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Abstract

In this article, we shall discuss the solution to the Zarsiki Cancellation Problem in positive
characteristic, various approaches taken so far towards the possible solution in character-
istic zero, and several other questions related to this problem.

Mathematics Subject Classification 2020

Primary 14R10; Secondary 14R20,14R25,13B25,13F20, 13N15

Keywords

Polynomial ring, cancellation Problem, embedding problem, affine fibration problem,
locally nilpotent derivations

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 3, pp. 1578–1598
DOI 10.4171/ICM2022/151

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. Introduction

“Polynomials and power series
May they forever rule the world.” —Shreeram S. Abhyankar, 1970 [4]

Right from the beginning of the 19th century, mathematicians have been involved in studying
polynomial rings (over C and over R). Some of the early breakthroughs on polynomial rings
have led to the foundation of Commutative Algebra. One such result is the Hilbert Basis
Theorem, a landmark result on the finite generation of ideals, which solved a central problem
on invariant theory. This was followed by the Hilbert Nullstellensatz which connects affine
varieties (zero locus of a set of polynomials) with rings of regular functions on varieties and
thus enables one to make use of the algebraic machinery of commutative algebra to study
geometric properties of varieties.

Affine Algebraic Geometry deals with the study of affine spaces (and certain closed
subspaces), equivalently, polynomial rings (and certain quotients). There are many funda-
mental problems on polynomial rings which can be formulated in an elementary mathe-
matical language but whose solutions remain elusive. Any significant progress requires the
development of new and powerful methods and their ingenious applications.

One of the most challenging problems in Affine Algebraic Geometry is the Zariski
Cancelation Problem (ZCP) on polynomial rings (Question 10 below). In this article, we
shall discuss the solution to the ZCP in positive characteristic, various approaches taken so
far towards the possible solution in characteristic zero, and several other questions related
to this problem. For a survey on problems in Affine Algebraic Geometry, one may look at
[42,62,69].

Throughout the article, all rings will be assumed to be commutative with unity
and k will denote a field. For a ring R, R� will denote the group of units of R. We
shall use the notation RŒn� for a polynomial ring in n variables over a commutative ring
R. Thus, E D RŒn� will mean that E D RŒt1; : : : ; tn� for some elements t1; : : : ; tn in E
which are algebraically independent over R. Unless otherwise stated, capital letters like
X1; X2; : : : ; Xn; Y1; : : : ; Ym; X; Y;Z; T will be used as variables of polynomial rings.

2. Cancellation Problem

LetA be an affine (finitely generated) algebra over a field k. The k-algebra A is said
to be cancellative (over k) if, for any k-algebra B , AŒX� Šk BŒX� implies that A Šk B .
A natural question in this regard is: which affine domains are cancellative? More precisely:

Question 1. Let A be an affine algebra over a field k. Suppose that B is a k-algebra such
that the polynomial rings AŒX� and BŒX� are isomorphic as k-algebras. Does it follow that
A Šk B? In other words, is the k-algebra A cancellative?
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A special case of Question 1, famously known as the Zariski Cancellation Problem,
asks whether affine spaces are cancellative, i.e., whether any polynomial ring in n variables
over a field k is cancellative. More precisely:

Question 10. Suppose that B is an affine k algebra satisfying BŒX� Šk kŒX1; : : : ; XnC1�

for some positive integer n. Does it follow that B Šk kŒX1; : : : ; Xn�? In other words, is the
polynomial ring kŒX1; : : : ; Xn� cancellative?

Abhyankar, Eakin, and Heinzer have shown that any domain A of transcendence
degree one over any field k is cancellative [3]. In fact, they showed that, for any UFD R, the
polynomial ring RŒX� is cancellative over R. This was further generalized by Hamann to a
ring R which either contains Q or is a seminormal domain [52].

In 1972, Hochster demonstrated the first counterexample to Question 1 [53]. His
example, a four-dimensional ring over the field of real numbers R, is based on the fact that
the projective module defined by the tangent bundle over the real sphere with coordinate ring
S D RŒX; Y;Z�=.X2 C Y 2 CZ2 � 1/ is stably free but not a free S -module.

One of the major breakthroughs in 1970s was the establishment of an affirmative
answer to Question 10 for the case n D 2. This was proved over a field of characteristic zero
by Fujita, Miyanishi, and Sugie [43,70] and over perfect fields of arbitrary characteristic by
Russell [74]. Later, it has been shown that even the hypothesis of perfect field can be dropped
[20]. A simplified proof of the cancellation property of kŒX; Y � for an algebraically closed
field k is given by Crachiola and Makar-Limanov in [22].

Around 1989, Danielewski [26] constructed explicit two-dimensional affine domains
over the field of complex numbers C which are not cancellative over C. New examples of
noncancellative varieties over any field k have been studied in [9,32,49]. This addresses the
Cancellation Problem, as formulated in Question 1, for all dimensions.

