
The formal model of
semi-infinite flag
manifolds
Syu Kato

Abstract

The formal model of semi-infinite flag manifold is a variant of an affine flag variety that
was recognized from the 1980s but not studied extensively until the late 2010s. In this
note, we exhibit constructions and ideas appearing in our recent study of the formal model
of semi-infinite flag manifold of a simple algebraic group. Our results have some impli-
cations to the theory of rational maps from a projective line to partial flag manifolds, and
also on the structures of quantum cohomologies and quantum K-groups of partial flag
manifolds.
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1. Introduction

Compact complex-analytic spaces that admit homogeneous Lie group actions are
quite rare in nature, and their classification reduces into three primitive classes: finite groups,
tori, and (partial) flag manifolds. The first have discrete topology and the role of geometric
consideration is rather small, in general. The second, particularly those admit polarizations,
offer a major subject known as abelian varieties. The third, the (partial) flag manifolds of
compact simple Lie groups, are ubiquitous in representation theory of semisimple algebraic
groups and quantum groups. By the universal nature of general linear groups, flag manifolds
of unitary groups are extensively studied from the geometric perspective.

In representation-theoretic considerations, we usually consider flag manifolds as
projective algebraic varieties defined over an algebraically closed field (that form a family
over Spec Z). This definition naturally extends to an arbitrary Kac–Moody setting, but the
resulting objects have at least two variants, thin flag varieties and thick flag manifolds
(defined by Kac–Peterson [75] and Kashiwara [40], respectively). In case the Kac–Moody
group is of affine type, we have a loop realization of the corresponding Kac–Moody group,
essentially identifying the corresponding group with the set of k..z//-valued points of a
simple algebraic group over a field k. This motivates us to consider yet other versions of flag
manifolds of affine type that can be understood as an enhancement of arc schemes of usual
flag manifolds. These are the semi-infinite flag manifolds that originate from the ideas of
Lusztig [63, §11] and Drinfeld [22]. Lusztig’s original idea is to construct varieties that natu-
rally encode representation theory of simple algebraic groups over finite fields. The Lusztig
program (see, e.g., [44,63]) adds representation theory of quantum groups at roots of unity
and representation theory of affine Lie algebras at negative rational levels into the picture,
and Feigin–Frenkel [19] put representation theory of affine Lie algebras at the critical level
into the picture. The semi-infinite flag manifolds itself have two realizations, that we refer to
as the ind-model and the formal model. The geometry of the ind-model of semi-infinite flag
manifolds, also known as the space of quasimaps from a projective line to a flag manifold,
was studied extensively by Braverman, Finkelberg, Mirković, and their collaborators (see
[8,18,21,22]).

One instance of the ind-model of semi-infinite flag manifold is the space of prin-
cipal bundles on an algebraic curve equipped with some reduction. This interpretation
realizes some portion of the above representation-theoretic expectations [2, 31]. The formal
model of semi-infinite flag manifolds is expected to add a concrete understanding of related
representation-theoretic patterns [19,22,63]. Unfortunately, such an idea needs to be polished
as its implementation faces difficulty due to its essential infinite-dimensionality. This forces
us to employ affine Grassmannians instead of semi-infinite flag manifolds in some cases (see
[26,30,78]) at the moment, that is possible by some tight connections [27,70].

Meanwhile, it is realized that the semi-infinite flag manifold is a version of the loop
space of a flag manifold, and hence it is related to its quantum cohomology [32]. In fact, the
ind-model of a semi-infinite flag manifold offers a description of the quantum K-theoretic
J -function of a flag manifold [9] that encodes its small quantum K-group.
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In both contexts of the above two paragraphs, the Peterson isomorphism [59, 74],
that connects the quantum cohomology of a flag manifold with the homology of an affine
Grassmannian, should admit an interpretation using a semi-infinite flag manifold. However,
such an interpretation is not known today (though we have Corollary 7.3).

The main goal of this note is to explain a realization of the formal model of semi-
infinite flag manifold [46,50,52], that is reminiscent to the classical description of the original
flag manifolds. Our realization is supported by recent developments in representation theory
of affine Lie algebras [14,15,51], that is also reminiscent to the representation theory of simple
Lie algebras. It turns out that the study of the formal model of the semi-infinite flag mani-
fold has implications to the corresponding ind-model [50], as well as the study of quantum
K-groups of partial flag manifolds and the K-groups of affine Grassmannians [45, 47, 48].
This includes an interpretation (and a proof) of the K-theoretic analogue of the Peterson
isomorphism using semi-infinite flag manifolds (Theorem 8.2).

The results presented here describe the formal model of semi-infinite flag manifolds
in a down-to-earth fashion, and also provide first nontrivial conclusions deduced from them.
However, we have not yet reached our primary goal to understand representation theory from
this perspective in a satisfactory fashion. We hope to improve this situation in the near future.

The organization of this note is as follows: We first recall the construction of flag
manifolds that is parallel to our later construction in Section 2. We explain the role of quan-
tum groups in the structure theory of Kac–Moody algebras and exhibit two versions of flag
varieties of Kac–Moody groups in Section 3. In Section 4, we exhibit some representation
theory of affine Lie algebras. Based on it, we explain our construction of the formal model of
semi-infinite flag manifolds in Section 5. This enables us to present our idea on the Frobenius
splitting of semi-infinite flag manifolds in Section 6. We explain the connection between its
Richardson varieties and quasimap spaces in Section 7, and explain how they fit into the
study of quantum cohomology of flag manifolds. We exhibit the K-theoretic Peterson iso-
morphism in Section 8. We discuss the functoriality of the quantum K-groups of partial flag
manifolds in Section 9. We finish this note by discussing some perspectives in Section 10.

We assume that every field k has characteristic ¤ 2. A variety is some algebraic-
geometric object that admits singularity, and a manifold is a variety that is supposed to be
smooth in some sense. An algebraic variety is a separated scheme of finite type defined over
a field (i.e., our variety is not necessarily irreducible or reduced). We set N WD Z�0.

