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Abstract

Small, finite entities are easier and simpler to manipulate than gigantic, infinite ones. Con-
sequently, huge chunks of mathematics are devoted to methods reducing the study of big,
cumbersome objects to an analysis of their finite building blocks. The manifestation of this
general pattern, in the study of derived and triangulated categories, dates back almost to
the beginnings of the subject—more precisely to articles by Illusie in SGA6, way back in
the early 1970s.
What is new, at least new in the world of derived and triangulated categories, is that one
gets extra mileage from analyzing more carefully and quantifying more precisely just how
efficiently one can estimate infinite objects by finite ones. This leads one to the study of
metrics on triangulated categories, and of how accurately an object can be approximated
by finite objects of bounded size.
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1. Introduction

In every branch of mathematics, we try to solve complicated problems by reducing
to simpler ones, and from antiquity people have used finite approximations to study infinite
objects. Naturally, whenever a new field comes into being, one of the first developments is
to try to understand what should be the right notion of finiteness in the discipline. Derived
and triangulated categories were introduced by Verdier in his PhD thesis in the mid-1960s
(although the published version only appeared much later in [38]). Not surprisingly, the idea
of studying the finite objects in these categories followed suit soon after, see Illusie [13–15].

Right from the start there was a pervasive discomfort with derived and triangulated
categories—the intuition that had been built up, in dealing with concrete categories, mostly
fails for triangulated categories. In case the reader is wondering: in the previous sentence the
word “concrete” has a precise, technical meaning, and it is an old theorem of Freyd [10, 11]

that triangulated categories often are not concrete. Further testimony, to the strangeness of
derived and triangulated categories, is that it took two decades before the intuitive notion of
finiteness, which dates back to Illusie’s articles [13–15], was given its correct formal defini-
tion. The following may be found in [23, Definition 1.1].

Definition 1.1. Let T be a triangulated category with coproducts. An object C 2 T is called
compact if Hom.C; �/ commutes with coproducts. The full subcategory of all compact
objects will be denoted by T c .

Remark 1.2. I have often been asked where the name “compact” came from. In the preprint
version of [23], these objects went by a different name, but the (anonymous) referee did not
like it. I was given a choice: I was allowed to baptize them either “compact” or “small.”

Who was I to argue with a referee?

Once one has a good working definition of what the finite objects ought to be, the
next step is to give the right criterion which guarantees that the category has “enough” of
them. For triangulated categories, the right definition did not come until [24, Definition 1.7].

Definition 1.3. Let T be a triangulated category with coproducts. The category T is called
compactly generated if every nonzero object X 2 T admits a nonzero map C ! X , with
C 2 T a compact object.

As the reader may have guessed from the name, compactly generated triangulated
categories are those in which it is often possible to reduce general problems to questions
about compact objects—which tend to be easier.

All of the above nowadays counts as “classical,” meaning that it is two or more
decades old and there is already a substantial and diverse literature exploiting the ideas.
This article explores the recent developments that arose from trying to understand how effi-
ciently one can approximate arbitrary objects by compact ones. We first survey the results
obtained to date. This review is on the skimpy side, partly because there already are other,
more expansive published accounts in the literature, but mostly because we want to leave
ourselves space to suggest possible directions for future research. Thus the article can be
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thought of as having two components: a bare-bone review of what has been achieved to date,
occupying Sections 2 to 6, followed by Section 7 which comprises suggestions of avenues
that might merit further development.

Our review presents just enough detail so that the open questions, making up Sec-
tion 7, can be formulated clearly and comprehensibly, and so that the significance and poten-
tial applications of the open questions can be illuminated. This has the unfortunate side effect
that we give short shrift to the many deep, substantial contributions, made by numerous math-
ematicians, which preceded and inspired the work presented here. The author apologizes in
advance for this omission, which is the inescapable corollary of page limits. The reader is
referred to the other surveys of the subject, where more care is taken to attribute the ideas
correctly to their originators, and give credit where credit is due.

We permit ourselves to gloss over difficult technicalities, nonchalantly skating by
nuances and subtleties, with only an occasional passing reference to the other surveys or to
the research papers for more detail.

The reader wishing to begin with examples and applications, to keep in mind
through the forthcoming abstraction, is encouraged to first look at the Introduction to [31].

2. Approximable triangulated categories—the formal

definition as a variant on Fourier series

It is now time to start our review, offering a glimpse of the recent progress that was
made by trying to measure how “complicated” an object is, in other words, how far it is from
being compact. What follows is sufficiently new for there to be much room for improvement:
the future will undoubtedly see cleaner, more elegant, and more general formulations. What
is presented here is the current crude state of this emerging field.

Discussion 2.1. This section is devoted to defining approximable triangulated categories,
and the definition is technical and at first sight could appear artificial, maybe even forbidding.
It might help therefore to motivate it with an analogy.

Let S1 be the circle, and let M.S1/ be the set of all complex-valued, Lebesgue-
measurable functions on S1. As usual we view S1 D R=Z as the quotient of its universal
cover R by the fundamental group Z; this identifies functions on S1 with periodic functions
on R with period 1. In particular the function g.x/ D e2�ix belongs to M.S1/. And, for
each ` 2 Z, we have that g.x/` D e2�i`x also belongs to M.S1/. Given a norm on the
space M.S1/, for example, the Lp-norm, we can try to approximate arbitrary f 2 M.S1/

by Laurent polynomials in g, that is, look for complex numbers ¹�
`

2 C j �n � ` � nº such
that f .x/ �

nX
`D�n

�`g.x/`


p

D

f .x/ �

nX
`D�n

�`e2�i`x


p

< "

with " > 0 small. This leads us to the familiar territory of Fourier series.
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Now imagine trying to do the same, but replacing M.S1/ by a triangulated category.
Given a triangulated category T , which we assume to have coproducts, we would like to
pretend to do Fourier analysis on it. We would need to choose:

(1) Some analog of the function g.x/ D e2�ix . Our replacement for this will be
to choose a compact generator G 2 T . Recall that a compact generator is a
compact object G 2 T such that every nonzero object X 2 T admits a nonzero
map GŒi� ! X for some i 2 Z.

(2) We need to choose something like a metric, the analog of the Lp-norm on
M.S1/. For us this will be done by picking a t-structure .T �0; T �0/ on T .
The heuristic is that we will view a morphism E ! F in T as “short” if, in
the triangle E ! F ! D, the object D belongs to T ��n for large n. We will
come back to this in Discussion 6.10.

(3) We need to have an analog of the construction that passes, from the function
g.x/ D e2�ix and the integer n > 0, to the vector space of trigonometric Laurent
polynomials

Pn
`D�n �

`
e2�i`x .

