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Abstract

Let G be a finite simple group, � an irreducible complex character, and g an element of G.
It is often desirable to have upper bounds for j�.g/j in terms of �.1/ and some measure of
the regularity of g. This paper reviews what is known in this direction and presents typical
applications of such bounds: to proving certain products of conjugacy classes cover G, to
solving word equations over G, and to counting homomorphisms from a Fuchsian group
to G.
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1. Introduction

Let G be a finite group, � the character of an irreducible complex representation
� of G, and g an element of G. As the eigenvalues of �.g/ are roots of unity, the bound
j�.g/j � �.1/ is trivial. For central elements g, no stronger upper bound than �.1/ is possible.
However, according to Schur, we know thatX

g2G

�.g/�.g/ D jGj;

and since �.x/ D �.g/ for all x in the conjugacy class gG , we obtain the centralizer boundˇ̌
�.g/

ˇ̌
�

s
jGj

jgG j
D

p
jCG.g/j:

Other known upper bounds typically hold only for special classes of groups.
This paper reviews what is known about character bounds when G is a finite simple

group or is closely related to such a group. There is a substantial literature on upper bounds
for character ratios j�.g/j

�.1/
; see Martin Liebeck’s survey [29] for recent results and applications

in the case of groups of Lie type. These bounds are typically weakest for characters � of low
degree, which points to the desirability of exponential bounds, that is, bounds of the form
j�.g/j � �.1/˛.g/, where the size of ˛.g/ is typically related to the size of the centralizer
of g compared to jGj. The next two sections focus on alternating groups and groups of Lie
type, respectively. The remaining sections give some applications of these results and present
some open problems.

2. Symmetric and alternating groups

Motivated by questions in probability theory, a number of people have considered
character ratio bounds for symmetric groups. In this series of groups, unlike groups of Lie
type, character ratios for nontrivial elements and nontrivial characters can be arbitrarily close
to 1. The worst case for G D Sn is the ratio n�3

n�1
, achieved when g is a transposition and � is

a character of degree n � 1. Persi Diaconis and Mehrdad Shahshahani considered the case
that g is a transposition and � is any irreducible character, proving in [4] that if both the
first row and the first column of the Young diagram for � D �� have length � n=2, then the
character ratio is less than 1=2, while if, for instance, the first row satisfies �1 > n=2, then

0 <
�.g/

�.1/
�

�1.�1 � 1/ C .n � �1 � 1/.n � �1 � 2/ � 2

n.n � 1/
:

A similar bound was given by Leopold Flatto, Andrew Odlyzko, and David Wales [8, Theo-

rem 5.2].
Yuval Roichman [39] gave a character bound of the form

j�.g/j

�.1/
� max

�
�1=n; �0

1=n; c
�supp.g/

;

where supp.g/ denotes the number of elements of ¹1; : : : ; nº not fixed by g, and c < 1

is an absolute constant. This reflects the fact that elements with high support tend to have
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small centralizers. The bound is quite good when � has small degree. However, for large n,
most characters of Sn have degree greater than An for any fixed A, and for such characters,
Roichman’s bound is weaker than the centralizer bound for most elements g 2 G.

Philippe Biane [3] gave character ratio bounds for elements of bounded support and
“balanced” characters, namely those where �1=

p
n and �0

1=
p

n are bounded. By the work
of Logan–Shepp [34] and Veršik–Kerov [44], high degree characters are typically balanced.
To be more precise, this is true for characters chosen randomly, weighted by the Plancherel
measure. Amarpreet Rattan and Piotr Śniady [38] generalized Biane’s character bound so it
applies whenever supp.g/ is small enough compared to n; if g cannot be expressed as the
product of less than � transpositions, then

j�.g/j

�.1/
�

�
D max.1; �2=n/

p
n

��

;

where D depends on the sizes of �1=
p

n and �0
1=

p
n. Valentin Féray and Śniady [7] proved

a bound of the form
j�.g/j

�.1/
�

�
a max.�1; �0

1; �/

n

��

;

which simultaneously improves on the results of [39] and [38].
Thomas Müller and Jan-Christoph Schlage-Puchta gave a character bound of expo-

nential type [37, Theorem B] which is good in a wide variety of situations. They proved that
j�.g/j � �.1/˛.g/, where

˛.g/ D 1 �

��
1 � .1= log n/

��1 12 log n

log.n=fix.g//
C 18

��1

:

Being exponential, it works well whether �.1/ is large or small. The exponent is optimal,
up to a multiplicative constant, for elements g consisting of many cycles, for instance, for
involutions. However, it can be greatly improved upon for elements consisting of few cycles.
In particular, ˛.g/ is no smaller when g is an n-cycle than when it is of shape 2n=2.