In [45] and [47], the author settled the Zariski Cancellation Problem (Question 10)
completely for affine spaces in positive characteristic. She has first shown in [45] that a
certain threefold constructed by Asanuma is a counterexample to the ZCP in positive char-
acteristic for the affine three space. Later in [46], she studied a general threefold of the form
xmy D F.x; z; t/, which includes the Asanuma threefold as well as the famous Russell cubic
defined below. A major theorem of [46] is stated as Theorem 5.4 of this article. In [47], using a
modification of the theory developed in [46], she constructed a family of examples which are
counterexamples to the ZCP in positive characteristic in all dimensions greater than 2. The
ZCP is still a challenging problem in characteristic zero. A few candidate counterexamples
are discussed below.

The Russell cubic. Let A D CŒX; Y;Z; T �=.X2Y CX CZ2 C T 3/, V D Spec A and let
x denote the image ofX in A. The ring A, known as the Russell cubic, is one of the simplest
examples of the Koras–Russell threefolds, a family of threefolds which arose in the context
of the problem of determining whether there exist nonlinearizable C�-actions on C3. It was
an exciting open problem for some time whetherAŠ CŒ3�. It was first observed that the ring
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A (respectively the variety V ) has several properties in common with CŒ3� (respectively C3),
for instance,

(i) A is a regular UFD.

(ii) There exists an injective C-algebra homomorphism fromA to CŒ3�. Note that
CŒ3� ,! A.

(iii) The variety V is homeomorphic (in fact, diffeomorphic) to R6.

(iv) V has logarithmic Kodaira dimension �1.

These properties appeared to provide evidence in favor of the surmise thatAŠ CŒ3�.
The establishment of an isomorphism between A and CŒ3� would have led to counterexam-
ples to the “Linearization Conjecture” on C3 (stated in [58]) and the Abhyankar–Sathaye
Conjecture for n D 3 (stated in Section 5 of the present article). Indeed, if A were isomor-
phic to CŒ3�, as was then suspected, it would have shown the existence of nonlinearizable
C�-actions on C3. Moreover, note that

(v) A=.x � �/ D CŒ2� for every � 2 C�.

(vi) A=.x/ ¤ CŒ2�.

Therefore, if A were isomorphic to CŒ3�, then property (vi) would show that x � �

cannot be a coordinate in A for any � and then, by property (v), it would have yielded a
counterexample to the Abhyankar–Sathaye Conjecture for n D 3.

However, Makar-Limanov proved [65] thatA¤ CŒ3�; for this result, he introduced a
new invariant which distinguished between A and CŒ3�. This invariant, which he had named
AK-invariant, is now named Makar-Limanov invariant and is denoted by ML. It is defined
in Section 3. Makar-Limanov proved that

(vii) ML.A/ D CŒx� (Makar-Limanov [65]).

However, the Makar-Limanov invariant of CŒn� is C for any integer n � 1. Thus
A© CŒ3�. Subsequently, other Koras–Russell threefolds were shown to be not isomorphic to
the polynomial ring. Eventually, Kaliman–Koras–Makar-Limanov–Russell proved that every
C�-action on C3 is linearizable (cf. [55]).

Now for ZCP in characteristic zero, a crucial question, still open, is whether
AŒ1� D CŒ4�. Because if AŒ1� D CŒ4�, then A would be a counterexample to the ZCP in
characteristic zero for n D 3. In this context, the following results have been proved:

(viii) ML.AŒ1�/ D C (Dubouloz [30]).

(ix) V is A1-contractible (Dubouloz–Fasel [31], also see [33,54]).

Note that AŒ1� D CŒ4� would imply that ML.AŒ1�/D C and Dubouloz’s result (viii)
shows that the latter indeed holds. On the other hand, Asok had suggested a program for
showing that the variety V is not A1-contractible and hence A is not a stably polynomial
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ring (see [54]). However, Hoyois, Krishna, and Østvær have proved [54] that a step in his
program does not hold for V . They had further shown that V is stably A1-contractible. In a
remarkable paper [31], Dubouloz and Fasel have established that V is in fact A1-contractible,
which seems to provide further evidence in favor of AŒ1� D CŒ4�. The variety V is in fact the
first example of an A1-contractible threefold which is not algebraically isomorphic to C3.

Nonrectifiable epimorphisms and Asanuma’s rings. Let m � n be two integers.
A k-algebra epimorphism � W kŒX1; : : : ;Xn�� kŒY1; : : : ;Ym� is said to be rectifiable if there
exists a k-algebra automorphism of kŒX1; : : : ;Xn� such that �ı .Xi /D Yi for 1� i �m

and �ı .Xj /D 0 formC 1� j � n. Equivalently, over an algebraically closed field k, a k-
embedding ˆ W Am

k
,! An

k
is said to be rectifiable if there exists an automorphism ‰ of An

k

such that‰ıˆ is the canonical embedding mapping .y1; : : : ; ym/! .y1; : : : ; ym; 0; : : : ; 0/.
A famous theorem of Abhyankar–Moh and Suzuki proves that any epimorphism

� W kŒX; Y � ! kŒT � is rectifiable in characteristic zero [5,86]. On the other hand, in positive
characteristic, there exist nonrectifiable epimorphisms from kŒX;Y � to kŒT � (see Segre [83],
Nagata [71]). It is an open problem whether there exist nonrectifiable epimorphisms over the
field of complex numbers (see [38]).

