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ABSTRACT

The Constraint Satisfaction Problem is the problem of deciding whether there is an assign-
ment to a set of variables subject to some specified constraints. Systems of linear equa-
tions, graph coloring, and many other combinatorial problems can be expressed as Con-
straint Satisfaction Problems for some constraint language. In 1993 it was conjectured

that for any constraint language the problem is either solvable in polynomial time, or NP-
complete, and for many years this conjecture was the main open question in the area. After
this conjecture was resolved in 2017, we finally can say what makes the problem hard

and what makes the problem easy. In the first part of the paper, we give an elementary
introduction to the area, explaining how the full classification appeared and why it is for-
mulated in terms of polymorphisms. We discuss what makes the problem NP-hard, what
makes the problem solvable by local consistency checking, and explain briefly the main
idea of one of the two proofs of the conjecture. The second part of the paper is devoted to
the extension of the CSP, called Quantified CSP, where we allow using both universal and
existential quantifiers. Finally, we discuss briefly other variants of the CSP, as well as some
open questions related to them.
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1. INTRODUCTION

Probably the main question in theoretical computer science is to understand why
some computational problems are easy (solvable in polynomial time) while others are dif-
ficult (NP-hard, PSpace-hard, and so on). What is the difference between P and NP? Why
a system of linear equations can be solved in polynomial time by the Gaussian elimination
but we cannot check whether a graph is 3-colorable in polynomial time (if we believe that
P # NP). What is the principal difference between these two problems? To work on this
question, first we would like to classify the problems by whether they are solvable in polyno-
mial time (tractable) or NP-complete. Even for very simple decision problems, sometimes
we do not know the answer.

For example, a system of linear equations in Z, can be solved by Gaussian elim-
ination, but if we are allowed to add one linear equation with usual sum for integers then
the problem becomes NP-complete [26]. Surprisingly, the complexity is not known if we can
add one equation modulo 24 to a system of linear equations in Z, (variables are still from
{0, 1}) [17]. In the paper we give a formal definition to such problems and discuss why some
of them can be solved in polynomial time, while others are NP-hard.

2. CONSTRAINT SATISFACTION PROBLEM
The above problems are known as the Constraint Satisfaction Problem (CSP), which
is the problem of deciding whether there is an assignment to a set of variables subject to

some specified constraints. Formally, the Constraint Satisfaction Problem is defined as a
triple (X, D, C), where

e X ={x1,...,x,}is a set of variables,
e D={Dy,...,D,}is aset of the respective domains,
e C={Cy,...,Cy} is aset of constraints,

where each variable x; can take on values in the nonempty domain D;, every constraint
C; e Cis apair (#;, R;) where ¢; is a tuple of variables of length m;, called the constraint
scope, and R; is an mj-ary relation on the corresponding domains, called the constraint
relation.

The question is whether there exists a solution to (X, D, C), that is, a mapping that
assigns a value from D; to every variable x; such that for each constraint C; the image of
the constraint scope is a member of the constraint relation.

To simplify the presentation, we assume that the domain of every variable is a finite
set A. We also assume that all the relations are from a set I', which we call the constraint
language. Then the Constraint Satisfaction Problem over a constraint language I', denoted
CSP(T), is the following decision problem: given a conjunctive formula

Rl(vl,l» ceey Ul,nl) ASRRRAN RS(vS,17 cee Us,ns)’
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where Ry,..., Ry € I',and v; ; € {x1,...,x,} forevery i, j, decide whether this formula
is satisfiable. Note that in the paper we do not distinguish between relations and predicates,
and in the previous formula we write relations meaning predicates.

2.1. Examples

It is well known that many combinatorial problems can be expressed as CSP(I")
for some constraint language I". Moreover, for some I" the corresponding decision problem
can be solved in polynomial time; while for others it is NP-complete. It was conjectured that
CSP(T) is either in P or NP-complete [29]. Let us consider several examples.

System of linear equations. Let A = {0, 1} and
= {alxl +aszxy + - +agxp = ag | ag,ay,....ax € Zz},

i.e., " consists of all linear equations in the field Z,. Then CSP(T") is equivalent to the prob-
lem of solving a system of linear equations, which is solvable by the Gaussian elimination
in polynomial time, thus, CSP(T") is in P.

Graph 2-coloring. To color a graph using two colors, we just need to choose a color of every
vertex so that adjacent vertices have different colors. We assign a variable to each vertex, and
encode the two colors with 0 and 1. For an edge between the ith and jth vertices, we add
the constraint x; # x;. For instance, the 5-cycle is equivalent to the CSP instance

(x1 # x2) A (x2 # x3) A (X3 7# X4) A (Xa # X5) A (X5 # X1).

Hence, the problem of graph 2-coloring is equivalent to CSP(T") for A = {0, 1} and
I' = {#}. This problem can be solved locally. We choose a color of some vertex, then we
color their neighbors with a different color, and so on. Either we will color all the vertices,
or we will find an odd cycle, which means that the graph is not colorable using two colors.
Thus, this problem is solvable in polynomial time.

Graph 3-coloring. Similarly, the problem of coloring a graph using 3 colors is equivalent to
CSP(T") for A = {0, 1,2} and I' = {z#}. Unlike the graph 2-coloring, this problem is known
to be NP-complete [1].

NAE-satisfability and 1IN3-satisfability. Suppose A = {0, 1}. NAE is the ternary not-
all-equal relation, that is, NAE = {0, 1} \ {(0,0,0), (1, 1, 1)}. 1IN3 is the ternary 1-in-3
relation, that is, 1IN3 = {(0,0, 1), (0, 1,0), (1,0,0)}. As it is known [4e], both CSP({NAE})
and CSP({1IN3}) are NP-complete.

The main goal of this paper is to explain why the first two examples are in P, while
the others are NP-hard.