2. Flag manifolds via representation theory

Let G be a simply connected semisimple algebraic group over an algebraically
closed field k. Let T � B be its maximal torus and a Borel subgroup (maximal solvable
subgroup). Let W .D NG.T /=T / be the Weyl group of G. Let X be the set of one-
dimensional rational T -characters (the set of T -weights), that admits a natural W -action. We
set XC WD

Pr
iD1 N$i , where $1; : : : ; $r 2 X are fundamental weights with respect to B .

The set of isomorphism classes of irreducible rational representations ¹L.�/º� of G is
labeled by XC in such a way that each L.�/ contains a unique (up to scalar) B-eigenvector
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v� with its T -weight �. We refer � .2 XC/ as the highest weight of L.�/. The flag manifold
B WD G=B of G is the maximal G-homogeneous space that is projective.

In case k D C, we have

B D .Y nE/=T;

where Y is an affine algebraic variety with .G � T /-action whose ring CŒY� of regular func-
tions is written as

CŒY� Š
M

�2XC

L.�/� .as G � T -modules/; (2.1)

and E � Y is the locus where the T -action is not free. Here, the G-action on CŒY� is the
natural actions on L.�/, and the T -action on CŒY� comes from the grading XC � X in the
RHS of (2.1). These data, together with the condition E ¤ Y, essentially determine CŒY�

as C-algebras generated by L.$i /
� for 1 � i � r . Consider a point x0 2 Y given by ¹v�º�,

seen as linear maps on ¹L.�/�º�. The image Œx0� of this point x0 has its G-stabilizer equal
to B . This induces an inclusion

G=B ,! B �

rY
iD1

P
�
L.$i /

�
induced from B=B 7! Œx0� by the G-action. (One needs additional representation-theoretic
analysis to conclude G=B Š B.) This consideration transfers all geometric statements rel-
evant to B to algebraic statements on the space in (2.1) in principle, but most of the geo-
metric results on B and its subvarieties were proved for the first time by other methods (see,
e.g., [56]).

Note that the vector space (2.1) does not acquire the structure of a ring when charkD
p > 0. The reason is that we do not have a map L.�/� ˝ L.�/� ! L.�C �/�, or equiva-
lently, L.�C�/!L.�/˝L.�/ for general �;� 2XC. One way to improve the situation is
to replace ¹L.�/º�2XC

with a suitable family of modules ¹Y.�/º�2XC
with larger members

such that the G-module map

Y.�C �/! Y.�/˝ Y.�/ (2.2)

exists uniquely (up to constant) for every �; � 2 XC. It yields an analogous ring of (2.1)
that should be closely related to B. A standard choice of Y.�/ (� 2 XC) is the Weyl module
V.�/ of G, that is, the projective cover of L.�/ in the categories of rational G-modules
whose composition factors are in ¹L.�/º���2XC

, where� is the dominance ordering on X.
This produces B for all characteristics.

Theorem 2.1 (Orthogonality of Weyl modules, [36, II §4.13]). For each �; � 2 XC, we have

ExtiG
�
V.�/; V .�/�

�
Š k˚ıi;0ı�;�� ;

where �� is the highest weight of L.�/�. By taking the Euler–Poincaré characteristic, this
Ext-orthogonality implies the orthogonality of the T -characters of V.�/. In particular, the
T -characters of V.�/ do not depend on k.
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Note that L.�/ D V.�/ for char k D 0 by the semisimplicity of representations,
and hence Theorem 2.1 is Schur’s lemma in such a case. As V.�/ D k˝Z VZ.�/ holds for
a collection of free Z-modules VZ.�/ (� 2 XC), we find that B extends to a scheme flat
over Z. Another possible choice of Y.�/ (� 2 XC), the Verma module M.�/ of the (divided
power) enveloping algebra of Lie G, produces an open dense B-orbit in B.

3. Kac–Moody flag varieties

Let us keep the setting of the previous section.

3.1. Reminder on Kac–Moody algebras and their quantum groups
Let gC be the Kac–Moody algebra associated to a symmetrizable generalized

Cartan matrix (D GCM) C (see [38]). In case char k D 0, we have the notion of the highest
weight integrable representations of gC parametrized by the set of dominant weights PC

defined similarly to XC. Let L.ƒ/ denote the highest weight integrable representation of
gC corresponding to ƒ 2 PC.

We have the quantum group (or the quantized enveloping algebra) Uq.gC / of gC

originally defined by Drinfeld and Jimbo in the 1980s [17, 37]. It is an algebra defined over
Q.q/, and the specialization q 7! 1 recovers the universal enveloping algebra U.gC / of gC .
Kashiwara [41] and Lusztig [63] defined the canonical/global bases (of the positive/negative
parts U ˙

q .gC /) of Uq.gC / and their integrable representations that generate their QŒq�-
lattices. The construction of Lusztig [64] clarified that quantum groups are, in fact, defined
over ZŒq˙1� (or even over NŒq˙1� if one can say). In the 2010s, the categorification theo-
rems of a quantum group and its integrable representations appeared [39,53,76,77], and there
every algebra that admits a categorification has a suitable ZŒq�-integral structure with dis-
tinguished bases, being the Grothendieck group of a module category of a finitely-generated
graded algebras (called KLR algebras or quiver Hecke algebras). Therefore, the following is
now widely recognized:

Theorem 3.1 (Lusztig [63,64,66] and Kashiwara [41–43]). Assume that k D C. The (lower)
global bases of U ˙

q .gC / induce a Z-integral form UZ.gC / of U.gC / via q 7! 1. For each
ƒ 2 PC, we have a Z-lattice L.ƒ/Z of L.ƒ/ obtained from the (lower) global base of the
corresponding integrable highest weight module of Uq.gC /. In addition, L.ƒ/Z is generated
by the UZ.gC /-action from a highest weight vector of L.ƒ/.