Asanuma has described an explicit method for constructing affine rings which are
stably polynomial rings, by making use of nonrectifiable epimorphisms ([7], also see [38,

Proposition 3.7]). Such rings are considered to be potential candidates for counterexamples
to the ZCP. For instance, when k is of positive characteristic, nonrectifiable epimorphisms
from kŒX; Y � to kŒT � yield counterexamples to the ZCP.

Let � W RŒX; Y;Z� ! RŒT � be defined by

�.X/ D T 3
� 3T; �.Y / D T 4

� 4T 2; �.Z/ D T 5
� 10T:

Shastri constructed the above epimorphism � and proved that it defines a nonrectifiable
(polynomial) embedding of the trefoil knot in A3

R [84]. Using a result of Serre [63, Theo-

rem 1, p. 281], one knows that ker.�/ D .f; g/ for some f; g 2 kŒX; Y; Z�. Using f and g,
Asanuma constructed the ring B D RŒT �ŒX; Y;Z;U; V �=.T dU � f; T dV � g/ and proved
that B Œ1� D RŒT �Œ4� D RŒ5� (cf. [7, Corollary 4.2]). He asked [7, Remark 7.8]:

Question 2. Is B D RŒ4�?

The interesting aspect of the question is that once the problem gets solved, irrespec-
tive of whether the answer is “Yes” or “No,” that is, either way, one would have solved a
major problem in Affine Algebraic Geometry. Indeed:

If B D RŒ4�, then there exist nonlinearizable R�-actions on the affine four-space A4
R.

If B ¤ RŒ4�, then clearly B is a counterexample to the ZCP!!

3. Characterization Problem

The Characterization Problem in affine algebraic geometry seeks a “useful charac-
terization” of the polynomial ring or, equivalently (when the ground field is algebraically
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closed), an affine n-space. For instance, the following two results give respectively an alge-
braic and a topological characterization of kŒ1� (or A1

C).

Theorem 3.1. Let k be an algebraically closed field of characteristic zero. Then the poly-
nomial ring kŒ1� is the only one-dimensional affine UFD with A� D k�.

Theorem 3.2. Let k be the field of complex numbers C. Then the affine line A1
C is the only

acyclic normal curve.

While the Characterization Problem is one of the most important problems in affine
algebraic geometry in its own right, it is also closely related to some of the challenging
open problems on the affine space like the “Cancellation Problem.” For instance, each of the
above characterizations of kŒ1� immediately solves the Cancellation Problem in dimension
one: AŒ1� D kŒ2� H) A D kŒ1�. The complexity of the Characterization Problem increases
with the dimension of the rings.

In his attempt to solve the Cancellation Problem for the affine plane, Ramanujam
obtained a remarkable topological characterization of the affine plane C2 in 1971 [72]. He
proved that

Theorem 3.3. C2 is the only contractible smooth surface which is simply connected at infin-
ity.

Ramanujam also constructed contractible surfaces which are not isomorphic to C2.
Soon, in 1975, Miyanishi [67] obtained an algebraic characterization of the polynomial ring
kŒ2�. He proved that

Theorem 3.4. Let k be an algebraically closed field of characteristic zero and A be a two-
dimensional affine factorial domain over k. Then A D kŒ2� if and only if it satisfies the
following:

(i) A� D k�.

(ii) There exists an element f 2 A and a subring B of A such that AŒf �1� D

BŒf �1�
Œ1�.

This algebraic characterization was used by Fujita, Miyanishi, and Sugie [43,70] to
solve the Cancellation Problem for kŒX; Y �. In 2002 [50], using methods of Mumford and
Ramanujam, Gurjar gave a topological proof of the cancellation property of CŒX; Y �.

Remarkable characterizations of the affine three space were obtained by Miyanishi
[68] and Kaliman [56] (also see [69] for a beautiful survey). We state below the version of
Kaliman.

Theorem 3.5. Let A be a three-dimensional smooth factorial affine domain over the field of
complex numbers C. LetX D SpecA. ThenAD CŒ3� if and only if it satisfies the following:

(i) A� D C�.

(ii) H3.X;Z/ D 0, or X is contractible.
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(iii) X contains a cylinder-like open set V such that V ŠU � A2 for some curveU
and each irreducible component of the complementX n V has at most isolated
singularities.

When AŒ1� D CŒ4�, it is easy to see that A possesses properties (i) and (ii) of Theo-
rem 3.5. Thus, by Theorem 3.5, the ZCP for CŒ3� reduces to examining whether condition (iii)
necessarily holds for a C-algebra A satisfying AŒ1� D CŒ4�.

In [29], we have obtained another characterization of the affine three-space using
certain invariants of an affine domain defined by locally nilpotent derivations. We state it
below.