2.2. Reduction from one language to another

To prove the hardness result, we usually reduce a problem to a known NP-hard prob-
lem. Let us show how we can go from one constraint language to another. CSP(I") can be
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viewed as the problem of evaluating a sentence
Elx1 . EIx,,(Rl(vl,l, ey vl,nl) VANRRRIVAN RS(USJ, RPN Us,ns))» (2])

where all variables are existentially quantified. Hence, if we could express one language
using conjunctions and existential quantifiers from another language, then we get a reduction
from one CSP to another. Let us explain how it works on a concrete example.

Let NA1 = {0, 1}3\ {(1,1, 1)}, that is, a ternary relation that holds whenever not
all elements are 1. Let A = {0, 1}, 'y = {NAI, #}, and I, = {1IN3}. Let us show that
CSP(I'y) and CSP(I';) are (polynomially) equivalent. We may check that

(x # y) = Ju3v 1IN3(x, y,u) A 1IN3(u, u, v). 2.2)
If fact, from 1IN3(u, u, v) we derive that u = 0, hence x # y. Similarly, we have

NAl(x,y,z) = 3x'3y'3z'Ax"3y"3z" 1IN3(x', y', 2")
A 1IN3(x, x", x") A 1IN3(y, y', ¥") A 1IN3(z, 2/, 2). (2.3)

If x =y =z=1,then x’ = y' = z/ = 0, which contradicts 1IN3(x’, y’, z). In all other
cases, we can find an appropriate assignment.

Any instance of CSP(I";) can be reduced to an instance of CSP(I",) in the following
way. We replace each constraint (x; # x;) by the right-hand side of (2.2) introducing two new
variables. Also, we replace each constraint NA1(x;, x;, xx) by the right-hand side of (2.3)
introducing six new variables. This reduction is obviously polynomial (and even log-space).
Similarly, we have

1IN3(x, y, z) = 3x'3y'3z’(NA1(x, y, y) ANAL(y,z,z) ANAL(z, x, x)
NG #E ) A G # ) A #2) ANALKE, Y. 2),

which implies a polynomial reduction from CSP(I'y) to CSP(I';).

Let us give a formal definition for the above reduction. A formula of the form
dy;...3y, P, where ® is a conjunction of relations from I' is called a positive primitive
SJormula (pp-formula) over T'. If R(x1,...,Xx,) = 3y1...3y, P, then we say that R is pp-
defined by this formula, and Jy; ... 3y, ® is called its pp-definition.

Theorem 2.1 ([35]). Suppose 'y and 'y are finite constraint languages such that each
relation from Ty is pp-definable over T'. Then CSP(I'y) is polynomial time reducible to
CSP(T).

2.3. Polymorphisms as invariants

If we can pp-define a relation R from a constraint language I' and CSP({R}) is
NP-hard, then CSP(T") is also NP-hard. How to show that such a relation cannot be pp-
defined? To prove that something cannot be done, we usually find some fundamental property
(invariant) that is satisfied by anything we can obtain. For the relations, the operations play
the role of invariants.
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We say that an operation f : A" — A preserves a relation R of arity m if for any
tuples (@1,1,.--,a1,m)s---(@n,1s--.,an,m) € R the tuple

(fary. .. an)s. oo f@ims - anm))

is in R. In this case we also say that f is a polymorphism of R, and R is an invariant of f.
We say that an operation preserves a set of relations T if it preserves every relation in I". In
this case we also write f is a polymorphism of T or f € Pol(T"). It can be easily checked
that if f preserves I', then f preserves any relation R pp-definable from I'. Moreover, we
can show [15, 31] that Pol(I";) € Pol(I';) if and only if I'; is pp-definable over I'y, which
means that the complexity of CSP(I") depends only on Pol(T").

Example 1. Let R be the linear order relation on {0, 1, 2}, i.e.,
R— 0 001 1 2 ’
o1 21 2 2

where columns are tuples from the relation. Then “an n-ary operation f preserves R” means
that for all
a a
.17 er,
bl bn
that is, a; < b;, we have

ay ax ... ap\ . ([ flai,....an)
f(bl by ... b,,) = (f(bl,...,b,,))eR’

that is, f(ay,...,ay) < f(b1,...,by). In other words, f is monotonic. For instance, the
operations max and min are monotonic. By the above observation, we know that any relation
pp-definable from R is also preserved by min and max.

Example 2. Let A = {0, 1}. Let us show that 1IN3 cannot be pp-defined from NA1 and
x < y. We can check that the conjunction x A y (an operation on {0, 1}) preserves both
NAT and x < y. However, x A y does not preserve 1IN3 as we have

1 0 0
olal1|=|0]¢1N3.
0 0 0

For more information on polymorphisms and how they can be used to study the
complexity of the CSP, see [6].

2.4. Local consistency

The first step of almost any algorithm solving a CSP instance is checking local
consistency. For instance, if a constraint forces a variable to be equal to 0, then we could
substitute 0 and remove this variable.

Suppose we have a CSP instance

Rl(vl,l, ey 1)1’"1) VANRERIVAN RS(US’I, ey Us,ns)~ (24)
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This instance is called I-consistent (also known as arc-consistent), if for any variable x any
two constraints R; (vi,1, ..., Vi) and R;j(vj1, ..., jx;) having this variable in the scope
have the same projection onto this variable. This means that for every variable x there exists
D, C A, called the domain of x, such that the projection of any constraint on x is D.
Sometimes we need a stronger consistency (similar to singleton-arc-consistency in

[36]). We say that z; — Cy — zp —--- — Cj—; — z; is a path in a CSP instance d if z;, zj 4
are in the scope of the constraint C; for every i € {1,2,...,] — 1}. We say that a path
z1 —Cy — 2y —-+--— Cj_1 — z; connects b and c if there exist ay, a,, ...,a; € A such that

ay = b, a; = c, and the projection of each C; onto z;, z; +1 contains the tuple (a;, aj+1).
A CSP instance d is called cycle-consistent if it is 1-consistent and for every variable z and
a € D, any path starting and ending with z in d connects a and a.

