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1. Introduction

Locally compact groups have attracted sustained attention because, on the one hand,
rich classes of these groups have fruitful connections with other fields and, on the other,
they have a well-developed theory that underpins those connections and delineates group
structure. Salient features of this theory are the existence of a left-invariant, or Haar, measure;
and the decomposition of a general group into pieces, many of which may be described
concretely and in detail.

Haar measure permits representations of a general locally compact group by oper-
ators on spaces of measurable functions, and is thus the foundation for abstract harmonic
analysis. Connections with partial differential equations, physics, and number theory come
about through these representations. Locally compact groups are the largest class for which
an invariant measure exists and for which harmonic analysis can be done in this form, as was
shown by A. Weil [81].

The decomposition theory of an arbitrary locally compact group G begins with the
short exact sequence

0 ! Gı
! G ! G=Gı

! 0;

in which the closed normal subgroup Gı is the connected component of the identity. The
Gleason–Yamabe theorem [73, Th. 6.0.11] applies to Gı to show that it is a projective limit of
connected Lie groups, and powerful tools from the theory of Lie groups may thus be brought
to bear on Gı. Groups occurring in physics and differential equations are often Lie groups.
The quotientG=Gı is a totally disconnected locally compact group (abbreviated tdlc group).
Lie groups over local fields are important examples of tdlc groups having links to number
theory and algebraic geometry (see, for example, [49,69]). Unlike the connected case however,
many other significant tdlc groups, such as the automorphism groups of locally finite trees
first studied in [76], cannot be approximated by Lie groups. While substantial progress has
been made with our understanding of tdlc groups much remains to be done before it could be
said that the structure theory has reached maturity. This article surveys our current state of
knowledge, much of which is founded on a theorem of van Dantzig, [77], which ensures that
a tdlc groupG has a basis of identity neighborhoods consisting of compact open subgroups.

Decompositions of general tdlc groups are described in Section 2. This section
includes a discussion of the so-called elementary groups, which are those built from dis-
crete and compact groups by standard operations. Discrete and compact groups are large
domains of study in their own right and it is seen how elementary groups can be factored out
in the analysis of a general tdlc group. Simple groups are an important aspect of any decom-
position theory and what is known about them is summarized in Section 3. This includes
a local structure theory and the extent to which local structure determines the global struc-
ture of the group. Section 4 treats scale methods, which associate invariants and special
subgroups to abelian groups of automorphisms and which in some circumstances substitute
for the Lie methods available for connected groups. A unifying theme of our approach is
the dynamics of the conjugation action: Section 2 is concerned with the conjugation action
of G on its closed subnormal subgroups, Section 3 uses in an essential way the conjugation
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action ofG on its closed subgroups, especially those that are locally normal, while Section 4
concerns the dynamics of the conjugation action of cyclic subgroups (and, more generally,
flat subgroups) on the topological space G. Section 5 highlights a few open questions and
directions for further research.

2. Decomposition theory

2.1. Normal subgroup structure
Finite groups, Lie groups, and algebraic groups constitute three of the most impor-

tant classes of groups. Their respective structure theories are deep and far-reaching. One of
the common themes consists in reducing problems concerning a given group G in one of
these classes to problems about simple groups in the corresponding class, and then tackling
the reduced problem by invoking classification results. Striking illustrations of this approach
in the case of finite groups can be consulted in R. Guralnick’s ICM address [43].

Since the category of locally compact groups contains all discrete groups, hence all
groups, developing a similar theory for locally compact groups is hopeless. Nevertheless, the
possibility to construct meaningful “decompositions of locally compact groups into simple
pieces” has been highlighted in [23]. Wide-ranging results have subsequently been estab-
lished by C. Reid and P. Wesolek in a series of papers [63,64], some of whose contributions
are summarized below. A more in-depth survey can be consulted in [62].

Given closed normal subgroups K; L of a locally compact group G, the quotient
group K=L is called a chief factor of G if L is strictly contained in K and for every closed
normal subgroup N of G with L � N � K, we have N D L or N D K. Given a closed
normal subgroupN ofG, the quotientQDG=N is a chief factor if and only ifQ is topolog-
ically simple, i.e.,Q is nontrivial and the only closed normal subgroups ofQ are ¹1º andQ.
More generally, every chief factorQ D K=L is topologically characteristically simple, i.e.,
the only closed subgroups of Q that are invariant under all homeomorphic automorphisms
of Q are ¹1º and Q. A topological group is called compactly generated if it has a compact
generating set.

Theorem 2.1 (See [64, Th. 1.3]). Every compactly generated tdlc group G has a finite series
¹1º D G0 < G1 < G2 < � � � < Gn D G of closed normal subgroups such that for all
i D 1; : : : ; n, the quotient Gi=Gi�1 is compact, or discrete infinite, or a chief factor of
G which is noncompact, nondiscrete, and second countable.

A normal series as in Theorem 2.1 is called an essentially chief series. The theorem
obviously has no content if G is compact or discrete. Let us illustrate Theorem 2.1 with two
examples.

Example 2.2. Let I be a set and for each i 2 I , let Gi be a tdlc group and Ui � Gi be a
compact open subgroup. The restricted product of .Gi ; Ui /i2I , denoted by

L
i2I .Gi ; Ui /,

is the subgroup of
Q

i2I Gi consisting of those tuples .gi /i2I such that gi 2 Ui for all
but finitely many i 2 I . It is endowed with the unique tdlc group topology such that
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the inclusion
Q

i2I Ui !
L

i2I .Gi ; Ui / is continuous and open. Given a prime p, set
M.p/ D

L
n2Z.PSL2.Qp/; PSL2.Zp//. The cyclic group Z naturally acts on M.p/ by

shifting the coordinates. The semidirect product G.p/ D M.p/ Ì Z is a compactly gener-
ated tdlc group, with an essentially chief series given by ¹1º < M.p/ < G.p/. The group
M.p/ is not compactly generated. It has minimal closed normal subgroups, but does not
admit any finite essentially chief series, which illustrates the necessity of the compact gen-
eration hypothesis in Theorem 2.1.