Locally nilpotent derivations and a characterization of CŒ3�. Let B be an affine domain
over a field k of characteristic zero. A k-linear derivation D on B is said to be a locally
nilpotent derivation if, for any a 2 B there exists an integer n (depending on a) satisfying
Dn.a/ D 0. Let LND.B/ denote the set of all locally nilpotent k-derivations of B and let

LND�.B/ D
®
D 2 LND.B/ j Ds D 1 for some s 2 B

¯
:

Then we define

ML.B/ WD

\
D2LND.B/

kerD and ML�.B/ WD

\
D2LND�.B/

kerD:

The above ML.B/, introduced by Makar-Limanov, is now called the Makar-Limanov invari-
ant of B; ML�.B/ was introduced by Freudenburg in [41, p. 237]. We call it the Makar-
Limanov–Freudenburg invariant or ML-F invariant. If LND�.B/ D ;, we define ML�.B/

to be B . We have obtained the following theorem [29, Theorem 4.6].

Theorem 3.6. Let A be a three-dimensional affine factorial domain over an algebraically
closed field k of characteristic zero. Then the following are equivalent:

(I) A D kŒ3�.

(II) ML�.A/ D k.

(III) ML.A/ D k and ML�.A/ ¤ A.

A similar result has also been proved in dimension two under weaker hypotheses [29,

Theorem 3.8]. The above characterization of the affine three-space does not extend to higher
dimensions [29, Example 5.6]. So far, no suitable characterization of the affine n-space for
n � 4 is known to the author.

4. Affine fibrations

LetR be a commutative ring. A fundamental theorem of Bass–Connell–Wright and
Suslin [10,85] on the structure of locally polynomial algebras states that:
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Theorem 4.1. Let A be a finitely presented algebra over a ring R. Suppose that for each
maximal ideal m of R, Am D RŒn�

m for some integer n � 0. Then A Š SymR .P / for some
finitely generated projective R-module P of rank n.

Now for a prime ideal P of R, let k.P / denote the residue field RP =PRP . The
area of affine fibrations seeks to derive information about the structure and properties of an
R-algebra A from the information about the fiber rings A˝R k.P /.D AP =PAP / of A at
the points P of the prime spectrum of R, i.e., at the prime ideals P of R.

An R-algebra A is said to be an An-fibration over R if A is a finitely generated flat
R-algebra and for each prime ideal P of R, A˝R k.P / D k.P /Œn�.

The most important problem on An-fibrations, due to Veǐsfeǐler and Dolgačev [87],
can be formulated as follows:

Question 3. LetR be a Noetherian domain of dimension d andA be an An-fibration overR.

(i) IfR is regular, isAŠ SymR.Q/ for some projective moduleQ overR? (In par-
ticular, if R is regular local, is then A D RŒn�?)

(ii) In general, what can one say about the structure of A?

Question 3 is considered a hard problem. When n D 1, it has an affirmative answer
for all d . This has been established in the works of Kambayashi, Miyanishi, and Wright
[59,60]. Their results were further refined by Dutta who showed that it is enough to assume
the fiber conditions only on generic and codimension-one fibers ([34]; also see [14,17,40]).

In case n D 2, d D 1, and R contains the field of rational numbers, an important
theorem of Sathaye [81] gives an affirmative answer to Question 3 (i). To prove this theorem,
Sathaye first generalized the Abhyankar–Moh expansion techniques originally developed
over kŒŒx�� to kŒŒx1; : : : ; xn�� [80]. The expansion techniques were used by Abhyankar–Moh
to prove their famous epimorphism theorem. The generalized expansion techniques were
further developed by Sathaye [82] to prove a conjecture of Daigle and Freudenburg. The
result was a crucial step in Daigle–Freudenburg’s theorem that the kernel of any triangular
derivation of kŒX1; X2; X3; X4� is a finitely generated k-algebra [23].

When the residue field of R is of positive characteristic, Asanuma has shown in
[6, Theorem 5.1] that Question 3 (i) has a negative answer for n D 2, d D 1, and the author
has generalized Asanuma’s ring [47] to give a negative answer to Question 3 (i) for n D 2

and any d > 1 (also see [48]). In Theorem 5.4, the author proved that in a special situation
A2-fibration is indeed trivial.

However, if nD 2, d D 2, andR contains the field of rational numbers, Question 3 (i)
is an open problem. A candidate counterexample is discussed in Section 7.

In the context of Question 3 (ii), a deep work of Asanuma [6] provides a stable struc-
ture theorem for A. As a consequence of Asanuma’s structure theorem, it follows that if R
is regular local, then there exists an integer m � 0 such that AŒm� D RŒmCn�. Thus it is very
tempting to look for possible counterexamples to the affine fibration problem in order to
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obtain possible counterexamples to the ZCP in characteristic zero. One can see [12,24,36,37]

and [38, Section 3.1] for more results on affine fibrations.
So far we have considered affine fibrations where the fibre rings are polynomial

rings. Bhatwadekar and Dutta have obtained some nice results on rings whose fiber rings
are of the form kŒX; 1=X� [15,16]. Later Bhatwadekar, the author, and A. Abhyankar studied
rings whose fiber rings are Laurent polynomial algebras or rings of the form kŒX; 1=f .X/�,
or of the form kŒX; Y; 1=.aX C b/; 1=.cY C d/� for some a; b; c; d 2 k [1, 2, 18, 19, 44].
One of the results of Bhatwadekar and the author provides a Laurent polynomial analogue
of Theorem 4.1 and the affine fibration problem Question 3. More generally, we have [19,

Theorems A and C]:

Theorem 4.2. Let R be a Noetherian normal domain with field of fractions K and A be a
faithfully flat R-algebra such that

(i) A˝R K Š KŒX1;
1

X1
; : : : ; Xn;

1
Xn
�,

(ii) for each height-one prime ideal P of R, A ˝R k.P / Š k.P /ŒX1;
1

X1
; : : : ;

Xn;
1

Xn
�.