It is not hard to find a polynomial procedure making the instance 1-consistent or
cycle-consistent. For 1-consistency, the idea is to find a variable where the consistency is vio-
lated, then reduce the domain D of this variable and reduce the corresponding relations. We
repeat this while some constraints violate consistency. Finally, we either get a 1-consistent
instance, or we get a contradiction (derive that D, = &). For cycle-consistency, we should
go deeper. For every variable x and every value a € D, we reduce the domain of x to {a}
and check whether the remaining instance can be made 1-consistent. If not, then x cannot
be equal to a, and a can be excluded from the domain D.

Later we will show that in some cases 1-consistency and cycle-consistency are
enough to solve a CSP instance, that is, any consistent instance has a solution. See [5, 36]
for more information about local consistency conditions.

2.5. CSP over a 2-element domain
The complexity of CSP(I") for each constraint language I" on {0, 1} was described
in 1978 [4e]. This classification can be formulated nicely using polymorphisms.

Theorem 2.2 ([34,40]). Suppose A = {0, 1}, T is a constraint language on A. Then CSP(T")
is solvable in polynomial time if

(1) O preserves I, or

(2) 1 preserves I, or

(3) x Vv y preserves I, or

(4) x Ay preserves T, or

(5) xy v yz Vv xz preserves T, or
(6) x + y + z preserves I

CSP(I') is NP-complete otherwise.
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Let us consider each case and explain how the polymorphisms make the problem
easy. Note that the cases (1) and (2), (3) and (4) are dual to each other, that is why we consider
only one in each pair in detail.

0 preserves I'. This case is almost trivial. “The constant O preserves a relation R € I'”
means that R(0,0, ..., 0) holds. If 0 preserves all relations from I, then (0,0, ..., 0) is
always a solution of a CSP instance, which makes the problem CSP(T") trivial.

x Vv y preserves I'. Let us show how to solve an instance of CSP(T") if x v y € Pol(T").
First, we make our instance 1-consistent. Then, unless we get a contradiction, every variable
x has its domain D, which is either {0}, or {1}, or {0, 1}. We claim that if we send the
variables with domain {0} to 0, and the variables with the domain {1} and {0, 1} to 1, then
we get a solution. In fact, if we apply x V y to all the tuples of some constraint, we obtain a
tuple consistent with the solution. Thus, 1-consistency guarantees the existence of a solution
in this case.

xy Vv yz v xz preserves I'. The operation xy V yz Vv xz returns the most popular value
and is known as a majority operation. It is not hard to check [2] that any relation preserved
by a majority operation can be represented as a conjunction of binary relations, and we may
assume that I" consists of only binary relations. As it is shown in Section 2.8, for a 2-element
domain this gives a polynomial algorithm for CSP(I"). Additionally, we can show [36, 47]
that any cycle-consistent instance of CSP(I") has a solution. Hence to solve an instance, it is
sufficient to make it cycle-consistent, and unless we obtain an empty domain (contradiction)
the instance has a solution.

x + y + z preserves I'. It is known (see Lemma 2.8) that x 4+ y + z preserves a relation
R if and only if the relation R can be represented as a conjunction of linear equations. Thus,
CSP(I') is equivalent to the problem of solving of a system of linear equations in the field
7.5, which is tractable.

2.6. CSP solvable by local consistency checking

As we see in the previous section all tractable CSPs on a 2-element domain can be
solved by two algorithms. The first algorithm just checks some local consistency
(1-consistency, cycle-consistency) and, if a sufficient level of consistency achieved, we
know that the instance has a solution. The second algorithm is the Gaussian elimination
applied to a system of linear equations. In this section we discuss when the first algorithm
is sufficient and why some instances can be solved by a local consistency checking, while
others require something else.

To simplify the presentation in this section, we assume that all constant relations
X = a are in the constraint language. In this case any polymorphism f of T is idempotent, that
is, f(x,x,...,x) = x. This restriction does not affect the generality of the results because
we can always consider the core of the constraint language and then add all constant relations
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(see [34]). Consider the following system of linear equations in Z:

X1+ x2 = x3 +0,

X3+ 0=x4 + x5,
3 4 5 @.5)
X4 +0=Xx1 + Xe,

X5 + x¢ = X2 + 1.

If we calculate the sum of all equations, we will get 0 = 1, which means that the system does
not have a solution. Nevertheless, we may check that the system is cycle-consistent, which
means that the cycle-consistency does not guarantee the existence of a solution for linear
equations. In fact, we can show that there does not exist a local consistency condition that
guarantees the existence of a solution of a system of linear equations (see [5]).

As it was shown in [5,47] if CSP(I") cannot be solved by cycle-consistency checking
then we can express a linear equation modulo p using I". Since our constraint language is on a
domain A, we could not expect to pp-define the relation x; 4+ x, = x3 + x4 (mod p). Instead,
we claim that there exist S € A and a surjective mapping ¢ : A — Z, such that the relation

{(a1.a2.a3,a4} | a1, a2,a3,a4 € S, p(a1) + ¢(az2) = ¢(az) + ¢(as)} (2.6)

is pp-definable. This means that the linear equation is defined on some S modulo some
equivalence relation defined by ¢. To avoid such a transformation, we could introduce the
notion of pp-constructability and say that x; 4+ x, = x3 4+ x4 (mod p) is pp-constructable
from I'. To keep everything simple, we do not define pp-constructability and use it infor-
mally hoping that the idea of this notion is clear from our example. For more details about
pp-constructability, see [7].

If such a linear equation cannot be pp-defined (pp-constructed) then there should
be some operation that preserves I" but not the linear equation modulo p. An operation f is
called a Weak Near Unanimity Operation (WNU) if it satisfies the following identity:

F,x,x,....,x) = f(x,y,x,...,x) == f(x,x,...,x,¥).

It is not hard to check that an idempotent WNU of arity p does not preserve a nontrivial
linear equation modulo p (see Lemma 4.9 in [47]). Thus, the existence of an idempotent
p-ary WNU polymorphism of I guarantees that a linear equation modulo p cannot be pp-
defined (pp-constructed). That is why a relation satisfying (2.6) is called p-WNU-blocker.
Hence, if I has WNU polymorphisms of all arities then no linear equations can appear. The
following theorem confirms that nothing but linear equations could be an obstacle for the
local consistency checking.