As it happens our solution to (3) is technical. We need a recipe that begins with the object
G and the integer n > 0, and proceeds to cook up a collection of more objects. We ask the
reader to accept it as a black box, with only a sketchy explanation just before Remark 2.3.

Black Box 2.2. Let T be a triangulated category and let G 2 T be an object. Let n > 0 be
an integer. We will have occasion to refer to the following four full subcategories of T :

(1) The subcategory hGin � T is defined unconditionally, and if T has coprod-
ucts one can also define the larger subcategory hGin. Both of these subcate-
gories are classical, the reader can find the subcategory hGin in Bondal and
Van den Bergh [6, the discussion between Lemma 2.2.2 and Definition 2.2.3], and
the subcategory hGin in [6, the discussion between Definition 2.2.3 and Propo-

sition 2.2.4].

(2) If the category T has coproducts, we will also have occasion to consider the
full subcategory hGi

.�1;n�
. Once again this category is classical (although the

name is not). The reader can find it in Alonso, Jeremías, and Souto [1], where it
would go by the name “the cocomplete pre-aisle generated by GŒ�n�”.

(3) Once again assume that T has coproducts. Then we will also look at the full
subcategory hGi

Œ�n;n�

n . This construction is relatively new.

Below we give a vague description of what is going on in these constructions; but when it
comes to the technicalities, we ask the reader to either accept these as black boxes, or refer
to [29, Reminder 0.8 (vii), (xi) and (xii)] for detail. We mention that there is a slight clash of
notation in the literature: what we call hGin in (1), following Bondal and Van den Bergh,
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goes by a different name in [29, Reminder 0.8 (xi)]. The name it goes by there is the case
A D �1 and B D 1 of the more general subcategory hGi

ŒA;B�

n .
Now for the vague explanation of what goes on in (1), (2), and (3) above: in a trian-

gulated category T , there are not many ways to build new objects out of old ones. One can
shift objects, form direct summands, form finite direct sums (or infinite ones if coproducts
exist), and one can form extensions. In the categories hGin and hGin of (1), there is a bound
on the number of allowed extensions, and the difference between the two is whether infinite
coproducts are allowed. In the category hGi

.�1;n�
of (2), the bound is on the permitted shifts.

And in the category hGi
Œ�n;n�

n of (3), both the shifts allowed and the number of extensions
permitted are restricted.

Remark 2.3. The reader should note that an example would not be illuminating, the cate-
gories hGin, hGin, hGi

.�1;n�
, and hGi

Œ�n;n�

n are not usually overly computable. For exam-
ple, let R be an associative ring, and let T D D.R/ be the unbounded derived category of
complexes of left R-modules. The object R 2 T , that is, the complex which is R in degree
zero and vanishes in all other degrees, is a compact generator for T D D.R/.

But if we wonder what the categories hRin, hRin, hRi
.�1;n�

, and hRi
Œ�n;n�

n might
turn out to be, only the category hRi

.�1;n�
is straightforward: it is the category of all cochain

complexes whose cohomology vanishes in degrees > n. The three categories hRin, hRin,
and hRi

Œ�n;n�

n are mysterious in general. In fact, the computation of hGin is the subject of
conjectures that have attracted much interest. We will say a tiny bit about theorems in this
direction in Section 4, and will mention one of the active, open conjectures in the discussion
between Definition 7.7 and Problem 7.8.

Remark 2.4. In the definition of approximable triangulated categories, which is about to
come, the category hGi

Œ�n;n�

n will play the role of the replacement for the vector space of
trigonometric Laurent polynomials of degree � n, which came up in the desiderata of Dis-
cussion 2.1(3). The older categories hGin, hGin, and hGi

.�1;n�
will be needed later in the

article.

Remark 2.5. Let us return to the heuristics of Discussion 2.1. Assume we have chosen
the t-structure .T �0; T �0/ as in Discussion 2.1(2), which we think of as our replacement
for the Lp-norm on M.S1/. And we have also chosen a compact generator G 2 T as in
Discussion 2.1(1), which we think of as the analog of the exponential function g.x/ D e2�ix .
We have declared that the subcategories hGi

Œ�n;n�

n will be our replacement for the vector
space of trigonometric Laurent polynomials of degree � n, as in Discussion 2.1(3). It is now
time to start approximating functions by trigonometric Laurent polynomials.

Let us therefore assume we start with some object F 2 T , and find a good approx-
imation of it by the object E 2 hGi

Œ�m;m�

m , meaning that we find a morphism E ! F such
that, in the triangle E ! F ! D, the object D belongs to T ��M for some suitably large M .

Now we can try to iterate, and find a good approximation for D. Thus we can look for
a morphism E 00 ! D, with E 00 2 hGi

Œ�n;n�

n , and such that in the triangle E 00 ! D ! D0 the
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object D0 belongs to T ��N , with N > M even more enormous than M . Can we combine
these to improve our initial approximation of F ?

To do this, let us build up the octahedron on the composable morphisms F !

D ! D0. We end up with a diagram where the rows and columns are triangles

E // E 0 //

��

E 00

��
E // F //

��

D

��
D0 D0

and in particular the triangle E 0 ! F ! D0 gives that E 0 is an even better approximation
of F than E was. We are therefore interested in knowing if the triangle E ! E 0 ! E 00,
coupled with the fact that E 2 hGi

Œ�m;m�

m and E 00 2 hGi
Œ�n;n�

n , gives any information about
where E 0 might lie with respect to the construction of Black Box 2.2(3). Hence it is useful
to know the following.

Facts 2.6. Let T be a triangulated category with coproducts. The construction of Black
Box 2.2(3) satisfies

(1) If E is an object of hGi
Œ�n;n�

n , then the shifts EŒ1� and EŒ�1� both belong to
hGi

Œ�n�1;nC1�

nC1 .

(2) Given an exact triangle E ! E 0 ! E 00, with E 2 hGi
Œ�m;m�

m and E 00 2 hGi
Œ�n;n�

n ,
it follows that E 0 2 hGi

Œ�m�n;mCn�

mCn .

Combining Remark 2.5 with Facts 2.6 allows us to improve approximations through
iteration. Hence part (2) of the definition below becomes natural, it iterates to provide arbi-
trarily good approximations.

Definition 2.7. Let T be a triangulated category with coproducts. It is approximable if there
exist a t-structure .T �0;T �0/, a compact generator G 2 T , and an integer n > 0 such that

(1) G belongs to T �n and Hom.G; T ��n/ D 0;

(2) Every object X 2 T �0 admits an exact triangle E ! X ! D with E 2

hGi
Œ�n;n�

n and with D 2 T ��1.