Then A is a locally Laurent polynomial algebra in n variables over R, i.e.,

Am D Rm ŒX1;
1

X1

; : : : ; Xn;
1

Xn

�

and is of the form BŒI�1�, where B is the symmetric algebra of a projective R-moduleQ of
rank n,Q is a direct sum of finitely generated projectiveR-modules of rank one, and I is an
invertible ideal of B .

5. Epimorphism Problem

The Epimorphism Problem for hypersurfaces asks the following fundamental ques-
tion:

Question 4. Let k be a field and f 2 B D kŒn� for some integer n � 2. Suppose

B=.f / Š kŒn�1�:

Does this imply that B D kŒf �Œn�1�, i.e., is f a coordinate in B?

This problem is generally known as the Epimorphism Problem. It is an open problem
and is regarded as one of the most challenging and celebrated problems in the area of affine
algebraic geometry (see [38,69,75,77] for useful surveys).

The first major breakthrough on Question 4 was achieved during 1974–1975, inde-
pendently, by Abhyankar–Moh and Suzuki [5,86]. They showed that Question 4 has an affir-
mative answer when k is a field of characteristic zero and nD 2. Over a field of positive char-
acteristic, explicit examples of nonrectifiable epimorphisms from kŒX; Y � to kŒT � (referred
to in Section 2) and hence explicit examples of nontrivial lines had already been demon-
strated by Segre [83] in 1957 and Nagata [71] in 1971. However, over a field of characteristic
zero, we have the following conjecture:
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Abhyankar–Sathaye Conjecture. Let k be a field of characteristic zero and f 2 B D kŒn�

for some integer n � 2. Suppose that B=.f / Š kŒn�1�. Then B D kŒf �Œn�1�.

In case nD 3, some special cases have been solved by Sathaye, Russell, and Wright
[73,76,79,89]. In [79], Sathaye proved the conjecture for the linear planes, i.e., polynomials F
of the form aZ � b, where a; b 2 kŒX; Y �. This was further extended by Russell over fields
of any characteristic. They proved that

Theorem 5.1. Let F 2 kŒX; Y; Z� be such that F D aZ � b, where a.¤ 0/, b 2 kŒX; Y �,
and kŒX;Y;Z�=.F /D kŒ2�. Then there existX0;Y0 2 kŒX;Y � such that kŒX;Y �D kŒX0;Y0�

with a 2 kŒX0� and kŒX; Y;Z� D kŒX0; F �
Œ1�.

When k is an algebraically closed field of characteristic p � 0, Wright [89] proved
the conjecture for polynomials F of the form aZm � b with a; b 2 kŒX; Y �, m � 2 and
p − m. Das and Dutta showed [28, Theorem 4.5] that Wright’s result extends to any field k.
They proved that

Theorem 5.2. Let k be any field with ch k D p .� 0/ and F D aZm � b 2 kŒX; Y;Z� be
such that a.¤ 0/, b 2 kŒX;Y �,m� 2 and p −m. Suppose that kŒX;Y;Z�=.F /D kŒ2�. Then
there exists X0 2 kŒX; Y � such that kŒX; Y � D kŒX0; b� with a 2 kŒX0� and kŒX; Y; Z� D

kŒF;Z;X0�.

The condition that p − m is necessary in Theorem 5.2 (cf. [28, Remark 4.6]).
Most of the above cases are covered by the following generalization due to Russell

and Sathaye [76, Theorem 3.6]:

Theorem 5.3. Let k be a field of characteristic zero and let

F D amZ
m

C am�1Z
m�1

C � � � C a1Z C a0 2 kŒX; Y;Z�

where a0; : : : ; am 2 kŒX; Y � are such that GCD .a1; : : : ; am/ … k. Suppose that

kŒX; Y;Z�=.F / D kŒ2�:

Then there exists X0 2 kŒX; Y � such that kŒX; Y � D kŒX0; b� with am 2 kŒX0�. Further,
kŒX; Y;Z� D kŒF �Œ2�.

Thus, for kŒX; Y;Z�, the Abhyankar–Sathaye conjecture remains open for the case
when GCD.a1; : : : ; am/ D 1.

A common theme in most of the partial results proved in the Abhyankar–Sathaye
conjecture for kŒX;Y;Z� is that, ifF is considered as a polynomial inZ, then the coordinates
of kŒX; Y � can be so chosen that the coefficient of Z becomes a polynomial in X . The
Abhyankar–Sathaye conjecture for kŒX; Y;Z� can now be split into two parts.