Theorem 2.3 ([47]). Suppose I is a constraint language containing all constant relations.
The following conditions are equivalent:

(1) every cycle-consistent instance of CSP(I) has a solution,
(2) T has a WNU polymorphisms of all arities n > 3;

(3) there does not exist a p-WNU-blocker pp-definable from I.
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Thus, the fact that we cannot express (pp-define, pp-construct) a nontrivial linear
equation makes the problem solvable by the cycle-consistency checking.

2.7. CSP Dichotomy Conjecture

In this subsection, we formulate a criterion for CSP(I") to be solvable in polynomial
time. This criterion is known as the CSP Dichotomy Conjecture, it was formulated almost
30 years ago [28,29] but was an open question until 2017 [19, 2e, 42, 44].

Theorem 2.4 ([19,20,42,44]). Suppose I is a constraint language on a finite set A. Then
(1) CSP(T) is solvable in polynomial time if T is preserved by a WNU,;
(2) CSP(T") is NP-complete otherwise.

The reason why the existence of a WNU polymorphism makes the problem easy
is the fact that we cannot pp-define a strong relation giving us NP-hardness. A relation
R = (ByU B;)3\ (Bg U Bf’), where By, By C A, By # @, B1 # @,and By N B; = @,
is called a WNU-blocker. Such relations are similar to the not-all-equal (NAE) relation
on {0, 1}, where By means 0 and B; means 1. Instead of the existence of a pp-definable
WNU-blocker, we could say that the relation NAE is pp-constructable from I'. Note that
CSP({NAE}) and CSP({R}) for a WNU-blocker R are NP-complete problems.

We can check (see Lemma 4.8 in [47]) that a WNU operation does not preserve a
WNU-blocker. Moreover, we have the following criterion.

Lemma 2.5 ([47]). A constraint language T containing all constant relations is preserved
by a WNU if and only if there is no WNU-blocker pp-definable from T'.

Thus, CSP(I") is solvable in polynomial time if and only if a WNU-blocker cannot
be pp-defined. Hence, the fact that we cannot pp-construct the not-all-equal relation makes
the problem easy, and a WNU is an operation that guarantees that this relation cannot be
pp-constructed.

2.8. How to solve CSP if pp-definable relations are simple

Below we discuss how the fact that only simple relations can be pp-defined from
I" can help to solve CSP(I") in polynomial time. In this case we can calculate the sentence
explicitly eliminating existential quantifiers one by one. I believe that a similar idea should
work for any I' preserved by a WNU, which will give us a simple algorithm for CSP(I").

CSP(I") can be viewed as the following problem. Given a sentence

g A (Ri(its o Vi) A A Rg(Usy1s vy Vo))
we need to check whether it holds. To do this, let us remove the quantifiers one by one. Let
Ap—1(X1, ..., Xp—1) = EIx,,(Rl(vl,l, e Vi) A AR (Us,1s - vs,ns)).
In general, A, _; could be any relation of arity n — 1, and even to write this relation we need

| A"~ bits. Nevertheless, we believe that if CSP(T") is tractable then the relation A,_; (or
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the important part of it) has a compact representation and can be efficiently computed. Then
we calculate A, 5, Ay—3,...,Ag, where A;_1(x1,...,x;—1) = Ax; Aj (x1,...,x;), and the
value of A is the answer we need.

We may check that on a 2-element domain we have

Hx,,(Rl(vl,l, ey vl,nl) VANREEIVAN Rs(vs,l, ey vs,ns))

= /\ (Elan,-(v,-,l,...,vi,ni)/\Rj(vjyl,...,vj,nj)). (2.7)
i,j€{1,2,...,s}

The implication = is obvious. To prove <= assume that the left-hand side does not hold. Then

the conjunctive part does not hold on both (x1,...,x,—1,0) and (xq,...,x,—1, 1). Hence,
there exist i and j such that R;(v; 1, ..., v; ;) does not hold on (x1, x2, ..., x,—1,0) and
R;(vj1,..., vj,,,j) does not hold on (x1, x2,...,X,—1, 1). Hence, the (7, j)-part of the right-

hand side does not hold.

There are two problems if we use (2.7) to solve the CSP. First, as we mentioned
above, the relation R; ;(...) = 3x, R; (Vi1, ..., Vin,) AR ()1, ..., vj’,,j) probably does
not have a compact representation. Second, if we remove the quantifiers 3x;,, 3x,—1,...,3x;
one by one, potentially we could get an exponential number of relations in the formula. Let
us show how these problem are solved for concrete examples on a 2-element domain.

2.9. System of linear equations in Z,
Let A = {0, 1} and let I" consist of linear equations in Z,. Suppose that for every i
we have

i i i i
Ri(ig,...,Vipn) = (aixy +ayxs + -+ + a,x, = ag).
For a), = aj =1, we have

Rij(...)
= EIx,,(Ri (v,"l, ey v,-,,,i) N R_,-(vj,l, Ceey v_,-,,,j))

i i i i ] J J J
= (alxl +asxo+--+a, Xp—1+ag=ayx1+ayx2+---+a,_Xn-1+ ao).

If afl = 0 then the constraint R; (v; 1, ..., V; ;) does not depend on x,, so we keep it as it is
when remove the quantifier. Hence, in every case we have a compact representation of A,_;.
To avoid the exponential growth of the number of the constraints, we use the idea from the
Gaussian elimination. Choose k such that a,’f = 1, then calculate only Ry i, ..., Rg s and
ignore all the other relations. Thus, in this case we have

Ap—1(X1, ..o Xpm1) = I (R, - oo V1) Ao A Re(Vg 1, Usiny)
= N\ @R k) AR W1 vjmy)). (28)
je{1,2,....5}
Proceeding this way, we calculate A,_», A,_3,..., Ag. Note that (2.8) holds not

only for linear equations but whenever a variable x;, is uniquely determined by the other
variables in R (Vk,1,. .., Vkn,)-
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2.10. 2-satisfability

Let A = {0, 1} and let I" consist of all binary relations. In this case R; ; is also
binary, which means that we do not have a problem with a compact representation. Also,
every time we eliminate a quantifier and caclulate A;, we remove the repetitive constraints.
Therefore, in each A; we cannot have more than 7 -7 - 22% constraints because we have i
different variables and 22” different binary relations on {0, 1}.