Example 2.3. A more elaborate construction in [63, §9] yields an example of a compactly
generated tdlc group G0.p/ with an essentially chief series given by ¹1º < H.p/ < G0.p/

such that G0.p/=H.p/ Š Z and H.p/ has a nested chain of closed normal subgroups
.H.p/n/ indexed by Z, permuted transitively by the conjugation G0.p/-action, and such
that H.p/n=H.p/n�1 Š M.p/ for all n 2 Z.

A tdlc group is compactly generated if and only if it is capable of acting continu-
ously, properly, with finitely many vertex orbits, by automorphisms on a connected locally
finite graph. For a given compactly generated tdlc group G, vertex-transitive actions on
graphs are afforded by the following construction. Given a compact open subgroup U < G,
guaranteed to exist by van Dantzig’s theorem, and a symmetric compact generating set† of
G, we construct a graph � whose vertex set is the coset space G=U by declaring that the
vertices gU and hU are adjacent if h�1g belongs to U†U . The fact that † generates G
ensures that � is connected. Moreover, G acts vertex-transitively by automorphisms on � .
Since U is compact open, the set U†U is a finite union of double cosets modulo U ; this
implies that � is locally finite, i.e., the degree of each vertex is finite. Notice that all vertices
have the same degree since � is homogeneous. The graph � is called a Cayley–Abels graph
for G, since its construction was first envisaged by H. Abels [1, Beispiel 5.2] and specializes
to a Cayley graph when G is discrete and U D ¹1º. The proof of Theorem 2.1 proceeds by
induction on the minimum degree of a Cayley–Abels graph.

2.2. Elementary groups
By its very nature, Theorem 2.1 highlights the special role played by compact and

discrete groups. A conceptual approach to studying the role of compact and discrete groups in
the structure theory of tdlc groups is provided by P. Wesolek’s notion of elementary groups.
That concept is inspired by the class of elementary amenable discrete groups introduced by
M. Day [33]. It is defined as the smallest class E of second countable tdlc groups (abbreviated
tdlcsc) containing all countable discrete groups and all compact tdlcsc groups, which is stable
under the following two group theoretic operations:

• Given a tdlcsc groupG and a closed normal subgroupN , ifN 2 E andG=N 2 E ,
then G 2 E . In other words E is stable under group extensions.

• Given a tdlcsc group G and a directed set .Oi /i2I of open subgroups, if Oi 2 E

for all i and ifG D
S

i Oi , thenG 2 E . In other words E is stable under directed
unions of open subgroups.
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(The class E has a natural extension beyond the second countable case, see [29, §6]. For sim-
plicity of the exposition, we stick to the second countable case here.) Using the permanence
properties of the class E , it can be shown that every tdlcsc group G has a largest closed
normal subgroup that is elementary; it is denoted by RE .G/ and called the elementary rad-
ical of G. It indeed behaves as a radical, in the sense that it contains all elementary closed
normal subgroups, and satisfies RE .G=RE .G// D ¹1º, see [82, §7.2]. Further properties of
the quotient G=RE .G/ will be mentioned in Section 3 below.

Similarly as for elementary amenable discrete groups, the class E admits a canon-
ical rank function � W E ! !1, taking values in the set !1 of countable ordinals, called the
decomposition rank. It measures the complexity of a given group G 2 E . By convention,
the function � is extended to all tdlcsc groups by setting �.G/ D !1 for each nonelementary
tdlcsc groupG. We refer to [82], [83] and [62, §5]. Let us merely mention here that the class E

has remarkable permanence properties (e.g., it is stable under passing to closed subgroups
and quotient groups), that the rank function has natural monotonicity properties, and that a
nontrivial compactly generated group G 2 E has a nontrivial discrete quotient. It follows in
particular that ifG is a tdlcsc group having a closed subgroupH �G admitting a nondiscrete
compactly generated topologically simple quotient, then G 62 E . Therefore, the only com-
pactly generated topologically simple groups in E are discrete. On the other hand, the class
E contains numerous topologically simple groups that are not compactly generated, e.g.,
simple groups that are regionally elliptic, i.e., groups that can be written as a directed union
of compact open subgroups. Those groups have decomposition rank 2. Explicit examples
appear in [88, §3] or [19, §6].

2.3. More on chief factors
The existence of essentially chief series prompts us to ask whether the chief factors

of G depend upon the choice of a specific normal series in Theorem 2.1. It is tempting
to tackle that question by invoking arguments à la Jordan–Hölder. A technical obstruc-
tion for doing so is that the product of two closed normal subgroups need not be closed.
More generally, given closed subgroups A; N in G such that N is normal, the product
AN need not be closed so that the natural abstract isomorphism A=A \ N ! AN=N

need not be a homeomorphism. It is a continuous injective homomorphism of the locally
compact group A=A \ N to a dense subgroup of the locally compact group AN=N .
This illustrates the necessity of considering dense embeddings of locally compact groups.
We shall come back to this theme in Section 3.1 below. In the context of chief factors,
this has led Reid–Wesolek to define an equivalence relation on nonabelian chief factors
of G, called association, defined as follows: the chief factors K1=L1 and K2=L2 are asso-
ciated if K1L2 D K2L1 and Ki \ L1L2 D Li for i D 1; 2. In that case K1=L1 and
K2=L2 both embed continuously as dense normal subgroups in K1K2=L1L2. We also
recall that the quasicenter of a locally compact group G, denoted by QZ.G/, is the collec-
tion of elements whose centralizer is open. It is a topologically characteristic (not necessarily
closed) subgroup of G containing all the discrete normal subgroups. It was first introduced
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by M. Burger and S. Mozes [14]. Every nontrivial tdlcsc group with a dense quasicenter is
elementary of decomposition rank 2 (see [62, Lem. 5]).

