graphs with
some combinatorial property—is familiar in finite graph theory via computational com-
plexity theory. For example, it is a well-known theorem that the set of finite graphs that
are k-colorable for k � 3 is NP-complete. Indeed, there are some surprising newly found
connections between computational complexity theory and complexity in measurable com-
binatorics. Thornton [47] has used techniques adapted from the celebrated CSP (constraint
satisfaction problem) dichotomy theorem [7,51] in theoretical computer science to bootstrap
the results of [6] to show many other natural combinatorial problems on locally finite Borel
graphs are either †1

2 complete or a …1
1. The CSP dichotomy theorem concerns a certain

class of natural problems in NP: general constraint satisfaction problems like graph color-
ing with k colors, k-SAT, or, more generally, computing the set of finite structures X that
have a homomorphism to a given fixed finite structure D. The CSP dichotomy states that all
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such constraint satisfaction problems are either in P (like 2-coloring or 2-SAT), or they are
NP-complete (like 3-coloring or 3-SAT).

The results in [6] rule out any simple theory for understanding Borel chromatic
number for locally finite Borel graphs in general. In contrast, if we weaken our measur-
ability condition to study �-measurable colorings with respect to some Borel probability
measure � instead of Borel colorings, the theory of �-measurable colorings appears to have
a much closer connection to finite graph theory. If � is a Borel measure on the vertex set of
a Borel graph G, let ��.G/ be the least size of a set Y so there is a �-measurable coloring
of G. So �.G/ � ��.G/ � �B.G/, since every Borel function is �-measurable.

For finite graphs of maximum degree �, a theorem of Brooks characterizes those
connected graphs which have chromatic number of � C 1. They are precisely the complete
graphs on � C 1 vertices, and odd cycles in the case � D 2. Analogously, we have the
following generalization of Brooks’s theorem for �-measurable colorings:

Theorem 2.4 (Conley, Marks, Tucker-Drob [13]). Suppose that G is a Borel graph with
degree bounded by a finite � � 3. Suppose further that G contains no complete graph
on � C 1 vertices. If � is any Borel probability measure on V.G/, then G admits a �-
measurable �-coloring.

Several important open problems in descriptive set theory concern whether there
is a difference between being able to find a Borel solution to a problem versus being able
to find a �-measurable solution with respect to every Borel probability measure � (e.g., the
hyperfiniteness vsmeasure hyperfiniteness problem [29, Problem 8.29]). Theorems 2.2 and 2.4
are encouraging in this context because they point the way towards tools that may be able to
resolve these types of questions.

The proof of Theorem 2.4 is based on a technique for finding one-ended spanning
subforests in Borel graphs: acyclic subgraphs on the same vertex set where each connected
component has exactly one end. More recently, these techniques for finding one-ended span-
ning subforests were applied to prove new results in the theory of cost: a real valued invariant
of countable groups arising from their ergodic actions [9].

Bernshteyn has substantially strengthened Theorem 2.4 by showing for k within
a factor of

p
� of �, there is a �-measurable k-coloring of G if and only if there is any

k-coloring of G.

Theorem 2.5 (Bernshteyn [2]). There is a �0 so that if G is a Borel graph with finite max-
imum degree � � �0 and � is a Borel probability measure on V.G/, then if c satisfies
c �

p
D � 5=2, then G has a .� � c/-coloring if and only if G has a �-measurable .� � c/-

coloring.

The above results give cases where the �-measurable chromatic number behaves
similarly to the classical chromatic number. These two quantities may still differ by a large
amount, however. Let Fn be the free group on n generators and let Sn � Fn be a free sym-
metric generating set. Let an be the action of Fn on the space Œ0; 1�Fn via the Bernoulli shift:
. � x/.ı/ D x.�1ı/ restricted to its free part. Let Gn D G.an; Sn/ be the Schreier graph
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of this action, and let �n D �Fn be the product of Lebesgue measure � on Œ0; 1�. Since Gn is
acyclic, the classical chromatic number is �.Gn/ D 2. However, ��n.Gn/ �

n
log2n

which can
be shown using results about the size of independent sets in random .2n/-regular graphs and
an ultraproduct argument. This argument was first suggested by [36]; see [30] for a detailed
proof. Bernshteyn has recently proven an upper bound on ��n.Gn/ which is within a factor
of two of this lower bound [1]. However, it remains an open problem to compute the precise
rate of growth of ��n.Gn/.