As we see, the main question in both examples is the existence of a compact repre-
sentation. In the first example we represent any relation as a conjunction of linear equations,
in the second we represent as a conjunction of binary relations. We could ask when such a
compact representation exists. Let sp () be the number of pp-definable from I relations of
arity n. If log, sr () grows exponentially then we need exponential space to encode relations
of arity n and we cannot expect a compact representation. We say that I" has few subpowers
if log, st(n) < p(n) for a polynomial p(n). It turns out that there is a simple criterion for
the constraint language to have few subpowers. An operation ¢ is called an edge operation it
it satisfies the following identities:

XX, 0,9, 0, 0,0, Y) =,
LY, X, 0,0, YY) =,
LY,y Y. XY, 0. Y) =),
LY. Y. 0.0 % ..y, ) =),

LY Y Y Veeen X, ¥) =,
t(y,%y,y,y,...,y,x) :y

Theorem 2.6 ([9]). A constraint language I" containing all constant relations has few sub-
powers if and only if it has an edge polymorphism.

We can show that if I" has few subpowers then the pp-definable relations have a
natural compact representation, which gives a polynomial algorithm for CSP(I") [33]. Note
that two examples of an edge operation were given earlier in this paper. The first example
is a majority operation satisfying m(y, y, x) = m(y, x, y) = m(x, y, y) = y. By adding
3 dummy variables in the beginning, we get the required properties of an edge operation.
Another example is x + y + z on {0, 1}. By adding dummy variables at the end, we can
easily satisfy all the identities. Very roughly speaking, any few subpowers case is just a
combination (probably very complicated) of the majority case and the linear case.

2.11. Strong subuniverses and a proof of the CSP Dichotomy Conjecture

In this subsection, we consider another simple idea that can solve the CSP in poly-
nomial time. This idea is one of the two main ingredients of the proof of the CSP Dichotomy
Conjecture in [42,44].

Assume that for every variable x whose domain is Dy, |Dy| > 1, we can choose a
subset B, & D, such that if the instance has a solution, then it has a solution with x € B,.

-
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In this case we can reduce the domains iteratively until the moment when each domain has
exactly one element, which usually gives us a solution.

As we saw in Section 2.5, if T is preserved by x V y and the instance is 1-consistent
then we can safely reduce the domain of a variable to {1}. Similarly, if " is preserved by
the majority operation xy Vv yz V xz and the instance is cycle-consistent, then we can safely
reduce the domain {0, 1} to {0} and {1} [47]. It turns out that this idea can be generalized for
any constraint language preserved by a WNU operation.

A unary relation B C A is called a subuniverse if B is pp-definable over I'. It can
be easily checked that all the domains D, that appear while checking consistency (see Sec-
tion 2.4) are subuniverses. Let us define three types of strong subuniverses:

Binary absorbing subuniverse. We say that B’ is a binary absorbing subuniverse of B if
there exists a binary operation f* € Pol(T") such that f(B’, B) € B" and f(B, B") C B’. For
example, if the operation x Vv y preserves I then {1} is a binary absorbing subuniverse of
{0, 1} and x V y is a binary absorbing operation.

Ternary absorbing subuniverse. We say that B is a ternary absorbing subuniverse of B if
there exists a ternary operation f € Pol(T") such that f(B’, B’,B) C B, f(B’,B,B’) C B/,
and f(B, B’, B') C B’. For example, if the majority operation xy V yz V xz preserves I,
then both {0} and {1} are ternary absorbing subuniverses of {0, 1}. Since we can always add
a dummy variable to a binary absorbing operation, any binary absorbing subuniverse is also
a ternary absorbing subuniverse.

To define the last type of strong subalgebras we need some understanding of the
Universal Algebra. We do not think a concrete definition is important here, that is why if a
reader thinks the definition is too complicated, we recommend to skip it and think about the
last type as something similar to the first two.

PC subuniverse. A set F of operations is called Polynomially Complete (PC) if any oper-
ation can be derived from F and constants using composition. We say that B’ is a PC
subuniverse of B if there exists a pp-definable equivalence relation 0 € B x B such that
Pol(T") /o is PC.

A subset B’ of B is called a strong subuniverse if B’ is a ternary absorbing subuni-
verse or a PC subuniverse.

Theorem 2.7 ([47]). Suppose I" contains all constant relations and is preserved by a WNU
operation, B C A is a subuniverse. Then

(1) there exists a strong subuniverse B’ € B, or

(2) there exists a pp-definable nontrivial equivalence relation ¢ on B and
f € Pol(T) such that (B; f)/o = (Z*:x — y + z).

As it follows from the next lemma, the second condition implies that any pp-
definable relation (modulo o) can be viewed as a system of linear equations in a field.
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Lemma 2.8 ([32]). Suppose R C Z;, preserved by x — y + z. Then R can be represented
as a conjunction of relations of the form a1 x1 + -+ + apx, = ag (mod p).

For CSPs solvable by the local consistency checking, strong subuniverses have the
following property.

Theorem 2.9 ([47]). Suppose
(1) T is a constraint language containing all constant relations;
(2) T is preserved by a WNU of each arityn > 3;
(3) d is a cycle-consistent instance of CSP(I");
(4) Dy is the domain of a variable x;
(5) B is a strong subalgebra of D.
Then d has a solution with x € B.