Remark 2.8. While part (2) of Definition 2.7 comes motivated by the analogy with Fourier
analysis, part (1) of the definition seems random. It requires the t-structure, which is our
replacement for the Lp-norm, to be compatible with the compact generator, which is the
analog of g.x/ D e2�ix . As the reader will see in Proposition 5.5, this has the effect of
uniquely specifying the t-structure (up to equivalence). So maybe a better parallel would be
to fix our norm to be a particularly nice one, for example, the L2-norm on M.S1/.

Let me repeat myself: as with all new mathematics, Definition 2.7 should be viewed
as provisional. In the remainder of this survey, we will discuss the applications as they now
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stand, to highlight the power of the methods. But I would not be surprised in the slightest if
future applications turn out to require modifications, and/or generalizations, of the definitions
and of the theorems that have worked so far.

3. Examples of approximable triangulated categories

In Section 1 we gave the definition of approximable triangulated categories. The def-
inition combines old, classical ingredients (t-structures and compact generators) with a new
construction, the category hGi

Œ�n;n�

n of Black Box 2.2(3). The first thing to show is that the
theory is nonempty: we need to produce examples, categories people care about which sat-
isfy the definition of approximability. The current section is devoted to the known examples
of approximable triangulated categories. We repeat what we have said before: the subject is
in its infancy, there could well be many more examples out there.

Example 3.1. Let T be a triangulated category with coproducts. If G 2 T is a compact
generator such that Hom.G; GŒi �/ D 0 for all i > 0, then the category T is approximable.

This example turns out to be easy, the reader is referred to [29, Example 3.3] for the
(short) proof. Special cases include

(1) T D D.R–Mod/, where R is a dga with H i .R/ D 0 for i > 0;

(2) The homotopy category of spectra.

Example 3.2. If X is a quasicompact, separated scheme, then the category Dqc.X/ is
approximable. We remind the reader of the traditional notation being used here: the cat-
egory D.X/ is the unbounded derived category of complexes of sheaves of OX -modules,
and the full subcategory Dqc.X/ � D.X/ has for objects the complexes with quasicoherent
cohomology.

The proof of the approximability of Dqc.X/ is not trivial. The category has a stan-
dard t-structure, that part is easy. The existence of a compact generator G needs proof, it may
be found in Bondal and Van den Bergh [6, Theorem 3.1.1(ii)]. Their proof is not constructive,
it is only an existence proof, but it does give enough information to deduce that part (1) of
Definition 2.7 is satisfied by every compact generator (indeed, it is satisfied by every compact
object). See [6, Theorem 3.1.1(i)]. But it is a challenge to show that we may choose a compact
generator G and an integer n > 0 in such a way that Definition 2.7(2) is satisfied.

If we further assume that X is of finite type over a noetherian ring R, then the
(relatively intricate) proof of the approximability of Dqc.X/ occupies [33, Sections 4 and 5].
The little trick, that extends the result to all quasicompact and separated X , was not observed
until later: it appears in [29, Lemma 3.5].

Example 3.3. It is a theorem that, under mild hypotheses, the recollement of any two approx-
imable triangulated categories is approximable. To state the “mild hypotheses” precisely:
suppose we are given a recollement of triangulated categories

R // Soo
oo // Too

oo
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with R and T approximable. Assume further that the category S is compactly generated,
and any compact object H 2 S has the property that Hom.H; HŒi�/ D 0 for i � 0. Then
the category S is also approximable.

The reader can find the proof in [7, Theorem 4.1], it is the main result in the paper. The
bulk of the article is devoted to developing the machinery necessary to prove the theorem—
hence it is worth noting that this machinery has since demonstrated usefulness in other
contexts, see the subsequent articles [27,28].

There is a beautiful theory of noncommutative schemes, and a rich literature study-
ing them. And many of the interesting examples of such schemes are obtained as recollements
of ordinary schemes, or of admissible pieces of them. Thus the theorem that recollements of
approximable triangulated categories are approximable gives a wealth of new examples of
approximable triangulated categories.

Since this ICM is being held in St. Petersburg, it would be remiss not to mention that
the theory of noncommutative algebraic geometry, in the sense of the previous paragraph,
is a subject to which Russian mathematicians have contributed a vast amount. The seminal
work of Bondal, Kontsevich, Kuznetsov, Lunts, and Orlov immediately springs to mind. For
a beautiful introduction to the field, the reader might wish to look at the early sections of
Orlov [34]. The later sections prove an amazing new theorem, but the early ones give a lovely
survey of the background. In fact, the theory sketched in this survey was born when I was
trying to read and understand Orlov’s beautiful article.

4. Applications: strong generation

We begin by reminding the reader of a classical definition, going back to Bondal
and Van den Bergh [6].

Definition 4.1. Let T be triangulated category. An object G 2 T is called a strong gen-
erator if there exists an integer ` > 0 with T D hGi`, where the notation is as in Black
Box 2.2(1). The category T is called regular or strongly generated if it contains a strong
generator.

The first application of approximability is the proof of the following two theorems.

Theorem 4.2. Let X be a quasicompact, separated scheme. The derived category of perfect
complexes on X , denoted here by Dperf.X/, is regular if and only if X has a cover by open
subsets Spec.Ri / � X , with each Ri of finite global dimension.

Remark 4.3. If X is noetherian and separated, then Theorem 4.2 specializes to saying that
Dperf.X/ is regular if and only if X is regular and finite-dimensional. Hence the terminology.

Theorem 4.4. Let X be a noetherian, separated, finite-dimensional, quasiexcellent scheme.
Then the category Db.Coh.X//, the bounded derived category of coherent sheaves on X , is
always regular.
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Remark 4.5. The reader is referred to [33] and to Aoki [4] for the proofs of Theorems 4.2
and 4.4. More precisely, for Theorem 4.2 see [33, Theorem 0.5]. About Theorem 4.4: if we add
the assumption that every closed subvariety of X admits a regular alteration then the result
may be found in [33, Theorem 0.15], but Aoki [4] found a lovely argument that allowed him to
extend the statement to all quasiexcellent X .

There is a rich literature on strong generation, with beautiful papers by many
authors. In the introduction to [33], as well as in [26] and [31, Section 7], the reader can
find an extensive discussion of (some of) this fascinating work and of the way Theorems 4.2
and 4.4 compare to the older literature. For a survey taking an entirely different tack, see
Minami [22], which places in historical perspective a couple of the key steps in the proofs
that [33] gives for Theorems 4.2 and 4.4.