By a specialization of L.ƒ/Z, we obtain a highest weight integrable module L.ƒ/

over an arbitrary field k. The module L.ƒ/ is no longer irreducible when char k > 0 (in gen-
eral), and hence it is a gC -analogue of Weyl modules rather than L.�/ for G; it is a lack of
brevity of the author to choose this notation here. We close this subsection by noting that the
integral forms at the end of Section 2 coincide with the integral forms in Theorem 3.1.
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3.2. Thin and thick flag varieties
Presentations of the flag varieties for general Kac–Moody groups G associated to a

GCM C are similar to those in the previous section. A triangular decomposition of gC yields
an analogous group I to the Borel subgroup. Let T be a (standard) maximal torus of I. The
highest weight vector in L.ƒ/ is precisely an I-eigenvector with its T -weight ƒ. Therefore,
the construction in the previous section produces G =I via the ringM

ƒ2PC

L.ƒ/_
�

M
ƒ2PC

L.ƒ/�; (3.1)

where L.ƒ/� is the vector space dual of L.ƒ/, and L.ƒ/_ is the restricted dual of L.ƒ/,
defined to be the direct sum of (finite-dimensional) vector space duals offered by the T -weight
decomposition of L.ƒ/.

In this case, both vector spaces in (3.1) are naturally rings. This corresponds to the
choice of G . The former ring defines B thick

C D G=I [40,49,71] if we take G to be a version of
the Kac–Moody group that is completed with respect to the opposite direction to I. (This is
the maximal Kac–Moody group, but the completion is taken in the opposite way as in the
literature.) The latter ring can be seen as the projective limit of finitely-generated algebras,
and the union of the spectrums of these rings yields B thin

C D G =I [56, 75] if we take G as
the uncompleted Kac–Moody group (the Kac–Peterson group or the minimal Kac–Moody
group), or as the maximal Kac–Moody group completed with respect to the direction of I.
In other words, we have variants of flag manifolds of Kac–Moody groups associated to a
GCM C as: [

n

B thin
C;n D B thin

C � B thick
C : (3.2)

The scheme B thick
C is a union of infinite-dimensional affine spaces, and hence is smooth.

However, B thick
C is not compact in an essential way [24]. This picture is compatible with the

fact that the Kac–Peterson group is defined by one-parameter generators (and relations), and
hence B thin

C is a union of finite-dimensional subvarieties B thin
C;n consisting of points presented

by a product of at most n generating elements. As such, each scheme B thin
C;n is singular, and

hence B thin
C is understood to be singular. In fact, it does not admit an inductive limit descrip-

tion by finite-dimensional smooth pieces [24].

4. Global Weyl modules and their projectivity

Let us consider the untwisted affine Kac–Moody case hereafter, with the same con-
ventions as in the previous sections. In particular, our Kac–Moody groups are extensions of
the groups

G..z// WD G
�
k..z//

�
and G

�
z˙1

�
WD G

�
k
�
z˙1

��
by the loop rotation Gm-actions (that we denote by Grot

m ) and the central extension Gm-
actions. (These correspond to the maximal/minimal realizations of the Kac–Moody groups
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in the previous section.) These are not (pro-)algebraic groups, and it sometimes causes dif-
ficulty. Nevertheless, each rational representation V of G induces representations

V..z// WD V ˝k k..z// and V
�
z˙1

�
WD V ˝k k

�
z˙1

�
of G..z// and GŒz˙1�, respectively. These representations are not of highest weight, but still
integrable representations when we lift them to the central extensions of G..z// and GŒz˙1�

by letting the center Gm act trivially (i.e., they are level-zero integrable representations
viewed as representations of affine Lie algebras).

In addition to the T -action, the representation V Œz˙1� carries Grot
m -action. Let ı be

the degree-one character of Grot
m , and set q WD eı . By abuse of notation, we might consider qn

(n 2 Z) as the functor that twists the Grot
m -action by degree n. We define a graded character

of a semisimple .T �Grot
m /-module U as

gch U WD
X
n2Z

X
�2X

qne� dim HomT �Grot
m

.C�Cnı ; U /:

Then, gch V Œz˙1� makes sense as all the coefficients are in Z. However, if we take the second
symmetric power S2.V Œz˙1�/ of V Œz˙1� over k, then it contains an infinity as a coefficient.
To avoid such a complication, we sometimes restrict ourselves to the subgroups

GJzK WD G
�
kJzK

�
� G..z// and GŒz� WD G

�
kŒz�

�
� G

�
z˙1

�
:

We sometimes use the subgroup I�GJzK defined by the pullback of B under the evaluation
map ev0 W GJzK! G at z D 0. The group I is the Iwahori subgroup obtained from (the
completed version of) I by removing Grot

m and quotient out by the central extension.
By the quotient map kŒz�! k (and kJzK! k) sending z 7! 0, we can regard every

rational G-module V as a GŒz�-module or a GJzK-module with (trivial) Grot
m -action through

ev0. We also have a GJzK-module structure (without a Grot
m -action) on V JzK WD V ˝ kJzK

that surjects onto V .

Definition 4.1 (global Weyl modules). Let C.�/ be the category of rational GŒz�-modules
M that admits a decreasing filtration

M D F0M � F1M � F2M � � � � such that
\
k�0

FkM D ¹0º

and each FkM=Fk�1M (k � 1) belongs to ¹qmL.�/ºm2Z;���2XC
. For each � 2 XC, we

define the global Weyl module W .�/ of GŒz� as the projective cover of L.�/ in C.�/.

Note that W .�/ automatically acquires a Grot
m -action by its universality (as it exists).

Theorem 4.2. For each � 2 XC with � D
Pr

iD1 mi $i , we have

EndGŒz� W .�/ Š

rO
iD1

kŒxi;1; : : : ; xi;mi
�Smi ;

where each xi;1; : : : ; xi;mi
is of degree one with respect to the Grot

m -action. In addition, the
action of EndGŒz� W .�/ on W .�/ is free.
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Theorem 4.2 was proved by Fourier–Littelmann [25] (for kDC and G of type ADE),
Naoi [72] (for k D C and G of type BCFG), and it was transferred to char k > 0 in [50] using
results from the global bases of quantum affine algebras [4,42].