Theorem 2.4 (See [62, Cor. 5]). Let G be a compactly generated tdlc group and let
¹1º D A0 < A1 < A2 < � � � < Am D G and ¹1º D B0 < B1 < B2 < � � � < Bn D G be
essentially chief series for G. Then for each i 2 ¹0; 1; : : : ; mº, if Ai=Ai�1 is a chief factor
with a trivial quasicenter, there is a unique j such that Bj =Bj �1 is a chief factor with a
trivial quasicenter that is associated with Ai=Ai�1. In other words, the association relation
establishes a bijection between the sets of chief factors with a trivial quasicenter appearing
respectively in the two series.

The natural next question is to ask what can be said about chief factors. By the
discussion above, one should focus on properties that are invariant under the association
relation. Following Reid–Wesolek, an association class of nonabelian chief factors is called
a chief block, and a group property shared by all members of a chief block is called a
block property. The following are shown in [63] to be block properties: compact genera-
tion, amenability, having a trivial quasicenter, having a dense quasicenter, being elementary
of a given decomposition rank.

As mentioned above, every chief factor is topologically characteristically simple. In
particular, a compactly generated chief factor is subjected to the following description.

Theorem 2.5 (See [23, Cor. D] and [22, Rem. 3.10]). Let G be a compactly generated nondis-
crete, noncompact tdlc group which is topologically characteristic simple. Then there is a
compactly generated nondiscrete topologically simple tdlc group S , an integer d � 1 and
an injective continuous homomorphism Sd D S � � � � � S ! G of the direct product of d
copies of S , such that the image of each simple factor is a closed normal subgroup ofG, and
the image of the whole product is dense.

In the setting of Theorem 2.5, we say that G is the quasiproduct d copies of the
simple group S . Theorem 2.5 provides a major incentive to study the compactly generated
nondiscrete topologically simple tdlc groups. We shall come back to this theme in Section 3
below.

Developing a meaningful structure theory for topologically characteristically simple
tdlc groups that are not compactly generated is very challenging. Remarkably, significant
results have been established by Reid–Wesolek [63] under the mild assumption of second
countability (abbreviated sc). In spite of the noncompact generation, they introduce an appro-
priate notion of chief blocks, and show that there are only three possible configurations for
the arrangement of chief blocks in a topologically characteristically simple tdlcsc group G,
that they call weak type, semisimple type, and stacking type. Moreover, if G is of weak type,
then it is automatically elementary of decomposition rank � ! C 1. The topologically char-
acteristically simple groups M.p/ and H.p/ appearing in Examples 2.2 and 2.3 above are
respectively of semisimple type and stacking type. We refer to [63] and [62] for details.
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3. Simple groups

Let S be the class of nondiscrete, compactly generated, topologically simple locally
compact groups and Std be the subclass consisting of the totally disconnected members
of S . By the Gleason–Yamabe theorem [73, Th. 6.0.11], all elements of S n Std are connected
simple Lie groups. Prominent examples of groups in Std are provided by simple algebraic
groups over non-Archimedean local fields, irreducible complete Kac–Moody groups over
finite fields, certain groups acting on trees and many more, see [28, Appendix A]. A systematic
study of the class Std as a whole has been initiated by Caprace–Reid–Willis in [28], and
continued with P. Wesolek in [29] and with A. Le Boudec in [22]. We now outline some of
their contributions. Another survey of the properties of nondiscrete simple locally compact
groups can be consulted in [17]; the present account emphasizes more recent results.

3.1. Dense embeddings and local structure
As mentioned in Section 2.3 above, the failure of the second isomorphism theorem

for topological groups naturally leads one to consider dense embeddings, i.e., continuous
injective homomorphisms with dense image. If G;H are locally compact groups and  W

H !G is a dense embedding, and ifG is a connected simple Lie group or a simple algebraic
group over a local field, thenH is discrete or is an isomorphism (see [29, §3]). This property
however generally fails for groups G 2 S ; see [50] for explicit examples. Nevertheless, as
soon as the groupH is nondiscrete, it turns out that key structural features ofG are inherited
by the dense subgroup H . To state this more precisely, we recall the definition of the class
R of robustly monolithic groups, introduced in [29]. A tdlc group G is robustly monolithic
if the intersection M of all nontrivial closed normal subgroups of G is nontrivial, if M
is topologically simple and if M has a compactly generated open subgroup without any
nontrivial compact normal subgroup. The class R contains Std and that inclusion is strict.
The following result provides the main motivation to enlarge one’s viewpoint by considering
R instead of the smaller class Std.

Theorem 3.1 (See [29, Th. 1.1.2]). Let G; H be tdlc groups and  W H ! G be a dense
embedding. If G 2 R andH is nondiscrete, thenH 2 R.

We emphasize that in generalH is not topologically simple even in the special case
where G 2 Std.

The approach in studying the classes Std and R initiated in [28] is based on the
concept of locally normal subgroup, defined as a subgroup whose normalizer is open. To
motivate it, recall once more that if M;N are closed normal subgroups of a tdlc group G,
then the normal subgroupMN need not be closed. On the other hand, ifU �G is a compact
open subgroup, thenM \U andN \U are closed normal subgroups of the compact group
U (hence they are both locally normal), so that the product .M \ U/.N \ U/ is closed.
This observation motivates the definition of the structure lattice LN .G/ of a tdlc group G,
first introduced in [27], defined as the set of closed locally normal subgroups of G, divided
by the local equivalence relation �, where H � K if H \K is relatively open both in H
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and inK. The local class of a closed locally normal subgroupK is denoted by ŒK�. We also
set 0 D Œ¹1º� and 1 D ŒG�. The structure lattice carries a natural G-invariant order relation
defined by the inclusion of representatives. The poset LN .G/ is a modular lattice (see [27,