Sergey Fomin and Nathan Lulov [9] gave a bound specifically for elements g of the
shape rn=r . For fixed r and varying n, it takes the formˇ̌

�.g/
ˇ̌

D O
�
n

r�1
2r �.1/1=r

�
;

so it is essentially a bound of exponential type. Aner Shalev and I gave an exponential bound
[22] for elements g of arbitrary shape 1a12a2 � � � which is roughly comparable in strength to
the Fomin–Lulov bound. Define the sequence e1; e2; : : : such that for all k � 1,

ne1C���Cek D

kX
iD1

iai :

Then ˇ̌
�.g/

ˇ̌
� �.1/

Pn
iD1 ei =iCo.1/:

This result is stronger than the exponential bound of Müller–Schlage-Puchta for almost all
elements but inferior to it when the number of fixed points of g is very large.
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None of these bounds can compete with the centralizer bound for elements con-
sisting of very few cycles, for instance, for n-cycles, where the centralizer bound gives
j�.g/j �

p
n. For such elements, the Murnaghan–Nakayama rule asserts j�.g/j � 1, which

is obviously optimal.
From symmetric group bounds, we easily obtain alternating group bounds of com-

parable strength. Recall that for � ¤ �0, the characters �� and ��0 restrict to the same
irreducible character of An. All other irreducible characters of An arise from partitions sat-
isfying � D �0; for each such �, the restriction of �� to An decomposes as a sum of two
irreducibles �1

�
and �2

�
. The �i

�
take the character value ��.g/=2 for all g 2 Sn n C , where

C is a single Sn-conjugacy class which decomposes into two An-conjugacy classes. For
elements of C , a theorem of Frobenius gives character values, which are of the form

1 ˙
p

˙n1 � � � nk

2
;

where ni D �i � i for 1 � i � k. Character degree estimates, like those in [22], now imply
that j�i

�
.g/j � ��.1/" whenever n is sufficiently large compared to " > 0.

3. Groups of Lie type

Character estimates for finite simple groups of Lie type go back to the work of David
Gluck [13–15]. Unlike in the case of alternating and symmetric groups, there is a uniform
bound [15] on character ratios for nontrivial characters and nontrivial g, namely

j�.g/j

�.1/
�

19

20
:

When the cardinality q of the field of definition of G is large, this upper bound can be
improved; Gluck [14] gives an upper bound of the form C=

p
q for large q. The q-exponent

is optimal, since for odd q, PSL2.q/ has characters of degree qC1
2

or q�1
2

, and the value of

such a character at a nontrivial unipotent element g is ˙1˙

q
.�1/

q�1
2 q

2
.

If G is a finite simple group of bounded rank, then �.1/ < jGj D O.qD/, where D

denotes the dimension associated to the Lie type of G. Therefore, the Gluck bound C=
p

q

can be converted to an exponential bound j�.g/j � �.1/˛ , where ˛ < 1 depends only on the
rank. To achieve exponential bounds in general, therefore, it suffices to limit our attention
to the case that G is a classical group, that is, one of PSLrC1.q/, PSUrC1.q/, P�˙

2r .q/,
PSp2r .q/, or P�2rC1.q/.

We cannot expect that character ratios go to 0 as the order of a classical group goes
to infinity. For instance, let G D PSLrC1.q/. The permutation representation associated with
the action of G on PF r

q can be expressed as � C 1, for � irreducible. Let g be the image of a
transvection in SLrC1.Fq/ in G. Then the fixed points of g form a hyperplane in PFn

q , and
�.g/ D qn�1 C qn�2 C � � � C q. Thus,

lim
n!1

�.g/

�.1/
D

1

q
:
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Defining the support supp.g/ as the smallest codimension of any eigenspace of g for
the natural projective representation of G, the elements g in the above example have constant
support 1 even as the rank of G goes to infinity. Shalev, Pham Huu Tiep, and I proved [24,

Theorem 4.3.6] that as the support goes to infinity, the character ratio goes to 0:
j�.g/j

�.1/
� q�

p
supp.g/=481:

This falls well short of a uniform exponential character bound, even for elements
of maximal support. Robert Guralnick, Tiep, and I found uniform exponential bounds for
elements g whose centralizer is small compared to the order of G. For instance, we proved
[16, Theorem 1.4] that if G is of the form PSLn.q/ or PSUn.q/ and jCG.g/j � qn2=12, then
j�.g/j � �.1/8=9. More generally, but less explicitly, we proved [17, Theorem 1.3] that for all
" > 0, there exists ı > 0 such that jCG.g/j � jGjı implies j�.g/j � �.1/". However, the
method of these papers applies only to elements with small centralizer, for instance, it does
not give any bound at all for involutions.