Question 4A. Let k be a field of characteristic zero and let

F D amZ
m

C am�1Z
m�1

C � � � C a1Z C a0 2 kŒX; Y;Z�

where a0; : : : ; am 2 kŒX; Y �. Suppose that kŒX; Y; Z�=.F / D kŒ2�. Does there exist
X0 2 kŒX; Y � such that kŒX; Y � D kŒX0�

Œ1� with am 2 kŒX0�?
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Question 4B. Let k be a field of characteristic zero and suppose

F D am.X/Z
m

C am�1Z
m�1

C � � � C a1Z C a0 2 kŒX; Y;Z�

where a0; : : : ; am�1 2 kŒX; Y � and am 2 kŒX�. Suppose that kŒX; Y;Z�=.F / D kŒ2�. Does
this imply that kŒX; Y;Z� D kŒF �Œ2�?

Sangines Garcia in his PhD thesis [78] answered Question 4A affirmatively for the
casemD 2. In [21], Bhatwadekar and the author have given an alternative proof of this result
of Garcia.

When k is any field, as a partial generalization of Theorem 5.1 and Question 4B
in four variables, the author proved the Abhyankar–Sathaye conjecture for a polynomial F
of the form XmY � F.X;Z; T / 2 kŒX; Y;Z; T �. This was one of the consequences of her
general investigation on the ZCP [46]. In the process, she related it with other central prob-
lems on affine spaces like the affine fibration problem and the ZCP. The author has proved
equivalence of ten statements, some of which involve an invariant introduced by Derksen,
which is called the Derksen invariant.

The Derksen invariant of an integral domain B , denoted by DK.B/, is defined as
the smallest subring of B generated by the kernel of D, where D varies over the set of all
locally nilpotent derivations of B .

Theorem 5.4. Let k be a field of any characteristic and A an integral domain defined by

A D kŒX; Y;Z; T �=
�
XmY � F.X;Z; T /

�
; where m > 1:

Let x, y, z, and t denote, respectively, the images of X , Y , Z, and T in A. Set f .Z; T / WD

F.0;Z; T / and G WD XmY � F.X;Z; T /. Then the following statements are equivalent:

(i) kŒX; Y;Z; T � D kŒX;G�Œ2�.

(ii) kŒX; Y;Z; T � D kŒG�Œ3�.

(iii) A D kŒx�Œ2�.

(iv) A D kŒ3�.

(v) AŒ`� Šk k
Œ`C3� for some integer ` � 0 and DK.A/ ¤ kŒx; z; t �.

(vi) A is an A2-fibration over kŒx� and DK.A/ ¤ kŒx; z; t �.

(vii) A is geometrically factorial over k, DK.A/ ¤ kŒx; z; t � and the canonical
map k� ! K1.A/ (induced by the inclusion k ,! A) is an isomorphism.

(viii) A is geometrically factorial over k, DK.A/¤ kŒx; z; t � and .A=xA/� D k�.

(ix) kŒZ; T � D kŒf �Œ1�.

(x) kŒZ; T �=.f / D kŒ1� and DK.A/ ¤ kŒx; z; t �.

The equivalence of (ii) and (iv) provides an answer to Question 4 for the special case
of the polynomial XmY � F.X;Z; T /. The equivalence of (i) and (iii) provides an answer
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to a special case of Question 40 (stated below) for the ringR D kŒx�. The equivalence of (iii)
and (vi) answers Question 3 in a special situation. For more discussions, see [48].

In a remarkable paper Kaliman proved the following result over the field of complex
numbers [56]. Later, Daigle and Kaliman extended it over any field k of characteristic zero
[25].

Theorem 5.5. Let k be a field of characteristic zero. Let F 2 kŒX; Y; Z� be such that
kŒX; Y;Z�=.F � �/ D kŒ2� for almost every � 2 k. Then kŒX; Y;Z� D kŒF �Œ2�.

A general version of Question 4 can be asked as:

Question 40. Let R be a ring and f 2 A D RŒn� for some integer n � 2. Suppose

A=.f / Š RŒn�1�:

Does this imply that A D RŒf �Œn�1�, i.e., is f a coordinate in A?

There have been affirmative answers to Question 40 in special cases by Bhatwadekar,
Dutta, and Das [11, 13, 28]. Bhatwadekar and Dutta had considered linear planes, i.e., poly-
nomials F of the form aZ � b, where a; b 2 RŒX; Y � over a discrete valuation ring R and
proved that special cases of the linear planes are actually variables. Bhatwadekar–Dutta have
also shown [12] that a negative answer to Question 40 in the case when n D 3 and R is a dis-
crete valuation ring containing Q will give a negative answer to the affine fibration problem
(Question 3 (i)) for the case n D 2 and d D 2. An example of a case of linear planes which
remains unsolved is discussed in Section 7.

6. An-forms

Let A be an algebra over a field k. We say that A is an An-form over k if
A˝k L D LŒn� for some finite algebraic extension L of k. Let A be an An-form over a
field k.