Thus, strong subuniverses have the required property that we cannot loose all the
solutions when we restrict a variable to it. As it was proved in [44], a similar theorem holds
for any constraint language preserved by a WNU operation (with additional consistency con-
ditions on the instance). We skip this result because it would require too many additional
definitions.

As we see from Theorem 2.7, for every domain D, either we have a strong subuni-
verse and can reduce the domain of some variable, or, modulo some equivalence relation,
we have a system of linear equations in a field. If I" has a WNU polymorphism of each arity
n > 3, then we always have the first case; hence, we can iteratively reduce the domains until
the moment when all the domains have just one element, which gives us a solution. That
is why any cycle-consistent instance in this situation has a solution. If we always have the
second case then this situation is similar to a system of linear equations, but different linear
equations can be mixed which makes it impossible to apply usual Gaussian elimination.
Nevertheless, the few subpowers algorithm solves the problem [33].

For many years the main obstacle was that these two situations can be mixed and
at the moment we do not know an elegant way how to split them. Nevertheless, the general
algorithm for tractable CSP presented in [44] is just a smart combination of these two ideas:

« if there exists a strong subalgebra, reduce
« if there exists a system of linear equations, solve it.
For more information about this approach as well as its connection with the second

general algorithm see [3].

2.12. Conclusions
Even though we still do not have a simple algorithm that solves all tractable Con-
straint Satisfaction Problems, we understand what makes the problem hard, and what makes
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the problem easy. First, we know that in all the hard cases we can pp-construct (pp-define) the
not-all-equal relation, which means that all the NP-hard cases have the same nature. Second,
if the CSP is not solvable locally then we can pp-construct (pp-define) a linear equation in
a field. Moreover, any domain of a tractable CSP either has a strong subalgebra and we can
(almost) safely reduce the domain, or there exists a system of linear equations on this domain.
This implies that any tractable CSP can be solved by a smart combination of the Gaussian
elimination and local consistency checking, and emphasizes the exclusive role of the linear
case in Universal Algebra and Computational Complexity.

Note that both CSP algorithms in [2e, 44] depend exponentially on the size of the
domain, and we could ask whether there exists a universal polynomial algorithm that works
for any constraint language I' admitting a WNU polymorphism.

Problem 1. Does there exist a polynomial algorithm for the following decision problem:
given a conjunctive formula Ry (v1,1,...,V1,4,) A+ A Rg(vs,1, - - ., Vg, ), Where all rela-
tions Ry, ..., Ry are preserved by a WNU, decide whether this formula is satisfiable.

If the domain is fixed then the above problem can be solved by the algorithms from
[19,42]. In fact, we know from [4, THEOREM 4.2] that from a WNU on a domain of size k we can
always derive a WNU (and also a cyclic operation) of any prime arity greater than k. Thus,
we can find finitely many WNU operations on a domain of size k such that any constraint
language preserved by a WNU is preserved by one of them. It remains to apply the algorithm
for each WNU and return a solution if one of them gave a solution.

3. QUANTIFIED CSP

A natural generalization of the CSP is the Quantified Constraint Satisfaction Prob-
lem (QCSP), where we allow to use both existential and universal quantifiers. Formally, for
a constraint language I", QCSP(I") is the problem to evaluate a sentence of the form

V)C]Elyl . VanIy,, Rl(vl,lv RN Ul,nl) VARERIVAN Rs(vs,l, ey Us,ns),

where Ry,...,Ry e ',and v; j € {x1,...,Xp, Y1...., yn} forevery i, j (see[16,23,24,37]).
Unlike the CSP, the problem QCSP(I") can be PSpace-hard if the constraint language I' is
powerful enough. For example, QCSP({NAE}) and QCSP({1IN3}) on the domain A = {0, 1}
are PSpace-hard [25,27], and QCSP({#}) for | A| > 2 is also PSpace-hard [16]. Nevertheless, if
I" consists of linear equations modulo p then QCSP(I") is tractable [16]. It was conjectured by
Hubie Chen [22,24] that for any constraint language I" the problem QCSP(T") is either solvable
in polynomial time, or NP-complete, or PSpace-complete. Recently, this conjecture was dis-
proved in [48], where the authors found constraint languages I" such that QCSP(I") is coNP-
complete (on a 3-element domain), DP-complete (on a 4-element domain), @5 -complete
(on a 10-element domain). Despite the whole zoo of the complexity classes, we still hope to
obtain a full classification of the complexity for each constraint language I".
Below we consider the main idea that makes the problem easier than PSpace.
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3.1. PGP reduction for II, restrictions
For simplicity let us consider the IT,-restriction of QCSP(T"), denoted QCSP?(T"),
in which the input is of the form

Vx1...Vx,3yr o 3y RGO A ARG(-. ). 3.1

Such an instance holds whenever the conjunctive formula Ry (...) A--- A Rg(...) is solvable
for any evaluation of x1, ..., x,, which gives us a reduction of the instance to | A|" instances
of CSP(I'*), where by I'* we denote I' U {(x = a) | a € A}. If we need to check |A|” tuples,
which is exponentially many, this does not make the problem easier. Nevertheless, sometimes
it is sufficient to check only polynomially many tuples. Let us consider a concrete example.

System of linear equations. Suppose A = {0, 1} and I" consists of linear equations in Z,.
Let us check that the instance (3.1) holds for (x1,...,x,) = (0,...,0), and (x1,...,x,) =
0,...,0,1,0,...,0) for any position of 1. To do this, we solve the CSP instance R (...) A
AR A /\:’zl(x,- = 0), and for every j € {1,2,...,n} we solve the instance
Ri(..)ANAR;(.H)N(x; =1 A /\i?éj(xi = 0). Each instance is a system of linear
equations and can be solved in polynomial time. If at least one of the instances does not have
a solution, then the instance (3.1) does not hold. Assume that all of them are satisfiable, then
consider the relation A defined by the following pp-formula over I":

AX1, ..o, Xxz) =3y Ay RGO A ARg(LLL).