This defect was remedied in the sequel [28], which proved that for all positive ı < 1

there exists " < 1 such that jCG.g/j � jGjı implies j�.g/j � �.1/". More precisely, j�.g/j �

�.1/˛.g/ where
˛.g/ D 1 � c C c

log jCG.g/j

log jGj
;

and c > 0 is an absolute constant, which can be made explicit (but is, unfortunately, extremely
small). This theorem holds more generally for quasisimple finite groups of Lie type.

For many elements g in a classical group of rank r , much better exponents are avail-
able, thanks to the work of Roman Bezrukavnikov, Liebeck, Shalev, and Tiep [2]. For q odd,
if the centralizer of g is a proper split Levi subgroup, then j�.g/j � f .r/�.1/˛.g/, where
˛.g/ is an explicitly computable rational number which is known to be optimal in many
cases. This idea was further developed by Jay Taylor and Tiep, who proved [43], among
other things, that for every nontrivial element g 2 PSLn.q/,ˇ̌

�.g/
ˇ̌

� h.r/�.1/
n�1
n�2 :

All of these estimates are poor for elements with small centralizers, such as regular
elements. A general result, due to Shelly Garion, Alexander Lubotzky, and myself, which
sometimes gives reasonably good bounds for regular elements, is the following [10, The-

orem 3]. Let G be a finite group, not necessarily simple, and g an element of G whose
centralizer A is abelian. Suppose A1; : : : ; An are subgroups of A not containing g such
that the centralizer of every element of A n

S
i Ai is A. Then, for every irreducible character

of G, ˇ̌
�.g/

ˇ̌
� .4=

p
3/n

�
NG.A/ W A

�
:

For example, this gives an upper bound of 2.n � 1/2=
p

3 for j�.g/j when G D PSLn.q/ and
g is the image of an element with irreducible characteristic polynomial. It would be nice to
have optimal upper bounds for j�.g/j for general regular semisimple elements g.
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4. Products of conjugacy classes

If C1; : : : ; Cn are conjugacy classes of a finite group G, then the number N of n-
tuples .g1; : : : ; gn/ 2 C1 � � � � � Cn satisfying g1g2 � � � gn D 1 is given by the Frobenius
formula

N D
jC1j � � � jCnj

jGj

X
�

�.C1/ � � � �.Cn/

�.1/n�2
;

where � ranges over all irreducible characters of G. In conjunction with upper bounds for
the j�.Ci /j, this can sometimes be used to prove that N ¤ 0, as the contribution from � D 1

often dominates the sum. Exponential bounds for the �.Ci / are especially convenient, since
results of Liebeck and Shalev [32] give a great deal of information about when we can expectX

�¤1

�.1/�s < 1:

A well-known conjecture attributed to Thompson asserts that for every finite simple
group G, there exists a conjugacy class C such that C 2 D G. Thanks to work of Erich Ellers
and Nikolai Gordeev [6], we know that this is true except for a list of possible counter-
examples, all finite simple groups of Lie type with q � 8. Tiep and I used our uniform
exponential bounds to show that several of the infinite families on this list, in particular,
the symplectic groups for all q � 2, can be eliminated in sufficiently high rank [28, Theo-

rem 7.7]. It would be interesting if these results could be extended to the remaining families
on the list, giving an asymptotic version of Thompson’s conjecture.

Andrew Gleason and Cheng-hao Xu [18,19] proved Thompson’s conjecture for alter-
nating groups, using the conjugacy class of an n-cycle if n is odd or a permutation of shape
21.n � 2/1 if n is even. In [22, Theorem 1.13], Shalev and I proved that in the limit n ! 1

the probability that a randomly chosen g 2 An belongs to a conjugacy class with C 2 D An

rapidly approaches 1.
The analogous claim cannot be true for all finite simple groups since C 2 D G

implies that C D C �1, and for, e.g., PSL3.q/ as q ! 1, the probability that a random
element is real goes to 0. However, there are several variants of this question which do not
have an obvious counterexample. As the order of G tends to infinity, does the probability
that a random real element belongs to a conjugacy class with C 2 D G approach 1? Does
the probability that a random element g belongs to a conjugacy class C with C 2 [ ¹1º D G

approach 1? Also, as the order of G tends to infinity, does the probability that a random
element belongs to a conjugacy class with CC �1 D G approach 1?