Lem. 2.3]). The greatest lower bound and least upper bound of two elements ˛;ˇ 2 LN .G/ are
respectively denoted by ˛ ^ ˇ and ˛ _ ˇ. WhenG is a p-adic Lie group, the structure lattice
LN .G/ can naturally be identified with the lattice of ideals in the Qp-Lie algebra ofG. The
theory developed in [27] reveals that the structure lattice is especially well-behaved when
the tdlc group G is [A]-semisimple, i.e., QZ.G/ D ¹1º and the only abelian locally normal
subgroup ofG is ¹1º. That term is motivated by the fact that ifG is a p-adic Lie group, then
it is [A]-semisimple if and only if QZ.G/D ¹1º and the Qp-Lie algebra ofG is semisimple,
see [27, Prop. 6.18]. An important result of P. Wesolek is that the quotient G=RE .G/ of every
tdlcsc group G by its elementary radical is [A]-semisimple (see [82, Cor. 9.15]), so that every
nonelementary group has a nontrivial [A]-semisimple quotient. The following result shows
that [A]-semisimplicity is automatically fulfilled by groups in R.

Theorem 3.2 (See [28, Th. A] and [29, Th. 1.2.5]). Every group G 2 R is [A]-semisimple.

Given an [A]-semisimple tdlc group G, two closed locally normal subgroups H;
K � G that are locally equivalent have the same centralizer; moreover, they commute
if and only if their intersection is trivial (see [27, Th. 3.19]). This ensures that the map
LN .G/ ! LN .G/ W ŒK� 7! ŒK�? D ŒCG.K/� is well defined, and that ˛ ^ ˛? D 0 for
all ˛ 2 LN .G/. This allows one to define the centralizer lattice of G by setting LC.G/ D

¹˛? j ˛ 2 LN .G/º. If G is [A]-semisimple, the centralizer lattice LC.G/ is a Boolean
algebra (see [27, Th. II]). We denote its Stone dual by�G . Thus�G is a totally disconnected
compact space endowed with a canonical continuousG-action by homeomorphisms. In gen-
eral, the G-action on �G need not be faithful. Actually, if LC.G/ D ¹0;1º then �G is a
singleton. This happens if and only if any two non-trivial closed locally normal subgroups
of G have a nontrivial intersection. The following result shows that the dynamics of the
G-action on �G has remarkable features.

Theorem 3.3 (See [28, Th. J] and [29, Th. 1.2.6]). Let G 2 R. Then the G-action on �G is
minimal, strongly proximal, and has a compressible open set. Moreover, theG-action on�G

is faithful if and only if LC.G/ ¤ ¹0;1º.

Recall that a compact G-space X is called minimal if every G-orbit is dense. It is
called strongly proximal if the closure of each G-orbit in the space of probability measures
on X contains a Dirac mass. A nonempty subset ˛ of X is called compressible if for every
nonempty open subset ˇ � X there exists g 2 G with g˛ � ˇ. Obviously, ifX is a minimal
strongly proximal compact G-space and if G fixes a probability measure on X , then X is a
singleton. Therefore, the following consequence of Theorem 3.3 is immediate.

Corollary 3.4. Let G 2 R. If G is amenable, then LC.G/ D ¹0;1º.

A local isomorphism between tdlc groups G1; G2 is a triple .'; U1; U2/ where Ui

is an open subgroup of Gi and ' W U1 ! U2 is an isomorphism of topological groups. We
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emphasize that the structure lattice and the centralizer lattice are local invariants: they only
depend on the local isomorphism class of the ambient tdlc group. However, for a group
G 2 R, the compact G-space �G can also be characterized by global properties among all
compactG-spaces. In order to be more precise, let us first recall some terminology. Given an
action of a groupG by homeomorphisms on a Hausdorff topological spaceX , we define the
rigid stabilizer RistG.U / of a subset U � X as the pointwise stabilizer of the complement
of U in X . The G-action on X is called microsupported if for every nonempty open subset
U � X with U ¤ X , the rigid stabilizer RistG.U / acts nontrivially onX . The term “micro-
supported” was first coined in [28], although the notion it designates has frequently appeared
in earlier references, notably in the work of M. Rubin on reconstruction theorems (see [67]

and references therein). A prototypical example of a microsupported action of a tdlc group is
given by the action of the full automorphism group Aut.T / of a locally finite regular tree T of
degree � 3 on the compact space @T consisting of the ends of T . The following result shows
that for a general groupG 2 R, theG-action on�G shares many dynamical properties with
the Aut.T /-action on @T .

Theorem 3.5 (See [28, Th. J], [29, Th. 7.3.3] and [22, Th. 7.5]). Let G 2 R. Then the G-action
on �G is microsupported. Moreover, for each nonempty microsupported compact G-space
X on which the G-action is faithful, there is a G-equivariant continuous surjective map
�G ! X . In particular, the G-action on X is minimal, strongly proximal, and has a com-
pressible open set.

This shows that �G is universal among the faithful microsupported compact
G-spaces; in particular, the purely local condition that LC.G/ D ¹0;1º ensures that G
does not have any faithful microsupported continuous action on any compact space. Theo-
rem 3.5 was first established for totally disconnected compact G-spaces in [28,29], and then
extended to all compact G-spaces in [22], using tools from topological dynamics. Further
properties of theG-space�G and on the algebraic structure of groups in R can be consulted
in those references.

We now present another aspect of the local approach to the structure of simple tdlc
groups. We define the local prime content of a tdlc group G, denoted by �.G/, to be the set
of those primes p such that every compact open subgroup U � G contains an infinite pro-p
subgroup.

Theorem 3.6 (See [28, Th. H] and [29, Cor. 1.1.4 and Th. 1.2.1]). The following assertions hold
for any group G 2 R:

(i) The local prime content �.G/ is finite and nonempty.

(ii) For each p 2 �.G/, there is a group G.p/ 2 R that is locally isomorphic to
a pro-p group, and a dense embedding G.p/ ! G.