Bernshteyn’s Theorem 2.5 and the above upper bound on ��n.Gn/ are based on an
adaptation of the powerful Lovász Local Lemma (LLL) to the setting of measurable combi-
natorics. The LLL is a tool of probabilistic combinatorics which can show the existence of
objects which are described by constraints that are local in the sense that each constraint is
independent of all but a small number of other constraints, and each constraint has a high
probability of being satisfied. Precisely, the symmetric LLL states that if A1; : : : ; An are
events in a probability space which each occur with probability at most p, each event Ai

is independent of all but at most d of the other events, and ep.d C 1/ � 1, then there is a
positive probability none of these events occur.

The LLL is a pure existence result, and since the desired object typically exists
with exponentially small probability, it was a major open problem to find an algorithmic
way to quickly find satisfying assignments where none of the events A1; : : : ; An happen.
In particular, a naive attempt to randomly sample from the probability distribution until a
solution is found would take at least exponential time. In a breakthrough result in 2009,
Moser and Tardos [42] gave an efficient randomized algorithm that can quickly compute
satisfying assignments for the LLL.

Adaptations of the Moser–Tardos algorithm and the LLL to the setting of measur-
able combinatorics began with work of Kun [33], who used a version of the Moser–Tardos
algorithm to find spanning subforests to prove a strengthening of the Gaboriau–Lyons [20]

theorem in ergodic theory. More recently, Csoka, Grabowski, Mathe, Pikhurko, and Tyros
[14] have proved a Borel version of the symmetric LLL for Borel graphs of subexponential
growth, and Bernshteyn has proved�-measurable versions for Bernoulli shifts of groups, and
probability measure preserving Borel graphs [1, 2]. These results, combined with the large
literature in combinatorics using the LLL to construct colorings of graphs, are the main tool
in the proof of Theorem 2.5.

It is known that there cannot be a Borel version of the symmetric LLL for bounded
degree Borel graphs in general [12]. Indeed, the existence of such a theorem combined with
standard coloring techniques using the LLL would contradict Theorem 2.2. However, an
interesting special case remains open: a Borel version of the symmetric LLL for Borel
Schreier graphs generated by Borel actions of amenable groups, which are defined in the
next section. Such a version of the local lemma could be a useful tool for making progress
on the open problems discussed in the next section.

The theorems we have described above are a small selection of what is now known
about measurable chromatic numbers.We hope they give the reader some sense of the variety
of results and tools of the subject.
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3. Connections with hyperfiniteness

A major research program in modern descriptive set theory has been to understand
the relative complexity of equivalence relations under Borel reducibility. Precisely, if E

and F are equivalence relations on standard Borel spaces X and Y , say that E is Borel
reducible to F if there is a Borel function f W X ! Y such that for all x; y 2 X , we have
x E y ” f .x/ F f .y/. Such a function induces a definable injection fromX=E to Y=F .
If we think of E and F as classification problems, this means E is simpler than F in the
sense that any invariants that can be used to classify F can also be used to classify E. In the
study of Borel reducibility of equivalence relations, there has been success both in under-
standing the abstract structure of all Borel equivalence relations under Borel reducibility,
and also in proving particular nonclassification results of interest to working mathemati-
cians. For example, Hjorth’s theory of turbulence [26] gives a precise dichotomy for when an
equivalence relation generated by a Polish group action can be classified by invariants that
are countable structures, and turbulence has been applied to prove nonclassifiability results
in C � algebras [18].

A Borel equivalence relationE is said to be countable if everyE-class is countable.
The countable Borel equivalence relations are an important and well-studied subclass of
Borel equivalence relations with rich connections with operator algebras and ergodic theory.
One reason for this is the Feldman–Moore theorem [31, Theorem 1.3], which states that every
countable Borel equivalence relation is induced by a Borel action of a countable group.
Results proved about the dynamics of measure preserving actions of countable groups have
played a played an important role in our understanding of the theory of countable Borel
equivalence relations.

Understanding how the descriptive-set-theoretic complexity of countable Borel
equivalence relations is related to the dynamics of the group actions that generate them
is a deep problem. An important simplicity notion for Borel reducibility is hyperfiniteness:
a Borel equivalence relation is hyperfinite if it can be written as an increasing union of
Borel equivalence relations whose classes are all finite. The hyperfinite equivalence rela-
tions are the simplest nontrivial class of Borel equivalence relations as made precise by the
Glimm–Effros dichotomy of Harrington, Kechris, and Louveau [25]. Weiss has asked if the
group-theoretic notion of amenability precisely corresponds to hyperfiniteness:

Problem 3.1 (Weiss, [50]). Suppose E is a Borel equivalence relation generated by a Borel
action of a countable amenable group. Is E hyperfinite?