Since I is preserved by x + y + z, A is also preserved by x + y + z. Applying
this operation to the tuples (0,0,...,0),(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1) € A
coordinatewise, we derive that A = {0, 1}", that is, A contains all tuples and (3.1) holds.
Thus, we showed that QCSP?(T") is solvable in polynomial time.

This idea can be generalized as follows. We say that a set of operations F' (or an
algebra (A4; F)) has the polynomially generated powers (PGP) property if there exists a poly-
nomial p(n) such that A” can be generated from p(n) tuples using operations of F'. Another
behavior that might arise is that there is an exponential function f* so that the smallest gen-
erating sets for A" require size at least f(n). We describe this as the exponentially generated
powers (EGP) property. As it was proved in [43] these are the only two situations we could
have on a finite domain. Moreover, it was shown that the generating set in the PGP case can
be chosen to be very simple and efficiently computable. As a generating set of polynomial
size, we can take the set of all tuples with at most k switches, where a switch is a position
in (ai,...,a,) such that a; # a;4,. This gives a polynomial reduction of QCSP?*(I") to
CSP(I'*) if Pol(T") has the PGP property.

3.2. A general PGP reduction

Let us show that the same idea can be applied to the general form of QCSP(T"). First,
we show how to move universal quantifiers left and convert an instance into the IT,-form.
Notice that the sentence y13y, ...y YVx is equivalent to

Valvx? . vxl3y 3y, 3y, A Dy A A D,
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where each ®; is obtained from ® by renaming x by x’. In this way we can convert any
instance 3y Vxy ...3y,Vx; P of QCSP(I") into the I1,-restriction by moving all universal
quantifiers left:

2 t
2% ...Vx|1A|\7’x21 ...Vx|2A| S Vx} ...Vx‘,Al

4] |-

(3.2)
3y, .3y 3y Ay B A DA A Dy,

where each ®; is obtained from ® by renaming the variables. The only problem with this
reduction is that the number of variables and constraints could be exponential. Nevertheless,
we can apply the PGP idea to this sentence. If Pol(I") has the PGP property then there exists
a constant k such that it is sufficient to check (3.2) only on the tuples with at most k switches.
Those k switches appear in at most k original x-variables and all the remaining variables
can be fixed with constants. This allows reducing QCSP(T") to a sentence with a constant
number of universal quantifiers or even remove all of them.

Theorem 3.1 ([45]). Suppose Pol(I") has the PGP property. Then QCSP(I") is polynomially
equivalent to the modification of QCSP?(I") where sentences have at most | A| universally
quantified variables.

Theorem 3.2 ([45]). Suppose Pol(T") has the PGP property. Then QCSP(T") is polynomially
reduced to CSP(I'*).

This idea gives us a complete classification of the complexity of QCSP(I") for a
two-element domain.

Theorem 3.3 ([25,27]). Suppose T is a constraint language on {0, 1}. Then QCSP(T") is
solvable in polynomial time if T is preserved by an idempotent WNU; QCSP(I") is PSpace-
complete otherwise.

It is known [39] that if I" admits an idempotent WNU, then it is preserved by
x+y+z,xVvVy,x Ay,orxyV yzV xz.Hence, to prove the above theorem, it is sufficient
to check that these operations guarantee the PGP property, which by Theorem 3.2 gives a
polynomial reduction to a tractable CSP. To show the PGP property, we verify that the tuples
0,0,...,0), (1,1,...,1), (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1) generate {0, 1}"
using any of the above operations.

3.3. Does EGP mean hard?

Thus, if Pol(I") has the PGP property then we have a nice reduction to CSP, and
QCSP(I") belongs to NP. What can we say about the complexity of QCSP(T") if Pol(I")
has the EGP property? Hubie Chen conjectured in [24] that QCSP(I") is PSpace-complete
whenever Pol(I") has the EGP property.

For constraint languages I" containing all constant relations, a characterization of
Pol(T") that have the EGP property is given in [43], where it is shown that I" must allow the
pp-definition of relations 7, with the following special form.
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Definition 3.4. Let @ U 8 = A, yet neither o nor 8 equals D.Let S = o3 U 83 and 1, be
the 3n-ary relation given by \/7_, S(xi, yi, zi).

The complement to S represents the not-all-equal relation and the relations t,, allow
for the encoding of the complement of Not-All-Equal 3-Satisfiability (where o \ B is 0 and
B\ « is 1). Thus, if one has polynomially computable (in n) pp-definitions of ,, then it
is clear that QCSP(I") is co-NP-hard [22]. In light of this observation, it seemed that only a
small step remained to proving the actual Chen Conjecture, at least with coNP-hard in place
of PSpace-complete.

3.4. Surprising constraint language and the QCSP on a 3-element domain

As we saw in Section 2.7, the CSP is NP-hard if and only the we can pp-define
(pp-construct) the not-all-equal relation. In the previous subsection, we mentioned that in
the EGP case we can always pp-construct the complement to Not-All-Equal 3-Satisfability,
which almost guarantees coNP-hardness. Surprisingly, two constraint languages I" on
A = {0, 1,2} were discovered in [48] for which any pp-definition of , is of exponential
size, which makes it impossible to use this reduction.

Theorem 3.5 ([48]). There exists a constraint language T" on {0, 1,2} such that
(1) Pol(I") has the EGP property,
(2) 1, is pp-definable over T’

(3) any pp-definition of t, for « = {0, 1} and B = {0, 2} has at least 2" variables,

and
(4) QCSP(T') is solvable in polynomial time.

The algorithm in (4) consists of the following three steps. First, it reduces an instance
to a [Tp-form Vx; ... Vx,3y; ...y, ®. Then, by solving polynomially many CSPs, it cal-
culates polynomially many evaluations to (x1, ..., x,) we need to check. Finally, it checks
that @ has a solution for each of these evaluations. It is proved in [48] that this test guarantees
that the instance holds.