(iii) If H is a tdlc group acting continuously and faithfully by automorphisms on
G, thenH is locally isomorphic to a pro-�.G/ group.
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Roughly speaking, Theorem 3.6(ii) asserts that every group in R can be “approx-
imated” by a locally pro-p group in R. The restriction on the automorphism group of a
group in R from Theorem 3.6(iii) should be compared with the automorphism group of
the restricted product M.p/ from Example 2.2. Indeed, the Polish group Sym.Z/ embeds
continuously in Aut.M.p// by permuting the simple factors, and every tdlcsc group con-
tinuously embeds in Sym.Z/. In some sense, the construction of stacking type chief factors
in Example 2.3 crucially relies on the hugeness of the group Aut.M.p//. Theorem 3.6(iii)
shows that the automorphism group of a group in R is considerably smaller.

Let us finish this subsection with a brief discussion of classification problems. The
work of S. Smith [72] shows that Std contains uncountably many isomorphism classes; his
methods of proof suggest that the isomorphism relation on Std has a similar complexity
as the isomorphism relation on the class of finitely generated discrete simple groups. This
provides evidence that the problem of classifying groups in Std up to isomorphism is ill-
posed. The recent results on the local structure of groups in Std or in R may be viewed as a
hint to the fact the local isomorphism relation might be better behaved (see [29, Th. 1.1.5]). At
the time of this writing, we do not know whether or not the groups in Std fall into countably
many local isomorphism classes. However, classifying simple groups up to isomorphism
remains a pertinent problem for some significant subclasses of Std. To wit, let us mention
that, by [30, Cor. 1.4], a groupG 2 Std is isomorphic to a simple algebraic group over a local
field if and only if it is locally isomorphic to a linear group, i.e., a subgroup of GLd .k/ for
some integer d and some locally compact field k. Lastly, a remarkable classification theorem
concerning an important class of nonlinear simple groups acting on locally finite trees has
been obtained by N. Radu [61]. It would be highly interesting to extend Radu’s results by
classifying all groups in Std acting properly and continuously by automorphisms on a given
locally finite tree T in such a way that the action on the set of ends of T is doubly transitive.
That class is denoted by ST . Results from [25] ensure that the isomorphism relation restricted
to ST is smooth (see [37, Definition 5.4.1]), which means that it comes at the bottom of the
hierarchy of complexity of classification problems in the formalism established by invariant
descriptive set theory (see [37, Ch. 15]). Let us close this discussion by mentioning that we do
not know whether there is a tree T such that ST contains uncountably many isomorphism
classes.

3.2. Applications to lattices
The study of lattices in semisimple Lie and algebraic groups has known tremendous

developments since the mid-20th century, with Margulis’ seminal contributions as corner-
stones. Remarkably, several key results on lattices have been established at a high level of
generality, well beyond the realm of linear groups. An early illustration is provided by [13].
More recently, Y. Shalom [70] and Bader–Shalom [5] have established an extension of Mar-
gulis’ Normal Subgroup Theorem valid for all irreducible cocompact lattices in products of
groups in S , while various analogues of Margulis’ superrigidity for irreducible lattices in
products have been established for various kinds of target spaces, see [3,4,31,36,38,55,56,70].
Those results have in common that they rely on transcendental methods: they use a mix
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of tools from ergodic theory, probability theory, and abstract harmonic analysis, but do not
require any detailed consideration of the algebraic structure of the ambient group. Another
breakthrough in this field was accomplished by M. Burger and S. Mozes [15], who con-
structed a broad family of new finitely presented infinite simple groups as irreducible lattices
in products of nonlinear groups in Std. Their seminal work involves a mix of transcendental
methods together with a fair amount of structure theory developed in [14].

The following two recent results rely in an essential way on the properties of the
class Std outlined above.

Theorem 3.7 (See [21, Th. A]). Let n � 2 be an integer, let G1; : : : ; Gn 2 Std and � � G D

G1 � � � � �Gn be a lattice such that the projection pi .�/ is dense inGi for all i . Assume that
� is cocompact, or thatG has Kazhdan’s property (T). Then the set of discrete subgroups of
G containing � is finite.

Theorem 3.8 (See [21, Th. C]). Let n� 2 be an integer and letG1; : : : ;Gn 2 Std be compactly
presented. For every compact subsetK � G D G1 � � � � �Gn, the set of discrete subgroups
� � G withG DK� and with pi .�/ dense inGi for all i , is contained in a union of finitely
many Aut.G/-orbits.

For a detailed discussion of the notion of compactly presented locally compact
groups, we refer to [32, Ch. 8].

Theorems 3.7 and 3.8 can be viewed as respective analogues of two theorems of
H. C. Wang [78,79] on lattices in semisimple Lie groups and reveal the existence of positive
lower bounds on the covolume of certain families of irreducible cocompact lattices. It should
be underlined that the corresponding statements fail for lattices in a single group G 2 Std,
see [6, Th. 7.1]. Theorem 3.8 is established by combining Theorem 3.7 with recent results on
local rigidity of cocompact lattices in arbitrary groups, due to Gelander–Levit [39].

3.3. Applications to commensurated subgroups
The structure theory of tdlc groups provides valuable tools in exploring the so-called

commensurated subgroups of an abstract group. In this section, we recall that connection and
illustrate it with several recent results. Further results on commensurated subgroups will be
mentioned in Section 4 below.