By Theorem 4.2, we factor out the positive degree parts of EndGŒz� W .�/ to obtain

W.�/ WD k˝EndGŒz� W .�/ W .�/; � 2 XC:

We call it a local Weyl module of GŒz�.
The following result clarifies that our global/local Weyl modules are the best possi-

ble analogues of Weyl modules for G (see Theorem 2.1):

Theorem 4.3 (Chari–Ion [14] for char k D 0, and [50] C " for char k > 0). For each
�; � 2 XC, we have

ExtiGŒz�

�
W .�/; W.�/�

�
Š k˚ıi;0ı�;�� ; (4.1)

where �� is the highest weight of L.�/�. By taking the graded Euler–Poincaré characteristic,
.4.1/ implies the orthogonality of Macdonald polynomials with respect to the Macdonald
pairing specialized to t D 0. In particular, gch W.�/ and gch W .�/ do not depend on k.

The proof of Theorem 4.3 in [50, §3.3] relies on the adjoint property of the Demazure
functors observed in [20, Proposition 5.7] and systematically utilized in [15]. The case �D ��

and i > 1 in Theorem 4.3 is not recorded in [50], and might appear elsewhere.

5. Semi-infinite flag manifolds

We keep the setting of the previous section. In view of the projectivity of W .�/’s
in C.�/’s, we find unique degree-zero GŒz�-module maps

W .�C �/!W .�/˝W .�/; � 2 XC: (5.1)

Therefore, the recipe described in Section 2 equips

RG WD

M
�2XC

W .�/_

with a structure of a commutative algebra compatible with the action of GŒz� Ì Grot
m � T .

Since the Grot
m -degree of RG is bounded from the above, the GŒz�-action on RG automatically

extends to the GJzK-action. We set

QG WD .Spec RG nE/=T;

where E is a closed subset of Spec RG on which the T -action is not free. Let us consider
the G..z//-orbit of ®

Œv$i
�
¯r

iD1
2

rY
iD1

P
�
V.$i /..z//

�
; (5.2)
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viewed as a set of points, that we denote by QG . By examining the coefficients of the defining
relations of B with its k..z//-valued points, we find that the intersection

QG \

rY
iD1

P
�
V.$i /JzKzmi

�
�

rY
iD1

P
�
V.$i /JzKzmi

�
�

rY
iD1

P
�
V.$i /..z//

�
(5.3)

defines a closed subscheme for any choice of m1; : : : ; mr 2 Z. We denote this subscheme
by QG.tˇ /, where ˇ D

Pr
iD1 mi ˛

_
i is an element of the dual lattice (coroot lattice) X_ of

X equipped with a basis ¹˛_
i º

r
iD1 such that ˛_

i .$j / D ıi;j (i.e., ˛_
i is a simple coroot). We

note that P .V .$i /JzKzmi / is a scheme, but it is not of finite type, and QG.tˇ / is also of
infinite type.

Lemma 5.1. We have QG.tˇ /ŠQG.t
 / for each pair ˇ; 
 2 X_ as schemes equipped with
GJzK-actions. Hence, the union

Qrat
G D

[
ˇ

QG.tˇ /

is a pure ind-scheme of ind-infinite type equipped with the action of GJzK Ì Grot
m . Moreover,

the set of GJzK-orbits in Qrat
G is in bijection with X_.

In effect, we have an open dense GJzK-orbit OG.tˇ /�QG.tˇ / that is isomorphic to
GJzK=.T � N JzK/. By the Bruhat decomposition, we divide OG.tˇ / into the disjoint union
of I-orbits as

F
w2W O.wtˇ / such that O.tˇ / � OG.tˇ / is open dense. Identifying ˇ 2 X_

with tˇ , we set Waf WD W Ë X_. We define

QG.w/ WD O.w/ � Qrat
G ; w 2 Waf:

The inclusion relation on ¹QG.w/ºw2Waf is described by the generic Bruhat
order [62]. We refer to the partial order on Waf induced from this closure ordering by �1

2
as

in [50,52] (there we sometimes called �1
2

as the semi-infinite Bruhat order).

Theorem 5.2. The scheme QG.w/ is normal for each w 2 Waf. In addition, the ind-scheme
Qrat

G is a strict ind-scheme in the sense that each inclusion is a closed immersion. The ind-
scheme Qrat

G coarsely ind-represents the coset G..z//=.T �N..z///.

The first two statements are proved in [52] when char k D 0. The proof valid for
char k ¤ 2, as well as the last assertion, are contained in [50]. This last assertion says that
the (ind-)scheme Qrat

G is the universal one that maps to every (ind-)scheme whose points
yield QG . It follows that if we take a family ¹Y .�/º�2XC

instead of ¹W .�/º�2XC
to define

QG.tˇ /, then the corresponding coordinate ring R0
G admits a map to RG . Let us point out

that this can be thought of as a family version of the properties of global Weyl modules
discussed in Section 4, and we indeed have several reasonable choices of ¹Y .�/º�2XC

other
than ¹W .�/º�2XC

including the coordinate ring of the arc scheme of G=N . For simplicity,
we may refer to QG.t0/ as QG below.

The inclusion

QG �

rY
iD1

P
�
V.$i /JzK

�
(5.4)
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induces a line bundle OQG
.$i / on QG , that is, the pull-back of O.1/ from P .V .$i /JzK/.

By taking the tensor products, we have OQG
.�/ WD

Nr
iD1 OQG

.$i /
˝ni for �D

Pr
iD1 ni $i

(ni 2Z). By Lemma 5.1, we have OQrat
G

.�/ (� 2X) on Qrat
G that yields OQG

.�/ by restriction.