Since all of this is now well documented in the published literature, let us focus the
remainder of the current survey on the other applications of approximability. Those are all
still in preprint form, see [27–29], although there are (published) surveys in [31, Sections 8

and 9] and in [30]. Those surveys are fuller and more complete than the sketchy one we are
about to embark on. As we present the material, we will feel free to refer the reader to the
more extensive surveys whenever we deem it appropriate.

5. The freedom in the choice of compact generator and

t-structure

Definition 2.7 tells us that a triangulated category T with coproducts is approx-
imable if there exist, in T , a compact generator G and a t-structure .T �0; T �0/ satisfying
some properties. The time has come to explore just how free we are in the choice of the
compact generator and of the t-structure. To address this question we begin by formulating:

Definition 5.1. Let T be a triangulated category. Then two t-structures .T �0
1 ; T �0

1 / and
.T �0

2 ; T �0
2 / are declared equivalent if there exists an integer n > 0 such that

T ��n
1 � T �0

2 � T �n
1 :

Discussion 5.2. Let T be a triangulated category with coproducts. If G 2 T is a compact
object and hGi

.�1;0�
is as in Black Box 2.2(2), then Alonso, Jeremías, and Souto [1, Theo-

rem A.1], building on the work of Keller and Vossieck [16], teaches us that there is a unique
t-structure .T �0;T �0/ with T �0 D hGi

.�1;n�
. We will call this the t-structure generated

by G, and denote it .T �0
G ; T �0

G /.
In Black Box 2.2(2) we asked the reader to accept, as a black box, the construction

passing from an object G 2 T to the subcategory hGi
.�1;0�

. If G is compact, then [1, Theo-

rem A.1] allows us to express this as T �0
G for a unique t-structure. We ask the reader to accept

on faith that:

Lemma 5.3. If G and H are two compact generators for the triangulated category T , then
the two t-structures .T �0

G ; T �0
G / and .T �0

H ; T �0
H / are equivalent as in Definition 5.2.
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As it happens, the proof of Lemma 5.3 is easy, the interested reader can find it in
[29, Remark 0.15]. And Lemma 5.3 leads us to:

Definition 5.4. Let T be a triangulated category in which there exists a compact generator.
We define the preferred equivalence class of t-structures as follows: a t-structure belongs to
the preferred equivalence class if it is equivalent to .T �0

G ;T �0
G / for some compact generator

G 2 T , and by Lemma 5.3 it is equivalent to .T �0
H ; T �0

H / for every compact generator H .

The following is also not too hard, and may be found in [29, Propositions 2.4 and 2.6].

Proposition 5.5. Let T be an approximable triangulated category. Then for any t-structure
.T �0; T �0/ in the preferred equivalence class, and for any compact generator H 2 T ,
there exists an integer n > 0 (which may depend on H and on the t-structure), satisfying

(1) H belongs to T �n and Hom.H; T ��n/ D 0;

(2) Every object X 2 T �0 admits an exact triangle E ! X ! D with E 2

hH i
Œ�n;n�

n and with D 2 T ��1.

Moreover, if H is a compact generator, .T �0; T �0/ is a t-structure, and there exists an
integer n > 0 satisfying .1/ and .2/ above, then the t-structure .T �0; T �0/ must belong to
the preferred equivalence class.

Remark 5.6. Strangely enough, the value of Proposition 5.5 can be that it allows us to find
an explicit t-structure in the preferred equivalence class.

Consider the case where X is a quasicompact, separated scheme. By Bondal and Van
den Bergh [6, Theorem 3.1.1(ii)], we know that the category Dqc.X/ has a compact generator,
but in Example 3.2 we mentioned that the existence proof is not overly constructive, it does
not give us a handle on any explicit compact generator. Let G be some compact generator.
From Alonso, Jeremías, and Souto [1, Theorem A.1], we know that the subcategory hGi

.�1;0�

of Black Box 2.2(2) is equal to T �0
G for a unique t-structure .T �0

G ; T �0
G / in the preferred

equivalence class. But this does not leave us a whole lot wiser—the compact generator G is
not explicit, hence neither is the t-structure.

However, the combination of [33, Theorem 5.8] and [29, Lemma 3.5] tells us that the
category Dqc.X/ is approximable, and it so happens that the t-structure used in the proof,
that is, the t-structure for which a compact generator H and an integer n > 0 satisfying (1)
and (2) of Proposition 5.5 are shown to exist, happens to be the standard t-structure. From
Proposition 5.5, we now deduce that the standard t-structure is in the preferred equivalence
class.

6. Structure theorems in approximable triangulated

categories

An approximable triangulated category T must have a compact generator G, and
Definition 5.4 constructed for us a preferred equivalence class of t-structures—namely all
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those equivalent to .T �0
G ; T �0

G /. Recall that, for any t-structure .T �0; T �0/, it is custom-
ary to define

T �
D

1[
nD1

T �n; T C
D

1[
nD1

T ��n; T b
D T �

\ T C:

It is an easy exercise to show, directly from Definition 5.1, that equivalent t-structures give
rise to identical T �, T C, and T b . Therefore triangulated categories with a single compact
generator, and in particular approximable triangulated categories, have preferred subcate-
gories T �, T C, and T b , which are intrinsic—they are simply those corresponding to any
t-structure in the preferred equivalence class. In the remainder of this survey, we will assume
that T �, T C, and T b always stand for the preferred ones.

In the heuristics of Discussion 2.1(2), we told the reader that a t-structure
.T �0; T �0/ is to be viewed as a metric on T . In Definition 6.1 below, the heuristic is
that we construct a full subcategory T �

c to be the closure of T c with respect to any of the
(equivalent) metrics that come from t-structures in the preferred equivalence class.

Definition 6.1. Let T be an approximable triangulated category. The full subcategory T �
c

is given by

Ob.T �
c / D

8̂̂̂<̂
ˆ̂:F 2 T

ˇ̌̌̌
ˇ̌̌̌
ˇ

For every integer n > 0 and for every t-structure�
T �0; T �0

�
in the preferred equivalence class,

there exists an exact triangle E ! F ! D in T

with E 2 T c and D 2 T ��n

9>>>=>>>; :

The full subcategory T b
c is defined to be T b

c D T �
c \ T b .

Remark 6.2. Let T be an approximable triangulated category. Aside from the classical,
full subcategory T c of compact objects, which we encountered back in Definition 1.1, we
have in this section concocted five more intrinsic, full subcategories of T : they are T �,
T C, T b , T �

c , and T b
c . It can be proved that all six subcategories, that is, the old T c and

the five new ones, are thick subcategories of T . In particular, each of them is a triangulated
category.