Let� be a group. Two subgroupsƒ1;ƒ2 � � are called commensurate if their inter-
section ƒ1 \ƒ2 has finite index both in ƒ1 and in ƒ2. The commensurator of a subgroup
ƒ � � , denoted by Comm�.ƒ/, is the set of those 
 2 � such that ƒ and 
ƒ
�1 are com-
mensurate. It is easy to see that Comm�.ƒ/ is a subgroup of � containing the normalizer
N�.ƒ/. The commensurator has naturally appeared in group theory; one of its early occur-
rences is in Mackey’s irreducibility criterion for induced unitary representations (see [51]).
It also appears in a celebrated characterization of arithmetic lattices in semisimple groups
due to Margulis [53, Ch. IX, Th. (B)]. A commensurated subgroup of � is a subgroup ƒ � �

such that Comm�.ƒ/ D � . Clearly, every normal subgroup of � is commensurated; more
generally, every subgroup that is commensurate to a normal subgroup is commensurated.
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Those commensurated subgroups are considered as trivial. For example, finite subgroups
and subgroups of finite index are always commensurated subgroups. It is however impor-
tant to underline that commensurated subgroups are not all of this trivial form. Indeed, an
easy but crucial observation is that compact open subgroups are always commensurated. In
particular, in the simple group PSL2.Qp/, the subgroup PSL2.Zp/ (which is obviously not
commensurate to any normal subgroup of PSL2.Qp/) is commensurated.

Let us next remark that if U is a commensurated subgroup of a group G and
' W � ! G is a group homomorphism, then '�1.U / is a commensurated subgroup of � .
This is the case in particular if G is a tdlc group and U � G is a compact open subgroup.
A fundamental observation is that all commensurated subgroups of � arise in this way.
More, precisely, a subgroup ƒ � � is commensurated if and only if there is a tdlc group
G, a compact open subgroup U � G, and a homomorphism ' W � ! G with dense image
such that '�1.U / D ƒ. Indeed, given a commensurated subgroup ƒ � � , then ƒ acts on
the coset space �=ƒ with finite orbits, so that the closure of the natural image of � in the
permutation group Sym.�=ƒ/, endowed with the topology of pointwise convergence, is
a tdlc group containing the closure of the image of ƒ as a compact open subgroup. That
tdlc group is called the Schlichting completion of the pair .�; ƒ/, denoted by �==ƒ. We
refer to [68], [71, Section 3] and [65] for more information. Let us merely mention here that
a commensurated subgroup ƒ � � is commensurate to a normal subgroup if and only if
the Schlichting completion G D �==ƒ is compact-by-discrete, i.e., G has a compact open
normal subgroup (see [22, Lem. 5.1]).

The occurrence of nontrivial commensurated subgroups in finitely generated groups
with few normal subgroups (e.g., simple groups, or just-infinite groups, i.e., groups all of
whose proper quotients are finite) remains an intriguing phenomenon. On the empirical basis
of the known examples, it seems to be rather rare. The following result provides valuable
information in that context.

Theorem 3.9 (See [22, Th. 5.4]). Let � be a finitely generated group. Assume that all normal
subgroups of � are finitely generated, and that every proper quotient of � is virtually nilpo-
tent. Let also X be a compact �-space on which the �-action is faithful, minimal and
microsupported. Assume that at least one of the following conditions is satisfied:

(1) � is residually finite.

(2) � fixes a probability measure on X .

Then every commensurated subgroup of � is commensurate to a normal subgroup.

This applies to all finitely generated branch groups, as well as to numerous finitely
generated almost simple groups arising in Cantor dynamics, and whose study has known
spectacular recent developments (see [34, 59] and references therein). We refer to [22] for
details and a more precise description of those applications.

Let us briefly outline how the proof of Theorem 3.9 works in the case where � fixes
a probability measure onX . Letƒ� � be a commensurated subgroup andG D �==ƒ be the
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corresponding Schlichting completion. That � is finitely generated implies that G is com-
pactly generated. The hypotheses made on the normal subgroup structure of � yield some
restrictions on the essentially chief series of G afforded by Theorem 2.1. More precisely,
assuming by contradiction thatƒ is not commensurate to a normal subgroup, then the upper
most chief factor K=L with trivial quasicenter in an essentially chief series for G must be
compactly generated. Its structure is therefore described by Theorem 2.5. A key point in the
proof, relying on various ingredients from topological dynamics and involving detailed con-
siderations of the Chabauty space of closed subgroups of � and G, is to show that the given
�-action on X gives rise to a continuous, faithful, microsupported G=L-action on a com-
pact space Y which is closely related to the original space X . Invoking (a suitable version
of) Theorem 3.5 for the chief factor K=L ensures that Y has a compressible open set, from
which it follows thatX has a compressible open set for the �-action. This finally contradicts
the hypothesis of existence of a �-invariant probability measure.

4. Scale methods

The scale of a tdlc group endomorphism, ˛, is a positive integer that conveys infor-
mation about the dynamics of the action of ˛. Roughly speaking, ˛ contracts towards the
identity on one subgroup ofG and expands on another, and the scale is the expansion factor.
This section gives an account of properties of the scale and descriptions of the action of ˛
on certain associated subgroups of G which, when applied to inner automorphisms, answer
questions about group structure.

Let ˛ W G ! G be a continuous endomorphism. The scale of ˛ is

s.˛/ D min
®�
˛.U / W ˛.U / \ U

�
j U � G compact and open

¯
:

This value is a positive integer because ˛.U /\U is an open subgroup of the compact group
˛.U /. Subgroups at which the minimum is attained are said to be minimizing for ˛. The
following results from [85,86,89] relate minimizing subgroups to the dynamics of ˛.

Theorem 4.1. Let ˛ be a continuous endomorphism of the tdlc group G and let U � G be
compact and open. Define subgroups

UC D
®
u 2 U j 9¹unºn�0 � U with u0 D u and un D ˛.unC1/

¯
;

U� D
®
u 2 U j ˛n.u/ 2 U for all n � 0

¯
:

Also define the subgroup U�� D
S

n�0 ˛
�n.U�/ of G.

Then U is minimizing for ˛ if and only if

(TA) U D UCU� and (TB) U�� is closed:

A compact open subgroup U satisfying TA and TB is said to be tidy for ˛, and
s.˛/ D Œ˛.UC/ W UC� for any such subgroup U . Tidiness has two further dynamical inter-
pretations: (1) an ˛-trajectory ¹˛n.g/ºn�0 cannot return to a tidy subgroup once it departs;
and (2) when ˛ is an automorphism, U is tidy for ˛ if and only if the orbit ¹˛n.U /ºn2Z is a
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geodesic for the metric d.U; V / D logŒU W U \ V �C logŒV W U \ V � on the set of compact
open subgroups of G.