When n D 1, it is well known that if Ljk is a separable extension, then A D kŒ1�

(i.e., trivial) and that ifLjk is purely inseparable thenA need not be kŒ1�. An extensive study
of such purely inseparable algebras was made by Asanuma in [8]. Over any field of positive
characteristic, the nontrivial purely inseparable A1-forms can be used to give examples of
nontrivial An-forms for any integer n > 1.

When n D 2 and Ljk is a separable extension, then Kambayashi established that
A D kŒ2� [57]. However, the problem of existence of nontrivial separable A3-forms is open
in general. A few recent partial results on the triviality of separable A3-forms are mentioned
below.

Let A be an A3-form over a field k of characteristic zero and Nk be an algebraic
closure of k. Then A D kŒ3� if it satisfies any one of the following:

(1) A admits a fixed point free locally nilpotent derivationD (Daigle and Kaliman
[25, Corollary 3.3]).
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(2) A contains an element f which is a coordinate of A˝k
Nk (Daigle and Kaliman

[25, Proposition 4.9]).

(3) A admits an effective action of a reductive algebraic k-group of positive dimen-
sion (Koras and Russell [61, Theorem C]).

(4) A admits either a fixed point free locally nilpotent derivation or a nonconfluent
action of a unipotent group of dimension two (Gurjar, Masuda, and Miyanishi
[51]).

(5) A admits a locally nilpotent derivation D such that rk.D ˝ 1 Nk/ � 2 (Dutta,
Gupta, and Lahiri [39]).

Now let R be a ring containing a field k. An R-algebra A is said to be an An-form
over R with respect to k if A˝k

Nk D .R ˝k
Nk/Œn�, where Nk denotes the algebraic closure

of k. A few results on triviality of separable An-forms over a ring R are listed below.
Let A be an An-form over a ring R containing a field k of characteristic 0. Then:

(1) If n D 1, then A is isomorphic to the symmetric algebra of a finitely generated
rank one projective module over R [35, Theorem 7].

(2) If n D 2 and R is a PID containing Q, then A D RŒ2� [35, Remark 8].

(3) If n D 2, then A is an A2-fibration over R.

(4) If n D 2 and R is a one-dimensional Noetherian domain, then there exists a
finitely generated rank-one projectiveR-moduleQ such thatAŠ .SymR.Q//

Œ1�

[39, Theorem 3.7].

(5) If n D 2 and A admits has a fixed point free locally nilpotent R-derivation over
any ring R, then there exists a finitely generated rank one projective R-module
Q such that A Š .SymR.Q//

Œ1� [39, Theorem 3.8].

The result (3) above shows that an affirmative answer to the A2-fibration problem
(Question 3 (i)) will ensure an affirmative answer to the problem of A2-forms over general
rings. Over a field F of any characteristic, Das has shown [27] that any factorial A1-form A

over a ring R containing F is trivial if there exists a retraction map from A to R.
We cannot say much about A3-forms over general rings till the time we solve it over

fields.

7. An example of Bhatwadekar and Dutta

The following example arose from the study of linear planes over a discrete valuation
ring by Bhatwadekar and Dutta [12]. Question 5 stated below is an open problem for at least
three decades. Let

A D CŒT;X; Y;Z� and R D CŒT; F � � A;

where F D TX2Z CX C T 2Y C TXY 2.
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Let

P WD XZ C Y 2;

G WD T Y CXP;

and
H WD T 2Z � 2T YP �XP 2

Then, we can see that
XH CG2

D T 2P

and F D X C TG. Clearly, CŒT; T �1�ŒF;G;H� � CŒT; T �1�ŒX; Y;Z�.
Then the following statements hold:

(i) CŒT; T �1�ŒX; Y;Z� D CŒT; T �1; F;G;H� D CŒT; T �1�ŒF �Œ2�.

(ii) CŒT;X; Y;Z� is an A2-fibration over CŒT; F �.

(iii) CŒT;X; Y;Z�Œ1�
D CŒT; F �Œ3�.

(iv) CŒT;X; Y;Z�=.F / D CŒT �Œ2� D CŒ3�.

(v) CŒT;X; Y;Z�=.F � f .T // D CŒT �Œ2� for every polynomial f .T / 2 CŒT �.

(vi) CŒT;X; Y;Z�Œ1=F � D CŒT; F; 1=F;G�Œ1�.

(vii) For any u 2 .T; F /R, AŒ1=u� D RŒ1=u�Œ2�, i.e., CŒT; X; Y; Z�Œ1=u� D

CŒT; F; 1=u�Œ2�.

Question 5. (a) Is A D CŒT; F �Œ2�.D RŒ2�/?

(b) At least is A D CŒF �Œ3�?

If the answer is “No” to (a), then it is a counterexample to the following problems:

(1) A2-fibration Problem over CŒ2� by (ii).

(2) Cancellation Problem over CŒ2� by (iii).

(3) Epimorphism problem over the ring CŒT � (see Question 40) by (iv).

If the answer is “No” to (b) and hence to (a), then it is a counterexample also to the
Epimorphism Problem for CŒ4� � CŒ3�.