Example 6.3. It becomes interesting to figure out what all these categories come down to
in examples.

Let X be a quasicompact, separated scheme. From Example 3.2, we know that
the category T D Dqc.X/ is approximable, and in Remark 5.6 we noted that the stan-
dard t-structure is in the preferred equivalence class. This can be used to show that, for
T D Dqc.X/, we have

T � D D�
qc.X/; T C D DC

qc.X/; T b D Db
qc.X/;

T c D Dperf.X/; T �
c D D�

coh.X/; T b
c D Db

coh.X/;

where the last two equalities assume that the scheme X is noetherian, and all six categories
on the right of the equalities have their traditional meanings.

The reader can find an extensive discussion of the claims above in [31], more pre-
cisely in the paragraphs between [31, Proposition 8.10] and [31, Theorem 8.16]. That discussion
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goes beyond the scope of the current survey, it analyzes the categories T b
c � T �

c in the gen-
erality of non-noetherian schemes, where they still have a classical description—of course,
not involving the category of coherent sheaves. After all coherent sheaves do not behave well
for non-noetherian schemes.

Remark 6.4. In this survey we spent some effort introducing the notion of approximable
triangulated categories. In Example 3.2 we told the reader that it is a theorem (and not a trivial
one) that, as long as a scheme X is quasicompact and separated, the derived category Dqc.X/

is approximable. In this section we showed that every approximable triangulated category
comes with canonically defined, intrinsic subcategories T �, T C, T b , T c , T �

c , and T b
c ,

and in Example 6.3 we informed the reader that, in the special case where T D Dqc.X/, these
turn out to be D�

qc.X/, DC
qc.X/, Db

qc.X/, Dperf.X/, D�
coh.X/, and Db

coh.X/, respectively.
Big deal. This teaches us that the traditional subcategories D�

qc.X/, DC
qc.X/, Db

qc.X/,
Dperf.X/, D�

coh.X/, and Db
coh.X/ of the category Dqc.X/ all have intrinsic descriptions. This

might pass as a curiosity, unless we can actually use it to prove something we care about that
we did not use to know.

Discussion 6.5. To motivate the next theorem, it might help to think of the parallel with
functional analysis.

Let M.R/ be the vector space of Lebesgue-measurable, real-valued functions on R.
Given any two functions f; g 2 M.R/, we can pair them by integrating the product, that is,
we form the pairing

hf; gi D

Z
fg d�;

where � is Lebesgue measure. This gives us a map

M.R/ � M.R/
h�;�i // R [ ¹1º;

where the integral is declared to be infinite if it does not converge.
We can restrict this pairing to subspaces of M.R/. For example, if f 2 Lp.R/ and

g 2 Lq.R/ with 1
p

C
1
q

D 1 then the integral converges, that is, hf; gi 2 R, and we deduce
a map

Lp.R/ // Hom
�
Lq.R/; R

�
which turns out to be an isometry of Banach spaces.

The category-theoretic version is that on any category T there is the pairing sending
two objects A; B 2 T to Hom.A; B/. Of course, this pairing is not symmetric, we have to
keep track of the position of A and of B in Hom.A; B/. If R is a commutative ring and T

happens to be an R-linear category, then Hom.A;B/ is an R-module and the pairing delivers
a map

T op � T
Hom.�;�/ // R–Mod;

where the op keeps track of the variable in the first position. And now we are free to restrict
to subcategories of T .
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If T happens to be approximable and R-linear, we have just learned that it comes
with six intrinsic subcategories T �, T C, T b , T c , T �

c , and T b
c . We are free to restrict

the Hom pairing to any couple of them. This gives us 36 possible pairings, and each of those
yields two maps from a subcategory to the dual of another. There are 72 cases we could
study, and the theorem below tells us something useful about four of those.

Theorem 6.6. Let R be a noetherian ring, and let T be an R-linear, approximable trian-
gulated category. Suppose there exists in T a compact generator G so that Hom.G; GŒn�/

is a finite R-module for all n 2 Z. Consider the two functors

Y W T �
c ! HomR

��
T c

�op
; R–Mod

�
; eY W

�
T �

c

�op
! HomR

�
T b

c ; R–Mod
�

defined by the formulas Y .B/ D Hom.�;B/ and eY .A/ D Hom.A;�/, as in Discussion 6.5.
Now consider the following composites:

T b
c
� � i // T �

c
Y // HomR

��
T c

�op
; R–Mod

�
;�

T c
�op � � Qı //

�
T �

c

�op eY // HomR

�
T b

c ; R–Mod
�
:

We assert:

(1) The functor Y is full, and the essential image consists of the locally finite homo-
logical functors (see Explanation 6.7 for the definition of locally finite functors).
The composite Y ı i is fully faithful, and the essential image consists of the finite
homological functors (again, see Explanation 6.7 for the definition).

(2) With the notation as in Black Box 2.2.1/, assume1 that T D hH in for some inte-
ger n > 0 and some object H 2 T b

c . Then the functor eY is full, and the essential
image consists of the locally finite homological functors. The composite eY ı Qı is
fully faithful, and the essential image consists of the finite homological functors.

Explanation 6.7. In the statement of Theorem 6.6, the locally finite functors, either of the
form H W ŒT c �op ! R–Mod or of the form H W T b

c ! R–Mod, are the functors such that

(1) H.AŒi�/ is a finite R–module for every i 2 Z and every A in either T c or T b
c ;

(2) For fixed A, in one of T c or T b
c , we have H.AŒi�/ D 0 if i � 0.

The finite functors are those for which we also have

(3) H.AŒi�/ D 0 for all i � 0.

Remark 6.8. The proof of part (1) of Theorem 6.6 may be found in [29], while the proof of
part (2) of Theorem 6.6 occupies [28]. These are not easy theorems.

Let T D Dqc.X/, with X a scheme proper over a noetherian ring R. Then the
hypotheses of Theorem 6.6(1) are satisfied. We learn (among other things) that the natural

1 What’s important for the current survey is that, if X is a noetherian, separated scheme, then
T D Dqc.X/ satisfies this hypothesis provided X is finite-dimensional and quasiexcellent.
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functor, taking an object B 2 Db
coh.X/ to the R-linear functor Hom.�; B/ W Dperf.X/

op
!

Mod–R, is a fully faithful embedding

Db
coh.X/

Y ıi // HomR

�
Dperf.X/

op
; R–Mod

�
whose essential image is precisely the finite homological functors.