This result was shocking because of several reasons. Not only it disproved the widely
believed Chen Conjecture but showed that we need to worry about the existence of an efficient
pp-definition. Before, if we could pp-define a strong relation (such as ;) then the problem
was hard. Another surprising thing is that we have to calculate the evaluations of (x1,. .., x,)
we need to check, In fact, if we do not look inside ® then we have to check all the tuples
from {0, 1}".

Despite the fact that we are far from having a full classification of the complexity
of the QCSP, we know the complexity for any constraint language on a 3-element domain
containing all constant relations. This classification is given in terms of polymorphisms.
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Theorem 3.6 ([48]). Suppose T is a finite constraint language on {0, 1, 2} containing all
constant relations. Then QCSP(T") is either solvable in polynomial time, NP-complete, coNP-
complete, or PSpace-complete.

3.5. Conclusions
Unlike the CSP where the complexity is known for any constraint language I" here
the complexity is wide open.

Problem 2. What is the complexity of QCSP(I")?

Moreover, we do not even have a conjecture describing the complexity. We know that
for some constraint languages I' the problem QCSP(I") is DP-complete and ®§J -complete,
but we do not know whether there are some other complexity classes and whether we have
finitely many of them.

Problem 3. What complexity classes (up to polynomial equivalence) can be expressed as
QCSP(I') for some constraint language I'?

Now it is hard to believe that there will be a simple classification, that is why it
is interesting to start with a 3-element domain (without constant relations) and 4-element
domain. Probably, a more important problem is to describe all tractable cases assuming
P # NP.

Problem 4. Describe all constraint languages I" such that QCSP(I") is solvable in polyno-
mial time.

4. OTHER VARIANTS OF CSP
The Quantified CSP is only one of many other variations and generalizations of the
CSP whose complexity is still unknown. Here we list some of them.

4.1. CSP over an infinite domain

If we consider CSP(I") for a constraint language on an infinite domain, the situa-
tion changes significantly. As was shown in [11], every computational problem is equivalent
(under polynomial-time Turing reductions) to a problem of the form CSP(T"). In [14] the
authors gave a nice example of a constraint language I' such that CSP(I") is undecidable.
Let I" consist of three relations (predicates) x + y = z, x - y = z and x = 1 over the set of
all integers Z. Then the Hilbert’s 10th problem can be expressed as CSP(I"), which proves
undecidability of CSP(I"). Nevertheless, there are additional assumptions that send the CSP
back to the class NP and make complexity classifications possible [8,12]. For more informa-
tion about the infinite domain CSP and the algebraic approach, see [1e,14].
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4.2. Surjective Constraint Satisfaction Problem

A natural modification of the CSP is the Surjective Constraint Satisfaction Problem,
where we want to find a surjective solution. Formally, for a constraint language I" over a
domain A, SCSP(T") is the following decision problem: given a formula

Ri(..)A---ARs(...),

where all relations Ry, ..., Ry are from I', decide whether there exists a surjective solution,
that is, a solution with {x1, ..., x,} = A. Probably, the most natural examples of the Surjec-
tive CSP are defined as the surjective graph homomorphism problem, which is equivalent to
SCSP(I") where I consists of one binary relation that is viewed as a graph. An interesting
fact about the complexity of the Surjective CSP is that its complexity remained unknown for
many years even for very simple graphs and constraint languages. Three most popular exam-
ples of such long-standing problems are the complexity for the reflexive 4-cycle (undirected
having a loop at each vertex) [38], the complexity for the nonreflexive 6-cycle (undirected
without loops) [41], and the complexity of the No-Rainbow-Problem (SCSP({N}) where
A={0,1,2} and N = {(a,b,c) | {a, b, c} # A}) [46]. Even though these three problems
turned out to be NP-complete, the complexity seems to be unknown even for graphs of size
5 and cycles.

Problem 5. What is the complexity of SCSP(I")?

It was shown in [46] that the complexity of SCSP(I") cannot be described in terms
of polymorphisms, which disproved the only conjecture about the complexity of SCSP(I")
we know. This conjecture, formulated by Hubie Chen, says that SCSP(I") and CSP(I"*) have
the same complexity. Nevertheless, this conjecture still can hold for graphs.

Problem 6. Is it true that SCSP({R}) and CSP({R}*) have the same complexity for any
binary relation R?

For more results on the complexity of the SCSP, see the survey [13].

4.3. Promise CSP
A natural generalization of the CSP is the Promise Constraint Satisfaction Problem,
where a promise about the input is given (see [18,21]). Let ' = {(RA, Rf), A (RA, RtB)},

where RIA and RiB are relations of the same arity over the domains A and B, respectively.
Then PCSP(T") is the following decision problem: given two conjunctive formulas

A A
Ril (Ul,l» cees Ul,nl) ARRRIA Ris (Us,l» cees Us,ns)»
B B
Ri1 (1)1’1, ey Ul,nl) VANRRRIVAN Ris (Us,lv ey Us,nx)v
where (Ri/_, Ri;) are from I" for every j and v; ; € {x1,...,x,} for every i, j, distinguish

between the case when both of them are satisfiable, and when both of them are not satisfiable.
Thus, we are given two CSP instances and a promise that if one has a solution then another has
asolution. Usually, it is also assumed that there exists a mapping (homomorphism) 4 : A — B
such that h(Rf) - RIB for every i. In this case, the satisfiability of the first formula implies
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the satisfiability of the second one. To make sure that the promise can actually make an
NP-hard problem tractable, see Example 2.8 in [21].

The most popular example of the Promise CSP is graph (k, [)-colorability, where
we need to distinguish between k-colorable graphs and not even /-colorable, where k < [.
This problem can be written as follows.

Problem 7. Let |A| =k, |B| =1, T = {(#4, #p)}. What is the complexity of PCSP(I")?

Recently, it was proved [21] that (k, [)-colorability is NP-hard for / = 2k — 1 and
k > 3 but even the complexity of (3, 6)-colorability is still not known.

Even for a 2-element domain the problem is wide open, but recently a dichotomy
for symmetric Boolean PCSP was proved [36].

Problem 8. Let A = B = {0, 1}. What is the complexity of PCSP(I")?
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