Though the above properties have been proved in several places, a proof is presented
below. A variant of the Bhatwadekar–Dutta example was also constructed by Vénéreau in
his thesis [88]; for a discussion on this and related examples, see [24,41,64].

Proof. (i) We show that

C
�
T; T �1

�
ŒX; Y;Z� D C

�
T; T �1

�
ŒF;G;H�: (1)
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Note that

X D F � TG; P D
XH CG2

T 2
;

Y D .G �XP/=T;

and
Z D .H C 2T YP CXP 2/=T 2;

and hence equation (1) follows.
(ii) Clearly, A is a finitely generated R-algebra. It can be shown by standard argu-

ments that A is a flat R-algebra [66, Theorem 20.H]. We now show that A˝R k.p/ D k.p/Œ2�

for every prime ideal p of R. We note that F �X 2 TA and hence the image of F in A=TA
is same as that of X . Now let p be a prime ideal of R. Then either T 2 p or T … p. If T 2 p,
then A˝R k.p/ D k.p/ŒY;Z� D k.p/Œ2�. If T … p, then image of T in k.p/ is a unit and the
result follows from (i).

(iii) Let D D AŒW � D CŒT;X; Y;Z;W � D CŒ5�. We shall show that

D D CŒT; F �Œ3�
D RŒ3�:

Let

W1 WD T W C P;

G1 WD
.G � FW1/

T
D Y �XW � .T Y CXP/.T W C P / D Y �XW �GW1;

H1 WD
¹H C 2GW1 � .F �GT /W 2

1 º

T 2
D Z C 2YW �XW 2:

Now let

G2 WD G1 C FW 2
1 D .Y �XW / � T W1.Y �XW �GW1/ D Y �XW � T W1G1

and

W2 WD
W1 � .H1F CG2

2/

T
D W C 2G1W1.Y �XW / �GH1 � TG2

1W
2

1

Then, it is easy to see that

D
�
T �1

�
D C

�
T; T �1

�
ŒX; Y;Z;W �

D C
�
T; T �1

�
ŒF;G;H;W1�

D C
�
T; T �1

�
ŒF;G1;H1;W1�

D C
�
T; T �1

�
ŒF;G2;H1;W2�

and that CŒT;F;G2;H1;W2� �D. LetD=TD D CŒx; y; z;w�, where x; y; z;w denote the
images of X; Y;Z;W in D=TD. We now show that D � CŒT; F; G2; H1; W2�. For this, it
is enough to show that the kernel of the natural map � W CŒT; F;G2; H1; W2� ! D=TD is
generated by T . We note that the image of � is

C
�
x;y � xw;zC 2yw � xw2;wC 2p.y � xw � xp2/.y � xw/� xp.zC 2yw � xw2/

�
;

1592 N. Gupta



which is of transcendence degree 4 over C. Hence the kernel of � is a prime ideal of height
one and is generated by T . Therefore, D D CŒT; F;G2;H1;W2�.

(iv)–(v) Let B D CŒT; X; Y; Z�=.F � f .T // for some polynomial f 2 CŒT � and
S D CŒT �. By (ii), it follows that B is an A2-fibration over S . Hence, by Sathaye’s theorem
[81], B is locally a polynomial ring over S and hence by Theorem 4.1, B is a polynomial
ring over S .

(vi) Let H1 WD
FHCG2

T
. Then

H1 D
.X C TG/.T 2Z � 2T YP �XP 2/C .T Y CXP/2

T
D TP CGH:

Let H2 WD
FH1CG3

T
. Then

H2 D
.X C TG/.TP CGH/CG3

T

D
T .G2H C TGP CXP/CG.XH CG2/

T

D
T .G2H C TGP CXP/CGT 2P

T

D G2H CXP C 2TGP:

Let H3 WD
F .H2�G/CG4

T
. Then

H3 D
F.G2H CXP C 2TGP �XP � T Y /CG4

T

D
F.2TGP � T Y /CG2.FH CG2/

T

D
TF.2GP � Y /C TH1G

2

T

D F.2GP � Y /CH1G
2:

Now it is easy to see that

C
�
T;X; Y;Z; F �1

��
T �1

�
D C

�
T; T �1

��
F;F �1; G;H

�
D C

�
T; T �1

��
F;F �1; G;H1

�
D C

�
T; T �1

��
F;F �1; G;H2

�
D C

�
T; T �1

��
F;F �1; G;H3

�
;

and that the image of CŒT;F;F �1;G;H2� inAŒF �1�=TAŒF �1� is of transcendence degree 3.
Hence AŒF �1� D CŒT; F; F �1; G;H3� D CŒT; F; F �1; G�Œ1�.

(vii) Let m be any maximal ideal of R other than .T; F /. Then either T … m or
F … m . Thus, in either case, from (i) and (vi), we have Am D RŒ2�

m .
Let u 2 .T; F /R. Then a maximal ideal of RŒ1=u� is an extension of a maximal

ideal of R other than .T; F /R. Hence AŒ1=u� is a locally polynomial ring in two variables
over RŒ1=u�. Further any projective module over RŒ1=u� is free. Thus, by Theorem 4.1, we
have AŒ1=u� D RŒ1=u�Œ2�.
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