If we further assume that the scheme X is finite-dimensional and quasiexcellent
then the hypotheses of Theorem 6.6(2) are also satisfied. We learn that the functor, taking
an object A 2 Dperf.X/ to the R-linear functor Hom.A; �/, is a fully faithful embedding

Dperf.X/
op eY ıQı // HomR

�
Db

coh.X/; R–Mod
�

whose essential image is also the finite homological functors.
In [31, Historical Survey 8.2] the reader can find a discussion of the (algebro-

geometric) precursors of Theorem 6.6. As for the applications, let us go through one of
them.

Remark 6.9. Let X be a scheme proper over the field C of complex numbers, and let X an

be the underlying complex analytic space. The analytification induces a functor we will call
L W Db

coh.X/ ! Db
coh.X an/, it is the functor taking a bounded complex of coherent alge-

braic sheaves on X to the analytification, which is a bounded complex of coherent analytic
sheaves on X an. The pairing sending an object A 2 Dperf.X/ and an object B 2 Db

coh.X an/

to Hom.L .A/; B/ delivers a map

Db
coh.X an/ // HomR

�
Dperf.X/

op
; C–Mod

�
:

Since the image lands in the finite homological functors, Theorem 6.6(1) allows us to factor
this uniquely through the inclusion Y ı i , that is, there exists (up to canonical natural iso-
morphism) a unique functor R rendering commutative the triangle

Db
coh.X an/

9ŠR

��

--
HomR

�
Dperf.X/

op
; C–Mod

�
:

Db
coh.X/ Y ıi

11

And proving Serre’s GAGA theorem reduces to the easy exercise of showing that L and R

are inverse equivalences, the reader can find this in the (short) [29, Section 8 and Appendix A].
The brilliant inspiration underpinning the approach is due to Jack Hall [12], he is the

person who came up with the idea of using the pairing above, coupled with representability
theorems, to prove GAGA. The representability theorems available to Jack Hall at the time
were not powerful enough, and Theorem 6.6 was motivated by trying to find a direct path
from the ingenious, simple idea to a fullblown proof.

Discussion 6.10. In preparation for the next theorem, we give a very brief review of metrics
in triangulated categories. The reader is referred to the survey article [30] for a much fuller
and more thorough account.
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Given a triangulated category T , a metric on T assigns a length to every morphism.
In this article the only metrics we consider are the ones arising from t-structures. If T is an
approximable triangulated category we choose a t-structure .T �0; T �0/ in the preferred
equivalence class, and this induces a metric as follows. Given a morphism f W X ! Y , we
may complete to an exact triangle X

f
! Y ! D, and the length of f is given by the formula

Length .f / D inf
²

1

2n

ˇ̌̌̌
n 2 Z and D 2 T ��n

³
:

In this survey we allow the length of a morphism to be infinite; if the set on the right is empty
then we declare Length .f / D 1.

This metric depends on the choice of a t-structure, but not a lot. As all t-structures
in the preferred equivalence class are equivalent, any two preferred t-structures will give rise
to equivalent metrics (with an obvious definition of equivalence of metrics).

Note that if T is a triangulated category and S is a triangulated subcategory, then
a metric on T restricts to a metric on S . In particular, if T is approximable, the metric
on T of the previous paragraph restricts to give metrics on the full subcategories T c and
T b

c . Once again these metrics are only defined up to equivalence. And, of course, a metric
on S is also a metric on S op, thus we have specified (up to equivalence) canonical metrics
on T c , T b

c , ŒT c �op, and ŒT b
c �op.

Suppose S is a triangulated category with a metric. A Cauchy sequence in S is a
sequence of morphisms E1 ! E2 ! E3 ! � � � which eventually become arbitrarily short.
If A b is the category of abelian groups, then the Yoneda embedding Y W S ! Mod–S

embeds S into the category Mod–S of additive functors S op ! A b . In the category
Mod–S colimits exist, allowing us to define

(1) The category L.S / is the full subcategory of Mod–S , whose objects are the
colimits of Yoneda images of Cauchy sequences in S ;

(2) The full subcategory S.S / � L.S / has for objects those functors F 2 L.S / �

Mod–S which take sufficiently short morphisms to isomorphisms. In symbols,
F 2 L.S / belongs to S.S / if there exists an " > 0 such that®

Length .f / < "
¯

)
®
F.f / is an isomorphism

¯
I

(3) The exact triangles in S.S / are the colimits in Mod–S of Yoneda images of
Cauchy sequences of exact triangles in S , where the colimits happen to lie
in S.S /.

A word of caution about (3): if we are given in S a Cauchy sequence of exact triangles, we
can form the colimit in Mod–S of its Yoneda image. This colimit is guaranteed to lie in
L.S /, but will not usually lie in the smaller S.S /. If it happens to lie in S.S / then (3)
declares it to be an exact triangle in S.S /.

And now we are ready for the theorem.
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Theorem 6.11. Let S be a triangulated category with a metric. Assume the metric is good;
this is a technical term, see [30, Definition 10] for the precise formulation. Then

(1) The category S.S / of Discussion 6.10.2/, with the exact triangles as defined
in Discussion 6.10.3/, is a triangulated category.

Now let T be an approximable triangulated category. In Discussion 6.10 we constructed (up
to equivalence) a metric on T , and hence on its subcategories T c and ŒT b

c �op. Those metrics
are all good, and the theorem goes on to give natural, exact equivalences of triangulated
categories

(2) S.T c/ Š T b
c . This equivalence is unconditional.

(3) If the approximable triangulated category T happens to be noetherian as in
[27, Definition 5.1], then S.ŒT b

c �op/ Š ŒT c �op.

Remark 6.12. First of all, in Theorem 6.11(3) we assumed that the approximable triangu-
lated T is noetherian as in [27, Definition 5.1]. The only observation we want to make here
is that if X is a noetherian, separated scheme then the approximable triangulated category
T D Dqc.X/ is noetherian. Thus, for noetherian, separated schemes X , Theorem 6.11 gives
exact equivalences of triangulated categories

S
�
Dperf.X/

�
Š Db

coh.X/; S
�
Db

coh.X/op�
Š Dperf.X/

op
:

The research paper [27] contains the proofs of the assertions in Theorem 6.11. The reader can
find a skimpy survey in [31, Section 9] and a more extensive one in [30]. In [31, Historical

Survey 9.1] there is a discussion of precursors of the results.