Theorem 5.3 ([52] for char k D 0, and [50] for char k ¤ 2). For each � 2 X, we have

H i
�
QG ; OQG

.�/
�_
Š

8<: W .�/; i D 0; � 2 XC;

¹0º; otherwise:

The proof of Theorem 5.3 depends on the freeness of RG over an infinitely-many-
variable polynomial ring, that yields a regular sequence of infinite length. Such a situation
never occur for finite type schemes, or infinite type schemes like B thick

C . In case G D SL.2/,
Theorem 5.3 reduces to an exercise in algebraic geometry by QG Š P .k2JzK/.

Theorem 5.3 has an ind-model counterpart proved earlier [10]. The Frobenius split-
ting of QG (explained later) and Theorem 5.3 imply this ind-model counterpart. However,
the author is uncertain whether [10] implies Theorem 5.3 (even in case char k D 0) since the
natural ring coming from the ind-model is a completion of RG , and the completion operation
of a ring loses information in general. We have an analogue of Theorem 5.3 for all I-orbit
closures, proved for the ind-model in [46,50] and for the formal model in [50,52].

6. Frobenius splittings

We continue to work in the setting of the previous section. We fix a prime p > 0. For
a scheme X over Fp , we have a Frobenius morphism Fr WX!X induced from the pth power
map. We have a natural map Fr�OX! OX that induces a map OX! Fr�OX by adjunction.
The Frobenius splitting � W Fr�OX ! OX is an OX-module map such that the composition

OX ! Fr�OX

�
! OX

is the identity. If X is projective (and is of finite type) and OX admits a Frobenius splitting,
then X is reduced and an ample line bundle has the higher cohomology vanishing [68].

For generality on Frobenius splittings, as well as their applications to B and B thin
C ,

we refer to Brion–Kumar [12] (note that [12] has a finite type assumption, that we drop in
case the proof does not require it. In the paragraph above, reducedness does not require
the finite type assumption, while the higher cohomology vanishing requires the finite type
assumption through the Serre vanishing). Frobenius splitting of B in char k D p is useful
in proving that Schubert and Richardson varieties are reduced, normal, and have rational
singularities. There are two major ways to construct a Frobenius splitting of B: one is to
investigate the global section of the .1 � p/th power of the canonical bundle, and the other
is to use a Bott–Samelson–Demazure–Hansen (DBSDH) resolution of B.

Since B thin
C is no longer smooth, we cannot use the canonical bundle to construct a

Frobenius splitting. Nevertheless, a (partial) BSDH resolution does the job. The situation of
B thick

C is a bit worse. The canonical bundle of B thick
C makes some sense, but the author does

not know whether it has enough power to produce a Frobenius splitting. The scheme B thick
C
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admits a BSDH resolution, but it is a successive P 1-fibration over an infinite-type scheme.
Thus, we cannot equip B thick

C with a Frobenius splitting by either of the above means at
present. Despite this, we can transfer a Frobenius splitting of B thin

C to B thick
C by using the

compatible splitting property of a point [49], following an idea of Mathieu.
Frobenius splitting of Qrat

G (or rather each of its ind-piece QG.w/) is used below, and
hence we need a recipe to produce one. However, the situation of the BSDH resolution is
similar to that of B thick

C , and the canonical bundle on Qrat
G simply does not make sense naively

(e.g., its T -weight at a point must be infinity). Therefore, we need a new proof strategy. Our
strategy in [50] is to regard RG as a subalgebra of the corresponding coordinate ring of B thick

C ,
and prove that a Frobenius splitting of B thick

C preserves RG . For this, we first see that each
W .m�/ (m 2 Z>0, � 2 XC) is a quotient of L.mƒ/ for some ƒ 2 PC by twisting the
GŒz�1�-action into a GŒz�-action as z�1 7! z. Let �m W L.mƒ/!W .m�/ be the quotient
map. This embeds (a suitable Z-graded subalgebra of) RG into (3.1) as an algebra with
GJzK Ë Grot

m -action. We need to show that the map �_ obtained by dualizing the Frobenius
splitting of B thick

C induces a map �_
W in the following diagram:

L.mƒ/
�_

//

�m

����

L.pmƒ/ //

�pm

����

L.mƒ/

�m

����
W .m�/

�_
W // W .pm�/ // W .m�/:

(6.1)

This is equivalent to seeing that �_.ker �m/ � ker �pm. We use the projectivity of W .m�/

in C.m�/ to assume that the GŒz�-module generators of ker �m have T -weights that do
not appear in W .m�/. In view of the fact that ker �pm contains all the T -weight spaces in
L.pmƒ/ whose T -weights do not appear in W .pm�/, we have necessarily �_.ker �m/ �

ker �pm by the T -weight comparison of the generators.
In fact, every L.ƒ/ admits a filtration by global Weyl modules when char k D 0 if

we twist the action of GŒz� on global Weyl modules into GŒz�1� [51]. Therefore, we indeed
obtain a Frobenius splitting of QG via a novel proof based on the “universality” of the global
Weyl module W .�/ explained in Section 4. In conclusion, we have:

Theorem 6.1 ([50, Theorem B]). The ind-scheme Qrat
G admits a Frobenius splitting that is

compatible with all I-orbits when char k > 2.

7. Connection to the space of rational maps

Keep the setting as in Section 5. Let us consider the vector space embedding
k..z//� kJz; z�1K into the formal power series with unbounded powers. The space kJz; z�1K
no longer forms a ring. Nevertheless, we have an automorphism of kJz; z�1K by swapping
z with z�1. Together with the Chevalley involution of G (an automorphism of G that sends
each element of T to its inverse), it induces an involution � on the ambient space

Qrat
G �

rY
iD1

P
�
V.$i /

q
z; z�1

y�
:
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We remark that � induces an automorphism of G such that B \ �.B/ D T . Let w0 be the
longest element in W .

Theorem 7.1 ([50, Theorem B]). For all w; v 2 Waf, the scheme-theoretic intersection
QG.w/ \ �.QG.vw0// is reduced (we denote this intersection by QG.w; v/ and call it
a Richardson variety of Qrat

G below). It is normal when char k D 0 or char k� 0.