The weaker claim that every element g 2 G lies in CC �1 for some conjugacy class
(depending, perhaps, on g) is equivalent to the statement that every element of G is a com-
mutator. This was was an old conjecture of Ore and is now a theorem of Liebeck, Eamonn
O’Brien, Shalev, and Tiep [30].

One can also ask about S2 where S is an arbitrary conjugation-invariant subset
of G. On naive probabilistic grounds, it might seem plausible that given " > 0 fixed, for G

sufficiently large, every normal subset of G with at least "jGj elements satisfies S2 D G.
However, a moment’s reflection shows that, unless " > 1

2
, there is no reason to expect 1 2 S2.
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Is it true, for G sufficiently large, that S2 [ ¹1º D G? For alternating groups and for groups
of Lie type in bounded rank, the answer is affirmative [26], but we do not know in general.

In a different direction, given a conjugacy class C , how large must n be so that
the nth power C n is all of G? More generally, given conjugacy classes C1; : : : ; Cn with
sufficiently strong character bounds, the Frobenius formula can be used to show that each
element of G is represented as a product g1 � � � gn, with gi 2 Ci , in approximately jC1j���jCnj

jGj

ways. For instance, it follows from the exponential character bounds given above that there
exists an absolute constant k such that if G is a finite simple group of Lie type and C1; : : : ;Cn

are conjugacy classes in G satisfying jC1j � � � jCnj > jGjk , then for each g 2 G,ˇ̌®
.g1; : : : ; gn/ 2 C1 � � � � � Cn j g1 � � � gn D g

¯ˇ̌
D

�
1 C o.1/

� jC1j � � � jCnj

jGj
:

Via Lang–Weil estimates, this further implies that if C 1; : : : ; C n are conjugacy classes of a
simple algebraic group G, and

dim C 1 C � � � C dim C n > k dim G;

then the product morphism of varieties C 1 � � � � � C n ! G has the property that every fiber
is of dimension dim C 1 C � � � C dim C n � dim G.

In the special case that C1 D � � � D Cn D C , the question of the distribution of
products g1 � � � gn, gi 2 C , can be expressed in terms of the mixing time of the random walk
on the Cayley graph of .G; C /. A consequence of the exponential character bounds [28] is
that for groups of Lie type, the mixing time of such a random walk is O.log jGj= log jC j/.
This is the same order of growth as the diameter of the Cayley graph, thus settling conjectures
of Lubotzky [35, p. 179] and Shalev [42, Conjecture 4.3].

The situation is different for alternating groups G D An. For instance, if C is the
class of 3-cycles and n � 6, then log jGj= log jC j < n, and C bn=2c D G [5, Theorem 9.1].
However, for any fixed k, the probability that the product of kn random 3-cycles gi fixes 1 is
at least the probability that each individual gi fixes 1, which goes to e�3k as n ! 1. Thus
the expected number of fixed points of g1 � � �gn grows linearly with n. It would be interesting
to know, for general C � An, what the mixing time is.

5. Waring’s problem

Waring’s problem for finite simple groups originally meant the following question.
Does there exist a function f W N ! N such that for all positive integers n and all sufficiently
large finite simple groups G (in terms of n), every element of G is a product of f .n/ nth
powers? Positive solutions were given by Martinez–Zelmanov [36] and Saxl–Wilson [40].

This can be extended as follows. Let w denote a nontrivial element in any free group
Fd . For every finite simple group G, w determines a function Gd ! G. We replace the nth
powers with word values, that is, elements of G in the image of w. Liebeck and Shalev
proved [31] that for G sufficiently large (in terms of w), every element of G can be written as
a product of a bounded number of word values (where the bound may depend on w, just as
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in the classical version of Waring’s problem, the minimum number of the nth powers needed
to represent a given integer may depend on n).