Amenability was defined by von Neumann in reaction to the Banach–Tarski para-
dox. It is a group-theoretic notion of dynamical tameness. Precisely, a group � is amenable
if and only if for every " > 0 and every finite S � � there exists some nonempty finite F � �

such that jSF 4F j=jF j < ". Such an F is called an .";S/-Følner set. Examples of amenable
groups include finite, abelian, and solvable groups, while the free group on two generators
is nonamenable. If Weiss’s question has a positive answer, then amenability precisely char-
acterizes hyperfiniteness since every nonamenable group has a nonhyperfinite Borel action.
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Evidence that Weiss’s question has a positive answer is given by a theorem in ergodic theory
of Ornstein and Weiss [43] that every measure preserving action of an amenable group on a
standard probability space is hyperfinite modulo a nullset.

Progress on Weiss’s question has grown out of progress on the problem of finding
Borel tilings of group actions by Følner sets. Precisely, if aW � Õ X is an action of a finitely
generated group � , and F1; : : : ; Fn � � are finite subsets of � , a tiling of a by the shapes
F1; : : : ;Fn is a collection of subsetsA1; : : : ;An � X so that the sets F1 � A1; : : : ;Fn � An are
pairwise disjoint and form a partition of X . Finding tilings of a group action can be thought
of as a generalized coloring problem or constraint satisfaction problem of the type often stud-
ied in measurable combinatorics, and can be approached using many of the same tools. For
example, Jackson, Kechris, and Louveau [27] have shown that Weiss’s question has a posi-
tive answer for groups of polynomial volume growth. Their argument uses Voronoi regions
around Borel maximal independent sets to make Borel tilings with desirable properties. Gao
and Jackson [21] have shown that Weiss’s question has a positive answer for abelian groups.
Their argument centers around a more refined inductive argument to find tilings of Zn by
hyperrectangles. These tilings are found by iteratively adjusting the location of the bound-
aries of hyperrectangular tiles that cover the space until their parallel boundaries are far apart.
Schneider and Seward have extended Gao and Jackson’s machinery to all locally nilpotent
groups [45]. All these tilings are the building blocks out of which witnesses to hyperfiniteness
are constructed.

A positive answer to the following open problem would be progress towards a pos-
itive solution to Weiss’s question:

Problem 3.2. Let � be an amenable group with finite symmetric generating set S and
aW � Õ X be a free Borel action of a on a standard Borel space X . For every " > 0, do
there exist ."; S/-Følner sets F1; : : : ; Fn � � such that the action a has a Borel tiling with
shapes F1; : : : ; Fn?

The existence of such tilings without anymeasurability conditions was only recently
established by Downarowicz, Huczek, and Zhang [15]. A key step in their proof is to use
Hall’s matching theorem to match untiled points in a Ornstein–Weiss style quasitiling [43]

to construct an exact tiling. Recall that if G D .V; E/ is a graph, a perfect matching of G is
a subset M � E of edges so that each vertex x 2 V is incident to exactly one edge in M .
Hall’s matching theorem states that a bipartite graph with bipartition A; B � V has a perfect
matching if and only if for every finite set F � A or F � B ,ˇ̌

N.F /
ˇ̌

� jF j:

Recently, Problem 3.2 has been shown to have a positive answer modulo a nullset [10]. A
key part of the proof is a measurable matching result proved using an idea of Lyons and
Nazarov [36] that was originally used to find factor of i.i.d. perfect matchings of regular trees.
Lyons and Nazarov’s argument uses the Hungarian matching algorithm (repeatedly flipping
augmenting paths) to show that if a bipartite Borel graph G satisfies a certain measure-
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theoretic expansion condition strengtheningHall’s condition, then it has ameasurable perfect
matching.

Conley, Jackson, Marks, Seward, and Tucker-Drob have proven the following:

Theorem 3.3 (Conley, Jackson, Marks, Seward, Tucker-Drob [11]). Let � be a countable
group admitting a normal series where each quotient of consecutive terms is a finite group
or a torsion-free abelian group with finite Q-rank, except that the top quotient can be any
group of uniform local polynomial volume-growth or the lamplighter group Z2 o Z. Then
every free Borel action of � is hyperfinite.

By combining this with prior work of Seward and Schneider [45, Cor. 8.2] they obtain
the following corollary:

Corollary 3.4. Weiss’s question has a positive answer for polycyclic groups.

This is the best partial result on Weiss’s question that is currently known. Sig-
nificantly, Corollary 3.4 applies to groups of exponential volume growth such as certain
semidirect products of Zn. All the previous work onWeiss’s question applied only to groups
locally of polynomial volume growth, and this seemed an inherent limitation to previous
methods.