Note that every compact open subgroup of G has a subgroup U for which TA
holds and, if ˛ is the inner automorphism ˛g.x/ WD gxg�1, then property TA implies that
UgmUgnU D UgmCnU for allm;n � 0. These points were already used in [12] in the proof
that a reductive group over a locally compact field of positive characteristic is type I, where
they were observed to hold in such groups.

In the following compilation of results from [54, 85, 86, 89], � denotes the modular
function on the automorphism group of G.

Theorem 4.2. The scale s W End.G/ ! ZC satisfies:

(i) s.˛/ D 1 if and only if there is a compact open subgroup U � G with
˛.U / � U ;

(ii) s.˛/ D limn!1Œ˛
n.V / W ˛n.V /\ V �

1
n for every compact open V � G, and

s.˛n/ D s.˛/n for every n � 0; and

(iii) if ˛ is an automorphism, then �.˛/ D s.˛/=s.˛�1/.

The function s ı ˛� W G ! ZC, with ˛g.x/ D gxg�1, is continuous for the group topology
on G and the discrete topology on ZC.

Continuity of s ı ˛� is implied by the fact that, if U is tidy for g, then U is also tidy
for all h 2 UgU and s.h/ D s.g/, [85, Theorem 3].

Questions about the structure of tdlc groups may be answered with scale and tidy
subgroup techniques. K. H. Hofmann and A. Mukherjea conjectured in [45] that all locally
compact groups are “neat”—a property involving the conjugation action by a single ele-
ment g. They used approximation by Lie groups to reduce to the totally disconnected case,
and subgroups tidy for g are used in [47] to show that all groups are neat. Answering another
question of K. H. Hofmann, the set per.G/, comprising those elements of G such that the
closure of hgi is compact, is shown in [84] to be closed by appealing to the properties of the
scale given in Theorem 4.2.

The scale and the subgroup UC associated with it in Theorem 4.1 are given a con-
crete representation in [9]. Put UCC D

S
n�0 ˛

n.UC/. Then UCC is closed if U is tidy and
UCC Ì h˛i acts on a regular tree with valency s.˛/C 1: the image of UCC Ì h˛i is a closed
subgroup of the isometry group of the tree; is transitive on vertices; and fixes an end of the
tree. The resulting isometry groups of trees correspond to the self-replicating groups stud-
ied in [58]. Moreover, the semidirect product UCC Ì h˛i also belongs to the family of focal
hyperbolic groups studied in [18].

4.1. Contraction and other groups
Subgroups of G defined in terms of the action of ˛ are related to the scale and tidy

subgroups. It is convenient to confine the statements to automorphisms here. Extensions to
endomorphisms may be found in [16,89].
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The contraction subgroup for ˛ 2 Aut.G/ is

con.˛/ D
®
x 2 G j ˛n.x/ ! 1 as n ! 1

¯
:

The next result, from [9,46], relates contraction subgroups to the scale.

Theorem 4.3. Let ˛ 2 Aut.G/. Then
T

¹U�� j U is tidy for ˛º is equal to con.˛/, and
s.˛�1/ is equal to the scale of the restriction of ˛�1 to con.˛/. Hence s.˛�1/ > 1 if and
only if con.˛/ is not compact.

IfG is a p-adic Lie group, then con.˛/ is closed for every ˛, [80], but that is not the
case if, for example, G is the isometry group of a regular tree, or a certain type of complete
Kac–Moody group [7], or if LC.G/ ¤ ¹0;1º [28]. The closedness of con.˛/ is equivalent,
by [9, Theorem 3.32], to the triviality of the nub subgroup,

nub.˛/ D

\
¹U j U tidy for ˛º:

The nub for ˛ is compact and is the largest ˛-stable subgroup of G on which ˛ acts ergodi-
cally, which sharpens the theorem of N. Aoki in [2] that a totally disconnected locally compact
group with an ergodic automorphism must be compact. P. Halmos had asked in [44] whether
that was so for all locally compact groups. See [48,90] for the connected case, and also [60].

The structure of closed contraction subgroups con.˛/ is described precisely in [40].
If con.˛/ is closed, there is a composition series

¹1º D G0 G � � � GGn D con.˛/

of ˛-stable closed subgroups of con.˛/ such that the factors GiC1=Gi have no proper, non-
trivial ˛-stable closed subgroups. The factors appearing in any such series are unique up
to permutation and isomorphism, and their isomorphism types come from a countable list:
each torsion factor being a restricted product

L
i2Z.Gi ; Ui / with Gi D F , a finite simple

group, and Ui D F if i � 0 and trivial if i < 0, and the automorphism the shift; and each
divisible factor being a p-adic vector group and the automorphism a linear transformation.
Moreover, con.˛/ is the direct product T �D with T a torsion and D a divisible ˛-stable
subgroup. The divisible subgroup D is a direct product Dp1 � � � � �Dpr with Dpi

a nilpo-
tent p-adic Lie group for each pi . The torsion group T may include nonabelian irreducible
factors but, should it happen to be locally pro-p, then it is nilpotent too, see [42]. The number
of nonisomorphic locally pro-p closed contraction groups is uncountable [41].

Contraction groups correspond to unipotent subgroups of algebraic groups and, fol-
lowing [75], the Tits core,G�, of the tdlc groupG is defined to be the subgroup generated by
all closures of contraction groups. It is shown in [26] that, if G is topologically simple, then
G� is either trivial or is abstractly simple and dense in G.