It was therefore, perhaps, surprising when Shalev proved [41] that the Waring
number for finite simple groups is uniform in w and is, in fact, at most three. This has
now been improved to the optimal bound, two [23,24]. More generally, for any two nontrivial
words w1 and w2, if G is a sufficiently large finite simple group, every element of G is a
product of their word values. In fact, it is even possible [27] to choose subsets S1 and S2 of
the sets of word values of w1 and w2 such that S1S2 D G and jSi j D O.jGj1=2 log1=2

jGj/.
The set of values of any word is a union of conjugacy classes, and the basic strategy of the
proof is to try to find conjugacy classes C1 and C2 contained in the word values of w1 and
w2, respectively, such that C1C2 D G and very few elements of G have significantly fewer
representations as such products than one would expect. Then a random choice of subsets
Si � Ci of suitable size can almost always be slightly modified to work.

In general, the probability distribution on the word values of w obtained by eval-
uation at a uniformly distributed random element of Gd is far from uniform. For instance,
for g 2 A3n uniformly distributed, the probability that g3 D 1 is at least jA3nj�1 times the
number of elements of shape 3n, i.e.,

.3n � 1/.3n � 2/ � .3n � 4/.3n � 5/ � � � .2/.1/ > .3n � 1/Š
2
3 > jA3nj

2
3 � 1

3n

for n sufficiently large. Thus, setting w1 D w2 D x3, the probability that the product of cubes
of two randomly chosen elements is 1 is at least jA3nj�2=3�2=3n, which, for large n, makes
the distribution far from uniform, at least in the L1 sense.

Using exponential character estimates, Shalev, Tiep, and I proved [25, Theorem 4]

that for any word w, there exists k such that as jGj ! 1, the L1-deviation from uniformity
in the product of k independent randomly generated values of w goes to 0. The dependence
of k on w is unavoidable, as the above example suggests. On the other hand, the L1-deviation
from uniformity goes to 0 in the product of two independent randomly generated values of
w, for any nontrivial word w [25, Theorem 1]. I do not know what to expect for Lp-deviation
for 1 < p < 1.

6. Fuchsian groups

For g; m � 0, let d1; : : : ; dm � 2 be integers. For

� D
˝
x1; : : : ; xm; y1; : : : ; yg ; z1; : : :; zg j x

d1
1 ; : : : ; xdm

m ;

x1 � � � xmŒy1; z1� � � � Œyg ; zg �
˛
;

define the Euler characteristic

e D 2 � 2g �

mX
iD1

�
1 � d �1

i

�
:

Assume e < 0, so � is an oriented, cocompact Fuchsian group. Let G be a finite group, and
let C1; : : : ; Cm denote conjugacy classes in G of elements whose orders divide d1; : : : ; dm,
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respectively. The Frobenius formula can be regarded as the g D 0 case of a more general
formula for the number of homomorphisms � ! G mapping xi to an element of Ci for all i ,ˇ̌

Hom¹Ci º.�; G/
ˇ̌

D jGj
2g�1

jC1j � � � jCmj

X
�

�.C1/ � � � �.Cm/

�.1/mC2g�2
:

In favorable situations, one can prove that the � D 1 term dominates all the others
combined, in which case one has a good estimate for the number of such homomorphisms.
Using this, Liebeck and Shalev proved [32, Theorem 1.5] that if g � 2, and G is a simple of
Lie type group of rank r , thenˇ̌

Hom.�; G/
ˇ̌

D jGj
1�eCO.1=r/:

By the same method, employing the character bounds of [28], one obtains the same estimate
whenever e is less than some absolute constant, regardless of the value of g. It would be
interesting to know whether this is true in general for e < 0. Some evidence in favor of this
idea is given in [21,33], but for small q the problem is open.

An interesting geometric consequence of the method of Liebeck–Shalev is that if
G is a simple algebraic group of rank r and g � 2, the morphism G2g

! G given by the
word Œy1; z1� � � � Œyg ; zg � has all fibers of the same dimension, .2g � 1/ dim G. This has been
refined by Avraham Aizenbud and Nir Avni, who proved [1] that for g � 373, the fibers of this
morphism are reduced and have rational singularities. It would be interesting to extend this to
the case of general Fuchsian groups. For instance, does there exist an absolute constant k such
that for all simple algebraic groups G and conjugacy classes C 1; : : : ; C m with dim C 1 C

� � � C dim C m > k dim G, all fibers of the multiplication morphism C 1 � � � � � C m ! G are
reduced with rational singularities The ideas of Glazer–Hendel [11,12] may be applicable.

For g D 1, we can no longer hope for equidimensional fibers, since the generic fiber
dimension is dim G, while the fiber over the identity element has dimension r C dim G.
However, Zhipeng Lu and I proved [20] that for G D SLn, all fibers over noncentral elements
have dimension G. It would be interesting to know whether this is true for general simple
algebraic groups G.
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