The central idea of [11] is to adapt the machinery of Gromov’s theory of asymptotic
dimension of groups to the setting of descriptive set theory, making a theory of Borel asymp-
totic dimension. These ideas were implicitly hidden in all previous work onWeiss’s question,
but were first made explicit in [11]. Asymptotic dimension was introduced by Gromov as a
quasiisometry invariant of metric spaces, used to study geometric group theory. The asymp-
totic dimension of a metric space .X; �/ is the least d such that for every r > 0 there is a
uniformly bounded cover U of X so that every closed r-ball intersects at most d C 1 sets
in U . Essentially, asymptotic dimension is a “large-scale” analogue of Lebesgue covering
dimension. There are actually several different ways to define asymptotic dimension whose
equivalences are nontrivial to prove. Proving that these different definitions still define the
same notion in the Borel context is one of the keys to the work in [11]. Alternate definitions
allow the conversion between Voronoi cell-type tilings patterned on the work of Jackson,
Kechris, and Louveau, and covers with far apart facial boundaries pioneered by Gao and
Jackson.

Resolving Weiss’s question for all amenable groups appears to be a difficult prob-
lem. In general, we have a poor understanding of the geometry and structure of Følner sets in
arbitrary amenable groups. Problem 3.1 for arbitrary amenable groups seems to either require
significant advances in our geometric understanding of amenable groups, or completely dif-
ferent descriptive-set theoretic tools for attacking the hyperfiniteness problem. One question
which gets at the heart of this difficulty is the following:

Problem 3.5. Suppose G is a bounded degree Borel graph having uniformly bounded poly-
nomial growth. Is the connectedness relation of G hyperfinite?
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The obstacle in resolving Problem 3.5 is that while polynomial growth groups have
tight both upper and lower bound on their growth, Problem 3.5 only posits an upper bound
on the growth of G, which may consequently have much less uniformity in its growth than
the Schreier graph associated to an action of a polynomial growth group. This lack of a
lower bound on growth means that the techniques of Jackson, Kechris, and Louveau for
proving hyperfiniteness of groups of polynomial growth cannot resolve Problem 3.5 Finding
techniques for resolving Problem 3.5where there is far less regular geometric structure would
be one way of making progress towards resolvingWeiss’s question in general since we know
little about any regular geometric structure in arbitrary amenable groups.

4. Measurable equidecompositions

If aW � Õ X is an action of a group � on a space X , then we say sets A; B � X

are a-equidecomposable if there are a finite partition ¹A0; : : : ; Anº of A and group elements
0; : : : ; n 2 � so that 0A0; : : : ; nAn is a partition of B . For example, in this language,
the Banach–Tarski paradox says that one unit ball is equidecomposable with two unit balls
under the group action of isometries of R3. In the last few years several new results proved
about these types of geometrical paradoxes with the unifying theme that the “paradoxical”
sets in many classical geometrical paradoxes can surprisingly be much nicer than one would
naively expect.

A classical generalization of the Banach–Tarski paradox states that any two bounded
sets A; B � R3 with nonempty interior are equidecomposable. Of course, the pieces used
in these equidecompositions must be nonmeasurable in general, since A and B may have
different measure. However, a remarkable theorem of Grabowski,Máthé, and Pikhurko states
that there is always an equidecomposition usingmeasurable sets whenA andB have the same
Lebesgue measure.

Theorem 4.1 (Grabowski, Máthé, Pikhurko [24]). If A; B � R3 are bounded sets with
nonempty interior and if additionally A and B are assumed to have the same Lebesgue
measure, then A and B can be equidecomposed using Lebesgue measurable pieces.

It is an open problem whether Theorem 4.1 can be strengthened to yield a Borel
equidecomposition, assuming A and B are Borel.

Key to Theorem 4.1 and other advances in measurable equidecompositions has been
progress made on measurable matching problems. The connection comes from the following
graph-theoretic reformulation of equidecompositions as perfect matchings. Let aW� Õ X be
a Borel action of a group � on a space X , let A; B; � X be subsets of X , and let S � �

be finite. Let G.A; B; S/ be the graph whose set of vertices is the disjoint union A t B and
where x 2 A and Y 2 B are adjacent if there is a  2 S so that  � x D y. Then it is easy
to see that A; B are equidecomposable using group elements from S if and only if there is a
perfect matching of the graph G.A; B; S/.