The scheme QG.w; v/ is always of finite type, and the case w; v 2 W yields a
Richardson variety of B. The normality part of the proof of Theorem 7.1 goes as follows:
Our Frobenius splitting of Qrat

G induces a Frobenius splitting of QG.w; v/. In particular, it is
reduced and weakly normal in char k > 2. (Here a weakly normal ring is essentially a normal
ring up to topology.) Then, we lift the weak normality to characteristic zero and prove the
normality of the intersection by a geometric consideration. Once we deduce the normality
in characteristic zero, we can reduce it to char k� 0 by a general result.

Let us exhibit some relevant geometric considerations here. To this end, we assume
kDC in the rest of this section. Recall that H2.B;Z/ŠX_. Let GB2;ˇ (resp. B2;ˇ ) be the
space of genus-zero stable maps with two marked points to .P 1 �B/ (resp. B) whose image
has class .1; ˇ/ 2 H2.P 1 �B; Z/ (resp. ˇ 2 H2.B; Z/), regarded as an algebraic variety
with rational singularities [28]. We have a subvariety GB[

2;ˇ
such that the first marked point

lands in 0 2 P 1 and the second marked point lands in1 2 P 1 through the composition�
C; ¹x1; x2º

� f
! P 1

�B
pr1
! P 1:

Consider the Schubert variety (a B-orbit closure) B.w/ � B corresponding to w 2 W and
the opposite Schubert variety (a �.B/-orbit closure) Bop.v/ � B corresponding to v 2 W .

Let evi W GB[
2;ˇ
! B (i D 1; 2) denote the evaluation at the point xi on C . We

define
GBˇ .w; v/ WD ev�1

1

�
B.w/

�
\ ev�1

2

�
Bop.v/

�
:

Similarly, let ei WB2;ˇ !B (i D 1;2) be the evaluation maps. For all w;v 2W and ˇ 2X_,
we set Bˇ .w; v/ WD .e�1

1 .B.w// \ e�1
2 .Bop.v///. Let VQG.ˇ/ denote the space of maps

from P 1 to B of degree ˇ. By adding the identity map to P 1, each point of VQG.ˇ/ yields a
map P 1! .P 1 �B/ of degree .1; ˇ/. In addition, the identification of two P 1’s completely
determines the marked points. Hence we have an inclusion VQG.ˇ/ � GB[

2;ˇ
.

Let QG.ˇ/ (ˇ 2 X_) denote the space of quasimaps from P 1 to B of degree ˇ [22],
that is, a natural compactification of VQG.ˇ/ such that

QG.ˇ/ D
G

0�
�ˇ

VQG.ˇ � 
/ � .P 1/
 ;

where 
 � ˇ is defined as ˇ � 
 2
Pr

iD1 Z�0˛_
i , and

.P 1/

D

rY
iD1

�
.P 1/mi =Smi

�
where 
 D

rX
iD1

mi ˛
_
i :

Here .P 1/
 records the place where the degree of the genuine map drops in which degree
components (without ordering). By adding extra P 1 components and (compatible) maps to
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B to P 1 in .f W P 1!B/ 2 VQG.ˇ � 
/ at the places (and total degrees) recorded by .P 1/


(for each 0 � 
 � ˇ), we obtain a map of topological spaces

� W GB[
2;ˇ ! QG.ˇ/;

that is an identity on VQG.ˇ/. Givental’s main lemma asserts that this is a birational morphism
of integral algebraic varieties.

Proposition 7.2 ([50, §5.2]). For each ˇ 2 X_, we have

QG.ˇ/ Š QG.e; tˇ /

as schemes. In addition, � restricts to a birational morphism

�ˇ;w;v W GBˇ .w; v/! QG.w; vtˇ /; w; v 2 W:

In particular, we have GBˇ .w; v/ ¤ ; if and only if w �1
2

vtˇ , and its dimension is given
by the distance between w and vtˇ with respect to �1

2
.

In other words, the Richardson varieties of Qrat
G are precisely the spaces of quasi-

maps, possibly with additional conditions imposed by the space of stable maps. According to
Buch–Chaput–Mihalcea–Perrin [13], the variety GBˇ .w; v/ is irreducible and has rational
singularities if it is nonempty. Hence, we find that QG.w; vtˇ / is irreducible in general.
Proposition 7.2 and properties of the maps �ˇ;w;v are used in our proof of Theorem 7.1.

Proposition 7.2 implies that QG.w; vtˇ / is the closure (in QG.ˇ/) of the space
of maps from P 1 to B such that 0;1 2 P 1 land in B.w/ and Bop.v/, respectively. By
examining the natural map GBˇ .w; v/!Bˇ .w; v/ (obtained by forgetting the map to P 1),
we obtain:

Corollary 7.3. For all w; v 2 W and 0 ¤ ˇ 2 X_, we have

dim Bˇ .w; v/ D dim GBˇ .w; v/ � 1 if GBˇ .w; v/ ¤ ;;

and Bˇ .w; v/ ¤ ; if and only if GBˇ .w; v/ ¤ ;. Moreover, we have

Bˇ .w; v/ ¤ ; and dim Bˇ .w; v/ D 0

if and only if w �1
2

vtˇ are adjacent with respect to �1
2

. In such a case, Bˇ .w; v/ is a
point.

Thanks to the dimension axiom in quantum correlators [54, (2.5)], Corollary 7.3
describes which (primary) two-point cohomological Gromov–Witten invariant of B with
respect to the Schubert bases is nonzero (we can also tell its exact value). By the divisor
axiom [54, §2.2.4] and the classical Chevalley formula [16], we find the Chevalley formula in
quantum cohomology of B from this [29]. This clarifies the role of QG.w; vtˇ / in the study
of quantum cohomology of B from our perspective.

Theorem 7.4 ([47]). Let ˇ 2 X_ and w; v 2 W . The variety QG.w; vtˇ / has rational sin-
gularities.

1612 S. Kato



Theorem 7.4 is proved by Braverman–Finkelberg [9,10] for the case w D e, v D w0

by an analysis of Zastava spaces, which does not extend to general w; v. Theorem 7.4 is the
most subtle technical point in [47] and its induction steps become possible by Theorem 7.1.