7. Future directions

New scientific developments are tentative and unpolished; only with the passage
of time do they acquire the gloss and elegance of a refined, varnished theory. And there is
nothing more difficult to predict than the future. My colleague Neil Trudinger used to joke
that my beard makes me look like a biblical prophet—the reader should not be deceived,
appearances are notoriously misleading, the abundance of facial hair is not a reliable yard-
stick for measuring the gift of foresight that marks out a visionary, and I am certifiably not
a clairvoyant. All I do in this section is offer a handful of obvious questions that spring to
mind. The list is not meant to be exhaustive, and might well be missing major tableaux of the
overall picture. It is entirely possible that the future will see this theory flourish in directions
orthogonal to those sketched here.

Let us begin with what is freshest in our minds: we have just seen Theorem 6.11,
part (1) of which tells us that, given a triangulated category S with a good metric, there is
a recipe producing another triangulated category S.S /, which, as it happens, comes with
an induced good metric. We can ask:
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Problem 7.1. Can one formulate reasonable sufficient conditions, on the triangulated cate-
gory S and on its good metric, to guarantee that S.S.S /op/ D S op? Who knows, maybe
even necessary and sufficient conditions?

Motivating Example 7.2. Let T be an approximable triangulated category and put
S D T c , with the metric of Discussion 6.10. Theorem 6.11(2) computes for us that
S.T c/ Š T b

c . I ask the reader to believe that the natural, induced metric on S.T c/ agrees
with the metric on T b

c � T given in Discussion 6.10. Now Theorem 6.11(3) goes on to tell
us that, as long as the approximable triangulated category T is noetherian, we also have that
S.ŒT b

c �op/ Š ŒT c �op; as it happens, the induced good metric on S.ŒT b
c �op/ also agrees, up

to equivalence, with the metric that Discussion 6.10 created on ŒT c �op. Combining these we
have many examples of exact equivalences of triangulated categories S.S.S /op/ Š S op,
which are homeomorphisms with respect to the metrics. Thus Problem 7.1 asks the reader
to find the right generalization.

Next one can wonder about the functoriality of the construction. Suppose
F W S ! T is a triangulated functor, and that both S and T have good metrics. What are
reasonable sufficient conditions which guarantee the existence of an induced functor S.F /,
either from S.S / to S.T / or in the other direction? So far there is one known result of this
genre, the reader can find the statement below in Sun and Zhang [37, Theorem 1.1(3)].

Theorem 7.3. Suppose we are given two triangulated categories S and T , both with good
metrics. Suppose we are also given a pair of functors F W S // T W Goo with F a G,
meaning that F is left adjoint to G. Assume further that both F and G are continuous with
respect to the metrics, in the obvious sense.

Then the functor OF W Mod–T ! Mod–S induced by composition with F , that is,
the functor taking the T –module H W T op ! A b to the S –module .H ı F / W S op ! A b ,
restricts to a functor which we will denote S.F / W S.T / ! S.S /. That is, the functor S.F /

is defined to be the unique map making the square below commute

S.T /
S.F / //

� _

��

S.S /� _

��
Mod–T

OF // Mod–S

where the vertical inclusions are given by the definition of S.‹/ � L.‹/ � Mod–‹ of Discus-
sion 6.10 .1/ and .2/.

Furthermore, the functor S.F / respects the exact triangles as defined in Discus-
sion 6.10.3/.

Sun and Zhang go on to study recollements. Suppose we are given a recollement of
triangulated categories

R I // S
I�

jj

I�
tt

J // T :

J�

jj

J�
tt
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If all three triangulated categories come with good metrics, and if all six functors are con-
tinuous, then the following may be found in [37, Theorem 1.2].

Theorem 7.4. Under the hypotheses above, applying S yields a right recollement

S.R/

S.I�/
,,
S.S /

S.I /

oo
S.J�/

,,
S.T /:

S.J /

oo

In the presence of enough continuous adjoints, we deduce that a semiorthogonal
decomposition of S gives rise to a semiorthogonal decomposition of S.S /. In view of the
fact that there are metrics on Dperf.X/ and Db

coh.X/ such that

S
�
Dperf.X/

�
D Db

coh.X/; S
�
Db

coh.X/op�
D Dperf.X/

op
;

it is natural to wonder how the recent theorem of Sun and Zhang [37, Theorem 1.2] compares
with the older work of Kuznetsov [19, Section 2.5] and [20, Section 4].

The above shows that, subject to suitable hypotheses, the construction taking S

to S.S / can preserve (some of) the internal structure on the category S —for example,
semiorthogonal decompositions. This leads naturally to

Problem 7.5. What other pieces of the internal structure of S are respected by the con-
struction that passes to S.S /? Under what conditions are these preserved?

Problem 7.5 may sound vague, but it can be made precise enough. For example,
there is a huge literature dealing with the group of autoequivalences of the derived categories
Db

coh.X/. Now, as it happens, the metrics for which Remark 6.12 gives the equivalences

S
�
Dperf.X/

�
Š Db

coh.X/; S
�
Db

coh.X/op�
Š Dperf.X/

op

can be given (up to equivalence) intrinsic descriptions. Note that the way we introduced these
metrics, in Discussion 6.10, was to use a preferred t-structure on T D Dqc.X/ to give on
T a metric, unique up to equivalence, and hence induced metrics on T c D Dperf.X/ and
on T b

c D Db
coh.X/ which are also unique up to equivalence. But this description seems to

depend on an embedding into the large category T . What I am asserting now is that there
are alternative descriptions of the same equivalence classes of metrics on T c and on T b

c ,
which do not use the embedding into T . The interested reader can find this in the later
sections of [27]. Anyway, a consequence is that any autoequivalence, of either Dperf.X/ or
of Db

coh.X/, must be continuous with a continuous inverse. Hence the group of autoequiva-
lences of Db

coh.X/ must be isomorphic to the group of autoequivalences of Dperf.X/. Or more
generally, assume T is a noetherian, approximable triangulated category, where noetherian
has the meaning of [27, Definition 5.1]. Then the group of exact autoequivalences of T c is
canonically isomorphic to the group of exact autoequivalences of T b

c .
Are there similar theorems about t-structures in S going to t-structures in S.S /?

Or about stability conditions on S mapping to stability conditions on S.S /?
We should note that any such theorem will have to come with conditions. After all,

the category Db
coh.X/ always has a bounded t-structure, while Antieau, Gepner, and Heller [3,
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Theorem 1.1] show that Dperf.X/ does not in general. Thus it is possible for S to have a
bounded t-structure but for S.S / not to. And in this particular example, the equivalence
class of the metric has an intrinsic description, in the sense mentioned above.