Theorem 4.1 and other new results about measurable equidecompositions rely on
combining process made on measurable matching problems with modern results about the
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dynamics of the group actions being studied. For example, Theorem 4.1 uses the local
spectral gap of Boutonnet, Ioana, and Salehi Golsefidy [5] for certain lattices in the group
SO3.R/ of rotations inR3. This result is used to check that the graphG.A;B;S/ satisfies the
expansion condition of Lyons and Nazarov [36] which ensures the existence of a measurable
matching.

Some other recent theorems about measurable equidecompositions concern Tarski’s
famous circle squaring problem from 1925: the question of whether a disk and square of the
same area inR2 are equidecomposable by isometries. Tarski’s circle squaring problem arose
from the fact that the analogue of the Banach–Tarski paradox is false in R2. This is because
there are so-calledBanach measures inR2: finitely additive isometry-invariant measures that
extend Lebesgue measure. Their existence is proved using the amenability of the isometry
group of R2. Hence, if Lebesgue measurable sets A; B � R2 are equidecomposable, they
must have the same Lebesgue measure. The real thrust of Tarski’s circle squaring problem is
the converse of this: the general problem of to what extent there is an equivalence between
equidecomposability and having the same measure.

In 1990, Laczkovich [34] (see also [35]) gave a positive answer to Tarski’s circle
squaring problem using the Axiom of Choice. His proof involved sophisticated tools from
Diophantine approximation and discrepancy theory to prove strong quantitative bounds
on the ergodic theorem for translation actions of the torus, as well as the graph-theoretic
approach to equidecomposition described above.

Marks andUnger have shown that there is a Borel solution to Tarski’s circle squaring
problem, building on an earlier result of Grabowski, Máthé, and Pikhurko, [23] that the circle
can be squared using Lebesgue measurable pieces.

Theorem 4.2 (Marks, Unger [40]). Tarski’s circle squaring problem has a positive solution
using Borel pieces. More generally, for all n � 1, if A; B � Rn are bounded Borel sets with
the same positive Lebesgue measure whose boundaries have upper Minkowski dimension
less than n, then A and B are equidecomposable using Borel pieces.

Hence, for Borel sets whose boundaries are not wildly fractal, having the same mea-
sure is actually equivalent to having an explicitly definable Borel equidecomposition.

Theorem 4.2 uses new techniques for constructing Borel perfect matchings in Borel
graphs based on first finding a real-valued Borel flow as an intermediate step. Precisely, if
f W V ! R is a function on the vertices of a graph G, then an f -flow on G is a real-valued
function � on the edges of G such that �.x; y/ D ��.y; x/ for every directed edge .x; y/

of G, and such that for every x 2 V the flow � satisfies Kirchoff’s law,

f .x/ D

X
y2N.x/

�.x; y/:

Given a circle and square A; B � Œ0; 1/2 of the same area, the first step in the proof of The-
orem 4.2 is finding an explicit .1A � 1B/-flow of an appropriate Borel graph whose vertices
are all the elements of Œ0; 1/2 and whose edges are generated by finitely many translations.
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The advantage of working with the generality of flows is twofold. First, a flow can be
constructed in countably many steps, making the error in Kirchoff’s law above continuously
approach 0whereas the error in a partial matching that makes it imperfect is discrete. Second,
the average of f -flows is an f -flow and so it is possible to integrate families of definable
flows to get another definable flow. Finally, there are well known combinatorial equivalences
between flows and matchings which are used in the last step of the proof of Theorem 4.2 to
“round” a real-valued flow into an integer valued flow and then use it to construct a matching.

Another key ingredient in the proof of Theorem 4.2 is the hyperfiniteness of Borel
actions of abelian groups. In particular, the proof of Theorem 4.2 uses a recent refinement
due to Gao, Jackson, Krohne, and Seward [22] of Gao and Jackson’s [21] theorem that Borel
actions of abelian groups are hyperfinite. These witnesses to hyperfiniteness are used to
ensure that the Ford–Fulkerson algorithm converges when it is used to round the Borel real-
valued flow described above into a Borel integer-valued flow.

This flow approach to equidecomposition problems may be useful for attacking
other open questions such as the Borel–Ruziewicz problem:

Problem 4.3 (Wagon [49]). Suppose n � 2. Is Lebesgue measure the unique finitely additive
rotation invariant probability measure defined on the Borel subsets of the n-sphere Sn?

This question is inspired by a theorem ofMargulis [37] and Sullivan [46] (n � 4), and
Drinfeld [16] (n D 2; 3), who proved that Lebesgue measure is the unique finitely additive
rotation invariant measure on the Lebesgue measurable subsets of Sn. Wagon’s proposed
strengthening would be a more natural result since the Borel sets are the canonical � -algebra
to measure.
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