8. K-theoretic Peterson isomorphism

We follow the setting of the previous section with k D C. We understand that
the K-groups appearing here contain a suitable class of line bundles supported on sub-
varieties equipped with some group actions, and its scalar is extended from Z to C. Let
GrG WD G..z//=GJzK be the affine Grassmannian of G. The set of I-orbits in GrG is in bijec-
tion with X_, while the set of GJzK-orbits of GrG is in bijection with X_

< � X_ formed by
the set of antidominant coroots. For ˇ 2 X_, we set VGrG.ˇ/ � GrG as the corresponding
I-orbit and set GrG.ˇ/ WD VGrG.ˇ/ � GrG . We normalize so that GrG.ˇ/ is G-stable when
ˇ 2 X_

<, and we have dim GrG.ˇ/ D �2jˇj in such a case, where jˇj WD
Pr

iD1 ˇ.$i /.
We define

KT .GrG/ WD
[

ˇ2X_

KT

�
GrG.ˇ/

�
and KG.GrG/ WD

[
ˇ2X_

<

KG

�
GrG.ˇ/

�
:

These spaces are equipped with the convolution product, defined by the diagram

GrG �GrG

p
 G..z// � GrG

q
! G..z// �I GrG

mult
! GrG

as follows: For all cycles a; b 2 KT .GrG/ Š KI.GrG/, we find a left I-equivariant class
.a; b/ on G..z// �I GrG such that

p�.a � b/ D q�.a; b/

and set
aˇ0 b WD

X
i�0

.�1/i
�
Ri mult�.a; b/

�
2 KI.GrG/:

This yields an associative product structure on KT .GrG/ that contains a zero divisor. If we
restrict ourselves to KG.GrG/, then the algebra structure given by ˇ0 becomes commuta-
tive and integrally closed. Using an isomorphism KT .pt/˝KG.pt/ KG.GrG/ŠKT .GrG/ of
KT .pt/-modules, we find a multiplication ˇ of KT .GrG/ that extends ˇ0 on KG.GrG/ as
a KT .pt/-algebra. This product ˇ coincides with a K-theoretic analogue of the Pontrjagin
product (by the calculations in [47, §2.2]). In addition, we have

ŒOGrG.ˇC
/� D ŒOGrG.ˇ/�ˇ ŒOGrG.
/� for ˇ; 
 2 X_
<:

This yields a multiplicative system in KT .GrG/, whose localization is denoted by
KT .GrG/loc.

The (localized) small T -equivariant quantum K-group of B is defined as a vector
space

qKT .B/loc WD KT .B/˝CX_
�
� KT .B/˝C CH2.B; Z/

�
:
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We denote the variable corresponding to ˇ 2 X_ as Qˇ . The quantum K-theoretic product
? is a binary operation on qKT .B/loc, defined by Givental [33] and Lee [61], whose value
(a priori) belongs to a completion of qKT .B/loc. It is one of the consequence of our analy-
sis that ? preserves qKT .B/loc. This is usually referred to as the finiteness of the quantum
K-theoretic product (for B) in the literature [1,13], and is one of the most fundamental ques-
tions in the study of qKT .B/. Lam–Li–Mihalcea–Shimozono [58] conjectured that:

Theorem 8.1 ([47]). We have an isomorphism of commutative algebras

KT .GrG/loc
Š
! qKT .B/loc

such that
ŒOGrG.wˇ/�ˇ ŒOGrG.
/�

�1
7! ŒOB.w/�Q

ˇ�


for ˇ; 
 2 X_
< such that ˇ.$i / < 0 for every 1 � i � r .

Note that a presentation of the ring qKT .B/ for G D SL.n/ can be read-off from
Givental–Lee [34], and a presentation of the ring KT .GrG/ is obtained in Bezrukavnikov–
Finkelberg–Mirković [6]. However, these are not enough to yield Theorem 8.1 (for
G D SL.n/) as the correspondence between Schubert bases is unclear.

We have an action of the nilpotent version HH nil of the double affine Hecke alge-
bra (associated to G) on KT .GrG/, coming from Kostant–Kumar [55]. In [47], we defined
the T -equivariant K-group KT .Qrat

G / of Qrat
G based on the construction of the .T � Grot

m /-
equivariant K-group of Qrat

G in [52]. The I-action on Qrat
G induces a HH nil-action on KT .Qrat

G /.
The object KT .Qrat

G / needs a completion in order to admit an action of the line
bundle twists by OQrat

G
.�/ .� 2 X/. It reflects the fact that the right-hand side of Theo-

rem 5.3 (i.e., a global Weyl module) is infinite-dimensional in general, and hence the effect
of˝OQrat

G
.$i / (1 � i � r) requires infinitely many terms to describe.

Our main idea in the proof of Theorem 8.1 is to put Qrat
G into the picture:

Theorem 8.2 ([47, Theorem C]). We have a commutative diagram

KT .Qrat
G /

KT .GrG/loc //
+ �

ˆ
88

qKT .B/loc

3 S

‰
ff

that respects the Schubert bases in each object. In addition, the map ‰ is an embedding of
representations of HH nil, and the map ‰ intertwines the tensor product with OQrat

G
.�$i / in

KT .Qrat
G / and the quantum product of OB.�$i / on qKT .B/loc for each 1 � i � r .

The completion of KT .Qrat
G / is compatible with the standard completion of qKT .B/

via the map ‰. Theorem 8.2 implies that the inverse of the operation ?OB.�$i / makes sense
only after the completion of qKT .B/loc.