Perhaps we should remind the reader that the article [3], by Antieau, Gepner, and
Heller, finds a K-theoretic obstruction to the existence of bounded t-structures, more pre-
cisely if an appropriate category E has a bounded t-structure then K�1.E / D 0. Hence the
reference to [3] immediately raises the question of how the construction passing from S to
S.S / might relate to K-theory, especially to negative K-theory. Of course, one has to be a
little circumspect here. While there is a K-theory for triangulated categories (see [25] for a
survey), this K-theory has only been proved to behave well for “nice” triangulated categories,
for example, for triangulated categories with bounded t-structures. Invariants like negative
K-theory have never been defined for triangulated categories, and might well give nonsense.
In what follows we will assume that all the K-theoretic statements are for triangulated cat-
egories with chosen enhancements, and that K-theory means the Waldhausen K-theory of
the enhancement. We recall in passing that the enhancements are unique for many interest-
ing classes of triangulated categories, see Lunts and Orlov [21], Canonaco and Stellari [9],
Antieau [2] and Canonaco, Neeman, and Stellari [8].

With the disclaimers out of the way, what do the results surveyed in this article have
to do with negative K-theory?

Let us begin with Schlichting’s conjecture [36, Conjecture 1 of Section 10]; this con-
jecture, now known to be false [32], predicted that the negative K-theory of any abelian
category should vanish. But Schlichting also proved that (1) K�1.A / D 0 for any abelian
category A , and (2) K�n.A / D 0 whenever A is a noetherian abelian category and n > 0.
Now note that the K.A / D K.A op/, hence the negative K-theory of any artinian abelian cat-
egory must also vanish. And playing with extensions of abelian categories, we easily deduce
the vanishing of the negative K-theory of a sizeable class of abelian categories. So while
Schlichting’s conjecture is false in the generality in which it was stated, there is some large
class of abelian categories for which it is true. The challenge is to understand this class.

It becomes interesting to see what relation, if any, the results surveyed here have
with this question.

Let us begin with Theorems 4.4 and 4.2. Theorem 4.4 tells us that, when X is a
quasiexcellent, finite-dimensional, separated noetherian scheme, the category Db

coh.X/ is
strongly generated. This category has a unique enhancement whose K-theory agrees with the
K-theory of the noetherian abelian category Coh.X/, hence the negative K-theory vanishes.
Theorem 4.2 and Remark 4.3 tell us that the category Dperf.X/ has a strong generator if and
only if X is regular and finite-dimensional—in which case it is equivalent to Db

coh.X/ and
its unique enhancement has vanishing negative K-theory. This raises the question:

Problem 7.6. If T is a triangulated category with a strong generator, does it follow that any
enhancement of T has vanishing negative K-theory?

Let us refine this question a little. In Definition 4.1 we learned that a strong genera-
tor, for a triangulated category T , is an object G 2 T such that there exists an integer ` > 0
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with T D hGi`. Following Rouquier, we can ask for estimates on the integer `. This leads
us to:

Definition 7.7. Let T be a triangulated category. The Rouquier dimension of T is the
smallest integer ` � 0 (we allow the possibility ` D 1), for which there exists an object
G with T D hGi`C1. See Rouquier [35] for much more about this fascinating invariant.

There is a rich and beautiful literature estimating this invariant and its various
cousins—see Rouquier [35] for the origins of the theory, and a host of other places for subse-
quent developments. For this survey we note only that, for Db

coh.X/, the Rouquier dimension
is conjectured to be equal to the Krull dimension of X . But by a conjecture of Weibel [39],
now a theorem of Kerz, Strunk, and Tamme [18], the Krull dimension of X also has a K-
theoretic description: the groups Kn of the unique enhancement of Dperf.X/ vanish for all
n < � dim.X/. Recalling that S D Db

coh.X/ is related to Dperf.X/ by the fact that the con-
struction S interchanges them (up to passing to opposite categories, which has no effect on
K-theory), this leads us to ask:

Problem 7.8. Let S be a regular (D strongly generated) triangulated category as in Def-
inition 4.1, and let N < 1 be its Rouquier dimension. Is it true that Kn vanishes on any
enhancement of S.S /, for any metric on S and whenever n < �N ?

In an entirely different direction, we know that the construction S interchanges
Dperf.X/ and Db

coh.X/, and that these categories coincide if and only if X is regular. This
leads us to ask:

Problem 7.9. Is there a way to measure the “distance” between S and S.S /, in such a way
that resolution of singularities can be viewed as a process reducing this distance? Who knows,
maybe there is even a good metric on S D Dperf.X/ and/or on S 0 D Db

coh.X/ such that the
construction S takes either S or S 0 to an S.S / or S.S 0/ which is Dperf.Y / D Db

coh.Y /

for some resolution of singularities Y of X .

While on the subject of regularity (D strong generation):

Problem 7.10. Is there some way to understand which are the approximable triangulated
categories T for which T c and/or T b

c are regular?

Theorems 4.2 and 4.4 deal with the case T D Dqc.X/. Approximability is used in
the proofs given in [33] and [4], but only to ultimately reduce to the case of T c D Dperf.X/

with X an affine scheme—this case turns out to be classical, it was settled already in Kelly’s
1965 article [17]. And the diverse precursors of Theorems 4.2 and 4.4, which we have hardly
mentioned in the current survey, are also relatively narrow in scope. But presumably there are
other proofs out there, yet to be discovered. And new approaches might well lead to general-
izations that hold for triangulated categories having nothing to do with algebraic geometry.

Next let us revisit Theorem 6.6, the theorem identifying each of ŒT c �op (respectively
T b

c ) as the finite homological functors on the other. In view of the motivating application,
discussed in Remark 6.9, and of the generality of Theorem 6.6, it is natural to wonder:
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Problem 7.11. Do GAGA-type theorems have interesting generalizations to other approx-
imable triangulated categories? The reader is invited to check [29, Section 8 and Appendix A]:
except for the couple of paragraphs in [29, Example A.2] everything is formulated in gorgeous
generality and might be applicable in other contexts.

In the context of Db
coh.X/, where X is a scheme proper over a noetherian ring R,

there was a wealth of different-looking GAGA-statements before Jack Hall’s lovely paper [12]
unified them into one. In other words, the category Db

coh.X/ D T b
c had many different-

looking incarnations, and it was not until Hall’s paper that it was understood that there was
one underlying reason why they all coincided.

Hence Problem 7.11 asks whether this pattern is present for other T b
c , in other words

for T b
c � T where T are some other R-linear, approximable triangulated categories.

And finally:

Problem 7.12. Is there a version of Theorem 6.6 that holds for non-noetherian rings?

There is evidence that something might be true, see Ben-Zvi, Nadler, and Preygel [5,
Section 3]. But the author has no idea what the right statement ought to be, let alone how to
go about proving it.
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