The correspondence with algebraic groups is pursued in [9], where the parabolic
subgroup for ˛ 2 Aut.G/ is defined to be

par.˛/ D
®
x 2 G j

®
˛n.x/

¯
n�0

has compact closure
¯
;

and the Levi factor to be lev.˛/ D par.˛/ \ par.˛�1/. Then par.˛/, and hence lev.˛/, is
closed in G, [85, Proposition 3]. It may be verified that con.˛/ G par.˛/ and shown, see [9],
that par.˛/ D lev.˛/ con.˛/.
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4.2. Flat groups of automorphisms
A group, H , of automorphisms of G is flat if there is a compact open subgroup,

U �G, that is tidy for every ˛ 2 H . The stabilizer ofU in H is called the uniscalar subgroup
and denoted Hu. The factoring of subgroups tidy for a single automorphism in Theorem 4.1
extends to flat groups as follows.

Theorem 4.4 ([87]). Let H be a finitely generated flat group of automorphisms of G and
suppose that U is tidy for H . Then Hu G H and there is r � 0 such that

H=Hu Š Zr :

• There are q � 0 and closed groups Uj � U , j 2 ¹0; 1; : : : ; qº such that
˛.U0/ D U0; ˛.Uj / is either a subgroup or supergroup of Uj for every
j 2 ¹1; : : : ; qº; and U D U0U1 � � �Uq .

• QUj WD
S

˛2H ˛.Uj / is a closed subgroup of G for each j 2 ¹1; : : : ; qº.

• There are, for each j 2 ¹1; : : : ; qº, an integer sj > 1 and a surjective homomor-
phism �j W H ! .Z;C/ such that �.˛j QUj

/ D s
�j .˛/

j .

• The integers r and q, and integers sj and homomorphisms �j for each
j 2 ¹1; : : : ; qº, are independent of the subgroup U tidy for H .

The number r in Theorem 4.4 is the flat rank of H . The singly-generated group h˛i

has flat rank equal to 0 if ˛ is uniscalar and 1 if not. Flat groups of automorphisms with
rank at least 1 correspond to Cartan subgroups in Lie groups over local fields and may be
interpreted geometrically in terms of apartments in isometry groups of buildings [8].

More generally, flatness of groups of automorphisms may be shown by the following
converse to the fact that flat groups are abelian modulo the stablizer of tidy subgroups.

Theorem 4.5 ([87][71]). Every finitely generated nilpotent subgroup of Aut.G/ is flat, and
every polycyclic subgroup is virtually flat.

Flatness is used—in combination with bounded generation of arithmetic groups
[57,74], the fact that almost normal subgroups are close to normal [11], and the Margulis
normal subgroup theorem [53]—to prove the Margulis–Zimmer conjecture in the special
case of Chevalley groups in [71] and show that there are no commensurated subgroups of
arithmetic subgroups other than the natural ones.

5. Future directions

The contributions to the structure theory of tdlc groups surveyed in this article
highlight that, for a general tdlc group G, as soon as the topology is nondiscrete, its inter-
action with the group structure yields significant algebraic constraints. As mentioned in the
introduction, we view the dynamics of the conjugation action as a unifying theme of our
considerations. The results we have surveyed reveal that those dynamics tend to be richer
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than one might expect. This is especially the case among tdlc groups that are nonelementary.
We hope that further advances will shed more light on this paradigm in the future.

Concerning decomposition theory, it is an important open problem to clarify what
distinguishes elementary and nonelementary tdlc groups. A key question asks whether every
nonelementary tdlcsc group G contains a closed subgroup H admitting a quotient in Std.
Concerning simple groups, our results yield a dichotomy, depending on whether the central-
izer lattice is trivial or not. The huge majority of known examples of groups in Std (listed in
[28, Appendix A]) have a nontrivial centralizer lattice, the most notable exceptions being the
simple algebraic groups over local fields. Finding new groups in Std with a trivial centralizer
lattice would be a decisive step forward. A fundamental source of examples of tdlc groups
is provided by Galois groups of transcendental field extensions with finite transcendence
degree (see [66, Th. 2.9], highlighting the occurrence of topologically simple groups), but this
territory remains largely unexplored from the viewpoint of structure theory of tdlc groups.
Concerning scale methods, the structure of tdlc groups all of whose elements are uniscalar
(i.e., have scale 1) is still mysterious. In particular, we do not know whether every such
group is elementary. This is equivalent to asking whether a tdlc group, all of whose closed
subgroups are unimodular, is necessarily elementary. A positive answer would provide a
formal incarnation to the claim that the dynamics of the conjugation action is nontrivial for
all nonelementary tdlc groups. We refer to [24] for a more extensive list of specific problems.

We believe that a good measurement of the maturity of a mathematical theory is
provided by its ability to solve problems arising on the outside of the theory. For the struc-
ture theory of tdlc groups, the Margulis–Zimmer conjecture appears as a natural target. As
mentioned in Section 4, partial results in the nonuniform case, relying on scale methods on
tdlc groups, have already been obtained in [71].

Another source of external problems is provided by abstract harmonic analysis. As
mentioned in the introduction, the emergence of locally compact groups as an independent
subject of study coincides with the foundation of abstract harmonic analysis. However, fun-
damental problems clarifying the links between the algebraic structure of a locally compact
group and the properties of its unitary representations remain open. The class of amenable
locally compact groups is defined by a representation theoretic property (indeed, a locally
compact group is amenable if and only if every unitary representation is weakly contained
in the regular), but purely algebraic characterizations of amenable groups are still missing.
In particular, the following nondiscrete version of Day’s problem is open and intriguing:
Is every amenable second countable tdlc group elementary (in the sense of Section 2)? The
unitary representation theory also reveals a fundamental dichotomy between locally compact
groups of type I (roughly speaking, those for which the problem of classifying the irreducible
unitary representations up to equivalence is tractable) and the others (see [10,35,52]). Alge-
braic characterizations of type I groups are also desirable. In particular, we underline the
following question: Does every second countable locally compact group of type I contain a
cocompact amenable subgroup? For a more detailed discussion of that problem and related
results, we refer to [20].
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