Since the quantum K-theoretic correlators (see [33,61]) satisfy neither the dimension
axiom nor divisor axiom as in the theory of quantum cohomology, the proof of Theorem 8.2
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must be necessarily different from Corollary 7.3. Our construction of the map ‰ is based on
the following two observations:

• an interpretation of the (Gm-equivariant) quantum K-theoretic correlator

�
�
Q.w; w0tˇ /; OQ.w;w0tˇ /.�/

�
D �

�
GBˇ .w; w0/; ��

ˇ;w;w0
OQ.w;w0tˇ /.�/

�
;

(8.1)
valued in CŒT �Œq˙1� D CŒT �Gm�, for each w 2 W , ˇ 2 X_, � 2 XC;

• an interpretation of its asymptotic behavior

lim
ˇ!1

�
�
Q.w; w0tˇ /; OQ.w;w0tˇ /.�/

�
D �

�
QG.w/; OQG.w/.�/

�
2 C..q�1//ŒT �

(8.2)
for each w 2 W , � 2 XC as an element of KT .Qrat

G /.

Here we can further interpret �.GBˇ .w; w0/; ��
ˇ;w;w0

OQ.w;w0tˇ /.�// using the shift oper-
ators of line bundles in quantum K-theory [35, Proposition 2.13], and hence we obtain an
(abstract) presentation of qKT .B/ from (8.1) by the reconstruction theorem [35, Proposi-

tion 2.12]. The identity (8.1) is a consequence of Theorem 7.4, and (8.2) is a consequence
of compatible Frobenius splitting properties of QG.w; v/s and Qrat

G in char k > 2 (see the
explanation about the proof of Theorem 7.1).

There is a noncommutative version of Theorem 8.2, meaning that we include Grot
m

(the variable “q” above) in each item [49].

9. Functoriality of quantum K-groups

We continue to work in the setting as in the previous section. In [50], we have pre-
sented analogues of Theorems 5.2, 5.3, and 7.1 for partial flag manifolds of G. Let us find a
standard parabolic subgroup B �P �G and consider BP WDG=P . Our parabolic version of
the semi-infinite flag manifold Qrat

G;P has its set of k-valued points G..z//=.T � ŒP; P �..z///.
The fiber of the natural map

�P W Qrat
G ! Qrat

G;P

is isomorphic to the semi-infinite flag manifold of ŒL; L�, where L � P is the maximal
semisimple subgroup of P that contains T (the standard Levi subgroup). We also have the
higher cohomology vanishing of equivariant line bundles on Qrat

G;P (or rather �P .QG/) as in
Theorem 5.3. These are enough to yield a morphism

KT �Grot
m

.Qrat
G /! KT �Grot

m
.Qrat

G;P /

obtained by the push-forward by �P (up to technical reservations neglected here and below).
By transferring Theorem 7.4 to Richardson varieties of Qrat

G;P , we find a map

‰P W qKT .BP /loc ! KT .Qrat
G;P /;
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that intertwines appropriate line bundle twists (and analogous quantum multiplications).
This yields a diagram

qKT .B/loc

��

‰ // KT .QG/

.�P /�

��
qKT .BP /loc

‰P // KT .QG;P /

where we set QG;P WD �P .QG/.
The resulting map qKT .B/! qKT .BP / is, in fact, an algebra map [48], and is easy

to describe. Note that we cannot have an analogous map between ordinary K-groups because
of the higher direct images. It turns out this map sends Q˛_

i to 1 for a simple coroot ˛_
i

belonging to L, and hence is not compatible with a naive generalization of the corresponding
map in the Peterson isomorphism in homology [59].

We also have a restriction map qKT .B/! qKT .BL/, where BL WD L=.L \ B/

is the flag manifold of a standard Levi subgroup. This map extends to algebra maps [45]

KG�Grot
m

.GrG/! KL�Grot
m

.GrL/! KT �Grot
m

.GrT /

anticipated in Finkelberg and Tsymbaliuk [23].

10. Some perspectives

Compared with the theory of flag manifolds, many precise results and constructions
for Qrat

G are still missing. The most accessible set of problems might be to spell out ana-
logues of numerous explicit formulas in classical Schubert calculus purely combinatorially
by admitting geometric conclusions from [3,45,47,48,52] partly explained in the previous two
sections. We close this note by briefly discussing some of other problems.

10.1. Categorifications of the coordinate rings
The homogeneous coordinate rings of Schubert varieties of a usual flag manifold,

that are B-stable quotient rings of (2.1), can be seen as the Grothendieck groups of suitable
categories equipped with cluster structures ([60]; see also Section 3.1). Hence, it is natural
to expect categorifications of the homogeneous coordinate rings of Qrat

G .w/ and B thick
C . See

also [21] and [43] for related problems and partial answers.

10.2. Peterson isomorphism in quantum cohomology
The Peterson isomorphism in quantum cohomology [59,74] is an analogue of Theo-

rem 8.1 for homology. We may apply Corollary 7.3 to [69] (that is an essential ingredient in
[59]) to utilize Qrat

G in its proof (that looks similar to the original strategy in [74]). However,
we do not know an analogue of Theorem 8.2 as we lack a proper definition of H �.QG/.

10.3. Constructible sheaves on semi-infinite flags
In representation-theoretic analysis on B, we sometimes encounter constructible

sheaves that are not N -equivariant. Also, we want some notion of (co)homology of QG in
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Section 10.2. Therefore, it is desirable to understand constructible sheaves on QG following
[7]. The resulting objects should have connection to [30]. Note that the combinatorics that
should be satisfied by the I-equivariant sheaves (equipped with Frobenius endomorphisms)
have been worked out in detail [62,65].

10.4. Tensor product decompositions
The tensor product decomposition of rational representations of G is deeply con-

nected with our whole story due to the presentation (2.1). In [57], the geometry of flag
varieties is used to deduce subtle information on the tensor products beyond the classical
Littlewood–Richardson rule. It would be interesting to pursue their analogues in Qrat

G , possi-
bly utilizing some modular interpretation [11] and connecting with the perspectives in [5].

10.5. The cotangent bundle of semi-infinite flags
A version of the cotangent bundle of Qrat

G would make it possible to compare our
results with the perspectives in [21, 67, 73]. In addition, its quantization should realize some
numerics in Section 10.3. The author hopes to say a bit more on this in St. Petersburg.
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